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Motivated by conjectures about near-horizon dynamics in quantum gravity, we search for lines of
perturbatively accessible fixed points emanating from models of N free fermions. Through two loops we
find a new class of models, apart from the well-known Abelian Thirring models. Further study is needed to
see whether these can lead to true conformal manifolds, or perhaps a new class of large-N fixed points.
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I. INTRODUCTION

In arecent paper [1], one of us proposed a general strategy
for studying the local physics of models of quantum gra-
vity in given classical space-time backgrounds. Following
Jacobson [2], the classical space-time is assumed to repro-
duce the hydrodynamics of the underlying quantum theory,
assigning a local entropy to each causal diamond according
to the area law demonstrated in individual works of
Bekenstein, Hawking, Jacobson, and Bousso (BHJIB) [3],
which is equivalent to the double null projection of Einstein’s
equations with some conserved stress tensor source. The
ansatz of Carlip and Solodukhin [4,5] (C-S), generalized to
arbitrary causal diamonds in [6], implies that the modular
Hamiltonian of each causal diamond is the Virasoro gen-
erator L, of a (1 + 1)-dimensional conformal field theory
(CFT) living on the (past or future)1 stretched horizon. The
CFT has a UV cutoff, related to the smallest size of causal
diamond for which the C-S analysis is valid, and a central
charge proportional to the area of the holographic screen of
the diamond, in Planck units. Cardy’s formula then matches
the CFT entropy to the BHJB entropy, with the UV cutoff on
the Virasoro spectrum taken just at the Cardy matching point.

In [1] the CFT was taken to be built from free fermion
fields y; where the label i runs over the spectrum of the
Dirac operator on the holographic screen of the diamond,
with a transverse UV cutoff determined by the finite central
charge of the CFT. The motivation for this choice, had its
roots in the holographic space-time formalism [7], which
was in turn based on A. Connes [8] observation that

"The copies of the CFT on the past and future boundary of the
diamond are related by the unitary time evolution operator in the
diamond.
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Riemannian geometry is completely determined by the
Dirac operator. One can think of the fields w;(z, z) as the
expansion coefficients of the solutions of a fluctuating Dirac
equation (which represents a fluctuating geometry of the
holographic screen) in eigenspinors of the Dirac operator on
the background geometry. The background geometry rep-
resents the coarse-grained hydrodynamic average of the
system.

The authors of [9] argued that the dynamical system on
the stretched horizon of a black hole must be a fast
scrambler of quantum information. Free fields are not fast
scramblers. Bilinears in spinors on the transverse manifold,
can be used to construct p-forms of arbitrary rank. Since
the spinors are also (1 + 1)-dimensional free fields, two
such bilinears can also be commuting U(1) currents, whose
rank adds up to the dimension of the transverse holographic
screen. Thus we can construct a conformally invariant
Thirring interaction, which is formally invariant under
volume preserving maps of the screen. This interaction
does not respect distance constraints on the holoscreen and
is plausibly a fast scrambler. The Thirring interaction is a
line of fixed points passing through the free field point.

The preservation of the central charge is a property of lines
of fixed points in two dimensions. The purpose of the present
paper is to explore whether there can be other lines of fixed
points emanating from the free fermion point. A necessary,
but not sufficient condition for this is the vanishing of the one
and two-loop beta functions. We will explore this condition
for general four-fermion interactions.

II. THE GENERALIZED THIRRING MODEL

Before defining the generalized Thirring model, we will
introduce the original Thirring model [10] in two dimen-
sions. The original Thirring model of a massless Dirac
fermion with a four-fermion interaction of the current-
current-type has the following Lagrangian,

. 1 ..
Lyy, = gy o,y + 597 Jus (1)
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with ¢ being the Thirring coupling and the current is
defined as j* = yy*w. This interaction is unique because
any four-fermi interactions can be rewritten in terms of this
current-current form using the Fierz transformation, a
mathematical procedure used to deal with expressions
involving products of Dirac gamma matrices and spinors.
A derivation of the Fierz identity can be found in
Appendix A. = y'y? is the Dirac adjoint of a two-

component complex fermion y = (;’l;l ) . The equations of
2

motion for i and y are determined to be

iy oy — 9j*vuw = 0,

107" + gjupr* =0, (2)
respectively. Then we find that the conservation law is
given by 9,j* = 0. The theory is renormalizable because
the coupling constant is dimensionless. In addition, the
Lagrangian has U(1) symmetry w — e'®y and chiral
symmetry y — ei"73y/ with parameter a. In this paper

we choose the Weyl representation where y? = (O 1),

1 0
r=(0 o) mar=rr=(%
more convenient for massless theories.

For the generalized Thirring model, we consider an
arbitrary number N massless fermions, denote different
fermions with upper indices a,b,... =1, ..., N, then the
Lagrangian of the theory can written as

0y . .
| ) since it is

L= ig“r 0,0 + Rapeav v w"wcy, . (3)

where R,;,.,’s are coupling constants, and repeated indices
are summed over I,...,N in the expression. In two
dimensions, fermionic fields have mass dimension 1/2,
and R ;.4 1s dimensionless, thus the theory is renormaliz-
able. This model has minimum symmetry. Consider global
transformations ¢ — e*y* and chiral transformations
w* — e’y in each fields with parameter A,. These
transformations in general break both the global and chiral
symmetry unless specific conditions are imposed. As we
can see, for any interaction R,..“y"yw"w‘y,w? to be
invariant under global and chiral transformations, we need
the parameters to satisfy 4, — 1, + 4. — 4, = 0. A special
case of this model is when a¢ = b and ¢ = d, this is known
as the Abelian Thirring model, which is invariant under the
global and chiral transformations.

Write down the current-current interaction explicitly in
terms of spinor components to obtain symmetry properties
in the indices of the current-current couplings. These
properties come purely from the Grassmannian nature of
fermions, meaning that they are self-anticommuting,

Pt = g, iy = 29wy g
+ 205 iy (4)

where the metric g,, = diag(+1, —1) and the lower indices

are spinor indices of the two-dimensional fermionic fields.
From Eq. (4) we see that for Dirac fermions, couplings

R,cq have the following conditions in their indices:

Rabcd = Rcdab' (5)

On the other hand, Majorana fermions are real fields, i.e.
w" =, which give additional symmetry properties in the
indices. The Majorana case couplings R,,., are also
antisymmetric in their first and the second pair of indices,

Rabcd = _Rbacd = _Rade' (6)

Now we will use the renormalization method to remove
the UV divergence that appeared in the Feynmann dia-
grams due to unknown small-scale physics, we separate the
fields and couplings into a renormalized part and a
counterterm, where the counterterm is intrinsically infinite
and removes the UV divergence in the diagrams. Let y
and Rgbc 4 be the bare quantities, and let y“ and R, be
renormalized ones. Up to two-loop level,

i = \/Zap* with Z, =1+0 + 62,
with Zabcd =1 + 551117)&1 + 522[1)“1’
(7)

where Z’s are the renormalization factors of the fields and
coupling constants, 5£1k> and 551126 4 are the counterterms at
k-loop level. Note that the field strength renormalization
is y§ = \/Zjw" with b summed over 1, ..., N, but as we
will show that at one and two-loop levels off-diagonal
entries in Zj vanish, therefore, we denote diagonal terms

0 _
Rahcd - ZabcdRabcd

Z,=7% for convenience. We also define Z,,., =
(ZuZyZZ)) 2 Z gpeq = 1 + 3 s+ Sizh)cd for convenience,

abc
note that here repeated indices are not summed over.
Using the above expressions to rewrite the Lagrangian
that was originally written in terms of bare quantities,
we can separate it into the renormalized and the counter-

term parts,

L= Z ilp”yﬂaﬂu/“ + ZRabcdl/_/”}’”l//bl/_/CW//d
N ab,c.d

=1,

(1 —-a —-c
+ 3 8 R aped? vy 0
ey
+ D
o

l,....N

i 5512) wirtout

=(2 — _
+) 3% RapedW w5y, . (8)
a.b,c.d
—1.N
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a C
>< = —Z'Rabcd('yﬂ s ’Y,u)
b d

FIG. 1.

52“ is the field strength counterterm. In the current-current vertex, if two fermions ¢ and y?” form a current {7 y*y®
, then they are not in the same current.

at the vertex. If they do not join, e.g., w® and y?

The idea of renormalization is that, at L-loop level, the
L-loop counterterm absorbs the divergence from L-loop
diagrams, thus making the correlation function correction
finite at this level. To compute the S-function of R .4, We
need to determine the counterterms. Treat the last three
terms in Lagrangian Eq. (8) as a perturbation and the
correlation function is given by

QT {wry" 5y, p'} Q)

OIT {w*y"w"wey,p? expl—i [T dtH,(1)]}]0)
(0|7 {exp[~i [T, dtH/(1)] }|0)

= Sum of all connected and amputated diagrams
(by Wick’s theorem) 9)
|

= lim
T—oo(1—ie)

= ] |

—iRepgn (Qy (A" DI 07,0l Q) = Sanduedipg

Rbeea pap,é’ a ﬁ/ d2q qv
_— = 0
9 p — " ’Y ’Y Y (2 -

where index e is summed over 1, ...,

p p (k)
b >&®>— a = —z’péabéa

a c
2 (k
>X< = *Z5ébidRabcd(’Y“ Ce V)
b d

Feynman diagrams in momentum space for the three interactions in Lagrangian Eq. (8). Note that §,, is the Kronecker delta,

, then their legs join

Besides standard Feynman rules for fermions, we
define a new rule in momentum space for the interaction
vertices “y*y "¢y, ¢, and the counterterms 6,y 9,y

SabcdRabcdl;'/“y”y/by'/Cyﬂwd as shown in Fig. 1.

A. Field strength and coupling constant corrections
at the one-loop level

To determine the field strength counterterm 5511) for the
fields, we need to compute the two-point function. For any
a€e{l,..., N}, the two-point correlation functions have the
following corrections at the one-loop level:

Write down the momentum space correlation function at
the one-loop level for each diagram, the first diagram in
Fig. 2 contributes,

2

Sifigg [ P ib, W
2 /( m)2p? g —i—z’ewp (10)

)2 ¢% + ie

N. The expression vanishes because both y*y*y, = 0 by gamma matrices identities in

Eq. (A1) and the integrand is an odd function of ¢ and it is integrated over (—oo, 00) thus gives 0. This calculation indicates

that any diagram that has one-end-open loops has 0 amplitude since y*(- -

Dirac matrices vanishes.
Similarly, the second diagram in Fig. 2 contributes,

e g 1y iRt ip . ip [ & i
_’iREfgh <Q|¢x(¢z7u¢£¢g%¢¢g)”¢z’9> :>6b65af5gh 2fghp€fylu‘p€/ (27:)12 tr( % f)/u>

_ Ryace PaPs_a_yu 5/ Pq a4

with index e summed over 1, ...,
q € (-
correction 5511) =0.

-)y, where (---) consists of an odd number of

2
q® + 1€ (11)

p* (2m)2 % +ie

N. This diagram also vanishes since the integrand is an odd function in ¢ integrated over
o). Since the sum of the three diagrams is zero, we conclude that, at the one-loop level, the field-strength

Now let us compute the current-current correlation function to determine the one-loop counterterm to the coupling R ;.-
Recall that for the ¢* theory at the one-loop level, we have three diagrams, i.e., the s, 7, and u-channels, contributing corrections

GPx,y) =

q
p<>p + p p
—— +®+

FIG. 2. Feynman diagrams at one-loop level for the two-point function.
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a i j b % a b
Ay = + +
Ry Ry O

FIG. 3. Feynman diagrams at one-loop level for the four-point function.

to the ¢* coupling constant A. In analogy to the scalar theory, we have diagrams in the three channels, but the current-current vertex
in our theory generates multiple diagrams in each channel due to the broken permutation symmetry of this vertex. However, the
observation we made from the calculations above tells us that, using y-matrices identities in two dimensions and features of
integration over undetermined momenta, we can eliminate most of the diagrams. The trick is presented in Appendix B.

At the one-loop level, the 288 Wick contractions reduce to ten distinct Feynman diagrams, using the trick explained in
Appendix B, eight more vanish and there are only two diagrams left that contribute to the correlation function. For any
choice of a,b,c,d€{l,..., N}, the correlation function of the current-current interaction is given by.

The first diagram in Fig. 3 contributes,

[ :
e e 1 [

(=iRe, figim) (=i Res fogona) (L 05 (05 Y WL BT ) (B, v 0 2 V0 iy 12)
Ro (W Wi Y (e R D) i

= Faschia [ s (Gt ) e (G )

— Vo5 7,
pd V(pa_pc_Q)2+Z€ p(2: g (12)
d2q qa(pa — Pc — Q)B
cofettved / (2m)2 (% +i6)[(pa — pe — @)% + i
y (Pa)a(Pb)s(pe)*(pa)?
where T = tr(y2y"~% % M)t (Y s veyy) and P o= -t 55 202 .
papbpcpd
The second diagram contributes,
I f 1 ]
f [ ]
. g C
(=iRey figim ) (—iRes fag3h2) <Q!¢M¢”<w; ”wflw R )(% VYL w 2) by vt 1)
q W, , 4 Zp Zpd i(p,—p.+4) ip,
= — Reqar R /tr<7 - c .
eadf Lefc (27)2 p% 2+ 26 pa pd (pb Pt Q2+ 26’7 2 5 Tu (13)
d*q 4a(po — e + q)°
=Reqir Rpe rc PT / - —
cod T0eIeT2 | @) (P + i0)[(pb — pe + )% + ie]
where T = tr(7°9"7*v"7*v*) tr(Yavp 18 ¥evu) = I1 since v,95% = %387%-
Note that in the above two diagrams, the indices e, f are summed over 1, ..., N.
The counterterm contributes in two ways
(1) Ja wo)b (7€ u‘fig h\7C ‘d (1)
- ZdefghRefgh <Q|¢ﬂ ¢ (1/127 ¢z¢z7v¢z)¢y7ﬂ¢y‘9> = —Z(SbachbachF,
where I = ‘clr(,yl>71/76t,y )tr(’yd’yu%’m)- (14)

— =
2(1 — — — — =1
B R O T LT 10 = 1 Ra P
where TV = tr(vby”ywufyd%’yay“) =0 thus this term does not contribute.
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To evaluate the integral over undetermined momentum,
we apply Feynman parametrization with A = ¢ + ie and

B:(pa_pc_Q)2+i€’

1 1 1 . :
E‘A dxm‘/o g _ap (19

where [ =g~ (p,—p.)(1-x) and A= (p,—p.)*x

(x* — x) — ie and the integral over undetermined momen-
tum gives
/ d’q 9e(Pa—Pc— q)
(27)* (¢* + i€)[(pa = pc — q)° + ie]

P Bk
/dx/cﬂl ll+Bl+C_ (16)

—A)?

We use [,1, :%gﬂyﬂ which gives A = —1/2. B,C are
functions of p, — p., and we can ignore B since [, is
an odd function which gives 0 when integrated over
l€[~00, ]

Now apply dimensional to find
[ &2l Gaye L 7 and [ d* l )2. We have the following results

in M1nkowsk1 s1gnature

regularization

a1 i T@-d e
T e e e L)
del Hv - —i g,uur(l _ d/2) 11-d)2 o
/(27:)”1(12 —A? @m@ 2 T(Q2) A (18)

The integral in Eq. (17) converges thus compute directly
with d =2 by Wick-rotating to Euclidean space with
I=il% and I?»=-[. The integral in Eq. (18)
diverges logarithmically, we evaluate using dimensional
regularization,

&1 1 &Pl i i
/(2n)2 (> — A)? /( 27)% (I3 + A)? TN (19)
Al LIFP —igT(e/2) €/2
/ Q) (E-A? 8z I(2) <A)
—ig,’ v
it <§-#+0(6)> ( +inT 4o ))
-, 20
p ¢ p p p
G(Q)(a: y) — % + m

q2

where A ~ u? with y as the energy scale. Let d = 2 — € and
take € — 0, note that here ¢ is the small parameter in
dimensional regularization, which is different from the € in
the propagator. Expand I'(x) near x = 0 we have I'(x) =
1/x —#+ O(x), where # is the Euler-Mascheroni constant,
and expand (1/A)'""%2=1-(1-d/2)InA+--- near
d = 2. We see that the current-current correlation function
has a divergence of 1/e.

Using y matrices identities to simplify g,”T"; where g,”
comes from doing Feynman parametrization, we get

9Ty = w (P vy v v ) (Yay Yo o7 c¥)
=t (Y (¢ + 97 — FPY N V)Y VY o Y i)
= 4t (PP y Y (yay iy er,) = 4T (21)

Including the symmetry factor in each diagram and the
three diagrams in Fig. 3 contributes,

1 PT°

= 47’(’6 Z ReafcRbedfa
e, f=1
zPI‘ 22
= 471'6 Z Readebefca ( )
7f 1
i1PT
- - 5éazlcRbadcu
and sum up to 0. Up to one-loop level, Z,., =

(Z Z,Z.Z)\ (1 +6Y) ) and Z, = 1 + 6" = 1 because

) is determined to be 0. Then Zapea = 1+ 50 =1+

abc
551 b)c 4 then we have 62 b)c 4= 62 b)c 4~ Since for Dirac fermions,

we do not have antisymmetry in the first and second pair of

indices, R,,.q # 0. Then we get
1 & R
S Rops=—S (RoperRuprg — RoywraRupes) = ~2bcd
abcd* abcd 2 ze e;]( aecf®tebfd aefd ebcf) 2ze
(23)

B. At two-loop level

The correction to the f-function at the two-loop level is
given by The diagrams in Fig. 4 contribute the following:

ooy Qo

FIG. 4. Feynman diagrams at the two-loop level for the two-point function.
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®: _Rbenggaef / d2Q1d2QQ Zp m ng Zgl Z(p+ gl B gQ) Viié _ 0’

4 (2m)* ]?7 a3+ I ¢ +ie "(p+q— q2)? +ie' p?
since y(--- )7y, = 0 where (---) consists of an odd number of gamma matrices.
@. Rbefglteagy / d2Q1d2Q2i£ m Wp—dy +dy) zp ( iy i, ~ > -0

4 P2 q%—l—ie’mq% + i€

e P -t @i P
the numerator of the integrand (p — ¢1 + qg) a1 qg is a sum of odd (after changes
of variables) functions of ¢; and/or g2, thus integrating over {—o0, 0o} gives 0. (24)
@ : 5éeiaRbe€a / d2q Zl/j’yli Zg y Zp =0
2 (2m)2p2 " 2 +ie'"p ’
since ¥*(--- )y, = 0 where - - - are odd number of gamma matrices.

(1) o ) ,

10y, Fbace 1P sz d=q igf
: Dbace thace B P ¢ ~0
@ o 20 p2) @2 T\ @ rie " ,

q° + 1€

since the integrand is an odd function of q.

Indices e, f, g are summed over 1, ..., N. Therefore, at the two-loop level the correction 6,(12) =0.

At the two-loop level, 21,600 different Wick contractions are reduced to 96 distinct Feynman diagrams. This is still a
huge number to read off correlation functions from. Applying tricks presented in Appendix B, we can drop 90 vanishing
diagrams and keep only six of them. Using results from the current-current correlation function at the one-loop level and
bringing in Eq. (23), we easily obtain contributions from the diagrams in the second row of Fig. 5,

zPF iPT &
@2 Z (5eafc eafcRbedf - Sr2e2 Z (Regthgahc — Regthgafh)Rbedﬁ
7f 1 € f,g,hzl
ZPF iPT &
@2 = Z 5befc eadebefc = _7871'262 Z (Rbgthgehc — Rbgthgefh)Readf,
e,f 1 e, f,g,h=1
. N . N
iPT’ 1 iPT ”
@2 = In Z 5éezifReafcRbedf = 787‘('262 Z (Rbgthgehf — Rbgthgedh)Reafc, ( )
E,f_l 67f7g7h:1
ZPF iPT N
@2 = Z 6eadeeadebefc = _787r262 Z (Regthgahf - Regthgadh)Rbefc,
€ f 1 e:fmgvh:l

1 PT
5), = —75£§20Rbadc-

o

G(ey) = A) /&b +
RV V ‘@S

ﬁ

FIG. 5. Feynman diagrams at the two-loop level for the four-point function.
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The diagrams in the first row of Fig. 5 contribute,

@1:_

1 PT
8m2e2

N
Z ReafcRbgthgehf )
€7f7g’h:1

iPT 1
@1 = m Z §ReafcRbgthgedha

1PT 1
@1 = m Zi iReangbhdehegm

We see that each integral over g; gives a divergence
of 1/e, so each diagram contributes a second-order infinity
to the correction. Up to two-loop level, Z,,., =
2)

1 2 (1 %
(ZaZchZd)l/z(l + 5z(zb)cd + 51(117>cd) =1+ 5( b)cd + 5z(zbcd’

a

we have shown that 55,1) = 5512) =0 and SQb)C g = 52117)6 45 118

trivial that Sfb)c 4= 52217)0 4 The correction to the beta
function at the two-loop level is given by

N
2 1
ég;cdRabcd:m Z <RaechgbhdRegfh
e e.f.g,h=1

+ RaedegbchReghf - ERaechgbtheghd

1
- ERaenghbchehgd - ERaedegbthegch

1 R
- ERaenghbngehcf> = 47:222 . (27)

III. THE -FUNCTIONS AND CONSTRAINTS
ON COUPLING CONSTANTS

Recall the definition of the S-function,

aRahcd

ﬁabcd(Rabcd<:u)) =H a'u

, (28)

where R,,.,(u) is the renormalized coupling constant
which depends on the renormalization scale .y, with mass
dimension [u] = 1, is a parameter introduced to carry out
dimensional regularization, which is not a physical param-
eter but an artifice of the renormalization procedure. To
regularize the divergence in the loop diagrams, we perform
dimensional regularization and take d = 2 — e with limit
€ - 0. Now we count the mass dimension of each bare
quantity. Since the action § = f d?xL is dimensionless, we
have [£] = d, then
d-1 1-¢€

i) =S =55 and

[Ropeal = d = 4lwf] = e.
(29)

N

Z Readebgthgefh7
e7f7g7h:1
N

iPT 1
@1 ~ o.92.9 Z 7ReathbgfcRgedha
8mee ef g it 2

i1 PT 1
@1 T Sr2e2 Z, iReadebgthgehc-

i PT
8m2e?

@1:_

(26)

|
The bare couplings ought to be independent of yu, therefore
we need to replace R%, , with y°RY, , in the Lagrangian to
make it a dimensionless the following equation:

ORGpeq _9

6/4 a (ﬂezabcdRabcd) =0. (30)

Expand the right-hand side and multiply ¢'=¢Z! , on both
sides, we get the expression of the B-function for R ;. ,

U aRabcd _ _€Rath _ Rabcd </’l aZabcd) , (31)

(),Lt Zabcd aiu
7 aZabcal =u a(sabcd — _ 7—\)“abcd 7 aRabcd
ou ou 27reRfl,n_ y ou
1 R
7 abcd ) (32)
ZﬂeRabcd aﬂ

Substituting Eq. (32) into Eq. (31) we get

Rabcd 1 aRabcd
Pavea = —€Rupea — r dne < o + O(R},.0)
0 1 2
= ﬂl(lb)(,‘d + ﬂgb)cd + lBEzb)cd + O<R2bcd)’ (33)

where R 00 = Rglb)cd + iR(%)C 4 1s a function of coupling
constants R,,.;’s to the second order in the first term and

third order in the second term. REIIZ)C 4 1is defined as

5320 iRabea ~ Rg’;}c 4 up to a coefficient that depends on €

and is determined by canceling k-loop level divergence in
the current-current correlation function. The beta functions
are just combinations of the coefficients of the divergent
logarithms and they are given by

(1) )
0 1 R e %) 2R
ﬁgzb)cd = —€Rapca, ﬁEzbcd = #7 ﬁgzbcd = (27';2‘1.

(34)

As we can see in the calculations in Sec. II B, the two-
loop beta function is obtained by replacing one of the
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vertices with the one-loop counterterms, therefore vanish-
ing beta functions at the one-loop level automatically yield
vanishing beta function at the two-loop level. Setting the
one-loop corrections to the f-function to zero, we get the
following constraints that

N
1
Rflb)cd = Z (Raechebfd - Raedeebcf) =0. (35)
e.f=1

To find the most general constraints on the coupling
constants R,,.;’s such that the model is a CFT, we look
for solutions to Eq. (35). An obvious solution takes the
form of

thlbcd = RababRcdcd’ (36)

this solution is sufficient but not necessary, and there are
solutions beyond this form. In either the Majorana or the
Dirac cases, the degrees of freedom (d.o.f.s) D in the
couplings grow as O(N*). The beta function constraints
remove some d.o.f.s, to find the remaining d.o.f.s one needs
to analytically solve the system of Eq. (35).

In the Dirac cases, the d.o.f.s are larger due to fewer
symmetry properties in the indices, which is given by
D =1 N?(N? + 1). One can verify that Eq. (36) is indeed a
root of the beta functions, but there are other roots to
Eq. (35) beyond this form for any N > 2, this is numerically
verified. The form in Eq. (36) requires the number of d.o.f.s
in couplings to be reduced to N2, which is not the case even
for small N. For example, consider the case of N = 2 Dirac
fermions, there are 10 independent couplings R;,.,’s and
the vanishing beta function conditions has an analytic
solution with minimal zero couplings,

1

R1122 = T]zu [RllllRIZ]Z + R1212R2222 + 2R1112R1222
— R}, — Ryl
R]llZ = R11212 [R1222R2]21 + R1221(R1121 - R2122)]’
Ry = RizinRaprs (37)

such a solution removes only three d.o.f.s with seven d.o.f.s
remaining, and 7 > 2. For N > 3, analytic solutions are
difficult to find, but we can solve the system numerically.
Numerical examples of a general solution to vanishing beta
functions for N = 2, 3, and 4 are shown in Tables III-VI in
Appendix D, respectively.

The number of couplings grows as O(N*), which
quickly becomes a large amount of data to analyze. To
visualize the solutions, we create color maps using the
numerical results and we brief the coloring procedure in the
following. The coupling constants R,;.;’s can be mapped
into a N x N matrix R of N x N matrices R,

R=(R,;) whereR,, =(R.p.qs) With 1<a,b,c,d<N,
(38)

and we define R ;.. = R,;.,- More explicitly, we map the
couplings in the following way:

Riyn - Rinw Rinit - Rinin

Rint - Rivn Rinnt - Rinwn
R:

Ryiin -+ Ryvuiw Ryni1 = Rynin

Ryint -+ Ryinn Rynwni -+ Rynwn

(39)

Then we impose the symmetry properties on the couplings
to remove some d.o.f.s. Replacing the couplings by their
corresponding numerical results, we get a N2> x N? table of
data. Then we assign a color scale to values with gray for
numerical zero, red for positive, and blue for negative, the
darker the color, the larger the absolute value. Now we fill
in the table with colors corresponding to numerical results
of R,;.4’s to obtain a color map of a set of solutions to the
couplings. Consider the Abelian Thirring model as a simple
example, where R,,.; = 90,,0.4, its color map is shown
in Fig. 6.

Following this procedure, we generate color maps for
N = 2 to N = 7 Dirac fermions, shown in Figs. 7-12. We
see a pattern of solutions in these color maps as N gets
larger. Diagonal submatrices R,,’s share a similar pattern
for 1 < a < N. Diagonal terms in off-diagonal submatrices

O 0.6
[ | L 0.4

B - 0.2

L - 0.0

FIG. 6. Color map of couplings in the Abelian Thirring model
with N = 4 Dirac fermions, where R ;. = ¢6,0.4 With g = 1/2.
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0.4

- 0.2

- 0.0

FIG. 7. A solution for N = 2 Dirac fermions.

are a few orders stronger than the rest couplings, creating
diagonal strips in the color maps. These locations in the
maps correspond to couplings in R, form with
1 <a,b < N,andtheonesin R, formwith1 < a,b,c <
N and a # b. These couplings are more intense (i.e., have
larger numerical values) than the rest, as the rest couplings
are mapped to gray. Such a solution is more general than
one in Eq. (36) form. In addition, couplings in R .. form
with the same pair of a, b, for example, R533 and Rjy44,
have similar magnitude, as we see in the maps that diagonal
terms in the same off-diagonal submatrices share very
similar color, but diagonal terms in different off-diagonal
submatrices have different colors. If solutions of the
couplings completely concentrate on these patterns, the
diagonal terms R,;’s give s N(N + 1) d.o.f:s, and the N
diagonal terms R,,..’s in any off-diagonal submatrices
gives DOFs to N?(N — 1), then in total the d.o.f.s for a
theory of N Dirac fermions is given by

| 0.4
=
L 0.2
L 0.0
.... -0.2
I
..] -0.4

FIG. 9. A solution for N = 4 Dirac fermions.

D =N3—1N2+1N
N B .

; (40)

Bringing N =1 and N =2 into this formula, we get
D, =1 for the original Thirring model, and D, = 7 which
matches with the d.o.f.s given by the symbolic solution
in Eq. (37).

We note that for N = 4 Dirac fermions some numerical
solutions are more random than the one shown in Fig. 9 and
do not have an obvious pattern as for other values of N, an
example is shown in Fig. 13. A theory with N =4
Majorana fermions also behaves oddly where multiple
patterns appear in the color map. We include these color
maps and a discussion in Appendix C.

In Majorana cases, D =gN*(N—1)2+{N(N—1).
When N = 1 itis a free theory as no interaction is allowed
by the Grassmannian nature of fermions. When N = 2 the
theory has only one nonzero coupling R;,;, and the beta
function vanishes automatically. N =3 theory has six

0.6

0.4

- 0.2

- 0.0

F—0.2

FIG. 8. A solution for N = 3 Dirac fermions.

[ ||
| ! .. 0.4
| | |
,I ||
.l \ - 0.2
Coul
[
\ |
’ - 0.0
[
[ |
E -
l. -0.2
[
l. [ \ |
- l. \
| | | |

FIG. 10. A solution for N = 5 Dirac fermions.
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r
L- = 0.4
o
[
- o L 0.2
[ |
" 00
i 8 "-.__
- |
n -0.2
B e
] =
l. - | [ |
- -0.4
. .
|| |
FIG. 11. A solution for N = 6 Dirac fermions.

d.o.f.s by symmetry properties in the indices, and the beta
functions have an analytic solution with minimal zero
couplings, which is given by

2= 2
Riy3 = RiziaRyis, Riy3 = RiainRoszs.
2 _
Ri33 = Ri313R033, (41)

where three d.o.f.s are removed and only three remain. One
can also numerically check that for N = 1, 2, 3, there are no
other solutions to the one-loop beta function other than the
one given in Eq. (36). However, for N > 4 analytically
solving the system becomes difficult. Numerical results
show that there are indeed additional solutions that are not
in the above form. The d.o.f.s of the most general solution
grow at least as O(N?). This bound is given by the solution
form in Eq. (36), it reduces the d.o.f.s to N choose 2 in the
Majorana case, i.e., Cy =3N(N—1) for V N >2. See
Appendix C for color map samples of numerical solutions.
However, for Majorana fermions color maps are not as

- w
(] "u
"u
n .. 04
"
"
5
"
- - - 0.2
A m '-.
=
.- .
-
il
. - 0.0
]
|
&
" .
'
" ] —0.2
||
] (]
L
] ]
n [}
[
_ -0.4
[

FIG. 12. A solution for N = 7 Dirac fermions.

- .. 0-3
. . - 0.2
. - - 0.1

- 0.0

-—0.1

. -—0.2
. -0.3

FIG. 13. An example solution to the beta functions up to the
two-loop level for N = 4 Dirac fermions that has no obvious
pattern.

helpful in d.o.f. reduction as in the Dirac cases. As one can
see in the figures in the Appendix, all couplings that survive
after symmetry properties are imposed are turned on, and
no obvious relation between the couplings manifests. A
theory with N = 4 Majorana fermions is odd compared to
other numbers of fermions because multiple patterns appear
in the color maps, see Appendix C for more details.

Even though exact symbolic solutions have not yet been
determined, the calculation successfully reproduces some
of the known interacting fermionic CFTs. The original
Thirring model of N = 1 Dirac fermion is a CFT that is
equivalent to a free bosonic CFT compactified on a circle
[11]. The Thirring coupling g relates to the compact free
boson coupling which is the radius R of the circle in the
following way:

R? pa

4 n1+g

(42)

When the Thirring coupling vanishes, i.e., g =0, the
Thirring model becomes simply the free Dirac fermion,
and the radius of the equivalent compact free boson
corresponding to g =0 is R =2, which, through the
T-duality, is dual to the R =1 case (recall that we have
chosen o = 2). Therefore, the above relation reduces the
duality we discussed in the previous section. The N = 1
Majorana fermion theory is a free fermionic theory since
the interaction (yy*y)? does not exist in this case due to the
Grassmannian nature of fermions, and a free fermionic
quantum field theory is conformally invariant. When the
theory has N =2 Majorana fermions, one can form a
complex fermion. In general, this requires the Majorana
fermions to have the same mass, in the massless case the
requirement is satisfied. This model is a CFT, equivalent to
a free boson compactified on a Z, orbifold through
bosonization [12]. In addition, letting R ,j,.q = §0,p0.4 IN
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the generalized Thirring model yields Abelian Thirring
model, which is also a CFT of an arbitrary number of N
Dirac fermions with an interaction of the Abelian currents.
The above theories have vanishing f-function at the one
and two-loop level because they are CFTs, and this is
verified using Mathematica.

IV. CONCLUSIONS

Motivated by the quantum gravity considerations out-
lined in [1] we have revisited the question of lines of fixed
points emanating from models of free fermions in 1+ 1
dimensions. Through two-loop order we have found a
new family of possibilities, in addition to the well-known
Abelian Thirring models. In addition there are some
numerical indications of additional solutions. Of course,
vanishing of the beta functions through two-loop order
means that the three-loop contributions are scheme inde-
pendent and might well be nonzero, so our work is only
the first step in establishing the existence of true fixed lines.
We reserve the difficult task of higher-loop calculations to
future work.

We note however that for potential applications to quan-
tum gravity we are primarily interested in models with a very
large number of fermion fields. In this case it is possible that
various kinds of large N rescalings of the couplings R ;.4
might lead to models where approximate fixed points could
be found using only the two-loop beta functions. Since the
requirement of conformal invariance only appears in the limit
of semiclassical gravity, corresponding to large N, this might
be sufficient. Again, we will have to leave the explorations of
such speculations to future research.
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LHS = u,TETAT Ty, = tr(TECATFTS),

APPENDIX A: GAMMA MATRIX IDENTITIES
AND FIERZ TRANSFORMATIONS IN 2D

In the correlation function calculations, we used the
following gamma matrices identities in two dimensions,
where the metric ¢ = diag(+, —),

{7/”, yb} = 29#1/]129

}/ﬂyﬂ = 2]127
"rr. =0,
v = =21,

Y. = 2r0v,
)y, =0,
w(yy”) = 2¢",
tw(y'yy’y?) = 2(¢" 9 — 9 g + ¢"°g"")
rryr =gty + gt = gr*
=7rrv,
rrryrt = (¢ + ¢ — ¢ )Y
(99" + g7 g = ¢ gy’
+ ¢+ g = 9 Y,
=YYy (Al)

The current-current interaction is unique up to Fierz
transformations, that is to say any four-fermi interaction
can be rearranged to the current-current type using the Fierz
transformation. The Fierz identity can be written as

(T ) (@37 uy) = ZCABCD(%FDM)(%FDM)’ (A2)
ch

where I € {I,,7°, iy!,y*} is any combination of the nor-
malized elements (with the convention tr(IAT8) = 2548).
The set in general dimensions is {I,7#, o =Z£[y*,7"].
r*r#, 3} Left multiply (it,17u3) (1,7 u; ), then

RHS = "CAP ptr(TELC)tr(IFTP) = 4 “CAB 676 = 4CAE
C.D C.D

1
= B = Ztr(FCFAFDFB),

(@ 7"uy) (37, us) =

(A3)
1 _ _
Zth(FCY”FD}’M)(“1FCM4)(”3FDM2)
cD
1 _ _
ZZtf(FCY"FCYﬂ)(M1FC”4)(”3FCM2)
C
1 . _ L i3, (a3 (3
= Z“(Y“?’y)(”luzt)(%”z) +Ztr(}’ v (i uy) a3y u,)
= (yuy) (iz1uy) = (17 ug) (377 ), (A4)
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(yuy) (3uy) = z%tf(rcrc)(5‘1FCM4)(1_43FCM2)
C

N — N —

1

_ _ 1, _ _ 1 _ _
(yuy)(U3uy) + 5 (17 ug) (i37° us) +§ (17" ug) (3y,u2),

_ _ 1, _ 1, _ 1, ~
(it ug) (1) + = (17 ug) (37%uy) — = (7" wg) (37 ) + = (177 ug) (377 uy)
2 2 2

(7P uy) (377 ug) = e (TCPPTEP) (@ TCuy) (3T )

N

C

= L) @) sn) (7)) ) 57 )

1

APPENDIX B: ELIMINATING VANISHING
DIAGRAMS IN THE CURRENT-CURRENT
CORRELATION FUNCTION

At the one-loop level, the 6! = 720 Wick contractions
reduce to 10 distinct Feynman diagrams, which is still
relatively a large number to read off and calculate the
correlation functions. Luckily, observations made in the
field strength correction calculation in Sec. Il A become
useful in determining which diagrams contribute and which
vanish.

The current-current correlation function at the one-loop
level corresponds to the second-order expansion of the
exponential in Eq. (9) which consists of six currents, i.e.,
wyty. The six currents contain six y matrices and six
fermion-antifermion pairs in the function. Through Wick
contraction, the six fermion-antifermion pairs give six
fermionic propagators,

dp iy
Dr(x=y) / (2xp p* —m?’

where the numerator = p,y¥, so the six propagators
contribute six more y’s and in total there are 12 in the
expression. The y’s are traced over in several traces and the
number of traces depends on how the fermionic fields are
contracted. Any trace must contain an even number of y’s
because any propagator is connected to two y’s and for a
fermion loop consisting of P > 1 propagators, it is a trace
over P+ 2P/2 = 2P Dirac matrices, where the first P
comes from y’s in the propagators and there are 2P y’s
connected to each propagator, divided by 2 due to double
counting. Another way to see this is that any y provided by
a propagator (propagator gamma) must be accompanied by

(B1)

= > (yuy)(3uy) — E(ﬁl}’”u4)(ﬁ3}’ﬂuz) + = (77 ug) (377 uy).

——tr(=(r"y?)?) (17 ) (37 1r) — %tr(—(yS)“) (177 uy) (37  uy)

_ _ 1, _ _ _ _ I, _ _
(”1”4)(”3”2) - 5(”170”4)(”370”2) +3 (”171”4)(”371”2) + ) (u1y3u4)(u3y3u2)

(A3)
1
2
: (A6)

[\

|
a y from the current yy*y (current gamma), therefore any
trace contains an even number of gamma matrices. Then
determining which diagrams contribute becomes a simple
math problem. Breaking the 12y’s into several sets,

k
IZ:Zn,- where 2 <n; <12 and n;€2Z,

i=1

(B2)

where k is the number of fermion loops (number of traces)
in the diagram, and n; is the number of y’s in a trace. Then
we have the following cases:

(1) i such that n; > 6: This case does not contribute

because of y-matrices identities in two dimensions.
By the pigeonhole principle, any loop containing
more than three current gammas must have y*(- - -)y,,
where (- --) are an odd number of gamma matrices,
thus it vanishes for the same reason shown in
Eq. (10).
k =2 and n; = 6 for V i: This case gives diagrams
consisting of two equal loops of the same size, which
contribute to the current-current correlation function.
k=3 and n; = 4 for V i: This case does not con-
tribute. One of the three loops contains both incom-
ing momentum flows; one contains both outgoing
momentum flows; one contains two internal propa-
gators with momentum flows p, p’. We denote such
configurations as

2

3

ext(2 +2+0),
int(0 +0+2),

1)

where “ext” and “int” stand for “external” and
“internal” momentum flow, and each column
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TABLE 1. At one-loop level, 12 gamma matrices can be
grouped to form different-sized loops, there are four different
cases listed on the left. On the right, the reason why each case
contributes or not is shown. Only the second case contributes to
the current-current correlation function.

1 dn; > 6 )y, =0
v 2 646 tr(- - )te(- - )
3 44414 ext(2+2+0) £Lo
int(0 + 0 4 2)
4 dn; =2 (pw) correction = 0

represents a loop containing a number of external
and internal momentum flows. We can easily see
that in the third loop, p’ linearly depends on the
undetermined momentum p, i.e., p’ = p'(p) « p,
and when performing Feynman parametrization, the
third loop contributes a term, that is,

~ (' p'rY) = papste(rr'y’r”)

~ gDy yPy?) = pru(ypry’r*) =0, (B3)
as shown in Eq. (16).

(4) i such that n; = 2: This case does not contribute
because such diagrams either are disconnected or
vanish for the same reason shown in Eq. (11) due to
integration of an odd function.

Table I is a summary of the four cases and their reasons
for whether or not they contribute.

At the two-loop level, the 8! = 40, 320 Wick contrac-
tions reduce to 96 distinct Feynman diagrams. Applying the
same reasoning above, 90 of which vanishes and only six
diagrams remain. Group 16 gamma matrices into loops and
we have six cases. Table II gives a summary of the six
cases. Cases 1,2,5, and 6 follow the same reasons as cases
1,2,3, and 4, respectively, at the one-loop level. Cases 3 and

4 are more complicated which we will explain in the

following.

For case 3, there are 3 ways to form three loops
consisting 8,4, and 4 gamma matrices, shown in Table II
case 3:

(3.1) One loop contains four internal flows and two loops
contain two external flows each. The loop with four
internal flows p,p’,q,q yields 0 by Feynman
parametrization, as p’ = p/(p) and ¢’ = ¢'(g) sim-
ilar to the case in Eq. (B3).

(3.2) One loop contains two external and two internal
flows, one contains two external flows, and one
contains two internal flow. The loop with only two
external flows forces one of the other two loops to
contain a pair of linearly dependent internal flows, and
such diagrams vanish similar to the case in Eq. (B3).

(3.3) One loop contains four external flows, and two loops
each contain two internal flows. The loop with four
external flows is in tr[y*(- - -)y, - - -] form, and it vani-
shes by two-dimensional gamma matrices identities.

For case 4, two ways to form three loops both vanish:

(4.1)  One loop contains three internal flows, one con-
tains two external flows, and one contains two
external and one internal flows. Similar to case
(3.1), the loop with only two external flows forces
one of the other two loops to contain a pair of
linearly dependent internal flows, thus this case
vanishes.
Two loops contain two external and one internal
flows each, and one loop contains two internal
flows. In this case, one can verify that three out of
the four internal flows depend on one of the two
undetermined momenta, thus the integrands are
odd functions of undetermined momenta. Such
diagrams also vanish.

Therefore, the only cases left at the two-loop level are
diagrams consisting of two equal-sized loops of eight
gamma matrices.

4.2)

TABLE II. A summary of whether or not a configuration contributes at the two-loop level, there are six ways to
group the 16 gamma matrices and only the second case contributes. Cases 3 and 4 have three and two subcases,
respectively.
1 dn; > 8 )y, =0
4 2 8+8 (-t )
3 8+4+4 ext(0 +2 +2)ext(2 42 4 0) ext(4 + 0+ 0) Q)
int(4 40+ 0)int(2 + 0 + 2) int(0 + 2 + 2)
4 6+6+4 ext(0+2+2)ext(2+2+0) FP
int(34+ 14 0)int(1 +1+2)
5 4+4+4+4 ext(24+2+4+0+0) FZ-I;O
int(0+0+2+2)
6 dn; =2 (pw) correction = 0

1
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APPENDIX C: COLOR MAPS OF SOLUTIONS
FOR MAJORANA FERMIONS AND ODD
BEHAVIOR FOR N =4

We present color maps for Majorana fermions in this
appendix and explain behaviors of N =4 for Majorana
cases.

The coloring procedure for Majorana is the same as the one
for Dirac, we first arrange all couplings into a matrix of
matrices shown in Eq. (38). The antisymmetry properties in
the first pairs of indices lead to diagonal symmetry in the big
matrix and the antisymmetry properties in the second pairs
of indices lead to diagonal symmetry in the submatrices.

1.00

-0.25

-0.50

-0.75

-1.00

FIG. 14. N = 2 Majorana.

FIG. 15. N = 3 Majorana.

FIG. 16. N =5 Majorana.

The antisymmetry in indices gives vanishing diagonal terms.
All independent couplings are covered by these upper
triangle parts, with R,,,,’s appearing only once and all
the rest nonvanishing couplings appearing twice. For exam-
ple, N = 3 has six d.o.f.s, where R|5y3, Rj203, Ry323 repeat
themselves, thus the nine red blocks at the top right corner. As
one can see in Figs. 14-19, all allowed couplings are turned
on in a solution. In Majorana cases, no obvious pattern is
observed other than the antisymmetry and symmetry proper-
ties in the indices, unlike in Dirac cases where one similar
pattern of solution emerges for all N.

However, color maps show different patterns for N = 4
Majorana fermions shown in Figs. 20-22 for different

0.4

0.2

0.0

FIG. 18.

N =7 Majorana.

] -l"'lq 'l-dl' FLM? k. 0.4
3 A

g Wi

0.2

0.0

FIG. 19. N = 8 Majorana.
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0.6

-0.25

-0.50

-0.75

-1.00

FIG. 20. The color map on the left is an example of a general solution to the vanishing beta functions for N = 4 Majorana fermions.
The middle color map is a solution where couplings become weaker except for R313, Ro424, and Ry3»4. The concentration continues in

the color map on the right.

1.00 -. 10

-0.25
-0.50
-0.75

-1.00

FIG. 21.

Three different ways of coupling concentration. The couplings concentrate on Ry3;3, Ro4p4, and R34 in the diagram on the

left. The couplings concentrate on R 414, R2373, and Ry4,3 in the middle diagram. The couplings concentrate on Ri515, R3434, and R34 in

the diagram on the right.

numerical solutions that generate different patterns.
Figure 20 gives an example of how couplings concentrate
more and more and eventually settle at three d.o.f.s R;33,
Ry44, and cross coupling Rj3,4. The cross coupling of
Rupap and R 4., 1s defined as R, ,. Similarly, couplings
can also settle at Ry414, Ry3p3, and Ry43 as shown in the
middle color map in Fig. 21, or R515, R3434, and Ryp34 as

shown in the color map on the right in Fig. 21. These are the
only three patterns with three d.o.f.s, and the form of
Eq. (36) is satisfied by these solutions. A theory with this
structure is equivalent to a theory of two bosons with an
interacting term in the bosonization picture where a free
boson is equivalent to two real fermions with a four-
fermion interaction.

04 [ | 0.4
]
02 0.2
[

0.0 u 0.0
ﬁ:
||

||

FIG. 22. Three patterns emerge when ten d.o.f.s survive the coupling concentration. These solutions follow the form in Eq. (36). Left:
R1212, R3434, R1313, R2424 and their cross Couplings. Middle: R1313, R2424, R1414, R2323, and their cross Couplings. nght R1212, R3434,

Riy414, Ro323, and their cross couplings.
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Other middle stages of coupling concentration are shown
in Fig. 22. These are the only patterns with ten d.o.f.s. Once
couplings completely concentrate following these patterns,
these stages are solutions in the form of Eq. (36). In the left
most color map in Fig. 22, couplings concentrate on R;3;3,
R2424, R1414, R2323, and their cross Couplings R1324, R1314,
R1323, R1423, R1424, R2324. The middle one in F]g 22 1s an
example of couplings concentrating on Ri517, R3434, Ri313,
R54o4 and their 6 cross couplings. The color map on the
right in Fig. 22 shows couplings concentrate on Rj,,,
R3434, R1414, R2323, and their six cross Couplings. A further
step is to explore whether the fermionic theory with such

solutions has a bosonic equivalence, if this is the case, is
there a way to map the four-fermion couplings to couplings
of this bosonic theory?

For N >4 Majorana fermions, patterns of solutions
become more and more difficult to observe as N gets
larger, therefore, further work is needed to determine the
most general symbolic solutions to the vanishing beta
functions up to the two-loop level.

APPENDIX D: SAMPLES OF NUMERICAL
RESULTS TO VANISHING BETA FUNCTIONS

TABLE III. A solution to the vanishing beta functions for the theory with N = 2 Dirac fermions that does not follow the form of
Eq. (36).

Ry Ry R Rir1n —4.3860748e-2 —2.4213040e-1 —2.4213040e-1 3.1556370e-2
R1121 R1122 R1221 R1222 3.0402219e-1 2.4040258e-1 6.2101346e-3 —2.4448646¢-1
Rl 121 R122l Rl 122 R1222 3.0402219e-1 6.2101346e-3 2.4040258e-1 —2.4448646¢-1
R2121 R2122 R2122 R2222 1.2221232e-3 3.0355853e-1 3.0355853e-1 5.2484182e-1

TABLE 1V. A solution for N = 3 Dirac fermions.

Ry Rz Riii3 5.87648556482932¢-1
Rip R Rii23 —1.17589376850528e-1
Ry 5 Rii3n Ry33 —1.09541107265992e-1
Ry Rs1n Riy3 4.15490588387255¢e-1
R122| R1222 R|22'3 5.376014661941296'4
Ris3; Rir3 Rir33 4.94452190544431e-4
Ris Rixs Risis 8.09728843069292¢-2
R i3 Ri3 Ri373 3.52770559599846¢-4
Ri33; Ri33, Ri333 2.74020612749278e-4
R1121 R1221 R1321 —1.17589376850528e-1
R0 R0 Ry123 6.28702609173722e-4
Roizt Roin Roins 4.52106341843372e-4
Ri1» R Rz 6.35939476084822¢-1
R2122 R2222 R2223 —117541546768596-1
R>y31 Ryr3» Ror33 —1.09396141048504e-1
Ryjp3 Rir3 Ri373 9.66442479189108e-2
Ry123 Ryr3 Ry3r3 3.95675644307164¢-4
Ra331 Ry Ry333 3.10949258252192¢-4
R1131 R1231 R1331 —1.09541107265992¢-1
Ry Ry3; Ry33; 4.52106341843372e-4
R313 Ry13 R333 3.09068165743291e-4
Ri13 Ri3 Ri33, —2.52992302722233e-1

2132 232 Ras3, 4.91213947244407e-4
R3132 R3232 R3233 4.59802986817494¢e-4
Riiss Rixss Riss 8.71030751509361e-2
Roiss Rors Rz —1.17842968195166¢-1

313 Ri33 B, —1.09686644813478e-1

4.15490588387255¢e-1
6.35939476084822¢-1
2.52992302722233e-1

5.59563619288908e-4
4.1563647157943e-1
4.14961112540219e-4

3.28299313172747¢e-4
8.10293435524669¢-2
2.8670364435102¢-4

5.37601466194129¢e-4
—1.1754154676859%¢-1
4.91213947244407e-4

4.1563647157943e-1
6.84345214578727e-1
2.52955300347104e-1

3.72746485831559¢-4
9.67115256538758e-2
3.20139640173062¢-4

4.94452190544431e-4
—1.09396141048504¢-1
4.59802986817494e-4

4.14961112540219e-4
2.52955300347104e-1
2.9698568041399¢-4

4.15297389252339e-1
1.35399551371414e-1
—2.53201916372555¢e-1

8.09728843069292¢-2
9.66442479189108e-2
8.71030751509361e-2

3.28299313172747e-4
3.72746485831559%¢-4
4.15297389252339¢-1

2.08068902716359¢-4
2.32760156206622¢-4
8.08365134052374e-2

3.52770559599846e-4
3.95675644307164e-4
—1.17842968195166e-1

8.10293435524669¢-2
9.67115256538758e-2
1.35399551371414e-1

2.32760156206622¢-4
2.61029933264969¢-4
9.64918473705521e-2

2.74020612749278e-4
3.10949258252192¢-4
—1.09686644813478e-1

2.8670364435102e-4
3.20139640173062¢e-4
—2.53201916372555¢e-1

8.08365134052374e-2
9.64918473705521e-2
—4.13338584898267¢-1
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TABLE V. First half of a solution for N = 4 Dirac fermions.

Rllll R1112 Rlll3 R1114 8.93891334289414e-2 —9.08200765529855¢e-2 4.87993833917034¢-2 2.23581578500429¢-1
Risi Rims Rips Rie  1.73381012395297e-1 —4.17010032954388¢2  4.6646543694454e-1  9.93087222968853¢-2
Riizi Riiza Rz Ry 1.58558911566139%e-1  4.52465020090685e-1 2.8389663637554e-2 —1.63924330125004e-1
Rism Ris Rius Rius  475721783983157¢-3 —3.58994878445356e-1  1.12327371281389%-1  4.44100160950618e-1
Rus R Rz Rigs —9.08200765529855¢2  1.71052767932729%¢-3  1.93060133709441e-3  1.89843302179749¢-3
Rii Rimn Rims Rims  2.96189119224102¢-3 —8.92895768322059¢-2  1.97390000514186¢-3  2.61074796896732¢-3
Riz1 Rixzn Rixzz Rixzs  2.40165860870197e-3  2.56284197024156e-3 —9.03723841098154e-2  2.11490288448325e-3
Rioi Risgs Rings Rins  2.35821991735503¢-3  2.58807745278666e-3  1.8085886792796e-3  —9.0800486359443¢-2
Ris Ry Riss Ris  4.87993833917034c2  1.93060133709441e-3  1.6936758398197¢-3  2.03107883583002¢-3
Risai Rismy Riss Ripa  1.54367500346283¢-3  4.84899996107517¢-2  1.86979604656575¢-3  1.79080549133709¢-3
Rissi Risn Risss Risse  1.78430153581487¢-3  1.92339007103261e-3  4.85049584020254e-2  1.43254060620137¢-3
Ris Risp Risss Riss  1.25052863228629¢-3  1.32845068929825¢-3  1.07201615064092¢-3  4.81159771724384e-2
Riis R Riss Ris  2.23581578500429¢-1  1.89843302179749¢-3  2.03107883583002e-3  1.47610977973788e-3
Rus Rim Rims Ry 2.005915795444603  2.23846997738574c-1  2.18802237204685¢-3  2.07659959472313¢-3
Rusi Rus R R 1.84087370176185¢-3  1.90974014151239¢-3  2.23370066864299%-1  2.08605758348406¢-3
Ris Ry Riss Russ  1.7917763064753¢-3  1.96278188235845¢-3  1.30812316112946e-3  2.23151197796952e-1
Risi Ry Ry Rum  1.73381012395297¢-1  2.96189119224102e-3  1.54367500346283¢-3  2.0059157954446¢-3
Rot1 Roy Rorss Rapas  2.82846144695018¢-3  1.73671827323392e-1  2.98753320525608e-3  2.6379197220065%-3
Rosi Ropp Ross Ropn  2.52104369314041c-3  2.63789857454227¢-3  1.73313629933%-1  2.38810631084216¢-3
Roi Rotpn Rowss Rops  2.07794831327891e-3  2.12047093908491e-3  2.04441432655092¢-3  1.73175284635749%-1
Rim Ripy Rimy R —4.17010032954388e-2 —8.92895768322059¢2  4.84899996107517¢-2  2.23846997738574¢-1
Rolys Rorss Romss Ry  1.73671827323392¢-1 —1.73818121724867¢-1  4.67814084997426e-1  9.97096618974108e-2
Roysi Ry Romss Ry 1.58987547899646e-1  4.52863700838672e-1 —1.03119353024888e-1 —1.63372737242689%-1
Rysi Ry Rovss Ropy  4.78464959400363¢-3 —3.59139073909566e-1  1.1283736364447%-1  3.12850716672893c-1
Riys Ri Riss Rup  4.6646543694454e-1  1.97300000514186e-3  1.86979604656575¢-3  2.18802237204685¢-3
Ratys Rops Roms Romme  2.98753320525608e-3  4.67814084997426¢-1  1.92526733017194e-3  2.47974227969789¢-3
Ry331 Ryzzn Ryzzz Ryzzy 2.44946384671077e-3  2.60411172815349e-3  4.66717323041201e-1  2.23656869548097¢e-3
Rosy1 Rozsn Rozyz Rozas 2.28777290938034e-3 2.4482832432676e-3 2.3553065012906e-3  4.66282825250818e-1
Rips Rims Rise Rips  9.93087222068853¢-2  2.61074796896732¢-3  1.79080549133709¢-3  2.07659959472313¢-3
Rotss Rams Roms Roms  2.63791972200659e-3  9.97096618974108¢2  2.4797422796978%-3  2.24391953895858¢-3
Rossi Rosr Rowss Rosss  2.39419476780728¢-3  2.5303522972734e-3  9.92881322122194e-2  2.05063520505214¢-3
Rossi Rous Rosss Ross  1.88218275451014e3  1.92510275257336e-3  1.63169569765752e-3  9.92424706998542¢-2
TABLE VI. Second half of a solution for N = 4 Dirac fermions.

Risi Ry Ris Ry 1.58558011566139c-1  2.40165860870197¢-3  1.78430153581487¢-3  1.84087370176185¢-3
Roizi Rosi Rowsy Rogsp  2.52104369314041e-3  1.58987547899646e-1  2.44946384671077e-3  2.39419476780728e-3
Ryisi Rars Rass Rajse  2.27817944586346e-3  2.39833248770982e-3  1.5852468439324e-1  2.15416233905997¢-3
Ry Raip Rapss Rass  1.93903547033657¢-3  2.03385597278184e-3  1.72377197400074e-3  1.58324230374422¢-1
Rims Ry Rizp Ry 4.52465020000685¢-1  2.56284197024156e-3  1.92339007103261e-3  1.90974014151239¢-3
Rotss Ray Rosss Roga  2.63789857454227¢-3  4.52863700838672e-1  2.6041117281534%-3  2.5393522972734e-3
Rizs Rups Ruvs Ry 2.39833248770982e-3  2.52237722419909¢-3  4.5240648203369%-1  2.28354266360319e-3
R34 Ri3nun Rinuz Rapas 2.02819472846199e-3 2.1239967070906e-3 1.79094217772047e-3  4.52211803714519¢-1
Rizs Rixs Riss Russ  2.8389663637554e2 —9.03723841008154e-2  4.85049584020254e-2  2.23370066864299%-1
Ro133 Ryszzs Ryzzz Rz 1.733136299339%-1 —1.03119353024888e-1 4.66717323041201e-1 9.92881322122194e-2
Rans Ras Rays Rass  1.5852468430324c-1  4.52406482033699-1 —3.30102173992401¢-2 —1.63742580345448c-1
R3341 R3342 R3343 R3344 4.65639058481899¢-3 —3.59168172715776e-1 1.12426473698445e-1 3.83087886565564¢e-1
Rizs Rizs Rizza Rygzs —1.63924330125004e-1  2.11490288448325e-3 1.43254060620137e-3  2.08605758348406e-3
Rotzs R Rossy Rosss  2.38810631084216e-3 —1.63372737242689%-1  2.23656869548097e-3  2.05063520505214e-3
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TABLE VI. (Continued)

Ryzs Ripse Ry Rase  2.15416233905997e-3  2.28354266360319e-3 —1.63742580345448e-1  1.83875902890197¢-3
Ruu Ruuy Ris Raus  1.81220258635743e-3  1.90480511326621e-3  1.75603803032357e-3 —1.64191775784397¢-1

Rim Ris R Ry 4.75721783983157e-3  2.35821991735503e-3  1.25052863228629¢-3  1.7917763064753¢-3
Roist Rongi Roay Rosy  2.07794831327891e-3  4.78464959400363e-3  2.28777290938034e-3  1.88218275451014e-3
Rus Rypm Ryu Raa  1.93903547033657e-3  2.02819472846199e-3  4.65639058481899¢-3  1.81220258635743¢-3
Rusm Rus Ryus Ruas  1.6593530291522¢-3  1.7197160649665¢-3  1.47111490679553e-3  4.47958869966015¢-3

Ry R Risp Rup —3.58094878445356e-1  2.58807745278666e-3  1.32845068929825¢-3  1.96278188235845¢-3
Ryws Roy Rysy Rown  2.12047093908491e-3  —3.59139073909566e-1  2.4482832432676e-3  1.92510275257336e-3
Ry Ry Ry Rau  2.03385597278184e-3  2.1239967070906e-3 —3.59168172715776e-1  1.90480511326621¢-3
Riws Riuy Rpus Rpw  1.7197160649665¢-3  1.77567805960787e-3  1.52879724701502e-3 —3.59360882202121¢-1

Riss Rias Riss Ruws  1.1232737128138%-1  1.8085886792796e-3  1.07201615064092¢-3  1.30812316112946¢-3
Ryz Ronus Ry Rows  2.04441432655092e-3  1.12837363644479%-1  2.3553065012906e-3  1.63169569765752e-3
Ry Rigs Rys Raws  1.72377197400074e-3  179094217772047e-3  1.12426473698445¢-1  1.75603803032357e-3
Russ Rigs Ruus Rizas  1.47111490679553e-3  1.52879724701502¢-3  1.28467778185848e-3  1.12317122847217e-1

Riss Ripss Risw Ruuy  444100160950618e-1  —9.0800486359443e-2  4.81159771724384e2  2.23151197796952¢-1
Ryss Rypas Rysss Rossy  1.73175284635749e-1  3.12850716672893e-1  4.66282825250818e-1  9.92424706998542¢-2
Rys Ripgs Ry Ry 1.58324230374422e-1  4.52211803714519e-1  3.83087886565564e-1 —1.64191775784397¢-1
Russ Riss Ris Rusy  4.47958869966015e-3 —3.59360882202121e-1  1.12317122847217e-1  7.9903188041306e-1
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