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Motivated by conjectures about near-horizon dynamics in quantum gravity, we search for lines of
perturbatively accessible fixed points emanating from models of N free fermions. Through two loops we
find a new class of models, apart from the well-known Abelian Thirring models. Further study is needed to
see whether these can lead to true conformal manifolds, or perhaps a new class of large-N fixed points.
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I. INTRODUCTION

In a recent paper [1], one of us proposed a general strategy
for studying the local physics of models of quantum gra-
vity in given classical space-time backgrounds. Following
Jacobson [2], the classical space-time is assumed to repro-
duce the hydrodynamics of the underlying quantum theory,
assigning a local entropy to each causal diamond according
to the area law demonstrated in individual works of
Bekenstein, Hawking, Jacobson, and Bousso (BHJB) [3],
which is equivalent to the double null projection of Einstein’s
equations with some conserved stress tensor source. The
ansatz of Carlip and Solodukhin [4,5] (C-S), generalized to
arbitrary causal diamonds in [6], implies that the modular
Hamiltonian of each causal diamond is the Virasoro gen-
erator L0 of a ð1þ 1)-dimensional conformal field theory
(CFT) living on the (past or future)1 stretched horizon. The
CFT has a UV cutoff, related to the smallest size of causal
diamond for which the C-S analysis is valid, and a central
charge proportional to the area of the holographic screen of
the diamond, in Planck units. Cardy’s formula then matches
the CFTentropy to the BHJB entropy, with the UV cutoff on
the Virasoro spectrum taken just at the Cardymatching point.
In [1] the CFT was taken to be built from free fermion

fields ψ i where the label i runs over the spectrum of the
Dirac operator on the holographic screen of the diamond,
with a transverse UV cutoff determined by the finite central
charge of the CFT. The motivation for this choice, had its
roots in the holographic space-time formalism [7], which
was in turn based on A. Connes [8] observation that

Riemannian geometry is completely determined by the
Dirac operator. One can think of the fields ψ iðt; zÞ as the
expansion coefficients of the solutions of a fluctuating Dirac
equation (which represents a fluctuating geometry of the
holographic screen) in eigenspinors of the Dirac operator on
the background geometry. The background geometry rep-
resents the coarse-grained hydrodynamic average of the
system.
The authors of [9] argued that the dynamical system on

the stretched horizon of a black hole must be a fast
scrambler of quantum information. Free fields are not fast
scramblers. Bilinears in spinors on the transverse manifold,
can be used to construct p-forms of arbitrary rank. Since
the spinors are also (1þ 1)-dimensional free fields, two
such bilinears can also be commutingUð1Þ currents, whose
rank adds up to the dimension of the transverse holographic
screen. Thus we can construct a conformally invariant
Thirring interaction, which is formally invariant under
volume preserving maps of the screen. This interaction
does not respect distance constraints on the holoscreen and
is plausibly a fast scrambler. The Thirring interaction is a
line of fixed points passing through the free field point.
The preservation of the central charge is a property of lines

of fixed points in two dimensions. The purpose of the present
paper is to explore whether there can be other lines of fixed
points emanating from the free fermion point. A necessary,
but not sufficient condition for this is the vanishing of the one
and two-loop beta functions. We will explore this condition
for general four-fermion interactions.

II. THE GENERALIZED THIRRING MODEL

Before defining the generalized Thirring model, we will
introduce the original Thirring model [10] in two dimen-
sions. The original Thirring model of a massless Dirac
fermion with a four-fermion interaction of the current-
current-type has the following Lagrangian,

LTh ¼ iψ̄γμ∂μψ þ 1

2
gjμjμ; ð1Þ
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1The copies of the CFT on the past and future boundary of the
diamond are related by the unitary time evolution operator in the
diamond.
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with g being the Thirring coupling and the current is
defined as jμ ¼ ψ̄γμψ . This interaction is unique because
any four-fermi interactions can be rewritten in terms of this
current-current form using the Fierz transformation, a
mathematical procedure used to deal with expressions
involving products of Dirac gamma matrices and spinors.
A derivation of the Fierz identity can be found in
Appendix A. ψ̄ ¼ ψ†γ0 is the Dirac adjoint of a two-

component complex fermion ψ ¼
�ψ1

ψ2

�
. The equations of

motion for ψ̄ and ψ are determined to be

iγμ∂μψ − gjμγμψ ¼ 0;

i∂μψ̄γμ þ gjμψ̄γμ ¼ 0; ð2Þ
respectively. Then we find that the conservation law is
given by ∂μjμ ¼ 0. The theory is renormalizable because
the coupling constant is dimensionless. In addition, the
Lagrangian has Uð1Þ symmetry ψ → eiαψ and chiral
symmetry ψ → eiαγ

3

ψ with parameter α. In this paper

we choose the Weyl representation where γ0 ¼
�
0 1

1 0

�
,

γ1 ¼
�

0 1

−1 0

�
, and γ3 ¼ γ0γ1 ¼

�−1 0

0 1

�
since it is

more convenient for massless theories.
For the generalized Thirring model, we consider an

arbitrary number N massless fermions, denote different
fermions with upper indices a; b;… ¼ 1;…; N, then the
Lagrangian of the theory can written as

L ¼ iψ̄aγμ∂μψ
a þ Rabcdψ̄

aγμψbψ̄cγμψ
d; ð3Þ

where Rabcd’s are coupling constants, and repeated indices
are summed over 1;…; N in the expression. In two
dimensions, fermionic fields have mass dimension 1=2,
and Rabcd is dimensionless, thus the theory is renormaliz-
able. This model has minimum symmetry. Consider global
transformations ψa → eiλaψa and chiral transformations
ψa → eiλaγ

3

ψa in each fields with parameter λa. These
transformations in general break both the global and chiral
symmetry unless specific conditions are imposed. As we
can see, for any interaction Rabcdψ̄

aγμψbψ̄cγμψ
d to be

invariant under global and chiral transformations, we need
the parameters to satisfy λa − λb þ λc − λd ¼ 0. A special
case of this model is when a ¼ b and c ¼ d, this is known
as the Abelian Thirring model, which is invariant under the
global and chiral transformations.
Write down the current-current interaction explicitly in

terms of spinor components to obtain symmetry properties
in the indices of the current-current couplings. These
properties come purely from the Grassmannian nature of
fermions, meaning that they are self-anticommuting,

ψ̄aγμψbψ̄cγμψ
d ¼ gμνψ̄aγμψbψ̄cγνψd ¼ 2ψa†

1 ψb
1ψ

c†
2 ψd

2

þ 2ψa†
2 ψb

2ψ
c†
1 ψd

1; ð4Þ

where the metric gμν ¼ diagðþ1;−1Þ and the lower indices
are spinor indices of the two-dimensional fermionic fields.
From Eq. (4) we see that for Dirac fermions, couplings

Rabcd have the following conditions in their indices:

Rabcd ¼ Rcdab: ð5Þ
On the other hand, Majorana fermions are real fields, i.e.
ψ† ¼ ψ , which give additional symmetry properties in the
indices. The Majorana case couplings Rabcd are also
antisymmetric in their first and the second pair of indices,

Rabcd ¼ −Rbacd ¼ −Rabdc: ð6Þ
Now we will use the renormalization method to remove

the UV divergence that appeared in the Feynmann dia-
grams due to unknown small-scale physics, we separate the
fields and couplings into a renormalized part and a
counterterm, where the counterterm is intrinsically infinite
and removes the UV divergence in the diagrams. Let ψa

0

and R0
abcd be the bare quantities, and let ψa and Rabcd be

renormalized ones. Up to two-loop level,

ψa
0 ¼

ffiffiffiffiffiffi
Za

p
ψa with Za ¼ 1þ δð1Þa þ δð2Þa ;

R0
abcd ¼ ZabcdRabcd with Zabcd ¼ 1þ δð1Þabcd þ δð2Þabcd;

ð7Þ
where Z’s are the renormalization factors of the fields and

coupling constants, δðkÞa and δðkÞabcd are the counterterms at
k-loop level. Note that the field strength renormalization
is ψa

0 ¼
ffiffiffiffiffiffi
Za
b

p
ψb with b summed over 1;…; N, but as we

will show that at one and two-loop levels off-diagonal
entries in Za

b vanish, therefore, we denote diagonal terms

Za ≡ Za
a for convenience. We also define Z̃abcd ¼

ðZaZbZcZdÞ1=2Zabcd ¼ 1þ δ̃ð1Þabcd þ δ̃ð2Þabcd for convenience,
note that here repeated indices are not summed over.
Using the above expressions to rewrite the Lagrangian
that was originally written in terms of bare quantities,
we can separate it into the renormalized and the counter-
term parts,

L ¼
X

a¼1;…;N

iψ̄aγμ∂μψ
a þ

X
a;b;c;d
¼1;���;N

Rabcdψ̄
aγμψbψ̄cγμψ

d

þ
X

a¼1;…;N

iδð1Þa ψ̄aγμ∂μψ
a

þ
X
a;b;c;d
¼1;���;N

δ̃ð1ÞabcdRabcdψ̄
aγμψbψ̄cγμψ

d

þ
X

a¼1;…;N

iδð2Þa ψ̄aγμ∂μψ
a

þ
X
a;b;c;d
¼1;���;N

δ̃ð2ÞabcdRabcdψ̄
aγμψbψ̄cγμψ

d: ð8Þ
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The idea of renormalization is that, at L-loop level, the
L-loop counterterm absorbs the divergence from L-loop
diagrams, thus making the correlation function correction
finite at this level. To compute the β-function of Rabcd, we
need to determine the counterterms. Treat the last three
terms in Lagrangian Eq. (8) as a perturbation and the
correlation function is given by

hΩjT fψ̄aγμψbψ̄cγμψ
dgjΩi

¼ lim
T→∞ð1−iϵÞ

h0jT fψ̄aγμψbψ̄cγμψ
d exp½−i R T

−T dtHIðtÞ�gj0i
h0jT fexp½−i R T

−T dtHIðtÞ�gj0i
¼ Sum of all connected and amputated diagrams

ðby Wick’s theoremÞ ð9Þ

Besides standard Feynman rules for fermions, we
define a new rule in momentum space for the interaction
vertices ψ̄aγμψbψ̄cγμψ

d, and the counterterms iδaψ̄aγμ∂μψ
a;

δ̃abcdRabcdψ̄
aγμψbψ̄cγμψ

d as shown in Fig. 1.

A. Field strength and coupling constant corrections
at the one-loop level

To determine the field strength counterterm δð1Þa for the
fields, we need to compute the two-point function. For any
a∈ f1;…; Ng, the two-point correlation functions have the
following corrections at the one-loop level:
Write down the momentum space correlation function at

the one-loop level for each diagram, the first diagram in
Fig. 2 contributes,

ð10Þ

where index e is summed over 1;…; N. The expression vanishes because both γμγνγμ ¼ 0 by gamma matrices identities in
Eq. (A1) and the integrand is an odd function of q and it is integrated over ð−∞;∞Þ thus gives 0. This calculation indicates
that any diagram that has one-end-open loops has 0 amplitude since γμð� � �Þγμ where ð� � �Þ consists of an odd number of
Dirac matrices vanishes.
Similarly, the second diagram in Fig. 2 contributes,

ð11Þ

with index e summed over 1;…; N. This diagram also vanishes since the integrand is an odd function in q integrated over
q∈ ð−∞;∞Þ. Since the sum of the three diagrams is zero, we conclude that, at the one-loop level, the field-strength

correction δð1Þa ¼ 0.
Now let us compute the current-current correlation function to determine the one-loop counterterm to the coupling Rabcd.

Recall that for theϕ4 theory at the one-loop level, we have three diagrams, i.e., the s, t, and u-channels, contributing corrections

FIG. 1. Feynman diagrams in momentum space for the three interactions in Lagrangian Eq. (8). Note that δab is the Kronecker delta,

δðkÞa is the field strength counterterm. In the current-current vertex, if two fermions ψa and ψb form a current ψ̄aγμψb, then their legs join
at the vertex. If they do not join, e.g., ψa and ψd, then they are not in the same current.

FIG. 2. Feynman diagrams at one-loop level for the two-point function.
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to theϕ4 coupling constant λ. In analogy to the scalar theory,wehavediagrams in the three channels, but the current-current vertex
in our theory generates multiple diagrams in each channel due to the broken permutation symmetry of this vertex. However, the
observation we made from the calculations above tells us that, using γ-matrices identities in two dimensions and features of
integration over undetermined momenta, we can eliminate most of the diagrams. The trick is presented in Appendix B.
At the one-loop level, the 288 Wick contractions reduce to ten distinct Feynman diagrams, using the trick explained in

Appendix B, eight more vanish and there are only two diagrams left that contribute to the correlation function. For any
choice of a; b; c; d∈ f1;…; Ng, the correlation function of the current-current interaction is given by.
The first diagram in Fig. 3 contributes,

ð12Þ

The second diagram contributes,

ð13Þ

Note that in the above two diagrams, the indices e, f are summed over 1;…; N.
The counterterm contributes in two ways

ð14Þ

FIG. 3. Feynman diagrams at one-loop level for the four-point function.
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To evaluate the integral over undetermined momentum,
we apply Feynman parametrization with A ¼ q2 þ iϵ and
B ¼ ðpa − pc − qÞ2 þ iϵ,

1

AB
¼

Z
1

0

dx
1

½xAþ ð1 − xÞB�2 ¼
Z

1

0

dx
1

ðl2 − ΔÞ2 ; ð15Þ

where l≡ q − ðpa − pcÞð1 − xÞ and Δ≡ ðpa − pcÞ2 ×
ðx2 − xÞ − iϵ and the integral over undetermined momen-
tum gives

Z
d2q
ð2πÞ2

qαðpa − pc − qÞβ
ðq2 þ iϵÞ½ðpa − pc − qÞ2 þ iϵ�

¼
Z

1

0

dx
Z

d2l
ð2πÞ2

−lαlβ þ Bβlα þ C
ðl2 − ΔÞ2 : ð16Þ

We use lμlν ¼ 1
2
gμνl2 which gives A ¼ −1=2. B;C are

functions of pa − pc, and we can ignore B since lα is
an odd function which gives 0 when integrated over
l∈ ½−∞;∞�.
Now apply dimensional regularization to findR
d2l l2

ðl2−ΔÞ2 and
R
d2l 1

ðl2−ΔÞ2. We have the following results

in Minkowski signature:

Z
ddl
ð2πÞd

1

ðl2 − ΔÞ2 ¼
i

ð4πÞd=2
Γð2 − d=2Þ

Γð2Þ
1

Δ
2−d=2

; ð17Þ

Z
ddl
ð2πÞd

lμlν

ðl2 − ΔÞ2 ¼
−i

ð4πÞd=2
gμν

2

Γð1 − d=2Þ
Γð2Þ

1

Δ
1−d=2

: ð18Þ

The integral in Eq. (17) converges thus compute directly
with d ¼ 2 by Wick-rotating to Euclidean space with
l0 ¼ il0E and l2 ¼ −l2E. The integral in Eq. (18)
diverges logarithmically, we evaluate using dimensional
regularization,

Z
d2l
ð2πÞ2

1

ðl2 − ΔÞ2 ¼
Z

d2lE
ð2πÞ2

i
ðl2E þ ΔÞ2 ¼

i
4πΔ

; ð19Þ

Z
d2−ϵl
ð2πÞ2−ϵ

lαlβ

ðl2 − ΔÞ2 ¼
−igαβ

8π

Γðϵ=2Þ
Γð2Þ

�
4π

Δ

�
ϵ=2

→
−igαβ

8π

�
2

ϵ
− #þOðϵÞ

��
1þ ϵ

2
ln
4π

Δ
þOðϵ2Þ

�

∼ −
igαβ

4πϵ
; ð20Þ

where Δ ∼ μ2 with μ as the energy scale. Let d ¼ 2 − ϵ and
take ϵ → 0, note that here ϵ is the small parameter in
dimensional regularization, which is different from the ϵ in
the propagator. Expand ΓðxÞ near x ¼ 0 we have ΓðxÞ ¼
1=x − #þOðxÞ, where # is the Euler-Mascheroni constant,
and expand ð1=ΔÞ1−d=2 ¼ 1 − ð1 − d=2Þ lnΔþ � � � near
d ¼ 2. We see that the current-current correlation function
has a divergence of 1=ϵ.
Using γ matrices identities to simplify gαβΓ1 where gαβ

comes from doing Feynman parametrization, we get

gαβΓ1 ¼ trðγbγνγαγργaγμÞtrðγdγνγαγργcγμÞ
¼ trðγbðgναγρ þ gαργν − gνργαÞγaγμÞtrðγdγνγαγργcγμÞ
¼ 4trðγbγνγaγμÞtrðγdγνγcγμÞ ¼ 4Γ: ð21Þ

Including the symmetry factor in each diagram and the
three diagrams in Fig. 3 contributes,

ð22Þ

and sum up to 0. Up to one-loop level, Z̃abcd ¼
ðZaZbZcZdÞ1=2ð1þ δð1ÞabcdÞ and Za ¼ 1þ δð1Þa ¼ 1 because

δð1Þa is determined to be 0. Then Z̃abcd ¼ 1þ δ̃ð1Þabcd ¼ 1þ
δð1Þabcd then we have δ̃

ð1Þ
abcd ¼ δð1Þabcd. Since for Dirac fermions,

we do not have antisymmetry in the first and second pair of
indices, Rabcd ≠ 0. Then we get

δð1ÞabcdRabcd ¼
1

2πϵ

XN
e;f¼1

ðRaecfRebfd −RaefdRebcfÞ≡Rð1Þ
abcd

2πϵ
:

ð23Þ

B. At two-loop level

The correction to the β-function at the two-loop level is
given by The diagrams in Fig. 4 contribute the following:

FIG. 4. Feynman diagrams at the two-loop level for the two-point function.
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ð24Þ

Indices e, f, g are summed over 1;…; N. Therefore, at the two-loop level the correction δð2Þa ¼ 0.
At the two-loop level, 21,600 different Wick contractions are reduced to 96 distinct Feynman diagrams. This is still a

huge number to read off correlation functions from. Applying tricks presented in Appendix B, we can drop 90 vanishing
diagrams and keep only six of them. Using results from the current-current correlation function at the one-loop level and
bringing in Eq. (23), we easily obtain contributions from the diagrams in the second row of Fig. 5,

ð25Þ

FIG. 5. Feynman diagrams at the two-loop level for the four-point function.
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The diagrams in the first row of Fig. 5 contribute,

ð26Þ

We see that each integral over qi gives a divergence
of 1=ϵ, so each diagram contributes a second-order infinity
to the correction. Up to two-loop level, Z̃abcd ¼
ðZaZbZcZdÞ1=2ð1þ δð1Þabcd þ δð2ÞabcdÞ ¼ 1þ δ̃ð1Þabcd þ δ̃ð2Þabcd,

we have shown that δð1Þa ¼ δð2Þa ¼ 0 and δ̃ð1Þabcd ¼ δð1Þabcd, it is

trivial that δ̃ð2Þabcd ¼ δð2Þabcd. The correction to the beta
function at the two-loop level is given by

δð2ÞabcdRabcd ¼
1

4π2ϵ2
XN

e;f;g;h¼1

�
RaecfRgbhdRegfh

þ RaefdRgbchReghf −
1

2
RaecfRgbfhReghd

−
1

2
RaefgRhbcfRehgd −

1

2
RaefdRgbhfRegch

−
1

2
RaefgRhbgdRehcf

�
≡Rð2Þ

abcd

4π2ϵ2
: ð27Þ

III. THE β-FUNCTIONS AND CONSTRAINTS
ON COUPLING CONSTANTS

Recall the definition of the β-function,

βabcdðRabcdðμÞÞ≡ μ
∂Rabcd

∂μ
; ð28Þ

where RabcdðμÞ is the renormalized coupling constant
which depends on the renormalization scale μ:μ, with mass
dimension ½μ� ¼ 1, is a parameter introduced to carry out
dimensional regularization, which is not a physical param-
eter but an artifice of the renormalization procedure. To
regularize the divergence in the loop diagrams, we perform
dimensional regularization and take d ¼ 2 − ϵ with limit
ϵ → 0. Now we count the mass dimension of each bare
quantity. Since the action S ¼ R

ddxL is dimensionless, we
have ½L� ¼ d, then

½ψa
0� ¼

d − 1

2
¼ 1 − ϵ

2
; and ½R0

abcd� ¼ d − 4½ψa
0� ¼ ϵ:

ð29Þ

The bare couplings ought to be independent of μ, therefore
we need to replace R0

abcd with μϵR0
abcd in the Lagrangian to

make it a dimensionless the following equation:

∂R0
abcd

∂μ
¼ ∂

∂μ
ðμϵZabcdRabcdÞ ¼ 0: ð30Þ

Expand the right-hand side and multiply μ1−ϵZ−1
abcd on both

sides, we get the expression of the β-function for Rabcd,

μ
∂Rabcd

∂μ
¼ −ϵRabcd −

Rabcd

Zabcd

�
μ
∂Zabcd

∂μ

�
; ð31Þ

μ
∂Zabcd

∂μ
¼ μ

∂δabcd
∂μ

¼ −
Rabcd

2πϵR2
abcd

�
μ
∂Rabcd

∂μ

�

þ 1

2πϵRabcd

�
μ
∂Rabcd

∂μ

�
: ð32Þ

Substituting Eq. (32) into Eq. (31) we get

βabcd ¼ −ϵRabcd −
Rabcd

2π
−

1

2πϵ

�
μ
∂Rabcd

∂μ

�
þOðR4

abcdÞ

≡ βð0Þabcd þ βð1Þabcd þ βð2Þabcd þOðR4
abcdÞ; ð33Þ

where Rabcd ≡Rð1Þ
abcd þ 1

2πR
ð2Þ
abcd is a function of coupling

constants Rabcd’s to the second order in the first term and

third order in the second term. RðkÞ
abcd is defined as

δðkÞabcdRabcd ∼RðkÞ
abcd up to a coefficient that depends on ϵ

and is determined by canceling k-loop level divergence in
the current-current correlation function. The beta functions
are just combinations of the coefficients of the divergent
logarithms and they are given by

βð0Þabcd ¼ −ϵRabcd; βð1Þabcd ¼
Rð1Þ

abcd

2π
; βð2Þabcd ¼

2Rð2Þ
abcd

ð2πÞ2 :

ð34Þ
As we can see in the calculations in Sec. II B, the two-

loop beta function is obtained by replacing one of the
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vertices with the one-loop counterterms, therefore vanish-
ing beta functions at the one-loop level automatically yield
vanishing beta function at the two-loop level. Setting the
one-loop corrections to the β-function to zero, we get the
following constraints that

Rð1Þ
abcd ≡

XN
e;f¼1

ðRaecfRebfd − RaefdRebcfÞ ¼ 0: ð35Þ

To find the most general constraints on the coupling
constants Rabcd’s such that the model is a CFT, we look
for solutions to Eq. (35). An obvious solution takes the
form of

R2
abcd ¼ RababRcdcd; ð36Þ

this solution is sufficient but not necessary, and there are
solutions beyond this form. In either the Majorana or the
Dirac cases, the degrees of freedom (d.o.f.s) D in the
couplings grow as OðN4Þ. The beta function constraints
remove some d.o.f.s, to find the remaining d.o.f.s one needs
to analytically solve the system of Eq. (35).
In the Dirac cases, the d.o.f.s are larger due to fewer

symmetry properties in the indices, which is given by
D ¼ 1

2
N2ðN2 þ 1Þ. One can verify that Eq. (36) is indeed a

root of the beta functions, but there are other roots to
Eq. (35) beyond this form for anyN ≥ 2, this is numerically
verified. The form in Eq. (36) requires the number of d.o.f.s
in couplings to be reduced toN2, which is not the case even
for small N. For example, consider the case of N ¼ 2 Dirac
fermions, there are 10 independent couplings Rabcd’s and
the vanishing beta function conditions has an analytic
solution with minimal zero couplings,

R1122 ¼
1

2R1212

½R1111R1212 þ R1212R2222 þ 2R1112R1222

− R2
1112 − R2

1222�;

R1112 ¼
1

R1212

½R1222R2121 þ R1221ðR1121 − R2122Þ�;

R2
1221 ¼ R1212R2121; ð37Þ

such a solution removes only three d.o.f.s with seven d.o.f.s
remaining, and 7 > 22. For N ≥ 3, analytic solutions are
difficult to find, but we can solve the system numerically.
Numerical examples of a general solution to vanishing beta
functions for N ¼ 2, 3, and 4 are shown in Tables III–VI in
Appendix D, respectively.
The number of couplings grows as OðN4Þ, which

quickly becomes a large amount of data to analyze. To
visualize the solutions, we create color maps using the
numerical results and we brief the coloring procedure in the
following. The coupling constants Rabcd’s can be mapped
into a N × N matrix R of N × N matrices Rab,

R¼ðRabÞ whereRab¼ðRab;cdÞ with 1≤ a;b;c;d≤N;

ð38Þ

and we define Rab;cd ≡ Rabcd. More explicitly, we map the
couplings in the following way:

R¼

0
BBBBBBBBBBBBBBB@

0
BB@

R1111 ��� R111N

..

. . .
. ..

.

R11N1 ��� R11NN

1
CCA ���

0
BB@

R1N11 ��� R1N1N

..

. . .
. ..

.

R1NN1 ��� R1NNN

1
CCA

..

. . .
. ..

.

0
BB@

RN111 ��� RN11N

..

. . .
. ..

.

RN1N1 ��� RN1NN

1
CCA ���

0
BB@

RNN11 ��� RNN1N

..

. . .
. ..

.

RNNN1 ��� RNNNN

1
CCA

1
CCCCCCCCCCCCCCCA

:

ð39Þ

Then we impose the symmetry properties on the couplings
to remove some d.o.f.s. Replacing the couplings by their
corresponding numerical results, we get a N2 × N2 table of
data. Then we assign a color scale to values with gray for
numerical zero, red for positive, and blue for negative, the
darker the color, the larger the absolute value. Now we fill
in the table with colors corresponding to numerical results
of Rabcd ’s to obtain a color map of a set of solutions to the
couplings. Consider the Abelian Thirring model as a simple
example, where Rabcd ¼ gδabδcd, its color map is shown
in Fig. 6.
Following this procedure, we generate color maps for

N ¼ 2 to N ¼ 7 Dirac fermions, shown in Figs. 7–12. We
see a pattern of solutions in these color maps as N gets
larger. Diagonal submatrices Raa’s share a similar pattern
for 1 ≤ a ≤ N. Diagonal terms in off-diagonal submatrices

FIG. 6. Color map of couplings in the Abelian Thirring model
withN ¼ 4Dirac fermions, whereRabcd ¼ gδabδcd with g ¼ 1=2.
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are a few orders stronger than the rest couplings, creating
diagonal strips in the color maps. These locations in the
maps correspond to couplings in Raabb form with
1 ≤ a; b ≤ N, and the ones in Rabcc form with 1 ≤ a; b; c ≤
N and a ≠ b. These couplings are more intense (i.e., have
larger numerical values) than the rest, as the rest couplings
are mapped to gray. Such a solution is more general than
one in Eq. (36) form. In addition, couplings in Rabcc form
with the same pair of a, b, for example, R1233 and R1244,
have similar magnitude, as we see in the maps that diagonal
terms in the same off-diagonal submatrices share very
similar color, but diagonal terms in different off-diagonal
submatrices have different colors. If solutions of the
couplings completely concentrate on these patterns, the
diagonal terms Raabb’s give 1

2
NðN þ 1Þ d.o.f.s, and the N

diagonal terms Rabcc’s in any off-diagonal submatrices
gives DOFs to N2ðN − 1Þ, then in total the d.o.f.s for a
theory of N Dirac fermions is given by

DN ¼ N3 −
1

2
N2 þ 1

2
N: ð40Þ

Bringing N ¼ 1 and N ¼ 2 into this formula, we get
D1 ¼ 1 for the original Thirring model, and D2 ¼ 7 which
matches with the d.o.f.s given by the symbolic solution
in Eq. (37).
We note that for N ¼ 4 Dirac fermions some numerical

solutions are more random than the one shown in Fig. 9 and
do not have an obvious pattern as for other values of N, an
example is shown in Fig. 13. A theory with N ¼ 4
Majorana fermions also behaves oddly where multiple
patterns appear in the color map. We include these color
maps and a discussion in Appendix C.
In Majorana cases, D ¼ 1

8
N2ðN − 1Þ2 þ 1

4
NðN − 1Þ.

When N ¼ 1 it is a free theory as no interaction is allowed
by the Grassmannian nature of fermions. When N ¼ 2 the
theory has only one nonzero coupling R1212 and the beta
function vanishes automatically. N ¼ 3 theory has six

FIG. 7. A solution for N ¼ 2 Dirac fermions.

FIG. 8. A solution for N ¼ 3 Dirac fermions.

FIG. 9. A solution for N ¼ 4 Dirac fermions.

FIG. 10. A solution for N ¼ 5 Dirac fermions.
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d.o.f.s by symmetry properties in the indices, and the beta
functions have an analytic solution with minimal zero
couplings, which is given by

R2
1213 ¼ R1212R1313; R2

1223 ¼ R1212R2323;

R2
1323 ¼ R1313R2323; ð41Þ

where three d.o.f.s are removed and only three remain. One
can also numerically check that forN ¼ 1, 2, 3, there are no
other solutions to the one-loop beta function other than the
one given in Eq. (36). However, for N ≥ 4 analytically
solving the system becomes difficult. Numerical results
show that there are indeed additional solutions that are not
in the above form. The d.o.f.s of the most general solution
grow at least asOðN2Þ. This bound is given by the solution
form in Eq. (36), it reduces the d.o.f.s to N choose 2 in the
Majorana case, i.e., C2

N ¼ 1
2
NðN − 1Þ for ∀ N ≥ 2. See

Appendix C for color map samples of numerical solutions.
However, for Majorana fermions color maps are not as

helpful in d.o.f. reduction as in the Dirac cases. As one can
see in the figures in the Appendix, all couplings that survive
after symmetry properties are imposed are turned on, and
no obvious relation between the couplings manifests. A
theory with N ¼ 4 Majorana fermions is odd compared to
other numbers of fermions because multiple patterns appear
in the color maps, see Appendix C for more details.
Even though exact symbolic solutions have not yet been

determined, the calculation successfully reproduces some
of the known interacting fermionic CFTs. The original
Thirring model of N ¼ 1 Dirac fermion is a CFT that is
equivalent to a free bosonic CFT compactified on a circle
[11]. The Thirring coupling g relates to the compact free
boson coupling which is the radius R of the circle in the
following way:

R2

4
¼ π

π þ g
; ð42Þ

When the Thirring coupling vanishes, i.e., g ¼ 0, the
Thirring model becomes simply the free Dirac fermion,
and the radius of the equivalent compact free boson
corresponding to g ¼ 0 is R ¼ 2, which, through the
T-duality, is dual to the R ¼ 1 case (recall that we have
chosen α0 ¼ 2). Therefore, the above relation reduces the
duality we discussed in the previous section. The N ¼ 1
Majorana fermion theory is a free fermionic theory since
the interaction ðψ̄γμψÞ2 does not exist in this case due to the
Grassmannian nature of fermions, and a free fermionic
quantum field theory is conformally invariant. When the
theory has N ¼ 2 Majorana fermions, one can form a
complex fermion. In general, this requires the Majorana
fermions to have the same mass, in the massless case the
requirement is satisfied. This model is a CFT, equivalent to
a free boson compactified on a Z2 orbifold through
bosonization [12]. In addition, letting Rabcd ¼ gδabδcd in

FIG. 11. A solution for N ¼ 6 Dirac fermions.

FIG. 12. A solution for N ¼ 7 Dirac fermions.

FIG. 13. An example solution to the beta functions up to the
two-loop level for N ¼ 4 Dirac fermions that has no obvious
pattern.
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the generalized Thirring model yields Abelian Thirring
model, which is also a CFT of an arbitrary number of N
Dirac fermions with an interaction of the Abelian currents.
The above theories have vanishing β-function at the one
and two-loop level because they are CFTs, and this is
verified using Mathematica.

IV. CONCLUSIONS

Motivated by the quantum gravity considerations out-
lined in [1] we have revisited the question of lines of fixed
points emanating from models of free fermions in 1þ 1
dimensions. Through two-loop order we have found a
new family of possibilities, in addition to the well-known
Abelian Thirring models. In addition there are some
numerical indications of additional solutions. Of course,
vanishing of the beta functions through two-loop order
means that the three-loop contributions are scheme inde-
pendent and might well be nonzero, so our work is only
the first step in establishing the existence of true fixed lines.
We reserve the difficult task of higher-loop calculations to
future work.
We note however that for potential applications to quan-

tum gravity we are primarily interested inmodels with a very
large number of fermion fields. In this case it is possible that
various kinds of large N rescalings of the couplings Rabcd
might lead to models where approximate fixed points could
be found using only the two-loop beta functions. Since the
requirement of conformal invariance only appears in the limit
of semiclassical gravity, corresponding to largeN, this might
be sufficient. Again, wewill have to leave the explorations of
such speculations to future research.
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APPENDIX A: GAMMA MATRIX IDENTITIES
AND FIERZ TRANSFORMATIONS IN 2D

In the correlation function calculations, we used the
following gamma matrices identities in two dimensions,
where the metric gμν ¼ diagðþ;−Þ,

fγμ; γνg ¼ 2gμνI2;

γμγμ ¼ 2I2;

γμγνγμ ¼ 0;

γμγ3γμ ¼ −2γ3;

γμγνγργμ ¼ 2γργν;

γμðγν1…γν2kþ1Þγμ ¼ 0;

trðγμγνÞ ¼ 2gμν;

trðγμγνγργσÞ ¼ 2ðgμνgρσ − gμρgνσ þ gμσgνρÞ
γμγνγρ ¼ gμνγρ þ gνργμ − gμργν

¼ γργνγμ;

γμγνγργσγλ ¼ ðgμνgρσ þ gνρgμσ − gμρgνσÞγλ
− ðgμνgρλ þ gνρgμλ − gμρgνλÞγσ
þ gμνgσλγρ þ gνρgσλγμ − gμρgσλγν;

¼ γλγσγργνγμ: ðA1Þ
The current-current interaction is unique up to Fierz

transformations, that is to say any four-fermi interaction
can be rearranged to the current-current type using the Fierz
transformation. The Fierz identity can be written as

ðū1ΓAu2Þðū3ΓBu4Þ¼
X
C;D

CAB
CDðū1ΓDu4Þðū3ΓDu2Þ; ðA2Þ

where ΓA ∈ fI2; γ0; iγ1; γ3g is any combination of the nor-
malized elements (with the convention trðΓAΓBÞ ¼ 2δAB).
The set in general dimensions is fI; γμ; σμν ¼ i

2
½γμ; γν�;

γ3γμ; γ3g. Left multiply ðū2ΓFu3Þðū4ΓEu1Þ, then

LHS ¼ ū4ΓEΓAΓFΓBu4 ¼ trðΓEΓAΓFΓBÞ;
RHS ¼

X
C;D

CAB
CDtrðΓEΓCÞtrðΓFΓDÞ ¼ 4

X
C;D

CAB
CDδ

ECδFD ¼ 4CAB
EF

⇒ CAB
CD ¼ 1

4
trðΓCΓAΓDΓBÞ; ðA3Þ

ðū1γμu2Þðū3γμu4Þ ¼
X
C;D

1

4
trðΓCγμΓDγμÞðū1ΓCu4Þðū3ΓDu2Þ

¼
X
C

1

4
trðΓCγμΓCγμÞðū1ΓCu4Þðū3ΓCu2Þ

¼ 1

4
trðγμγμÞðū1u4Þðū3u2Þ þ

1

4
trðγ3γμγ3γμÞðū1γ3u4Þðū3γ3u2Þ

¼ ðū1u4Þðū3u2Þ − ðū1γ3u4Þðū3γ3u2Þ; ðA4Þ
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ðū1u2Þðū3u4Þ ¼
X
C

1

4
trðΓCΓCÞðū1ΓCu4Þðū3ΓCu2Þ

¼ 1

2
ðū1u4Þðū3u2Þ þ

1

2
ðū1γ0u4Þðū3γ0u2Þ −

1

2
ðū1γ1u4Þðū3γ1u2Þ þ

1

2
ðū1γ3u4Þðū3γ3u2Þ

¼ 1

2
ðū1u4Þðū3u2Þ þ

1

2
ðū1γ3u4Þðū3γ3u2Þ þ

1

2
ðū1γμu4Þðū3γμu2Þ; ðA5Þ

ðū1γ3u2Þðū3γ3u4Þ ¼
X
C

1

4
trðΓCγ3ΓCγ3Þðū1ΓCu4Þðū3ΓCu2Þ

¼ 1

4
trðγ3γ3Þðū1u4Þðū3u2Þ þ

1

4
trððγ0γ3Þ2Þðū1γ0u4Þðū3γ0u2Þ

−
1

4
trð−ðγ1γ3Þ2Þðū1γ1u4Þðū3γ1u2Þ −

1

4
trð−ðγ3Þ4Þðū1γ3u4Þðū3γ3u2Þ

¼ 1

2
ðū1u4Þðū3u2Þ −

1

2
ðū1γ0u4Þðū3γ0u2Þ þ

1

2
ðū1γ1u4Þðū3γ1u2Þ þ

1

2
ðū1γ3u4Þðū3γ3u2Þ

¼ 1

2
ðū1u4Þðū3u2Þ −

1

2
ðū1γμu4Þðū3γμu2Þ þ

1

2
ðū1γ3u4Þðū3γ3u2Þ: ðA6Þ

APPENDIX B: ELIMINATING VANISHING
DIAGRAMS IN THE CURRENT-CURRENT

CORRELATION FUNCTION

At the one-loop level, the 6! ¼ 720 Wick contractions
reduce to 10 distinct Feynman diagrams, which is still
relatively a large number to read off and calculate the
correlation functions. Luckily, observations made in the
field strength correction calculation in Sec. II A become
useful in determining which diagrams contribute and which
vanish.
The current-current correlation function at the one-loop

level corresponds to the second-order expansion of the
exponential in Eq. (9) which consists of six currents, i.e.,
ψ̄γμψ . The six currents contain six γ matrices and six
fermion-antifermion pairs in the function. Through Wick
contraction, the six fermion-antifermion pairs give six
fermionic propagators,

DFðx − yÞ ∝
Z

d2p
ð2πÞ2

i=p
p2 −m2

; ðB1Þ

where the numerator =p ¼ pμγ
μ, so the six propagators

contribute six more γ’s and in total there are 12 in the
expression. The γ’s are traced over in several traces and the
number of traces depends on how the fermionic fields are
contracted. Any trace must contain an even number of γ’s
because any propagator is connected to two γ’s and for a
fermion loop consisting of P ≥ 1 propagators, it is a trace
over Pþ 2P=2 ¼ 2P Dirac matrices, where the first P
comes from γ’s in the propagators and there are 2P γ’s
connected to each propagator, divided by 2 due to double
counting. Another way to see this is that any γ provided by
a propagator (propagator gamma) must be accompanied by

a γ from the current ψ̄γμψ (current gamma), therefore any
trace contains an even number of gamma matrices. Then
determining which diagrams contribute becomes a simple
math problem. Breaking the 12γ’s into several sets,

12 ¼
Xk
i¼1

ni where 2 ≤ ni ≤ 12 and ni ∈ 2Z; ðB2Þ

where k is the number of fermion loops (number of traces)
in the diagram, and ni is the number of γ’s in a trace. Then
we have the following cases:
(1) ∃ i such that ni > 6: This case does not contribute

because of γ-matrices identities in two dimensions.
By the pigeonhole principle, any loop containing
more than three current gammas must have γμð� � �Þγμ
where ð� � �Þ are an odd number of gamma matrices,
thus it vanishes for the same reason shown in
Eq. (10).

(2) k ¼ 2 and ni ¼ 6 for ∀ i: This case gives diagrams
consisting of two equal loops of the same size, which
contribute to the current-current correlation function.

(3) k ¼ 3 and ni ¼ 4 for ∀ i: This case does not con-
tribute. One of the three loops contains both incom-
ing momentum flows; one contains both outgoing
momentum flows; one contains two internal propa-
gators with momentum flows p, p0. We denote such
configurations as

extð2þ 2þ 0Þ;
intð0þ 0þ 2Þ;

where “ext” and “int” stand for “external” and
“internal” momentum flow, and each column
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represents a loop containing a number of external
and internal momentum flows. We can easily see
that in the third loop, p0 linearly depends on the
undetermined momentum p, i.e., p0 ¼ p0ðpÞ ∝ p,
and when performing Feynman parametrization, the
third loop contributes a term, that is,

∼ trð=pγμ=p0γνÞ ¼ pαp0
βtrðγαγμγβγνÞ

∼ gαβp2trðγαγμγβγνÞ ¼ p2trðγβγμγβγνÞ ¼ 0; ðB3Þ

as shown in Eq. (16).
(4) ∃ i such that ni ¼ 2: This case does not contribute

because such diagrams either are disconnected or
vanish for the same reason shown in Eq. (11) due to
integration of an odd function.

Table I is a summary of the four cases and their reasons
for whether or not they contribute.
At the two-loop level, the 8! ¼ 40, 320 Wick contrac-

tions reduce to 96 distinct Feynman diagrams. Applying the
same reasoning above, 90 of which vanishes and only six
diagrams remain. Group 16 gamma matrices into loops and
we have six cases. Table II gives a summary of the six
cases. Cases 1,2,5, and 6 follow the same reasons as cases
1,2,3, and 4, respectively, at the one-loop level. Cases 3 and

4 are more complicated which we will explain in the
following.
For case 3, there are 3 ways to form three loops

consisting 8,4, and 4 gamma matrices, shown in Table II
case 3:
(3.1) One loop contains four internal flows and two loops

contain two external flows each. The loop with four
internal flows p; p0; q; q0 yields 0 by Feynman
parametrization, as p0 ¼ p0ðpÞ and q0 ¼ q0ðqÞ sim-
ilar to the case in Eq. (B3).

(3.2) One loop contains two external and two internal
flows, one contains two external flows, and one
contains two internal flow. The loop with only two
external flows forces one of the other two loops to
contain a pair of linearly dependent internal flows, and
such diagrams vanish similar to the case in Eq. (B3).

(3.3) One loop contains four external flows, and two loops
each contain two internal flows. The loop with four
external flows is in tr½γμð� � �Þγμ � � �� form, and it vani-
shes by two-dimensional gamma matrices identities.

For case 4, two ways to form three loops both vanish:
(4.1) One loop contains three internal flows, one con-

tains two external flows, and one contains two
external and one internal flows. Similar to case
(3.1), the loop with only two external flows forces
one of the other two loops to contain a pair of
linearly dependent internal flows, thus this case
vanishes.

(4.2) Two loops contain two external and one internal
flows each, and one loop contains two internal
flows. In this case, one can verify that three out of
the four internal flows depend on one of the two
undetermined momenta, thus the integrands are
odd functions of undetermined momenta. Such
diagrams also vanish.

Therefore, the only cases left at the two-loop level are
diagrams consisting of two equal-sized loops of eight
gamma matrices.

TABLE II. A summary of whether or not a configuration contributes at the two-loop level, there are six ways to
group the 16 gamma matrices and only the second case contributes. Cases 3 and 4 have three and two subcases,
respectively.

1 ∃ ni > 8 γμð� � �Þγμ ¼ 0

✓ 2 8þ 8 trð� � �Þtrð� � �Þ
3 8þ 4þ 4 extð0þ 2þ 2Þ extð2þ 2þ 0Þ extð4þ 0þ 0Þ

intð4þ 0þ 0Þ intð2þ 0þ 2Þ intð0þ 2þ 2Þ ⇒
F:P:

0

4 6þ 6þ 4 extð0þ 2þ 2Þ extð2þ 2þ 0Þ
intð3þ 1þ 0Þ intð1þ 1þ 2Þ ⇒

F:P:
0

5 4þ 4þ 4þ 4 extð2þ 2þ 0þ 0Þ
intð0þ 0þ 2þ 2Þ ⇒

F:P:
0

6 ∃ ni ¼ 2 hψ̄ψi correction ⇒ 0

TABLE I. At one-loop level, 12 gamma matrices can be
grouped to form different-sized loops, there are four different
cases listed on the left. On the right, the reason why each case
contributes or not is shown. Only the second case contributes to
the current-current correlation function.

1 ∃ ni > 6 γμð� � �Þγμ ¼ 0

✓ 2 6þ 6 trð� � �Þtrð� � �Þ
3 4þ 4þ 4 extð2þ 2þ 0Þ

intð0þ 0þ 2Þ ⇒
F:P:

0

4 ∃ ni ¼ 2 hψ̄ψi correction ⇒ 0
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APPENDIX C: COLOR MAPS OF SOLUTIONS
FOR MAJORANA FERMIONS AND ODD

BEHAVIOR FOR N = 4

We present color maps for Majorana fermions in this
appendix and explain behaviors of N ¼ 4 for Majorana
cases.
The coloring procedure forMajorana is the sameas theone

for Dirac, we first arrange all couplings into a matrix of
matrices shown in Eq. (38). The antisymmetry properties in
the first pairs of indices lead to diagonal symmetry in the big
matrix and the antisymmetry properties in the second pairs
of indices lead to diagonal symmetry in the submatrices.

The antisymmetry in indices gives vanishing diagonal terms.
All independent couplings are covered by these upper
triangle parts, with Rabab’s appearing only once and all
the rest nonvanishing couplings appearing twice. For exam-
ple, N ¼ 3 has six d.o.f.s, where R1213, R1223, R1323 repeat
themselves, thus thenine redblocks at the top right corner.As
one can see in Figs. 14–19, all allowed couplings are turned
on in a solution. In Majorana cases, no obvious pattern is
observed other than the antisymmetry and symmetry proper-
ties in the indices, unlike in Dirac cases where one similar
pattern of solution emerges for all N.
However, color maps show different patterns for N ¼ 4

Majorana fermions shown in Figs. 20–22 for different

FIG. 14. N ¼ 2 Majorana.

FIG. 15. N ¼ 3 Majorana.

FIG. 16. N ¼ 5 Majorana.

FIG. 17. N ¼ 6 Majorana.

FIG. 18. N ¼ 7 Majorana.

FIG. 19. N ¼ 8 Majorana.
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numerical solutions that generate different patterns.
Figure 20 gives an example of how couplings concentrate
more and more and eventually settle at three d.o.f.s R1313,
R2424, and cross coupling R1324. The cross coupling of
Rabab and Rcdcd is defined as Rabcd. Similarly, couplings
can also settle at R1414, R2323, and R1423 as shown in the
middle color map in Fig. 21, or R1212, R3434, and R1234 as

shown in the color map on the right in Fig. 21. These are the
only three patterns with three d.o.f.s, and the form of
Eq. (36) is satisfied by these solutions. A theory with this
structure is equivalent to a theory of two bosons with an
interacting term in the bosonization picture where a free
boson is equivalent to two real fermions with a four-
fermion interaction.

FIG. 20. The color map on the left is an example of a general solution to the vanishing beta functions for N ¼ 4 Majorana fermions.
The middle color map is a solution where couplings become weaker except for R1313, R2424, and R1324. The concentration continues in
the color map on the right.

FIG. 21. Three different ways of coupling concentration. The couplings concentrate on R1313, R2424, and R1324 in the diagram on the
left. The couplings concentrate on R1414, R2323, and R1423 in the middle diagram. The couplings concentrate on R1212, R3434, and R1234 in
the diagram on the right.

FIG. 22. Three patterns emerge when ten d.o.f.s survive the coupling concentration. These solutions follow the form in Eq. (36). Left:
R1212, R3434, R1313, R2424 and their cross couplings. Middle: R1313, R2424, R1414, R2323, and their cross couplings. Right: R1212, R3434,
R1414, R2323, and their cross couplings.
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Other middle stages of coupling concentration are shown
in Fig. 22. These are the only patterns with ten d.o.f.s. Once
couplings completely concentrate following these patterns,
these stages are solutions in the form of Eq. (36). In the left
most color map in Fig. 22, couplings concentrate on R1313,
R2424, R1414, R2323, and their cross couplings R1324, R1314,
R1323, R1423, R1424, R2324. The middle one in Fig. 22 is an
example of couplings concentrating on R1212, R3434, R1313,
R2424 and their 6 cross couplings. The color map on the
right in Fig. 22 shows couplings concentrate on R1212,
R3434, R1414, R2323, and their six cross couplings. A further
step is to explore whether the fermionic theory with such

solutions has a bosonic equivalence, if this is the case, is
there a way to map the four-fermion couplings to couplings
of this bosonic theory?
For N > 4 Majorana fermions, patterns of solutions

become more and more difficult to observe as N gets
larger, therefore, further work is needed to determine the
most general symbolic solutions to the vanishing beta
functions up to the two-loop level.

APPENDIX D: SAMPLES OF NUMERICAL
RESULTS TO VANISHING BETA FUNCTIONS

TABLE III. A solution to the vanishing beta functions for the theory with N ¼ 2 Dirac fermions that does not follow the form of
Eq. (36).

R1111 R1112 R1112 R1212 −4.3860748e-2 −2.4213040e-1 −2.4213040e-1 3.1556370e-2
R1121 R1122 R1221 R1222 3.0402219e-1 2.4040258e-1 6.2101346e-3 −2.4448646e-1

R1121 R1221 R1122 R1222 3.0402219e-1 6.2101346e-3 2.4040258e-1 −2.4448646e-1
R2121 R2122 R2122 R2222 1.2221232e-3 3.0355853e-1 3.0355853e-1 5.2484182e-1

TABLE IV. A solution for N ¼ 3 Dirac fermions.

R1111 R1112 R1113 5.87648556482932e-1 4.15490588387255e-1 8.09728843069292e-2
R1121 R1122 R1123 −1.17589376850528e-1 6.35939476084822e-1 9.66442479189108e-2
R1131 R1132 R1133 −1.09541107265992e-1 −2.52992302722233e-1 8.71030751509361e-2

R1112 R1212 R1213 4.15490588387255e-1 5.59563619288908e-4 3.28299313172747e-4
R1221 R1222 R1223 5.37601466194129e-4 4.1563647157943e-1 3.72746485831559e-4
R1231 R1232 R1233 4.94452190544431e-4 4.14961112540219e-4 4.15297389252339e-1

R1113 R1213 R1313 8.09728843069292e-2 3.28299313172747e-4 2.08068902716359e-4
R1321 R1322 R1323 3.52770559599846e-4 8.10293435524669e-2 2.32760156206622e-4
R1331 R1332 R1333 2.74020612749278e-4 2.8670364435102e-4 8.08365134052374e-2

R1121 R1221 R1321 −1.17589376850528e-1 5.37601466194129e-4 3.52770559599846e-4
R2121 R2122 R2123 6.28702609173722e-4 −1.1754154676859e-1 3.95675644307164e-4
R2131 R2132 R2133 4.52106341843372e-4 4.91213947244407e-4 −1.17842968195166e-1

R1122 R1222 R1322 6.35939476084822e-1 4.1563647157943e-1 8.10293435524669e-2
R2122 R2222 R2223 −1.1754154676859e-1 6.84345214578727e-1 9.67115256538758e-2
R2231 R2232 R2233 −1.09396141048504e-1 −2.52955300347104e-1 1.35399551371414e-1

R1123 R1223 R1323 9.66442479189108e-2 3.72746485831559e-4 2.32760156206622e-4
R2123 R2223 R2323 3.95675644307164e-4 9.67115256538758e-2 2.61029933264969e-4
R2331 R2332 R2333 3.10949258252192e-4 3.20139640173062e-4 9.64918473705521e-2

R1131 R1231 R1331 −1.09541107265992e-1 4.94452190544431e-4 2.74020612749278e-4
R2131 R2231 R2331 4.52106341843372e-4 −1.09396141048504e-1 3.10949258252192e-4
R3131 R3132 R3133 3.09068165743291e-4 4.59802986817494e-4 −1.09686644813478e-1

R1132 R1232 R1332 −2.52992302722233e-1 4.14961112540219e-4 2.8670364435102e-4
R2132 R2232 R2332 4.91213947244407e-4 −2.52955300347104e-1 3.20139640173062e-4
R3132 R3232 R3233 4.59802986817494e-4 2.9698568041399e-4 −2.53201916372555e-1

R1133 R1233 R1333 8.71030751509361e-2 4.15297389252339e-1 8.08365134052374e-2
R2133 R2233 R2333 −1.17842968195166e-1 1.35399551371414e-1 9.64918473705521e-2
R3133 R3233 R3333 −1.09686644813478e-1 −2.53201916372555e-1 −4.13338584898267e-1
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TABLE V. First half of a solution for N ¼ 4 Dirac fermions.

R1111 R1112 R1113 R1114 8.93891334289414e-2 −9.08200765529855e-2 4.87993833917034e-2 2.23581578500429e-1
R1121 R1122 R1123 R1124 1.73381012395297e-1 −4.17010032954388e-2 4.6646543694454e-1 9.93087222968853e-2
R1131 R1132 R1133 R1134 1.58558911566139e-1 4.52465020090685e-1 2.8389663637554e-2 −1.63924330125004e-1
R1141 R1142 R1143 R1144 4.75721783983157e-3 −3.58994878445356e-1 1.12327371281389e-1 4.44100160950618e-1

R1112 R1212 R1213 R1214 −9.08200765529855e-2 1.71052767932729e-3 1.93060133709441e-3 1.89843302179749e-3
R1221 R1222 R1223 R1224 2.96189119224102e-3 −8.92895768322059e-2 1.97390000514186e-3 2.61074796896732e-3
R1231 R1232 R1233 R1234 2.40165860870197e-3 2.56284197024156e-3 −9.03723841098154e-2 2.11490288448325e-3
R1241 R1242 R1243 R1244 2.35821991735503e-3 2.58807745278666e-3 1.8085886792796e-3 −9.0800486359443e-2

R1113 R1213 R1313 R1314 4.87993833917034e-2 1.93060133709441e-3 1.6936758398197e-3 2.03107883583002e-3
R1321 R1322 R1323 R1324 1.54367500346283e-3 4.84899996107517e-2 1.86979604656575e-3 1.79080549133709e-3
R1331 R1332 R1333 R1334 1.78430153581487e-3 1.92339007103261e-3 4.85049584020254e-2 1.43254060620137e-3
R1341 R1342 R1343 R1344 1.25052863228629e-3 1.32845068929825e-3 1.07201615064092e-3 4.81159771724384e-2

R1114 R1214 R1314 R1414 2.23581578500429e-1 1.89843302179749e-3 2.03107883583002e-3 1.47610977973788e-3
R1421 R1422 R1423 R1424 2.0059157954446e-3 2.23846997738574e-1 2.18802237204685e-3 2.07659959472313e-3
R1431 R1432 R1433 R1434 1.84087370176185e-3 1.90974014151239e-3 2.23370066864299e-1 2.08605758348406e-3
R1441 R1442 R1443 R1444 1.7917763064753e-3 1.96278188235845e-3 1.30812316112946e-3 2.23151197796952e-1

R1121 R1221 R1321 R1421 1.73381012395297e-1 2.96189119224102e-3 1.54367500346283e-3 2.0059157954446e-3
R2121 R2122 R2123 R2124 2.82846144695018e-3 1.73671827323392e-1 2.98753320525608e-3 2.63791972200659e-3
R2131 R2132 R2133 R2134 2.52104369314041e-3 2.63789857454227e-3 1.733136299339e-1 2.38810631084216e-3
R2141 R2142 R2143 R2144 2.07794831327891e-3 2.12047093908491e-3 2.04441432655092e-3 1.73175284635749e-1

R1122 R1222 R1322 R1422 −4.17010032954388e-2 −8.92895768322059e-2 4.84899996107517e-2 2.23846997738574e-1
R2122 R2222 R2223 R2224 1.73671827323392e-1 −1.73818121724867e-1 4.67814084997426e-1 9.97096618974108e-2
R2231 R2232 R2233 R2234 1.58987547899646e-1 4.52863700838672e-1 −1.03119353024888e-1 −1.63372737242689e-1
R2241 R2242 R2243 R2244 4.78464959400363e-3 −3.59139073909566e-1 1.12837363644479e-1 3.12850716672893e-1

R1123 R1223 R1323 R1423 4.6646543694454e-1 1.97390000514186e-3 1.86979604656575e-3 2.18802237204685e-3
R2123 R2223 R2323 R2324 2.98753320525608e-3 4.67814084997426e-1 1.92526733017194e-3 2.47974227969789e-3
R2331 R2332 R2333 R2334 2.44946384671077e-3 2.60411172815349e-3 4.66717323041201e-1 2.23656869548097e-3
R2341 R2342 R2343 R2344 2.28777290938034e-3 2.4482832432676e-3 2.3553065012906e-3 4.66282825250818e-1

R1124 R1224 R1324 R1424 9.93087222968853e-2 2.61074796896732e-3 1.79080549133709e-3 2.07659959472313e-3
R2124 R2224 R2324 R2424 2.63791972200659e-3 9.97096618974108e-2 2.47974227969789e-3 2.24391953895858e-3
R2431 R2432 R2433 R2434 2.39419476780728e-3 2.5393522972734e-3 9.92881322122194e-2 2.05063520505214e-3
R2441 R2442 R2443 R2444 1.88218275451014e-3 1.92510275257336e-3 1.63169569765752e-3 9.92424706998542e-2

TABLE VI. Second half of a solution for N ¼ 4 Dirac fermions.

R1131 R1231 R1331 R1431 1.58558911566139e-1 2.40165860870197e-3 1.78430153581487e-3 1.84087370176185e-3
R2131 R2231 R2331 R2431 2.52104369314041e-3 1.58987547899646e-1 2.44946384671077e-3 2.39419476780728e-3
R3131 R3132 R3133 R3134 2.27817944586346e-3 2.39833248770982e-3 1.5852468439324e-1 2.15416233905997e-3
R3141 R3142 R3143 R3144 1.93903547033657e-3 2.03385597278184e-3 1.72377197400074e-3 1.58324230374422e-1

R1132 R1232 R1332 R1432 4.52465020090685e-1 2.56284197024156e-3 1.92339007103261e-3 1.90974014151239e-3
R2132 R2232 R2332 R2432 2.63789857454227e-3 4.52863700838672e-1 2.60411172815349e-3 2.5393522972734e-3
R3132 R3232 R3233 R3234 2.39833248770982e-3 2.52237722419909e-3 4.52406482033699e-1 2.28354266360319e-3
R3241 R3242 R3243 R3244 2.02819472846199e-3 2.1239967070906e-3 1.79094217772047e-3 4.52211803714519e-1

R1133 R1233 R1333 R1433 2.8389663637554e-2 −9.03723841098154e-2 4.85049584020254e-2 2.23370066864299e-1
R2133 R2233 R2333 R2433 1.733136299339e-1 −1.03119353024888e-1 4.66717323041201e-1 9.92881322122194e-2
R3133 R3233 R3333 R3334 1.5852468439324e-1 4.52406482033699e-1 −3.30102173992401e-2 −1.63742580345448e-1
R3341 R3342 R3343 R3344 4.65639058481899e-3 −3.59168172715776e-1 1.12426473698445e-1 3.83087886565564e-1

R1134 R1234 R1334 R1434 −1.63924330125004e-1 2.11490288448325e-3 1.43254060620137e-3 2.08605758348406e-3
R2134 R2234 R2334 R2434 2.38810631084216e-3 −1.63372737242689e-1 2.23656869548097e-3 2.05063520505214e-3

(Table continued)
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TABLE VI. (Continued)

R3134 R3234 R3334 R3434 2.15416233905997e-3 2.28354266360319e-3 −1.63742580345448e-1 1.83875902890197e-3
R3441 R3442 R3443 R3444 1.81220258635743e-3 1.90480511326621e-3 1.75603803032357e-3 −1.64191775784397e-1

R1141 R1241 R1341 R1441 4.75721783983157e-3 2.35821991735503e-3 1.25052863228629e-3 1.7917763064753e-3
R2141 R2241 R2341 R2441 2.07794831327891e-3 4.78464959400363e-3 2.28777290938034e-3 1.88218275451014e-3
R3141 R3241 R3341 R3441 1.93903547033657e-3 2.02819472846199e-3 4.65639058481899e-3 1.81220258635743e-3
R4141 R4142 R4143 R4144 1.6593530291522e-3 1.7197160649665e-3 1.47111490679553e-3 4.47958869966015e-3

R1142 R1242 R1342 R1442 −3.58994878445356e-1 2.58807745278666e-3 1.32845068929825e-3 1.96278188235845e-3
R2142 R2242 R2342 R2442 2.12047093908491e-3 −3.59139073909566e-1 2.4482832432676e-3 1.92510275257336e-3
R3142 R3242 R3342 R3442 2.03385597278184e-3 2.1239967070906e-3 −3.59168172715776e-1 1.90480511326621e-3
R4142 R4242 R4243 R4244 1.7197160649665e-3 1.77567805960787e-3 1.52879724701502e-3 −3.59360882202121e-1

R1143 R1243 R1343 R1443 1.12327371281389e-1 1.8085886792796e-3 1.07201615064092e-3 1.30812316112946e-3
R2143 R2243 R2343 R2443 2.04441432655092e-3 1.12837363644479e-1 2.3553065012906e-3 1.63169569765752e-3
R3143 R3243 R3343 R3443 1.72377197400074e-3 179094217772047e-3 1.12426473698445e-1 1.75603803032357e-3
R4143 R4243 R4343 R4344 1.47111490679553e-3 1.52879724701502e-3 1.28467778185848e-3 1.12317122847217e-1

R1144 R1244 R1344 R1444 4.44100160950618e-1 −9.0800486359443e-2 4.81159771724384e-2 2.23151197796952e-1
R2144 R2244 R2344 R2444 1.73175284635749e-1 3.12850716672893e-1 4.66282825250818e-1 9.92424706998542e-2
R3144 R3244 R3344 R3444 1.58324230374422e-1 4.52211803714519e-1 3.83087886565564e-1 −1.64191775784397e-1
R4144 R4244 R4344 R4444 4.47958869966015e-3 −3.59360882202121e-1 1.12317122847217e-1 7.9903188041306e-1
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