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We study the pair production, string breaking, and hadronization of a receding electron-positron pair
using the bosonized version of the massive Schwinger model in quantum electrodynamics in 1þ 1 space-
time dimensions. Specifically, we study the dynamics of the electric field in Bjorken coordinates by
splitting it into a coherent field and its Gaussian fluctuations. We find that the electric field shows damped
oscillations, reflecting pair production. Interestingly, the computation of the asymptotic total particle
density per rapidity interval for large masses can be fitted using a Boltzmann factor, where the temperature
can be related to the hadronization temperature in QCD. Lastly, we discuss the possibility of an analog
quantum simulation of the massive Schwinger model using ultracold atoms, explicitly matching the
potential of the Schwinger model to the effective potential for the relative phase of two linearly coupled
Bose-Einstein condensates.
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I. INTRODUCTION

A long-standing puzzle in electron-positron (e−eþ) colli-
sions is that the measured hadron spectra appear approx-
imately thermal [1]. This means that the relative abundance
of two types of hadrons a and b, of masses ma and mb,
respectively, is essentially determined by the ratio of their
Boltzmann factors Rða=bÞ∼expf−ðma−mbÞ=THg, with a
hadronization temperature of around TH ¼ 160–170 MeV.
Surprisingly, this temperature seems to be approximately
consistent across different experimental contexts, including
proton-proton (pp), proton-antiproton (pp̄), and heavy ion
collisions [2–5]. In high-energy heavy ion collisions, a large
number of partons are involved, which may lead to thermal-
ization through rescattering.However, ine−eþ collisions, the
electron and positron annihilate to produce a virtual photon
that creates the quark-antiquark pair. It is unlikely that
thermalization will occur through collisions in the final state.
This scenario is similar to what happens in pp and pp̄
collisions.
This suggests that there is another mechanism at play and

we have previously discussed one based on entanglement

between spatial regions in a QCD string [6–8]. Herewewant
to continue this line of thought and investigate a more
complete model for the quantum dynamics of hadronization.
Computing the hadronization process in the collision

from first principles is challenging for several reasons.
First, the process is nonperturbative [9], meaning that it
involves QCD dynamics at large distances where the
coupling is strong. Moreover, describing the process
accurately requires taking into account the dynamics in
time of the quark-antiquark expanding string as it breaks
into hadrons during particle production.
Several theoretical models have been proposed [10], but

apparently none can account for all the observed features.
The Lund model [11,12] is based on expanding QCD
strings from which tunneling processes produce hadrons
and resonances via the Schwinger mechanism [13]. The
standard implementation of the Lund model is the PYTHIA

event generator [14–17] for which it seems difficult to
explain the thermal-like features seen in experimental data
without additional modifications [17].
As explained above, the full problem of particle produc-

tion in QCD is challenging. Therefore, one can resort to
effectivemodels that are simpler to study and can still explain
several aspects of the original model. The Schwinger model
is quantum electrodynamics in 1þ 1 space-time dimensions
(QED1þ1) [18–21]. Despite being a Uð1Þ Abelian gauge
theory, it shares several essential featureswithQCD,which is
a SUð3Þ gauge theory, making it an effective toy model for
simulating some QCD characteristics [22,23]. QED1þ1

includes the Higgs mechanism, charge screening, “quark”
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confinement [24,25], string breaking [11,26–32], and spon-
taneous chiral symmetry breaking, as well as topological
vacua. Furthermore, transverse and longitudinal degrees of
freedom naturally separate at high energies, thus justifying
the use of a dimensionally reduced theory.
Another advantage of this theory is that the fermionic

theory of QED1þ1 can be rewritten in terms of a bosonic
theory with a real scalar field in d ¼ 1þ 1 [7,8,33]. The
simplicity of the resulting scalar theory makes it suitable to
study real-time dynamics. This model, in its bosonic
formulation, has proved to be successful for the study of
the anomalous photon production puzzle, predicting the
enhancement of soft photon production in agreement with
the experimental results [34,35]. Moreover, qualitative
features of jet fragmentation have been reproduced [36].
This work aims to study whether the hadronization

temperature can be recovered in QED1þ1 in its bosonic
version and whether it shows qualitative and quantitative
agreement with the experimental results. To do so, we
simulate the dynamics of an electron-positron pair flying
apart to study pair production during the string fragmenta-
tion process. We analyze the spectrum of the produced
particles, which allows for direct computation of the
Boltzmann factor that can be quantitatively compared with
experimental results. Additionally, we observe the phe-
nomenon of coherent damped field oscillations induced by
the propagating high-energy quark due to the continuous
creation of quark-antiquark pairs pulled from the vacuum to
screen the electric charges. This finding aligns with
previous studies that have demonstrated similar results
using lattice simulations [27,29,30].
Recently, there has beenmuch interest in low-dimensional

dynamics with the ultimate goal of simulating gauge theories
using quantum simulators [37–40]. Various works have
proposed the analog simulation of the massive Schwinger
model using ultracold quantum gases [41–45], and the
quantum simulation of its nonperturbative aspects using
tensor networks [46], and spin chains [47]. We explore a
possible experimental realization of this model using ultra-
cold atoms, in particular, two tunnel-coupled Bose-Einstein
condensates (BEC) with a modulated linear interaction.
The paper is organized as follows. In Sec. II, we

introduce the model of QED in 1þ 1 dimensions, its
properties and similarities with QCD, and how to formulate
its bosonized version. In Sec. III, we study the dynamics of
the expanding string. We discuss in Sec. IV the case of
metastable initial conditions for the field and the resulting
time evolution. Section V introduces Gaussian fluctuations
to an underlying oscillating background electric field and
employs the Bogoliubov coefficients [48] method to
compute the produced particles’ spectra. We establish
the emergence of a temperature as the Boltzmann factor.
Section VI introduces an experimental proposal to study the
massive Schwinger model using an ultracold atom system.
In Sec. VII, we conclude and give an outlook.

Throughout this work, we use units where ℏ ¼ c ¼
kB ¼ 1. Our metric in four dimensions is mainly plus, so in
two dimensions it is ημν ¼ diagð−1;þ1Þ, and the Levi-
Civita tensor is such that ϵ01 ¼ −ϵ10 ¼ −ϵ01 ¼ ϵ10 ¼ 1.

II. QED IN 1+ 1 SPACE-TIME DIMENSIONS

As explained and motivated in the introduction, we
assume that QED1þ1 can model relevant aspects of the
dynamics for the production of quark-antiquark pairs in the
string fragmentation. In this section, we first introduce the
microscopic QED1þ1 model, then discuss the bosonization
procedure and its implications.

A. Gauge theory action

For QED in d ¼ 1þ 1 dimensions with a single massive
fermion ψ , the microscopic action is

S¼
Z

dtdx

�
−
1

4
FμνFμν− ψ̄γμð∂μ− iqAμÞψ −mψ̄ψ

�
; ð1Þ

with Uð1Þ gauge field Aμðt; xÞ and one fermion flavor
ψðt; xÞ. The free parameters are given by the fermion mass
m and electric charge q, which both have dimensions of
mass. This makes the model super-renormalizable so that it
can be defined without an explicit dependence on an
ultraviolet regularization.
The electromagnetic field strength tensor has only one

independent component,

Fμν ¼ ∂μAν − ∂μAν ¼ ϵμνF10; ð2Þ

identified as the electric field E ¼ F10. Note that there is no
magnetic field.
Furthermore, the Schwinger model features topological

θ-vacua similar to QCD in 1þ 3 dimensions, see below.

B. Bosonized action

The Schwinger model has an alternative bosonized
description in terms of a real scalar field ϕðt; xÞ, which
is linearly related to the electric field,

Eðt; xÞ ¼ qϕðt; xÞffiffiffi
π

p : ð3Þ

We discuss the bosonized formulation and its renorm-
alization in Appendix B. It is shown there that a renor-
malized effective action can be written in the form,

Γ½ϕ� ¼
Z

d2x
ffiffiffi
g

p �
−
1

2
gμν∂μϕ∂νϕ − VðϕÞ

�
: ð4Þ

For later convenience, we have allowed general coordi-
nates and introduced the corresponding metric gμν with
g ¼ − detðgμνÞ. The potential is
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VðϕÞ ¼ 1

2
M2ϕ2 − u cos ð2 ffiffiffi

π
p

ϕþ θÞ; ð5Þ

where

M ¼ qffiffiffi
π

p ; u ¼ expðγÞqm
2π3=2

: ð6Þ

The potential in Eq. (5) was also found in Ref. [24]. We
note that it is a renormalized potential in the sense that
some quantum fluctuations have been taken into account
through the renormalization of u. However, it cannot be
seen as the effective potential corresponding to full quan-
tum effective action, which would have to be convex as a
Legendre transform.
In the following, we also work with the dimensionless

ratio

κ ¼ 2
ffiffiffi
π

p
u

M2
¼ expðγÞm

q
ð7Þ

between the cosine and quadratic term in the potential.

C. Potential

The minima of the potential VðϕÞ in Eq. (5) can be
identified with vacuum states of the quantum theory. In
particular, the ground state is determined by the field Φvac
at the global minimum of the potential. Its position depends
on the vacuum angle θ.
In addition to the global minimum, there are also local

minima corresponding to metastable states [49], where the
field can remain trapped for a while but eventually relaxes
by quantum tunneling [50,51].
The potential VðϕÞ is displayed for two possible values

of the vacuum angle θ ¼ 0, and θ ¼ π in Fig. 1. For θ ¼ π
there are two degenerate minima, with a Z2 symmetry that
can break spontaneously. For θ ¼ 0, the potential has a
unique minimum for any choice of q and m.

In the strong interaction limit q2 ≫ m2, or u ≪ M2, one
recovers the massless Schwinger model, equivalent to a free
scalar field theory with a boson of mass M with one single
minimum of the potential at ϕ ¼ 0.

D. Weak coupling limit

In the weak coupling limit m ≫ q, the quadratic term
∼M2 in the potential in Eq. (5) [or, equivalently for the
microscopic potential in Eq. (B2)] is subleading compared
to the cosine term and one has effectively a kind of sine-
Gordon theory [52]. It is instructive to discuss this limit
where intuition from perturbative QED can be applied.
The potential has for M2 ≪ u a set of almost degenerate

minima at 2
ffiffiffi
π

p
ϕþ θ ¼ 2πn, with n∈Z. The correspond-

ing electric fields differ according to Eq. (3) by multiples of
the charge q. One can see these field configurations as
being due to an integer number of elementary charges q,
and in fact, the original charged fermions correspond in the
bosonized theory to solitons that connect neighboring
minima of the potential.
For the particular case of θ ¼ 0, the potential has its

global minimum at ϕ ¼ 0, and the field configuration with
ϕ1 ≈� ffiffiffi

π
p

would be the next-to-lowest state. Its energy per
unit length with respect to the ground state is given by

σ ¼ 1

2
M2ϕ2

1 ¼
1

2
q2: ð8Þ

This can also be understood as the energy density of the
electric field E2=2. Note that in d ¼ 1þ 1, the energy
stored in the field grows linear with length, i.e., with the
separation between two opposite charges, and σ has the
physical significance of a string tension.
When the term∼M2 gains relevance compared to the term

∼u, the string tension increases, and the corresponding field
configurations become more unstable. The string can then
break by quantum tunneling or false vacuum decay in the
bosonic formulation. In the original fermionic formulation,
this corresponds to the creation of quark-antiquark pairs.

FIG. 1. Potential of the massive Schwinger model VðϕÞ [Eq. (5)] for θ ¼ 0 (left panel) and θ ¼ π (right panel). The different colors
represent different dimensionless coupling strengths κ [Eq. (7)]. The dots indicate the initial condition for the field according to Eq. (11).
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We are interested in studying the dynamics of this process in
further detail.

III. DYNAMICS OF EXPANDING STRINGS

Let us now turn to the problem of an expanding QCD
string in the reduced model, where the dynamics happens in
d ¼ 1þ 1 dimensions and massive QED is employed
instead of QCD. We start from a quark-antiquark pair with
very high energy, where the quark and antiquark move in
opposite directions with the speed of light. The electric
field that forms between them will be modeled as a
coherent scalar field in the bosonized description and we
will study its evolution, as well as the excitations around it.

A. Coordinate system

We start by introducing a particularly convenient coor-
dinate system to describe the string resulting from a highly
energetic quark-antiquark pair. Without loss of generality,
the string is taken to be confined to the x-direction, and the
trajectories of the moving quark-antiquark pair on the light
cone are x ¼ �t, y ¼ z ¼ 0.
This geometry can be conveniently described using

Bjorken coordinates ðτ; ηÞ, where τ stands for proper time,
and η indicates the space-time rapidity. These coordinates
are related to Minkowski coordinates ðt; xÞ via τ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − x2

p
and η ¼ artanhðx=tÞ such that t ¼ τ cosh η and

x ¼ τ sinh η. The invariant line element is in Bjorken
coordinates given by ds2 ¼ −dτ2 þ τ2dη2. Standard
Bjorken coordinates are defined for t ≥ jxj, i.e., on and
within the future light cone of the origin, but a similar
construction would work for the past light cone. The light
cone itself corresponds to η → �∞ or τ ¼ 0.
Expressed in Bjorken coordinates, the equation of

motion for the scalar field as obtained from the variation
of Eq. (4) reads [using the ratio in Eq. (7)]

∂
2
τϕðτ; ηÞ þ

1

τ2
∂
2
ηϕðτ; ηÞ þ

1

τ
∂τϕðτ; ηÞ

þM2½ϕðτ; ηÞ þ κ sinð2 ffiffiffi
π

p
ϕðτ; ηÞ þ θÞ� ¼ 0: ð9Þ

Bjorken coordinates are particularly useful because of
the symmetry of the string expansion with respect to
longitudinal boosts, η → ηþ Δη. The field expectation
value can be assumed to be invariant under this boost
transformation realized as a translation. For quantum
excitations the symmetry is realized in a statistical sense.

B. Background field evolution

We solve the dynamics of string breaking in several
steps and start with the simplest case of a coherent or
classical field.
As a consequence of Bjorken boost symmetry [53], the

evolving field expectation or background field does not

depend on the rapidity variable, ϕðτ; ηÞ ¼ ΦðτÞ. The
equation of motion (9) reduces to the evolution equation,

∂
2
τΦþ ∂τΦ

τ
þM2½Φþ κ sinð2 ffiffiffi

π
p

Φþ θÞ� ¼ 0: ð10Þ

The initial condition Φðτ0Þ with τ0 ¼ 0þ is fixed by the
requirement that the classical electric field of two relativ-
istic charges �q flying in opposite directions is directly on
the light cone given by E ¼ q. Quantum effects are
assumed to be negligible in this early time limit, see also
Ref. [54]. Thus, the initial value of the coherent scalar field
can be obtained from the relation (3) as

Φðτ0Þ ¼ Φvac þ
ffiffiffi
π

p
: ð11Þ

In Fig. 1, we denote the initial field value for a number of
parameters by dots.
It is instructive to discuss first a linearized form of

Eq. (10), where the linearization is done around the initial
state (11),

∂
2
τΦþ ∂τΦ

τ
þM02Φ ¼ I; ð12Þ

where

M02 ¼ M2½1þ 2
ffiffiffi
π

p
κ cosð2 ffiffiffi

π
p

Φvac þ θÞ� ð13Þ

and the inhomogeneous term is

I ¼ M2κ½ð2 ffiffiffi
π

p
Φvac þ 2πÞ cosð2 ffiffiffi

π
p

Φvac þ θÞ
−M2κ sinð2 ffiffiffi

π
p

Φvac þ θÞ�: ð14Þ

The homogeneous equation has the form of Bessel’s differ-
ential equation, while a particular solution of the inhomo-
geneous equation is the constant Φ ¼ I=M02. Accordingly,
the solution can be written as a linear combination of Bessel
functions of the first and second kind,

ΦðτÞ ¼ I=M02 þ c1J0ðM0τÞ þ c2Y0ðM0τÞ: ð15Þ

The coefficients c1 and c2 are determined through the initial
condition. Specifically, the Bessel function of the first kind
becomes unity, J0ðM0τÞ → 1, for τ → 0, while the Bessel
function of the second kind diverges in that limit. This sets
c1 ¼ Φvac þ

ffiffiffi
π

p
− I=M02 and c2 ¼ 0 and we arrive at the

early time solution

ΦinðτÞ ¼ I=M02 þ ½Φvac þ
ffiffiffi
π

p
− I=M02�J0ðM0τÞ: ð16Þ

In order to fully understand the evolution of the coherent field
ΦðτÞ also at late times, we numerically solve the nonlinear
equation of motion, Eq. (10), using the fourth-order Runge-
Kutta method. Figure 2 illustrates the behavior of ΦðτÞ for
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various choices of the ratio κ and the vacuum angles θ ¼ 0 as
well as θ ¼ π.
Starting from the initial value, the field rolls down the

potential and eventually oscillates around one of its
minima. In addition, the overall expansion implies a
dilution and an effective damping, similar to the Hubble
damping for a scalar field in the early Universe. In the
asymptotic limit τ → ∞, the field expectation value
approaches a local minimum according to the classical
evolution.
Note that depending on the value of κ there are

qualitative differences in the dynamics of the background
field. For very small values κ ≪ 1, corresponding essen-
tially to small fermion massm ≪ q, the potential has only a
single global minimum which is then approached by the
classical evolution equation in the asymptotic long time
limit. In contrast, when κ is larger, the background field can
be trapped in a local minimum, which corresponds to a
metastable state.
In Sec. V, we will discuss the production of quantum

excitations around the coherent background field solution
ΦðτÞ. However, before that we first address the metastable
background solutions and the decay of such false vacuum
states through field tunneling.

IV. FALSE VACUUM DECAY

The potential of Eq. (5), as plotted in Fig. 1, shows for
larger values of κ local minima in addition to the global
minimum (or two global minima for θ ¼ π). These corre-
spond to metastable states in the full quantum theory.
The decay of such a metastable configuration has close

parallels to (QCD) string breaking. One possibility is that
the field ϕ gets trapped during its evolution in such a local
minimum and needs quantum tunneling to evolve further.
But one can also see the metastable state directly as an
approximation to the string configuration and its decay by a
tunneling event as being the analog of the spontaneous
production of a quark-antiquark pair. Moreover, we will see

that a tunneling event at some spacetime position xμ0 leads,
within the future light cone of this spacetime point, to an
evolving field that resembles very much the evolving
background field produced by a highly energetic quark-
antiquark pair.
Let us start our discussions from a field in a metastable

local minimum configuration that we denote by ϕFV. This
would be a stable solution of the equations of motion in a
classical sense, but in the full quantum theory, the state is
only metastable as tunneling through the barrier can occur,
allowing the field to reach the true vacuum eventually (that
we denote by ϕTV). In the case of θ ¼ π, ϕTV ≈� ffiffiffi

π
p

=2,
while for θ ¼ 0, ϕTV ¼ 0.
The decay of false vacua usually occurs through nucle-

ation and expansionof spherical bubbles in space [50,51,55],
a process common to first-order phase transitions across
different fields such as condensed matter [56], particle
physics [57], and cosmology [58]. In this work, we only
focus on the nucleation of a single bubble that expands and
do not consider the possibility of multiple bubbles forming
and colliding [59,60]. This bubble solution, also known as
the critical bubble, bounce or instanton [61], denoted by ϕB,
depends on a radial Euclidean coordinate r2 ¼ t2E þ x2,
where tE denotes imaginary or Euclidean time. The coor-
dinate origin corresponds here roughly to the space-time
point where the string starts to break. In Euclidean coor-
dinates the critical bubble solution has the boundary
conditions ϕBðr → ∞Þ ¼ ϕFV , and some field value,
ϕBðr ¼ 0Þ ¼ ϕ0, which is to be determined at vanishing
radius, and the first derivative is supposed to vanish there,
∂rϕBðr ¼ 0Þ ¼ 0. For more details on computing this field
configuration, we refer to Appendix A.
The upper left and right panels of Fig. 3 show bounce

profiles in dependence on the radial coordinate r for θ ¼ 0
and θ ¼ π, respectively. As the coupling κ increases, the
value at small Euclidean radius ϕBð0Þ ¼ ϕ0 shifts towards
the true vacuum ϕTV . Moreover, the steepness of the
bounce changes with κ. The bounce resembles a step
function for large values of κ (e.g., κ ¼ 10.0). In this case,

FIG. 2. Background field for vacuum angles θ ¼ 0 (left panel) and θ ¼ π (right panel) with different couplings κ. The dashed lines
indicate the position of the minimum around which Φ oscillates for Mτ ≫ 1.
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we are in the thin-wall approximation, and the position of
the step can be identified as the bubble radius R that
separates the region filled with the true vacuum phase and
the false vacuum background.
It is an interesting problem to follow the time evolution

in real time, within the future light cone of the breaking
point at the coordinate origin. This leads to a very similar
problem to the one discussed in the previous section.
Directly on the light cone, initial conditions are set through
the bounce solution, but everything in the future of that is to
be computed dynamically.
The usage of Bjorken coordinates is beneficial, where

the boundary conditions for the time evolution of a
coherent background field in Euclidean coordinates can
be rewritten as the initial conditions

Φðτ ¼ 0Þ ¼ ϕBð0Þ ¼ ϕ0; ∂τΦðτ ¼ 0Þ ¼ 0: ð17Þ

Displayed on the lower plots of Fig. 3 we show the
resulting background field Φ evolution for the new initial
conditions (for θ ¼ 0 in the left panel and θ ¼ π in the right
panel). Again, the field shows damped oscillations, now
around the true vacuum.

Outside of the future and past light cones of the origin, the
shape of the bubble in Minkowski space can be determined
by analytically continuing the bounce solution [50,62]. As
the bounce is spherically symmetric in Euclidean space, its
analytic continuation is Oð1; 1Þ symmetric,

ϕB

�
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2E þ x2

q �
¼ ϕB

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − t2

p �
: ð18Þ

This continuation is indeed only possible for jxj > jtj.
Otherwise, the radicand would become negative, and the
radius r would be imaginary.
Combining both solutions, the analytically continued

bounce solution for jxj > t and the solution to classical
evolution equations for t > jxj is shown in Fig. 4. The field
decays from the false vacuum outside the light cone to the
true one inside it, showing damped oscillations very similar
to those obtained in Sec. III B.

V. PARTICLE PRODUCTION

Now that we have obtained nontrivial evolving back-
ground field configurations in two closely related scenarios,
it is interesting to study quantum fluctuations around them.

FIG. 3. Upper: Bounce solutions ϕB in dependence on the radial coordinate r and for vacuum angles θ ¼ 0 (left panel) and θ ¼ π (right
panel) and various couplings κ. Lower: Evolution of the background field Φ after tunneling. The background field Φ is displayed in
dependence on Bjorken time τ for θ ¼ 0 (left panel) and θ ¼ π (right panel) with various couplings κ.
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Field excitations can be seen as particles, and in this section
we aim to compute the resulting particle production [63–66].

A. Adding quantum fluctuations

We add a quantum fluctuation field φ to the coher-
ent classical background field Φ such that ϕðτ; ηÞ ¼
ΦðτÞ þ φðτ; ηÞ.
For this quantum field, we employ the mode expansion,

φðτ; ηÞ ¼
Z

dk
2π

fakfkðτÞeikη þ a†kf
�
kðτÞe−ikηg; ð19Þ

with mode functions fkðτÞ that satisfy the differential
equation�
∂
2
τ þ

∂τ

τ
þk2

τ2

þM2½1þ2
ffiffiffi
π

p
κcosð2 ffiffiffi

π
p

ΦðτÞþθÞ�
�
fkðτÞ¼ 0: ð20Þ

This equation is obtained by linearising Eq. (9) around the
background solution ΦðτÞ.
The ak and a†k are annihilation and creation operators,

respectively, which obey the commutation relations
½ak; a†k0 � ¼ 2πδðk − k0Þ and ½ak; ak0 � ¼ 0. We impose the
normalization condition

−ifkðτÞτ∂τf�kðτÞ þ if�kðτÞτ∂τfkðτÞ ¼ 1; ð21Þ
such that the equal-time canonical commutation relation
reads with the conjugate momentum field Πðτ; ηÞ ¼
δΓ=δð∂τϕðτ; ηÞÞ ¼ τ∂τϕðτ; ηÞ,

½ϕðτ; ηÞ;Πðτ; η0Þ� ¼ iδðη − η0Þ: ð22Þ

B. Initial choice of mode functions

We need to find proper initial conditions to solve the
equations of motion for the mode functions. It is useful to
discuss here first the case where the mean field is in the
ground state, so constant and positioned at the global
minimum of the potential, ΦðτÞ ¼ Φvac. In that case, an
analytic solution of Eq. (20) becomes possible in terms of
Hankel functions of the second kind,

finitk ðτ0Þ ¼
ffiffiffi
π

p
2

e
π
2
kHð2Þ

ik ðM0τ0Þ; ð23Þ

whereM0 is given in Eq. (13). At first sight, this choice does
not seem to be unique because a solution of the mode
equation (20) could also be found, for example, in terms of
Bessel functions of the first kind. However, one can argue
that the Hankel function solution in Eq. (23) is the right
choice. To see this, consider the integral representation

Hð2Þ
ik ðM0τÞ ¼ i

π
e−

π
2
k

Z þ∞

−∞
dze−iM

0τ coshðzÞ−ikz: ð24Þ

After a shift of the integration variable z → zþ η and
returning to Minkowski coordinates t and x using
τ coshðz þ ηÞ ¼ τ coshðzÞ coshðηÞ þ τ sinhðzÞ sinhðηÞ ¼
coshðzÞt þ sinhðzÞx we obtain

finitk ðτÞeikη ¼ i
2

ffiffiffi
π

p
Z þ∞

−∞
dze−iM

0½coshðzÞtþsinhðzÞx�−ikz: ð25Þ

One can see here that the modes described by finitk ðτÞ are
superpositions of plane waves with positive frequencies
ωðzÞ ¼ M0 coshðzÞ in Minkowski space.
To the initial mode functions in Eq. (23) correspond

operators ainitk and a unique quantum state jΩ;Φvaci annihi-
lated by them, ainitk jΩ;Φvaci ¼ 0. This state represents the
vacuum state within the here employed parametrization of a
coherent background field with small excitations around it.
Another interesting state to be considered is a coherent

state that basically agrees with the vacuum state, but where
the expectation value is shifted, Φvac → Φðτ0Þ. We denote
this state by jΩ;Φðτ0Þi with Φðτ0Þ the field expectation
value ΦðτÞ at the initial time τ ¼ τ0. For the scenario
discussed in Sec. III this initial value is given in Eq. (11),
while for the scenario discussed in Sec. IV it is specified in
Eq. (17). For the mode functions in this state, we use at very
early times τ → 0þ the form given in Eq. (23) without any
modification. Of course, deviations will occur at later times
τ > 0, see below.
The “shifted vacuum” coherent state specified through

this prescription is only one out of many possible quantum
states one could consider at τ ¼ 0þ. In particular for the
bounce scenario discussed in Sec. IV one may expect that
one could do better and actually determine the quantum
state of fluctuations after the bounce possibly through

FIG. 4. Field evolution in Minkowski coordinates ðx; tÞ. Out-
side the forward light cone, i.e., for jxj > t, we show the analytic
continuation of the bounce solution ϕB. Inside the light cone, i.e.,
for t > jxj, the solution is obtained by solving the classical
equations of motion. We have chosen here κ ¼ 2.5 and θ ¼ π.
The color coding indicates the field values, with ϕTV being the
true vacuum and ϕFV the initial false vacuum.

PARTICLE PRODUCTION AND HADRONIZATION TEMPERATURE … PHYS. REV. D 110, 045017 (2024)

045017-7



analytic continuation from a calculation in Euclidean space,
but we leave this for future work.
Starting with the initial conditions (23) for very early

times, we use the differential equations (20) to find
solutions for later times. Figure 5 shows the real and
imaginary part of the mode functions obtained in this way
for different choices of the coupling constant κ and the
rapidity wave number k. In the right panel of Fig. 6, we
show the growth in time of the occupation numbers [see
Eq. (29) below for their definition] for several wave number
k for θ ¼ 0, κ ¼ 4.0.
In general, the linearization procedure and the

Bogoliubov theory are valid as long as the effect of the
fluctuations effect on the background field is small, and if
the fluctuations remain small during the evolution. Due to
the effect of the Bjorken expansion, the occupation numbers
exhibit exponential growth only for a time window, after
which their value saturates. This phenomenon is discussed
in detail in Ref. [67]. Even though the backreaction of the

fluctuations is expected to introduce some extra damping in
the background field dynamics, it does not significantly alter
the qualitative dynamics governing the mode function
equation. This analysis is left for future work.

C. Asymptotic particle number

As a consequence of the overall expansion and dilution
of energy, the background fieldΦðτÞ eventually approaches
a constant asymptotic value for very late Bjorken times,
ΦðτÞ → Φasym for τ → ∞. We concentrate on situations
where this value agrees with the global minimum,
Φasym ¼ Φvac. [For θ ¼ π, there are two degenerate global
minima, and ΦðτÞ dynamically selects one.]
The equation of motion for the mode functions (20)

simplifies in the asymptotic regime to

�
∂
2
τ þ

1

τ
∂τ þ

k2

τ2
þM02

�
fasymk ðτÞ ¼ 0; ð26Þ

FIG. 5. Real part (solid line) and imaginary part (dashed line) of the mode function evolution in time. We show three choices of the
coupling ratio κ defined in Eq. (7) and the rapidity wave number k.

FIG. 6. Particle number nk dependence on the rapidity wave number k (left panel) and the corresponding dependence on time Mτ
(right panel) for a selection of rapidity wave numbers k as shown in the figure.
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where M0 is defined in Eq. (13). By the same argument as
above, the correct solution as a superposition of positive
Minkowski space frequencies is given in terms of a Hankel
function,

fasymk ðτÞ ¼
ffiffiffi
π

p
2

e
πk
2Hð2Þ

ik ðM0τÞ: ð27Þ

With this, the fluctuation field becomes in the asymptotic
region

φasymðτ; ηÞ ¼
Z

dk
2π

faasymk fasymk ðτÞeikη

þ aasym†
k fasym�

k ðτÞe−ikηg: ð28Þ

To this operator corresponds a state j0asymi that represents
the Minkowski space vacuum at very late times.
Accordingly, the asymptotic particle number in

Minkowski space can be determined using the asymptotic
particle number operator N̂k ¼ aasym†aasym. We also
define the occupation number as its expectation value,
nk ¼ hΩjN̂kjΩi. (Recall that the state jΩi has the property
ainitk jΩi ¼ 0 but this does not imply aasymk jΩi ¼ 0.)
Using the usual Bogoliubov theory arguments (see,

for example, Ref. [48,68–70]), one can obtain the following
expression for the occupation number of the asymptotic
state

nk ¼ jβkj2¼ τ2jfasymk ðτÞ∂τfkðτÞ−fkðτÞ∂τfasymk ðτÞj2: ð29Þ

Because fasymk ðτÞ is only a proper solution to the mode
equation (20) at asymptotically late time, the expression in
Eq. (29) only has strict physical meaning in the limit
Mτ ≫ 1. The left panel of Fig. 6 shows the particle number
nk against the wave vector k at different times τ for the
choice of parameters θ ¼ 0 and κ ¼ 4.0 (left panel). One
observes that aroundMτ ¼ 510 the convergence withMτ is

approaching, at least for some choices of θ, κ, and k. The
spectrum displays a peak at k ≈ 0. This is the expected
behavior; excitations with small energy can be produced,
while for large k, the kinetic term∼k2 in Eq. (20) dominates
over the time-dependent term in the second line and particle
production is suppressed.

D. Total particle number and temperature

The total particle number per unit rapidity is given by the
integral over occupation numbers,

N
Δη

¼
Z

dk
2π

nk: ð30Þ

In Fig. 7, the numerical results for the total particle number
per rapidity interval N=Δη are plotted as a function of the
coupling κ defined in Eq. (7). We are especially interested
in large values of κ corresponding to a large fermion mass
m. In this regime, for θ ¼ 0, or θ ¼ π, the total number of
particles per rapidity interval decreases as the coupling
increases. This behavior is expected since the oscillations
of the background field around Φasym are very small, and
the mode functions f and fasym look very similar, which
causes the difference in Eq. (29) to vanish.
More specifically, N=Δη decays exponentially. We can

make a fit to the numerical data to obtain

N
Δη

∝ exp

�
−5.5κ −

7.9
κ

�
; for θ ¼ 0;

N
Δη

∝ exp

�
−3.1κ −

12.7
κ

�
; for θ ¼ π: ð31Þ

The 1=κ-term in the exponent takes into account deviations
of N=Δη for smaller values of the coupling, where the field
initial value deviates from the ground state more, which
enhances the resonance phenomena due to its oscillations.

FIG. 7. Total number of particles per rapidity interval in dependence on the coupling constant κ for θ ¼ 0 (left panel) and θ ¼ π (right
panel). The fit has been made in the range 3.5 ≤ κ ≤ 7.0 for θ ¼ 0; π.
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However, for large values of κ, i.e., for highly massive or
weakly coupled fermions, this term can be neglected and
Eq. (31) becomes a Boltzmann-type factor,

N
Δη

∝ expð−αfitκÞ ¼ exp

�
−
m
T

�
; ð32Þ

with temperature

T ¼
ffiffiffiffiffi
2σ

p

αfit expðγÞ
; ð33Þ

proportional to the square root of the string tension σ ¼ q2=2
[cf. Eq. (8)]. The

ffiffiffi
σ

p
-temperature dependence can also be

observed phenomenologically in particle production within
QCD [4]. Assuming a string tension of σ ¼ 0.19 GeV2 [4],
our results for αfit translate to the temperatures

Tθ¼0 ¼ 63 MeV;

Tθ¼π ¼ 112 MeV; ð34Þ

which are of the same order of magnitude as the hadroniza-
tion temperature TH ≈ 160–170 MeV [4]. The parameter
θ ¼ π seems to be closer to the actual result. However, θ ¼ 0
is of the sameorder ofmagnitude, indicating that other angles
may yield comparable results. Overall, it can be assumed that
the numerical outcome is relatively consistent across various
angles and different choices of the initialization of the
fluctuations and that this result remains robust. Some
discrepancies in the results are expected since QED1þ1 is
only a toy model for QCD. The Schwinger model offers
valuable insights into confinement and thermalizationmech-
anisms, suggesting that dimensional reduction and breaking
of the confining string through tunneling present in the
dynamics of the Schwinger model are key effects for the
observation of the apparent thermal features. However, it
cannot fully replicate QCD in higher dimensions. It also
lacks some important features of QCD, like the gauge
dynamics, multiple fermion flavors and the non-Abelian
symmetry group SUð3Þ.
The above results have been obtained for fluctuations

around a decaying false vacuum as described in Sec. IV.
The calculation can also be done for fluctuations around
the background solution described in Sec. III with a
similar result, but temperatures given by Tθ¼0 ≈ 1 GeV;
Tθ¼π ≈ 2 GeV.

VI. ANALOG QUANTUM SIMULATOR OF THE
MASSIVE SCHWINGER MODEL

This section presents an experimental proposal for an
analog quantum simulation of the massive Schwinger
model. An experimental realization would be compelling
for checking the theoretical assumptions that the numerical

predictions rely upon. In particular, it would be very
insightful to observe the phenomenon of false vacuum
decay and the production of particles in a laboratory through
a tabletop experiment. The underlying idea is to prepare a
system of ultracold atoms and adjust their interactions such
that the effective potential becomes as close as possible to
that of bosonized QED1þ1. By measuring the total particle
number N=Δη in the cold atom experiment, we can draw
conclusions about the temperature of particles produced by
vacuum decay in the Schwinger model. In the limit of large
fermionmassm, this could describe particle production after
electron-positron collisions in QED1þ1. Here, we will
briefly discuss the experimental setup and the derivation
of the corresponding effective potential.

A. Experimental setup

In Refs. [71–74] an experiment is proposed to test false
vacuum decay using a two-component Bose-Einstein con-
densate made of ultracold and highly diluted atoms con-
fined to one spatial dimension by a trap. One way to create
a system that can simulate vacuum decay is by using atoms
such as 87Rb or 41K, where the condensate is made up of
two different hyperfine states. Recently, a new proposal has
expanded the possible experimental setups by showing that
any stable mixture between two states of a bosonic isotope
can be used as a relativistic analogue [75]. The Hamiltonian
density reads,

H ¼ −
X2
j¼1

�
1

2m
∂xψ

†
j∂xψ j þ

h
2
ðψ†

jψ jÞ2
�

þ hcψ
†
1ψ1ψ

†
2ψ2 −

ν

2
ðψ†

1ψ2 þ ψ†
2ψ1Þ: ð35Þ

The two components in the system are represented by the
field operators ψ1 and ψ2. Both have the same mass m,
and their interactions are determined by two coupling
constants, namely h, the coupling of each component with
itself, and hc, which is related to an intercomponent
interaction. The external potential of the trap in which
the atoms are confined has been omitted here. Additionally,
an external field, e.g., a radio frequency field, induces the
transition between the two states with a transition rate ν.
Furthermore, the transition rate ν0 is modulated with
radio frequency ω, the amplitude of the modulation being
νðtÞ ¼ ν0 þ δω cosðωtÞ. To bring the Hamiltonian (35) into
a more convenient form, the fields are expressed in terms of
their densities ρj ¼ ψ†

jψ j and phases ϑj,

ψ j ¼ ffiffiffiffiffi
ρj

p
eiϑj ; j∈ f1; 2g: ð36Þ

Additionally, we can switch to the set of variables that
consists of the mean ρ and the relative density ϵ defined as
ρ ¼ ðρ1 þ ρ2Þ=2; ϵ ¼ ðρ2 − ρ1Þ=2, and the sum ζ and
the difference ϕ of the phases ζ ¼ ϑ1 þ ϑ2;ϕ ¼ ϑ2 − ϑ1.
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The relative phase can be measured with an
interferometer [76]. We will focus on the relative phase
ϕ in the following. This should not be confused with the
above-mentioned scalar field ϕ. Moreover, the frequency
variation ω is assumed to be large in comparison to the
timescales of the system, specifically ω0 ¼ 2

ffiffiffiffiffiffiffiffiffiffi
ν0hn̄

p
where

n̄ is the expectation value of the mean particle density. This
allows time averaging and gives the final effective
Lagrangian after integrating out the densities ρ and ϵ

L¼ 1

2
ð∂tϕÞ2−

c2s
2
ð∂xϕÞ2−V0

�
−cosϕþλ2

2
sin2ϕ

�
; ð37Þ

with parameters

c2s ¼
ðh − hcÞn̄ð1 − 2δ2Þ

m
;

V0 ¼ 4ν0n̄ðh − hcÞð1 − 2δ2Þ;

λ2 ¼ 2δ2ðh − hcÞn̄
ν0

: ð38Þ

The parameter V0 scales the potential in the vertical
direction, whereas λ regulates the barrier height between
true and false vacuum. The parameter cs in the Lagrangian
can be interpreted as the sound speed in the given system.
The shape of the potential, displayed in Fig. 8, is the dashed
curve, which is a modified version of the sine-Gordon
model with an additional squared sine modulation.

B. Comparison of the potentials

The couplings of the potential term in Eq. (37) can be
adjusted such that it is very similar to that of the Schwinger
model. Indeed, this similarity is limited to the region
between the true vacuum ϕTV and the false vacuum
ϕFV , which is the most relevant part of the potential for
vacuum decay. The experimental parameters V0 and λ of

the cold atom system have been adjusted such that the
shape of its potential is as close to that of the Schwinger
model as possible. Moreover, the field ϕ needs to be scaled
to match the extrema positions of the two potentials.
From the adjustment of the BEC potential for various

values of the Schwinger model parameter κ, one can read
off a linear mapping between λ2 and κ that depends on the
choice of vacuum angle,

κ ¼ 0.69 × λ2 þ 0.48 for θ ¼ 0;

κ ¼ 1.35 × λ2 þ 0.63 for θ ¼ π: ð39Þ

A similar procedure as described in Sec. V can be repeated
to quantify the total number of particles per rapidity
interval. By integrating each spectrum, the total particle
number per rapidity interval N=Δη is obtained by fitting as

N
Δη

∝ expð−3.5 × λ2 þ 1.9=λ2Þ: ð40Þ

For large λ, the first term in the exponent is dominant, and
the decrease of the total particle number per rapidity
interval N=Δη is characterized by an exponential function
with an argument proportional to λ2. The factor in front of
λ2 agrees, up to a few percent, with that in front of κ in
equations (31) if we use the transformation (39).
In conclusion, such an experimental setup could be used

to quantum simulate important aspects of the massive
Schwinger model.

VII. CONCLUSIONS

In this work we studied the dynamics and particle
production from a string between a quark-antiquark pair
produced, for example, in an electron-positron collision. As
a model we used the bosonized version of the massive

FIG. 8. Comparison of the potential of the cold atom system (solid) and the potential of the massive Schwinger model (dashed) for two
vacuum angles: θ ¼ 0 (left panel) and θ ¼ π (right panel) and coupling ratio κ ¼ 3.5. The parameters V0 and λ of the cold atom system
defined in Eq. (38) have been chosen such that the two potentials match in the best possible way in the region between the true and false
vacuum.
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Schwinger model, which makes dynamics particularly easy
to simulate numerically. We examine the dynamics of the
coherent field and the particle production. Remarkably, the
total particle number per rapidity interval to the fermion
mass for highly massive or weakly coupled fermions turns
out to be well represented by a Boltzmann factor.
This finding confirms previous investigations where an

expanding string was found at early times to be governed
locally by a time-dependent temperature as a result of
longitudinal entanglement [6–8]. The setup of the present
work is more complete and the time-dependent temperature
T ¼ ℏ=ð2πτÞ of Ref. [6] gets replaced dynamically by a
constant value proportional to the string tension scale

ffiffiffi
σ

p
for the dependence of asymptotic particle number per unit
rapidity as a function of the fermion mass m. The precise
value of this hadronization temperature can be determined
through a fitting procedure. Quantitatively, it is reasonably
close to the phenomenologically determined value.
We also outlined a possible analog quantum simulator of

the massive Schwinger model. It would be very insightful
to observe the phenomenon of false vacuum decay and the
production of particles in a laboratory through a tabletop
experiment, such that the effective experimental potential
becomes as close as possible to that of bosonized QED1þ1.
By measuring the total particle number N=Δη in the cold
atom experiment, one can draw conclusions about the
temperature of particles produced by vacuum decay in the
Schwinger model. In the limit of large couplings λ and κ,
i.e., large fermion mass m, this could describe particle
production after electron-positron collisions in QED1þ1.
Very interesting extensions of this work include the

consideration of flavor and color numbers, the incorpo-
ration of the production description beyond mesons, and
taking into account baryons. Moreover, for the bounce
scenario discussed in Sec. IV the precise determination of
the quantum state of fluctuations after the bounce would be
highly valuable. The question of whether this can be
achieved through analytic continuation from a calculation
in Euclidean space is left for future work.
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APPENDIX A: FALSE VACUUM DECAY

This appendix completes Sec. IV, particularly explaining
how to calculate the bounce solution ϕB. The Euclidean
action corresponding to (B1) is obtained by integrating
along the imaginary Minkowski time, t ¼ −iy, with the

Euclidean time y, and by changing the overall sign of the
action,

SE ¼
Z

dydx

�
1

2
ð∂yϕÞ2 þ

1

2
ð∂xϕÞ2 þ VðϕÞ

�
; ðA1Þ

We define the so-called bounce solution ϕB, which solves
the classical Euclidean equation of motion,

∂
2
yϕþ ∂

2
xϕ ¼ M2ϕþM2κ sin ð2 ffiffiffi

π
p

ϕþ θÞ: ðA2Þ

The boundary conditions read ϕBðy;xÞ→ϕFV for y → �∞,
and ϕBðy; xÞ → ϕFV for jxj → ∞. It can be shown that the
action SEðϕBÞ is minimized by a spherically symmetric
bounce solution [50]. Therefore, we only consider spherical
symmetric solutions of (A2) and introduce the radial
coordinate r2 ¼ y2 þ x2, then

∂
2
rϕB þ 1

r
∂rϕB ¼ M2ðϕþ κ sinð2 ffiffiffi

π
p

ϕþ θÞÞ: ðA3Þ

Boundary conditions ϕB → ϕFV for r → ∞ together
∂rϕBðr ¼ 0Þ ¼ 0 have to be fulfilled to avoid singularities.
The shooting method is typically applied to solve this
equation numerically. In this method, one specifies the
initial value of ϕB at r ¼ 0 to ensure the bounce approaches
the false vacuum at the spatial boundaries.

APPENDIX B: RENORMALIZATION

This appendix completes Sec. II, specifically providing
explanation based on the functional renormalization group
method to justify the renormalized potential [Eq. (5)] The
theory in Eq. (1) is alternatively described by the micro-
scopic action,

SΛ ¼
Z

dtdx

�
−
1

2
ημν∂μϕ∂νϕ − VΛðϕÞ

�
; ðB1Þ

with the scalar potential

VΛðϕÞ ¼
1

2
M2ϕ2 − uΛ cosð2

ffiffiffi
π

p
ϕþ θÞ; ðB2Þ

where M ¼ q=
ffiffiffi
π

p
denotes the Schwinger mass. This

classical action is associated with a corresponding UV
regulator scale that we take as a sharp momentum cutoff Λ.
The parameter uΛ in a functional integral prescription is
also proportional to Λ and the fermion mass m as [22]

uΛ ¼ expðγÞ
2π

Λm; ðB3Þ

with γ ≈ 0.5772 the Euler-Mascheroni constant. This cutoff
dependence of the coupling is, at first sight, surprising,
given that no such regulator dependence is shown by the
fermionic formulation in Eq. (1). Due to the equivalence
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with the fermionic formulation, one expects that all final
physical observables depend only on m and q and become
independent of Λ. In practice, we are interested in the
properties of the theory at macroscopic or IR scales k.
Indeed, in the next subsection, we show that a renormal-
ization procedure can eliminate the dependence on the UV
regularization.
The bosonized theory in Eq. (B1) is an interacting

quantum field theory subject to renormalization. A detailed
discussion of renormalization in the functional formulation,
addressing states with zero and nonzero temperature, can
be found in Ref. [22]. The path integral systematically
includes quantum fluctuations into correlation functions
when moving from UV to IR, where the scale-dependent
fluctuations enter corresponding coupling constants of the
scale-dependent effective action Γk. In the limit k ≫ Λ
all quantum fluctuations are suppressed, such that
Γk½ϕ�¼SΛ½ϕ�. On the other side, for k → 0, the flowing
action would approach the full quantum effective action
Γk¼0½ϕ� ¼ Γ½ϕ�, see Ref. [22] for a more detailed discus-
sion. The regulator function is chosen such that Γk
smoothly interpolates between the microscopic action SΛ
for k ¼ Λ and the macroscopic action Γ for k ¼ 0. We
assume that Γk½ϕ� is of the same form as Eq. (B1) with
potential term as in Eq. (B2), except for the replacement
uΛ → uk, whereas the derivative term keeps its bare form.
For the purpose of the present work, we shall be satisfied
with this simplified approach where only a single param-
eter, the coupling uΛ, gets replaced by the renormalized
coupling u. There is, in fact, a good reason why M does
not need to be renormalized, which is explained below. The
k-dependent effective potential VkðϕÞ satisfies the exact
equation [77],

∂kVkðϕÞ ¼
1

2

Z
p2<Λ2

d2p
ð2πÞ2

2k

p2 þ k2 þ Vð2Þ
k ðϕÞ

¼ k
4π

ln

�
Λ2 þ k2 þ Vð2Þ

k ðϕÞ
k2 þ Vð2Þ

k ðϕÞ

�
; ðB4Þ

with

Vð2Þ
k ðϕÞ≡ ∂

2VkðϕÞ
∂ϕ2

¼ M2 þ 4πuk cosð2
ffiffiffi
π

p
ϕþ θÞ: ðB5Þ

We have chosen a simple mass-like infrared regulator
RkðpÞ ¼ k2 and applied a sharp ultraviolet momentum
cutoff Λ for consistency.
Note that the flow ∂kVkðϕÞ is invariant under field

transformations ϕ → ϕþ ffiffiffi
π

p
because this is the case

for Vð2Þ
k ðϕÞ. Accordingly, a periodicity-breaking term as

M2ϕ2=2 in Eq. (B2), does not get renormalized.
To obtain a flow equation for uk, we use the inverse

Fourier expansion scheme,

∂kuk ¼ −
2ffiffiffi
π

p
Z ffiffi

π
p

0

dϕ cosð2 ffiffiffi
π

p
ϕþ θÞ∂kVkðϕÞ: ðB6Þ

We concentrate furthermore on the leading term in an
expansion in uk and find

∂kuk ¼ −ukk
	

1

Λ2 þ k2 þM2
−

1

k2 þm2



: ðB7Þ

This can be integrated with respect to k to yield

ln

�
uk
uΛ

�
¼ −

1

2
ln

�
Λ2 þ k2 þM2

k2 þM2

�
: ðB8Þ

We have chosen an integration constant such that uk ¼ uΛ
for k ≫ Λ. From this we find at k ¼ 0 and for Λ ≫ M

u ¼ u0 ¼ uΛ
M
Λ
: ðB9Þ

The final form of the renormalized potential VðϕÞ is given
by Eq. (5).
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