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Understanding the phenomenon of quantum superposition of gravitational fields induced by massive
quantum particles is an important starting point for quantum gravity. The purpose of this study is to deepen
our understanding of the phenomenon of quantum superposition of gravitational fields. To this end, we
consider a trade-off relation of entanglement (monogamy relation) in a tripartite system consisting of two
massive particles and a gravitational field that may be entangled with each other. Consequently, if two
particles cannot exchange information mutually, they are in a separable state, and the particle and
gravitational field are always entangled. Furthermore, even when two particles can send information to
each other, there is a trade-off between the two particles and the gravitational field. We also investigate the
behavior of the quantum superposition of the gravitational field using quantum discord. We find that
quantum discord increases depending on the length scale of the particle superposition. Our results may help
understand the relationship between the quantization of the gravitational field and the meaning of the
quantum superposition of the gravitational field.
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I. INTRODUCTION

The unification of the gravity theory and quantum
mechanics (quantum gravity theory) is one of the most
important challenges in theoretical physics. Quantum grav-
ity theory is essential for understanding extreme situations,
such as the beginning of the Universe. However, despite
great efforts, no one has so far been able to complete the
quantum gravity theory. One of the reasons for the difficulty
in unification is that no phenomenon unique to quantum
gravity has been experimentally observed because gravita-
tional interactions are weak compared to other fundamental
interactions. Because it is difficult to directly observe the
evidence of quantum gravity in experiments using particle
accelerators, methods for detecting indirect evidence have
been proposed. For example, the indirect detection methods
using a quantum particle interacting with quantum gravi-
tational waves (gravitons) are discussed [1–6]. These studies
focused on the loss of quantum coherence of a particle in a
quantum superposition state when it interacts with gravitons
and discussed the indirect detectability of gravitons.

Thanks to the developments in quantum technology from
meso- to macroscopic systems, theoretical proposals have
been suggested to directly detect the quantum aspects of
gravity in low-energy tabletop experiments [7–23]. Authors
in Refs. [7,8] proposed that two particles each in a quantum
superposition state can be entangled states interacting through
a Newtonian potential, which is known as the Bose-
Marlleto-Vedral (BMV) experiment. This entanglement
generation between two particles is understood to be due to
the quantum superposition state of the gravitational poten-
tials [10] induced by the particles, which represents the
nonclassicality of gravity. This proposal is expected to be
the first step toward experimentally observing the quantum
gravity effect. Motivated by their works, exten ding
models of BMV setup were proposed including the deco-
herence effect due to the existence of an environment [11],
many particles [12], and internal degrees of freedom [13].
To verify the entanglement generation originating directly
from the Newtonian potential, experimental setups focus-
ing on optomechanical systems [24] with milligram-scale
oscillators have been investigated [14–23]. However, the
meaning of quantum superposition of gravitational poten-
tials and how it is related to the quantization of the
gravitational field is not well understood [25–27].
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A gedanken experiment for two objects each in a
quantum superposition state [28–36] may provide clues
to the relation between the meaning of the quantum
superposition of gravitational potential and the existence
of gravitons. The inconsistency between the relativistic
causality and complementarity proposed in this gedanken
experiment is resolved by considering not only the
quantum superposition of gravitational fields but also
the degrees of freedom of the graviton. In our previous
studies [33,34], we investigated the condition that causal-
ity and complementary are consistently satisfied in a
system where two massive particles are in a superposition
state based on the quantum field theory approach. As a
result, we demonstrated that the existence of dynamical
degrees of freedom of the gravitational field is a sufficient
condition for causality and complementarity to be con-
sistent. This can be explained as follows. Dynamical
gravitational fields cause decoherence and suppress the
entanglement between two particles. In particular, the two
particles are not entangled when causality is fulfilled
because there is no entanglement between them due to
decoherence. Furthermore, the fact that the two particles
are not entangled leads to complementarity. Thus, the
quantum theory of the gravitational field, in which cau-
sality and complementarity are consistent, guarantees the
existence of quantum superposition states of the gravita-
tional potential and decoherence between the dynamical
gravitational field and a particle.
The decoherence for the state of two particles may be

understood as a property of quantum entanglement in
multipartite systems. In general, if tripartite systems A, B,
and C are in a pure state, the composite system AB
approaches a pure state when the entanglement between A
and B becomes stronger. Then the composite systems AB
and C do not correlate. This property is known as
entanglement monogamy [37–40] and is a general prop-
erty of quantum entanglement. Thus, in a system in which
two particles and a quantized gravitational field interact, if
the two particles are always separable, then the composite
system consisting of the particle and gravitational field can
always be entangled.
In the present paper, we investigate the dynamics of

a tripartite system consisting of two quantum particles and a
gravitational field, and discuss the structure of entanglement
between them. Through this analysis, we find a trade-off
relation (entanglement monogamy) between negativity and
conditional von Neumann entropy, which characterizes
entanglement. As a result, if two particles are not entangled
with each other, the particle and gravitational field will
always be entangled. Furthermore, we analyze the quantum
correlation between the particle in a superposition state and
the gravitational field. This analysis demonstrates that the
gravitational field becomes well-superposed if the width of
the particle superposition is large.

This paper is organized as follows. In Sec. II, we review
the results of a QEDmodel, motivated by a two matter-wave
interferometer setup. In Sec. III, we extend the QED results
to a model of a quantized gravitational field and particles. In
Sec. IV, we discuss the monogamy relation between the
negativity and the conditional von Neumann entropy. Based
on this relationship, we derive the condition for entangled
states between a particle and a gravitational field. In Sec. V,
we analyze the behavior of the quantum discord. Section VI
is devoted to the conclusion. In Appendix A, we briefly
introduce the Becchi-Rouet-Stora-Tyutin (BRST) formal-
ism in QED. In Appendix B, we summarize the QED case
formulas and provide a unified description of the gravita-
tional field. In Appendix C, we present the results of the
calculation of ΓEM

c , ΦEM
AB , and ΦEM

BA in two specific con-
figurations. In Appendix D, we derive the two-point
function of the quantized gravitational field for the vacuum
state. In Appendix E, we give the proofs of inequality (28)
and Eq. (41). Throughout the present paper, we use the
natural units c ¼ ℏ ¼ 1.

II. REVIEW OF THE QED FORMULATION

Here we review the results of the QED formulation
discussed in our previous studies [33,34,41]. This study was
motivated by the BMV experimental proposal [7,8] for
detecting the quantum superposition of the spacetime
curvature using two matter-wave interferometers. This
proposal assumes that two massive particles are each in
the superposition of two trajectories and interact through a
Newtonian potential. In the next section, we will extend the
results of the QED formulation obtained in this section to
the case of the gravitational field. We consider a model of
two charged particles, A and B, coupled with an electro-
magnetic field. The total Hamiltonian of our system in
Schrödinger picture is described by the local Hamiltonians
of charged particles ĤA and ĤB, the free Hamiltonian of the
electromagnetic field ĤEM, and the interaction term V̂ as

Ĥ ¼ ĤA þ ĤB þ ĤEM þ V̂;

V̂ ¼
Z

d3xðĴμAðxÞ þ ĴμBðxÞÞÂμðxÞ; ð1Þ

where ĴμA and ĴμB are the current operators of each particle
coupled with the gauge field operator Âμ. Note that the
current operator is given by the Dirac field in QED.
The initial state assumes that the two charged particles
are in the superposition of two trajectories (Fig. 1) and there
is no entanglement between the particles and the electro-
magnetic field. Then the initial state of the system is
represented by

jΨð0Þi ¼ 1

2
ðjLiA þ jRiAÞðjLiB þ jRiBÞjαiEM; ð2Þ
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where jLij and jRij are the localized states of the particles
j ¼ A;B. The superposition states of the two charged
particles can be realized by considering the Stern-Gerlach
effect discussed in [7,8]. This is because the manipulation of
an external inhomogeneous magnetic field on a particle with
spin degrees of freedom creates a spatially superposed state.
The state jαiEM ¼ D̂ðαÞj0iEM is the initial state of the
electromagnetic field. j0iEM is the vacuum state with respect
to the electromagnetic field satisfying âμðkÞj0iEM ¼ 0 for
the annihilation operator of the electromagnetic field âμðkÞ.
The operator D̂ðαÞ is the unitary operator known as a
displacement operator, which is defined as

D̂ðαÞ ¼ exp

�Z
d3kðαμðkÞâ†μðkÞ − H:c:Þ

�
: ð3Þ

Here the complex function αμðkÞ characterizes the ampli-
tude and phase of initial photon field. The form of the
complex function αμðkÞ is constrained by the auxiliary
condition in the BRST formalism [41]. The state jαiEM is
interpreted as a coherent state in which a longitudinal mode
of the electromagnetic field exists, which follows Gauss’s
law due to the presence of charged particles (see Ref. [41]).
In the present analysis, we are only interested in the
localized state of each particle, respectively, and the current
operator of the field is given by the localized current of each
particle,

ĴμjIðxÞjRij ≈ JμjRðxÞjRij; ĴμjIðxÞjLij ≈ JμjLðxÞjLij; ð4Þ

where ĴμiIðxÞ ¼ eiĤ0tĴμi ðxÞe−iĤ0t in the interaction picture
with respect to Ĥ0 ¼ ĤA þ ĤB þ ĤEM was introduced.
The explicit forms of JμjRðxÞ and JμjLðxÞ are

JμjRðxÞ ¼ ej

Z
dτ

dXμ
jR

dτ
δð4Þðx − XjRðτÞÞ;

JμjLðxÞ ¼ ej

Z
dτ

dXμ
jL

dτ
δð4Þðx − XjLðτÞÞ; ð5Þ

where Xμ
jRðτÞ and Xμ

jLðτÞ with j ¼ A;B represent the
trajectories of each particle with coupling constants eA
and eB. Thus we can proceed with our computation without
considering the field degrees of freedom, such as spin. In
detail, the above equations are valid [33,34,41–44] when the
following two conditions are satisfied: (i) The de Brogile
wavelength is smaller than the width of the particle wave
packet; (ii) The Compton wavelength of the charged
particles is much shorter than the wavelength of photons
emitted from the charged particles. The first condition
justifies that the state of a particle is localized. The second
condition neglects the processes of a pair creation and
annihilation. The initial state jΨð0Þi evolves as follows:

jΨðTÞi ¼ exp½−iĤT�jΨð0Þi

¼ e−iĤ0TT exp

�
−i
Z

T

0

dtV̂IðtÞ
�
jΨð0Þi

≈ e−iĤ0T
1

2

X
P;Q¼R;L

jPiAjQiBÛPQjαiEM

¼ 1

2

X
P;Q¼R;L

jPfiAjQfiBe−iĤEMTÛPQjαiEM; ð6Þ

where T denotes the time ordering. We used the approx-
imations provided in (4) in the third line. jPfiA ¼
e−iĤAT jPiA and jQfiB ¼ e−iĤBT jQiB with P;Q ¼ R;L are
the states of charged particles A and B, which moved along
the trajectories P and Q, respectively. The unitary operator
ÛPQ is given by

ÛPQ ¼ T exp

�
−i
Z

T

0

dt
Z

d3xðJμAP þ JμBQÞÂI
μðxÞ

�
; ð7Þ

where ÂI
μ is the photon field operator in the interaction

picture.
Hence, we can explicitly compute the quantum state

between the charged particles A and B, respectively. By
tracing out the degrees of freedom of the electromagnetic
field, we obtain the reduced density matrix of particles A
and B as follows:

FIG. 1. Configurations of our model in the regime T ≫ D ≫ L.
Here L is the length scale of each superposition, T is the
coordinate time during which each particle is superposed, and
the particles are initially separated by the distance D.
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ρEMAB ¼ TrEM½jΨðTÞihΨðTÞj�

¼ 1

4

X
P;Q¼R;L

X
P0;Q0¼R;L

EMhαjÛ†
P0Q0ÛPQjαiEMjPfiAhP0f j ⊗ jQfiBhQ0

f j

¼ 1

4

X
P;Q¼R;L

X
P0;Q0¼R;L

e−ΓP0Q0PQþiΦP0Q0PQ jPfiAhP0f j ⊗ jQfiBhQ0
f j; ð8Þ

where the quantities ΓP0Q0PQ and ΦP0Q0PQ are given by

ΓP0Q0PQ ¼ 1

4

Z
d4x

Z
d4yðJμP0Q0 ðxÞ − JμPQðxÞÞðJνP0Q0 ðyÞ − JνPQðyÞÞhfÂI

μðxÞ; ÂI
νðyÞgi; ð9Þ

ΦP0Q0PQ ¼
Z

d4xðJμP0Q0 ðxÞ − JμPQðxÞÞAμðxÞ

−
1

2

Z
d4x

Z
d4yðJμP0Q0 ðxÞ − JμPQðxÞÞðJνP0Q0 ðyÞ þ JνPQðyÞÞGr

μνðx; yÞ: ð10Þ

Here hfÂI
μðxÞ; ÂI

μðyÞgi andGr
μνðx; yÞ are the two-point function of the vacuum state j0iEM and the retarded Green’s function

with respect to the gauge field in the interaction picture introduced as

hfÂI
μðxÞ; ÂI

μðyÞgi ¼
ημν
4π2

�
1

−ðx0 − y0 − iϵÞ2 þ jx − yj2 þ c:c:

�
ð11Þ

with the UV cutoff parameter ϵ and

Gr
μνðx; yÞ ¼ −i½ÂI

μðxÞ; ÂI
νðyÞ�θðx0 − y0Þ: ð12Þ

Field AμðxÞ in (10) is the coherent electromagnetic field,
which is

AμðxÞ ¼
Z

d3k

ð2πÞ3=2
ffiffiffiffiffiffiffi
2k0

p ðαμðkÞeikνxν þ c:c:Þ; ð13Þ

and the complex function αμðkÞ satisfies

kμαμðkÞ ¼ −
J̃0ðkÞffiffiffiffiffiffiffi
2k0

p ð14Þ

to ensure the BRST condition (for a more detailed dis-
cussion see Appendix A and Ref. [41]). J̃0ðkÞ ¼ J̃0AðkÞ þ
J̃0BðkÞ is the eigenvalue of the Fourier transform of the

charged current ˆ̃J
0ðkÞ ¼ ˆ̃J

0
AðkÞ þ ˆ̃J

0
BðkÞ at the initial time

t ¼ 0. The quantum states of particle A (B) is also obtained
by tracing out the degrees of freedom of particle B (A) of the
density matrix ρEMAB ,

ρEMA ¼ TrB;ph½jΨðTÞihΨðTÞj�

¼ 1

2

 
1 1

2
e−Γ

EM
A þiΦEM

A ðe−i
R

d4xΔJμAðxÞABRμðxÞ þ e−i
R

d4xΔJμAðxÞABLμðxÞÞ
� 1

!
; ð15Þ

and

ρEMB ¼ TrA;ph½jΨðTÞihΨðTÞj�

¼ 1

2

 
1 1

2
e−Γ

EM
B þiΦEM

B ðe−i
R

d4xΔJμBðxÞAARμðxÞ þ e−i
R

d4xΔJμBðxÞAALμðxÞÞ
� 1

!
; ð16Þ

where we defined ΔJμi ¼ JμiR − JμiL and used the basis fjRfiA; jLfiAg to represent the density operator. Note that the symbol
� shows the complex conjugate of the ðR;LÞ off-diagonal component. Function Aμ

iPðxÞ with i ¼ A;B and P ¼ R;L
corresponds to the retarded potentials defined by
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Aμ
iPðxÞ ¼

Z
d4yGr

μνðx; yÞJνiPðyÞ: ð17Þ

Here the quantities ΓEM
i ði ¼ A;BÞ, ΦEM

A and ΦEM
B are

introduced as

ΓEM
i ¼ 1

4

Z
d4x

Z
d4yΔJμi ðxÞΔJνi ðyÞhfÂI

μðxÞ; ÂI
νðyÞgi;

ð18Þ

ΦEM
A ¼

Z
d4xΔJμAðxÞAμðxÞ

−
1

2

Z
d4xd4yΔJμAðxÞðJνARðyÞ þ JνALðyÞÞGr

μνðx; yÞ;

ð19Þ

ΦEM
B ¼

Z
d4xΔJμBðxÞAμðxÞ

−
1

2

Z
d4xd4yΔJμBðxÞðJνBRðyÞ þ JνBLðyÞÞGr

μνðx; yÞ:

ð20Þ

The density matrix for the electromagnetic fields in Eqs. (15)
and (16) is convenient for calculating the von Neumann
entropy in the case of an electromagnetic field with respect
to quantum system A (B) [Eq. (B1)]. Similarly, the density
matrix in Eq. (8) is used to compute the von Neumann
entropy for the composite system AB [Eqs. (B2) and (B3)],
and negativity [Eq. (B8)], and the concurrence between two
massive particles, A and B [Eqs. (B10)–(B13)]. As
explained in Appendix A, the von Neumann entropy, the
negativity, and the concurrence are described by ΓEM

i
[Eq. (18)], ΓEM

c [Eq. (B5)], ΦEM
AB , and ΦEM

BA [Eq. (B4)]. In
the next section, we extend the quantities ΓEM

i , ΓEM
c , ΦEM

AB ,
and ΦEM

BA to the gravitational version using the unified
description introduced in Appendix A.

III. SETUP OF MASSIVE PARTICLES
WITH GRAVITATIONAL FIELD

In this section, we consider a linearized gravity theory
coupled with two massive particles A and B, whose masses
are m. In our analysis, we treat the gravitational field as
quantized and each particle is in a spatially localized
superposition state. The two particles are initially separated
by a distance D and maintain a spatially superposed state
with the separation L during the time T. We assume that the
two particles have a nonrelativistic motion. In particular, as
shown in Figs. 1 and 2, we discuss two types of configu-
rations; one configuration can send information to each
other, but the other cannot. The gravitational field is treated
as a linearized gravity by expanding the metric of spacetime
gμν around Minkowski spacetime background ημν: gμν ¼

ημν þ hμν, where hμν is the metric perturbation satisfying
jhμνj ≪ 1.1 In particular, we focus on the similarity between
the electromagnetic field and gravitational fields, and extend
the results obtained from the analysis of an electromagnetic
field in Sec. II to the gravitational field (see also our
previous study [33]). In this extension, the current of the
charged particle JμAPðxÞ (JμBQðxÞ) is replaced as the energy-
momentum tensor of particle A (B) as Tμν

APðxÞ (Tμν
BQðxÞ)

localized around their trajectories of P ðQÞð¼ R; LÞ. Using
the unified notation introduced in Appendix A, the
decoherence and the entanglement between the two massive
particles can be described by Eqs. (21)–(23)

Γi ¼
1

4

Z
d4x

Z
d4yΔTμν

i ðxÞΔTρσ
i ðyÞhfĥIμνðxÞ; ĥIρσðyÞgi;

ð21Þ

Γc ¼
1

2

Z
d4x

Z
d4yΔTμν

A ðxÞΔTρσ
B ðyÞhfĥIμνðxÞ; ĥIρσðyÞgi;

ð22Þ

FIG. 2. Configurations of our model in the regimeD ≫ T ≫ L.
In this regime, the retarded Green’s function propagating from
particle B to A vanishes.

1Based on the linearized gravity theory [33,45], energy-
momentum tensor of a particle Tμν induces the fluctuation part of
the metric hμν ∼ G

R
d3yTμνðtr; yÞ=jx − yj. Here tr ¼ t − jx − yj is

the retarded time, which represents the delay with respect
to propagation from the source point y to a spacetime point x.
The components of hμν are evaluated as h00 ∼ Gm=R, h0i∼
h00ðL=TÞei, hij ∼ h00ðL=TÞ2eiej, where R characterizes the
typical length scale of particles A and B satisfying R≲ L (for
a detail, see Chapter 36.10 of Ref. [45]). ðL=TÞei denotes the
characteristic velocity of the system in the i direction of the unit
vector ei. We regard the length scale R as the typical size of the
particle. Considering the nonrelativistic condition L=T ≪ 1, the
condition jhμνj ≪ 1 is valid when 1 ≫ Gm=L ¼ g2=mL ¼
g2λC=L is satisfied. Here we introduced g2 ¼ Gm2 of the coupling
constant between the two particles with the gravitational constant
G. λC ¼ 1=m is the Compton wave length of the two particles. In
the following analysis, we choose the parameter with which the
above condition (1) is satisfied.
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where we defined ΔTμν
i ¼ Tμν

iR − Tμν
iL with i ¼ A;B.

hfĥIμνðxÞ; ĥIρσðyÞgi is the two-point function of the vacuum
state j0iwith respect to ĥIμνðxÞ in the interaction picture. The
quantities ΦAB and ΦBA are introduced as

ΦAB ¼
Z

d4xd4yΔTμν
A ðxÞΔTρσ

B ðyÞGr
μνρσðx; yÞ;

ΦBA ¼
Z

d4xd4yΔTμν
B ðxÞΔTρσ

A ðyÞGr
μνρσðx; yÞ; ð23Þ

with the gravitational version of retarded Green’s function
Gr

μνρσðx; yÞ (for details, see [46]).
Because we analyze quantitatively, we evaluate the

quantities Γi, Γc, ΦAB, and ΦBA by order estimation up
to the numerical factors. The quantities ΓA and ΓB are
estimated as the number of gravitons emitted by the
quadrupole radiation during time T per the energy of a
single graviton2

ΓA ¼ ΓB ≈ g2
�
L
T

�
4

; ð24Þ

where we introduced g2 ¼ Gm2 of the coupling constant
between the two particles with the gravitational constantG,
whereas the electromagnetic case of the quantities ΓEM

A and
ΓEM
B , which corresponds to the dipole radiation, are (C2)

ΓEM
A ¼ ΓEM

B ≈ e2
�
L
T

�
2

ð25Þ

with the electric charges e ¼ eA ¼ eB. Note that the
quantities ΓA and ΓB are determined by the parameters
of their system A and B, respectively. In contrast, the
quantities ΦAB, ΦBA, and Γc characterize the correlation
between two particles. Thus, the distance between systems
A and B is important. In the regime D ≫ T ≫ L, the
quantities ΦAB, ΦBA, and Γc will be given by3

ΦAB ¼ 0; ΦBA ≈ g2
�
L
T

�
2
�
T
D

�
3

;

jΓcj ≈ g2
�
L
T

�
4
�
T
D

�
4

; ð26Þ

where ΦAB ¼ 0 is understood as the vanishing of the
retarded Green’s function propagating from the particle B
to A [33,34,41]. The quantity ΦBA is the phase induced by
the Newtonian potential between the massive particles.4 Γc
is referred to the result of the order estimation (C6)
presented in Appendix C. On the contrary, in the regime
T ≫ D ≫ L, the quantities ΦAB, ΦBA, and Γc will be of
order

ΦAB ¼ΦBA≈g2
�
L
T

�
2
�
T
D

�
3

; jΓcj≈g2
�
L
T

�
4

: ð27Þ

Note that, in the regime T ≫ D ≫ L, ΦAB can be equiv-
alent to ΦBA because of the symmetric configuration of the
systems A and B. The quantity Γc is estimated by using
Eq. (C4) in Appendix C, where we ignored the term
proportional to D=T because of D=T ≪ 1. In the following
two sections, we consider the quantumness of the gravita-
tional field in terms of entanglement monogamy. Entangle-
ment monogamy refers to the feature that entanglement
cannot be freely shared among multiple parties. To analyze
the quantumness of the gravitational field quantitatively, we
investigate the behavior of the entanglement of formation
(in Sec. IV) and the quantum discord (in Sec. V) between
the massive particle A and the gravitational field.

IV. QUANTUMNESS OF GRAVITATIONAL
FIELD DUE TO MONOGAMY RELATION

In this section, we discuss the entanglement between
particle A and the gravitational field from the viewpoint of
entanglement monogamy. To judge whether particle A and
the gravitational field are entangled or not, we consider the
entanglement of formation EfðρA;gÞ. The entanglement of
formation is one of the quantities that determines whether
two quantum systems are in an entangled state or not. For
example, if EfðρA;gÞ > 0, then particle A and the gravita-
tional field are entangled. However, if the entanglement of
formation vanishes: EfðρA;gÞ ¼ 0, particle A and the gravi-
tational field are not entangled. The entanglement of
formation has a lower bound due to the conditional von
Neumann entropy SðAjBÞ [48],

2The total power of the gravitons W emitted by quadrupole
radiation during time T is evaluated as W ∼ GðQ=T3Þ2T ¼
g2ðL4=T5Þ with the mass quadrupole Q ¼ mL2 (for a more
detailed explanation, see Chapters 36.1 and 36.2 in [45]). The
energy of a single graviton ν is ν ¼ 1=T in the unit ℏ ¼ 1, and we
obtain the total number of gravitons W=ν ∼ g2ðL=TÞ4, which is
consistent with the result of Ref. [30].

3Since the quantities
R
d3xΔTμν

i ∼mðL=TÞ2 with i ¼ A;B
represent the energy of the particle, the quantity Γc is estimated
together with the two-point function Eq. (D3) to be Eq. (26). Note
that ðT=DÞ4 was obtained by analogy with the result of the
electromagnetic field (C6). The effect of Γc is so small in the
region D ≫ T ≫ L [41] that it is expected not to affect
entanglement between two particles. More accurate calculations
of the quantities ΓA, ΓB, and Γc should include the energy-
momentum tensor of the Stern-Gerlach apparatus due to the
conservation of the energy-momentum tensor [47].

4The phase ΦBA is estimated as the difference of relative phase
shift ϕR and ϕL due to gravitational potential induced by particle
A in the superposition state during time T. Here ϕR (ϕL) is the
relative phase perceived by superposed particle B when particle A
goes through the right (left) side of the path. Thus, ΦBA is
computed as ΦBA ¼ ϕR − ϕL ≈ −Gm2Tð1=ðD − LÞ − 1=DÞþ
Gm2Tð1=D − 1=ðDþ LÞÞ ≈ g2ðL=TÞ2ðT=DÞ3, where we negle-
cted the numerical factors.
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EfðρA;gÞ ≥ SðAjBÞ; ð28Þ

where the proof of this inequality is presented in
Appendix E. Thus, inequality (28) indicates that particle
A and the gravitational field are entangled when
SðAjBÞ > 0. The conditional von Neumann entropy
SðAjBÞ is analogous to the classical conditional entropy as

SðAjBÞ ≔ SðρABÞ − SðρBÞ: ð29Þ

The von Neumann entropy SðρXÞmeasures how strong the
correlation is between subsystem X and its complement
system X̄. In classical theory, the conditional entropy is
always positive; however, in quantum theory, it can be
negative [49]. The negativity of the conditional von
Neumann entropy, SðAjBÞ, can be roughly interpreted
as the entanglement between the two systems A and B.
The von Neumann entropy SðρBÞ is computed as follows:

SðρBÞ ¼ −
X
s¼�

λs½ρB� log½λs½ρB��;

λ�½ρB� ¼
1

2

�
1� e−ΓB cos

�
ΦBA

2

��
; ð30Þ

where the eigenvalues λ�½ρA� are obtained by extending
the quantities in Eq. (B1) to a gravitational version. The
von Neumann entropy SðρABÞ is derived as

SðρABÞ¼−
X
s¼�

ðλs1½ρAB� log½λs1½ρAB��þλs2½ρAB� log½λs2½ρAB��Þ

ð31Þ

with the eigenvalues of the density matrix ρAB obtained
from Eqs. (B2) and (B3)

λ�1 ½ρAB� ¼
1

4

�
1− e−ΓA−ΓB cosh½Γc�

�
�
ðe−ΓA − e−ΓBÞ2 þ 4e−ΓA−ΓBsin2

�
ΦAB −ΦBA

4

�

þ e−2ΓA−2ΓBsinh2½Γc�
�1

2

�
; ð32Þ

λ�2 ½ρAB� ¼
1

4

�
1þ e−ΓA−ΓB cosh½Γc�

�
�
ðe−ΓA − e−ΓBÞ2 þ 4e−ΓA−ΓBcos2

�
ΦAB −ΦBA

4

�

þ e−2ΓA−2ΓBsinh2½Γc�
�1

2

�
: ð33Þ

In the following analysis, we evaluate the conditional von
Neumann entropy SðAjBÞ in two regimes D ≫ T ≫ L
and T ≫ D ≫ L.

A. D ≫ T ≫ L regime

The left panel of Fig. 3 shows the parameters dependence
of the conditional von Neumann entropy SðAjBÞ. To obtain
a qualitative understanding of the behavior of the left panel
in Fig. 3, we approximate the conditional von Neumann
entropy as

SðAjBÞ ≈ ΓB

2

�
1 − log

�
ΓB

2

��
; ð34Þ

where we used ΓA ¼ ΓB ≪ 1 and ΦBA ≪ 1, and we
assumed the condition ΦBA=4ΓB ≪ 1. The above
Eq. (34) is independent of the quantity of ΦBA, that is,
D=T and its amount depends only on ΓB ¼ g2ðL=TÞ4. This
figure represents that SðAjBÞ is always positive and does not

FIG. 3. Left panel: contour plots of the conditional von Neumann entropy SðAjBÞ as functions of L=T andD=T, where we adopted the
coupling constant g ¼ 1. The black circle is a point when D=T ¼ 5 with L=T ¼ 3=10. Right panel: conditional von Neumann entropy
SðAjBÞ as a function of coupling constant g. This graph assumes the parameters of the black circle in the left panel.
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depend on the distance between two particles. The
independence of the distance D can be understood by
introducing an entanglement measure called negativity.
The negativityN AB characterizes the entanglement between
two particles [50,51]. In particular, two particles A and B
are regarded as the two-qubit in our system, and then the
negativity is given as follows:

N AB ¼ max½−λmin; 0� ð35Þ

with the minimum eigenvalue λmin

λmin ¼
1

4

�
1 − e−ΓA−ΓB cosh½Γc�

−
�
ðe−ΓA − e−ΓBÞ2 þ 4e−ΓA−ΓBsin2

�
ΦAB þΦBA

4

�

þ e−2ΓA−2ΓBsinh2½Γc�
�1

2

�
; ð36Þ

where the unified notation was applied. If N AB ¼ 0 or
λmin ≥ 0 holds, two particles are not entangled. In our
previous studies [34,41], we pointed out that negativity
N AB vanishes in the regime D ≫ T ≫ L because of the
existence of the vacuum fluctuations ΓA and ΓB. Thus, there
is no entanglement between A and B. Note that the white
region in Fig. 3 may suggest that the approximation to derive
the quantities ΓA, ΓB, Γc, and ΦBA is invalid.
The right panel of Fig. 3 shows the behavior of SðAjBÞ

versus the coupling constant g, respectively. In the limit of
g → 0 there is no interaction among particle A, B, and the
gravitational field; therefore, the quantum state ρAB and its
reduced density matrix ρB become pure state, i.e.,
SðρABÞ ¼ SðρBÞ ¼ 0. In contrast, in the limit of g → ∞,
the decoherences ΓA and ΓB are dominant, and then the
quantum states ρAB and ρB approaches the classical mixed
state

ρAB →
1

4
14×4; ρB →

1

2
12×2 ð37Þ

with n × n identity matrix 1n×n. These limits lead to
SðAjBÞ → log 2 for g → ∞. Thus, in the region D ≫
T ≫ L, the conditional von Neumann entropy SðAjBÞ is
always positive. Therefore, EfðρA;gÞ > 0 is constantly
fulfilled because of the inequality (28).
The condition EfðρA;gÞ > 0 can also be understood from

the viewpoint of the monogamy relation. λmin ≥ 0 gives the
concrete reason of the positivity of the conditional von
Neumann entropy as

0 ¼ N AB ¼ λmin ≥ 0 ⇒ 0 ¼ EfðρABÞ ≥ −SðAjBÞ; ð38Þ

where the inequality (E7) was used in the right-hand side of
Eq. (38). Note that, in general, N AB > 0 is equivalent to

EfðρABÞ > 0 if the composite system AB is a two-qubit
system, which leads to N AB ¼ 0 ⇔ EfðρABÞ ¼ 0 due to
the contraposition. By combining the inequality (28) and
the above relation (38), we obtain the following result:

0 ¼ N AB ¼ λmin ≥ 0 ⇒ EfðρABÞ ¼ 0

⇒ SðAjBÞ > 0 ⇒ EfðρA;gÞ > 0; ð39Þ

where SðAjBÞ > 0 is satisfied in the regime D ≫ T ≫ L.
This implies that particle A and gravitational field are
always entangled when two particles A and B are not
entangled. Thus, this behavior indicates a monogamy
relation among particle A, B, and the gravitational field.

B. T ≫ D ≫ L regime

The parameter dependence of the conditional von
Neumann entropy is depicted in Fig. 4. The upper panels
in Fig. 4 represent the contour plots of the conditional von
Neumann entropy versus L=T and D=T with the coupling
constant g ¼ 1 (left panel) and g ¼ 3 (right panel). In the
upper-right panel of Fig. 4, the thick black curve shows the
boundary of the entanglement generation between two
particles, where the negativity N AB vanishes in the right
region of the thick black curve. In the left panel, SðAjBÞ > 0
is satisfied in the parameter region. However, the right panel
shows three regions; SðAjBÞ < 0 and N AB > 0, SðAjBÞ >
0 and N AB > 0, and SðAjBÞ > 0 and N AB ¼ 0. In the
region SðAjBÞ < 0 and N AB > 0, the conditional von
Neumann entropy SðAjBÞ is negative; therefore, we cannot
judge whether particle A and gravitons are entangled or not
from the inequality (28) because the entanglement of
formation EfðρA;gÞ may not be positive. However, the
negativity N AB is positive, and then two particles A and
B are entangled. Regions SðAjBÞ > 0 and N AB > 0 indi-
cate that particle A and gravitons and two particles A and B
are entangled. In the regions SðAjBÞ > 0 andN AB ¼ 0, we
can understand that two particles, A and B, are not
entangled, but particle A and gravitons are in an entangled
state.
The orange, black, and green marks in the upper panels

of Fig. 4 represent the three typical classes, SðAjBÞ < 0 and
N AB > 0, SðAjBÞ > 0 andN AB > 0, and SðAjBÞ > 0 and
N AB ¼ 0, respectively. The lower three panels of Fig. 4
represent the conditional von Neumann entropy SðAjBÞ
(solid curve) and the negativity N AB (thin black dashed
curve) as functions of g, for the three typical classes. It can
be seen that the solid curve SðAjBÞ in each panel saturates
at the coupling constant g, whereas the negativity vanishes
due to the decoherence when g becomes large.

V. BEHAVIOR OF QUANTUM DISCORD

Here, we investigate the behavior of the quantum
superposition of the gravitational field using quantum
discord [52–54]. Quantum discord is a measure of all
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quantum correlations, including entanglement. The quan-
tum discord of the composite system AB is defined by
the difference between the quantum mutual information
IðA;BÞ and the classical correlation J ðA;BÞ

DðA;BÞ ¼ IðA;BÞ − J ðA;BÞ: ð40Þ

The nonvanishing of the quantum discord is related to the
quantum superposition principle [53]. In particular, we
focus on the quantum discord between particle A and the
gravitational field DðA; gÞ, which may be the evidence of
the quantum superposition of the gravitational field; that is,
the quantumness of the gravitational field. To simplify
calculations, we represent DðA; gÞ by using the entangle-
ment of formation EfðρABÞ and the conditional von
Neumann entropy SðAjBÞ as

DðA; gÞ ¼ EfðρABÞ þ SðAjBÞ; ð41Þ

where the details of derivation are presented in Appendix E.
The above Eq. (41) shows that the quantum correlation
between the particle and the gravitational field is deter-
mined by the parameters of the systems A and B, which is

one of the features of monogamy. We introduce a formula
of the entanglement of formation for a two-qubit system
with respect to the two-qubit state ρAB as [55,56]

EfðρABÞ ¼ h

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − C2ðρABÞ

p
2

!
; ð42Þ

where we defined hðxÞ ≔ −xlog2x − ð1 − xÞlog2ð1 − xÞ,
and CðρABÞ is concurrence, which measures the degree of
entanglement in the mixed state [55–57]. The concurrence
for the mixed state ρAB of a qubit system is introduced as

CðρABÞ ≔ maxf0; α1 − α2 − α3 − α4g ð43Þ

with α1 ≥ α2 ≥ α3 ≥ α4. Here αi (i ¼ 1;…; 4) are the
square root of eigenvalues of the non-Hermitian matrix
ρABðσAy ⊗ σBy Þρ�ABðσAy ⊗ σBy Þ, where ρ�AB is the complex
conjugate of ρAB, and σAy (σBy ) is the Pauli matrix, which
works for the local system A (B). In the following, we study
the behavior of the quantum discord DðA; gÞ in the two
regions: D ≫ T ≫ L and T ≫ D ≫ L.

FIG. 4. Upper panel: contour plot of the conditional von Neumann entropy SðAjBÞ as functions of L=T (horizontal axis) and D=T
(vertical axis), where we adopted the coupling constant g ¼ 1 (left panel) and g ¼ 3 (right panel). The orange, black, and green circle are
points when L=T ¼ 3=10, L=T ¼ 5=10, and L=T ¼ 6=10, respectively, with D=T ¼ 8=10. The thick black curve in the right panel is
the boundary where the negativityN AB vanishes. Namely, the negativityN AB vanishes in the right-hand region of the boundary. Lower
panel: the left, center, and right panels show the conditional von Neumann entropy SðAjBÞ as a function of the coupling constant g. The
dashed black line in each panel depicts the negativityN AB. These graphs assume the parameters of the orange, black, and green circles,
respectively, in the upper panel.
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A. D ≫ T ≫ L regime

We first consider the case D ≫ T ≫ L. In this regime,
two particles A and B are not entangled, i.e., EfðρABÞ ¼ 0.
Thus, the quantum discord is exactly equivalent to the
conditional von Neumann entropy SðAjBÞ based on
Eq. (41). Figure 5 depicts the behavior of the quantum
discord DðA; gÞ as a function of L=T (left panel) and the
coupling constant g (right panel). The left panel shows that
when the length scale of the superposition L of particle A L
increases, the gravitational field also becomes well quantum
superposition state. The right panel of Fig. 5 can be
understood as follows. As the coupling constant g increases,
the interaction between particle A and the gravitational field
becomes stronger, and they become well-correlated. This
results in the decoherence of particle A, and the entangle-
ment between the two particles vanishes. These relation-
ships represent the monogamy property between the two
particles and the gravitational field, as shown in Eq. (39).

B. T ≫ D ≫ L regime

Next, we consider the case T ≫ D ≫ L. Figure 6 is the
same as Fig. 5 but with D=T ¼ 7=10 < 1, the quantum
discord DðA; gÞ as a function of L=T (left panel) and

g (right panel). We come to the same conclusion in the
region D ≫ T ≫ L that increasing the superposition width
of the particle A leads to the well-superposition state of the
gravitational field. Moreover, when the coupling constant g
increases, the decoherence becomes efficient in sup-
pressing the entanglement generation between the two
particles. Note that, in this regime, the two particles A
and B are slightly entangled, which reduces the correlation
between particle A and the gravitational field. From the
viewpoint of monogamy, the suppression of the entangle-
ment between two particles makes the entanglement
between particle A and the gravitational field strong.

VI. CONCLUSION

Deepening our understanding of the quantumness of
gravity will play a crucial role in the unification of the
gravity theory and quantum mechanics. To this end, this
study focused on the quantum superposition of gravitational
fields based on the quantum theory of linearized gravity. We
analyzed the dynamics of a two-particle system in each
superposition state interacting with a gravitational field and
revealed the entanglement structure between particle and the
gravitational field. We derived an inequality in which the
conditional von Neumann entropy between two particles

FIG. 6. The quantum discord DðA; gÞ as a function of L=T (left panel) with g ¼ 1 and g (right panel) with D=T ¼ 7=10.

FIG. 5. Left panel represents the quantum discordDðA; gÞ as a function of L=T for g ¼ 1. Similarly, the right panel does the same as a
function of the coupling g, where we fixed L=T ¼ 3=10 (red dashed curve), L=T ¼ 4=10 (blue solid curve), and L=T ¼ 5=10 (black
dotted curve). In both panels, we adopted D=T ¼ 5.
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yields a lower bound on the entanglement between the
particle and the gravitational field. Furthermore, we found
that the conditional von Neumann entropy has a trade-off
relationship with the negativity between the two particles.
Thus, we showed that the particle and field are always
entangled if the two particles are not entangled. In addition,
we evaluated quantum discord to quantitatively evaluate the
quantum correlations between the particle and the gravita-
tional field. Quantum discord characterizes the quantum
superposition of the gravitational field. Consequently, the
superposition of the gravitational field becomes more
significant as the separation of the superposition states of
the particles increases.
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APPENDIX A: BRST FORMALISM IN QED

Here, we briefly introduce the quantization of the QED
using the BRST formalism [41] to preserve the covariance
of the theory with a view toward its extension to quantum
gravity theory. The Lagrangian density of the QED in
BRST formalism is written as follows:

L ¼ LQED þ LGFþFP;

LQED ¼ −
1

4
FμνFμν þ ψ̄ðiγμDμ −mÞψ ; ðA1Þ

where Fμν ¼ ∂μAν − ∂νAμ is the field strength of the Uð1Þ
gauge field Aμ, ψ is the Dirac field with massm, ψ̄ ¼ ψ†γ0,
γμ is the gamma matrix satisfying fγμ; γνg ¼ 2ημν, Dμ ¼
∂μ þ ieAμ is the covariant derivative, which includes the
electromagnetic interaction term with the coupling constant
e, and LGFþFP is the gauge fixing and Faddeev-Popov ghost
term. The Lagrangian density LQED is invariant under the
following transformation:

ψ → e−ieθðxÞψ ≃ ð1 − ieθðxÞÞψ ≡ ψ þ δψ ;

Aμ → Aμ þ ∂μθðxÞ≡ Aμ þ δAμ; ðA2Þ

where θðxÞ is a real function and δψ and δAμ are defined
as δψ ≡ −ieθψ and δAμ ≡ ∂μθ. To give the gauge
fixing and Faddeev-Popov ghost term LGFþFP, we define
θðxÞ≡ λCðxÞ, where λ and CðxÞ are the global and local
Grassmann numbers. The field CðxÞ is a scalar field, but it
satisfies the anticommutation relations fCðxÞ; CðyÞg ¼ 0,
which is the Faddeev-Popov ghost field. We rewrite δψ and
δAμ as follows:

δψðxÞ ¼ λð−ieCðxÞψðxÞÞ≡ λδBψðxÞ;
δAμ ¼ λð∂μCðxÞÞ≡ λδBAμ; δBCðxÞ ¼ 0; ðA3Þ

where the operator δB is defined to satisfy the nilpotency
δ2B ¼ 0. We also introduce the antighost field C̄ðxÞ and the
Nakanishi-Lautrup field BðxÞ, which satisfy

δBC̄ðxÞ ¼ iBðxÞ; δBBðxÞ ¼ 0: ðA4Þ

The transformation of Eqs. (A3) and (A4) is referred to as
the BRST transformation. We can choose the gauge fixing
and Faddeev-Popov ghost terms of the Lagrangian LGFþFP
as follows:

LGFþFP ¼ −iδBðC̄FÞ; F ¼ ∂
μAμ þ

1

2
ξB; ðA5Þ

where ξ is an arbitrary parameter. Thus, the full Lagrangian
density in BRST formalism is

L ¼ −
1

4
FμνFμν þ ψ̄ðiγμDμψ −mÞψ

þ 1

2
ξB2 − ∂

μBAμ − i∂μC̄∂μC: ðA6Þ

The equations of motion for fields Aμ; B; C; C̄ are given by
the Euler-Lagrange equations from the full Lagrangian,

0 ¼ ∂
νFνμ − Jμ − ∂μB; ðA7Þ

0 ¼ ∂
μAμ þ ξB; ðA8Þ

0 ¼ □C ¼ □C̄; ðA9Þ

where Jμ ¼ eψ̄γμψ is the matter current of the Dirac field.
The fields CðxÞ and C̄ðxÞ follow the free evolution so that
they do not interact with the other fields. Substituting (A8)
into (A6), we arrive at the following Lagrangian density,

L ¼ −
1

4
FμνFμν þ ψ̄ðiγμDμψ −mÞψ −

1

2ξ
ð∂μAμÞ2

− i∂μC̄∂μC; ðA10Þ

and the BRST transformations are summarized as

δBAμ ¼ ∂μC; δBψ ¼ −ieCψ ;

δBC ¼ 0; δBC̄ ¼ i
ξ
ð∂μAμÞ: ðA11Þ

Because of the BRST transformation, the Lagrangian
density has a global symmetry (BRST symmetry)

λδBL ¼ 0: ðA12Þ
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Thanks to this global symmetry, there is a conserved
current referred to as the BRST current JμB defined by

JμB ¼
X
I

∂L
∂ð∂μΦIÞ

δBΦI ¼ −Fμν
∂νC −

1

ξ
∂νAν

∂
μCþ JμC;

ðA13Þ

where ΦI ¼ fAμ;ψ ; C; C̄g. The BRST charge QB is
given by

QB≡
Z

d3xJ0BðxÞ ¼
Z

d3x

�
ð∂iCÞFi0þ J0C−

1

ξ
ð∂μAμÞĊ

�
:

ðA14Þ

We perform the canonical quantization procedure in
the Feynman gauge (ξ ¼ 1). The canonical conjugate
momenta are defined as

πμA ≡ ∂L

∂Ȧμ

¼ −F0μ − ð∂νAνÞη0μ; πψ ≡ ∂L
∂ψ̇

¼ iψ̄γ0;

πc ≡ ∂L
∂Ċ

¼ i ˙̄C; πc̄ ≡ ∂L

∂
˙̄C
¼ iĊ; ðA15Þ

where “ · ” denotes the derivative with respect to time
x0 ¼ t. The equal-time commutation relations are assigned
as follows:

fψ̂ðxÞ; π̂ψ ðyÞgjx0¼y0 ¼ iδ3ðx − yÞ;
fĈðxÞ; π̂cðyÞgjx0¼y0 ¼ iδ3ðx − yÞ;
f ˆ̄CðxÞ; π̂c̄ðyÞgjx0¼y0 ¼ iδ3ðx − yÞ;
½ÂμðxÞ; π̂νAðyÞ�jx0¼y0 ¼ iδνμδ3ðx − yÞ:

The quantized BRST charge is then given by

Q̂B ¼
Z

d3x½ð∂iĈÞF̂i0 þ Ĵ0Ĉ − ð∂μÂμÞ ˙̂C�

¼
Z

d3x½−ð∂iπ̂iÞĈþ Ĵ0Ĉþ iπ̂0π̂c̄�: ðA16Þ

It is well-known that when we quantize a gauge theory
while maintaining the Lorentz covariance, a state space V
with an indefinite metric is required. For the standard
probabilistic interpretation of quantum mechanics, a physi-
cal state jΨphysi has no negative norm. This state with a
non-negative norm is identified by imposing the following
condition (the BRST condition)

Q̂BjΨphysi ¼ 0; ðA17Þ

where the physical state jΨphysi satisfies hΨphysjΨphysi ≥ 0.

1. BRST charge in the interaction picture
and in the Schrödinger picture

We derive a useful form of the BRST charge for our
computation. Using Eq. (A16), we obtain the BRST charge
in the interaction picture,

Q̂I
BðtÞ ¼ eiĤ0tQ̂Be−iĤ0t

¼
Z

d3x½−ð∂iπ̂iIÞĈI þ Ĵ0I Ĉ
I þ iπ̂0Iπ̂Ic̄�; ðA18Þ

where ϕ̂I ¼ eiĤ0tϕ̂e−iĤ0t, ϕ̂ ¼ fÂμ; π̂μ; Ĉ;
ˆ̄C; π̂c; π̂c̄; Ĵ

0g,
and they satisfy the following Heisenberg equation

i ˙̂ϕ
I ¼ ½ϕ̂I; Ĥ0�: ðA19Þ

Here Ĥ0 is the free Hamiltonian derived from the
Lagrangian (A6). The gauge field ÂI

μðxÞ and the ghost
field ĈIðxÞ satisfy the Klein-Gordon equation. The solu-
tions are the superposition of the usual plane-wave sol-
utions as follows:

ÂI
μðxÞ ¼

Z
d3kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2πÞ32k0
p ðâμðkÞeik·x þ H:c:Þ; ðA20Þ

ĈIðxÞ ¼
Z

d3kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ32k0

p ðĉðkÞeik·x þ H:c:Þ; ðA21Þ

where k0 ¼ jkj, âμðkÞ and ĉðkÞ are the annihilation
operators of the gauge field ÂI

μðxÞ, and the ghost field
ĈIðxÞ, respectively. The annihilation operators âμðkÞ, ĉðkÞ,
and the creation operators satisfy the following commuta-
tion relations:

½âμðkÞ; â†νðk0Þ� ¼ ημνδðk−k0Þ; fĉðkÞ; ĉ†ðk0Þg¼ δðk−k0Þ:
ðA22Þ

Substituting (A20) and (A21) into Eq. (A18), we obtain the
BRST charge in the interaction picture,

Q̂I
BðtÞ ¼

Z
d3kffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ3

p ��
kμâμðkÞ þ

ˆ̃J
0
I ðt; kÞffiffiffiffiffiffiffi
2k0

p eik
0t

�
c†ðkÞ

þ H:c:

�
; ðA23Þ

where ˆ̃J
0
I ðt; kÞ is the Fourier transformation of Ĵ0I ðt; xÞ

Ĵ0I ðt; xÞ ¼
Z

d3kffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ3

p ˆ̃J
0
I ðt; kÞeik·x: ðA24Þ
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Using the BRST charge in the interaction picture (A18)
and (A23), the BRST charge in the Schrödinger picture is
obtained as

Q̂B ¼ e−iĤ0tQ̂I
BðtÞeiĤ0t

¼
Z

d3kffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ3

p ��
kμâμðkÞ þ

ˆ̃J
0ðkÞffiffiffiffiffiffiffi
2k0

p
�
c†ðkÞ þ H:c:

�
;

ðA25Þ

where we used

e−iĤ0tâμðkÞeiĤ0t ¼ âμðkÞeik0t;
e−iĤ0tĉ†ðkÞeiĤ0t ¼ ĉ†ðkÞe−ik0t;

e−iĤ0t ˆ̃J
0
I ðt; kÞeiĤ0t ¼ ˆ̃J

0ðkÞ; ðA26Þ

Here, ˆ̃J
0ðkÞ denotes the Fourier transform of the matter

current in the Schrödinger picture.

2. BRST condition for two charged particles

Using the explicit form of the BRST charge in the
Schrödinger picture (A25), we derive the BRST conditions
for our model (1), which consists of two charged particles
interacting with an electromagnetic field. Assuming a
physical state jΨphysi ¼ jΨ0

physi ⊗ j0ic, where j0ic is the
ground state of the ghost field, and using (A25), we can
reduce the BRST condition (A17) as

�
kμâμðkÞ þ

ˆ̃J
0ðkÞffiffiffiffiffiffiffi
2k0

p
�
jΨ0

physi ¼ 0 ðA27Þ

with the current operator of the two charged particles A and

B ˆ̃J
0ðkÞ ¼ ˆ̃J

0
AðkÞ þ ˆ̃J

0
BðkÞ in Fourier space. When jΨ0

physi is
the initial state given in (2), (A27) leads to the following
equation:

0 ¼
�
kμâμðkÞ þ

ˆ̃J
0ðkÞffiffiffiffiffiffiffi
2k0

p
�
jΨ0

physi

¼
�
kμâμðkÞ þ

ˆ̃J
0ðkÞffiffiffiffiffiffiffi
2k0

p
�
1

2
ðjRiA þ jLiAÞ ⊗ ðjRiB þ jLiBÞ ⊗ jαiEM

≈
1

2
ðjRiA þ jLiAÞ ⊗ ðjRiB þ jLiBÞ ⊗

�
kμâμðkÞ þ

J̃0ðkÞffiffiffiffiffiffiffi
2k0

p
�
jαiEM; ðA28Þ

where the approximation (4) was used in the last line, and
J̃0ðkÞ¼ J̃0AðkÞþ J̃0BðkÞ with J̃0AðkÞ ¼ J̃0ARðkÞ þ J̃0ALðkÞ and
J̃0BðkÞ ¼ J̃0BRðkÞ þ J̃0BLðkÞ are the currents in Fourier space
in the trajectories R and L of charged particles A and B,
respectively. Here the state jαiEM is jαiEM ¼ DðαÞj0iEM.
Hence the initial coherent state of the electromagnetic field
must satisfy

�
kμâμðkÞ þ

J̃0ðkÞffiffiffiffiffiffiffi
2k0

p
�
jαiEM ¼ 0: ðA29Þ

Because the displacement operator D̂ðαÞ given in (3) has the
following relation:

D̂†ðαÞâμðkÞD̂ðαÞ ¼ âμðkÞ þ αμðkÞ; ðA30Þ

we obtain the constraint for the complex function αμðkÞ as

kμαμðkÞ ¼ −
J̃0ðkÞffiffiffiffiffiffiffi
2k0

p ; ðA31Þ

where we used âμðkÞj0iEM ¼ 0. This is the BRST condition
for the model of two charged particles presented in the main
text. Thus, to ensure the BRST condition, the complex
function αμðkÞ must satisfy the condition (14).

APPENDIX B: SUMMARY OF QED CASE
FORMULAS AND UNIFIED DESCRIPTION

WITH GRAVITATIONAL FIELD

Here we present the eigenvalues of the density matrix
ρEMA , ρEMB , and ρEMAB to derive the von Neumann entropy.
Further, we also give the formula of the minimum eigen-
value of the partial transposed density matrix of ρEMAB . Then,
to compute the quantum discord in Sec. V, we introduce the
result of the concurrence. Finally, these quantities are
summarized via the unified notation of QED and the
gravitational field versions.
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1. Results of the eigenvalues of the density matrix ρEMA , ρEMB , and ρEMAB

The eigenvalues of the density matrix ρEMA ¼ TrB½ρEMAB �, ρEMB ¼ TrA½ρEMAB � and ρEMAB are directly obtained as

λ�½ρEMA � ¼ 1

2

�
1� e−Γ

EM
A cos

�
ΦEM

AB

2

��
; λ�½ρEMB � ¼ 1

2

�
1� e−Γ

EM
B cos

�
ΦEM

BA

2

��
; ðB1Þ

λ�½ρEMAB � ¼
1

4

�
1 − e−Γ

EM
A −ΓEM

B cosh½ΓEM
c � �

�
ðe−ΓEM

A − e−Γ
EM
B Þ2 þ 4e−Γ

EM
A −ΓEM

B sin2
�
ΦEM

AB −ΦEM
BA

4

�

þ e−2Γ
EM
A −2ΓEM

B sinh2½ΓEM
c �
�1

2

�
; ðB2Þ

λ0�½ρEMAB � ¼
1

4

�
1þ e−Γ

EM
A −ΓEM

B cosh½ΓEM
c � �

�
ðe−ΓEM

A − e−Γ
EM
B Þ2 þ 4e−Γ

EM
A −ΓEM

B cos2
�
ΦEM

AB −ΦEM
BA

4

�

þ e−2Γ
EM
A −2ΓEM

B sinh2½ΓEM
c �
�1

2

�
; ðB3Þ

where ΓEM
i ði ¼ A;BÞ are introduced in Eq. (18), and the quantities ΦEM

AB and ΦEM
BA are defined as

ΦEM
AB ¼

Z
d4xd4yΔJμAðxÞΔJνBðyÞGr

μνðx; yÞ; ΦEM
BA ¼

Z
d4xd4yΔJμBðxÞΔJνAðyÞGr

μνðx; yÞ: ðB4Þ

The quantities ΓEM
c is represented as

ΓEM
c ¼ 1

2

Z
d4x

Z
d4yΔJμAðxÞΔJνBðyÞhfÂI

μðxÞ; ÂI
νðyÞgi: ðB5Þ

2. Result of the minimum eigenvalue of the density matrix ðρEMAB ÞTA

Here we present the formula of the minimum eigenvalue of the density matrix ðρEMAB ÞTA. The eigenvalues of the density
matrix ðρEMAB ÞTA are

λ�½ðρEMAB ÞTA � ¼ 1

4

�
1 − e−Γ

EM
A −ΓEM

B cosh½ΓEM
c � �

�
ðe−ΓEM

A − e−Γ
EM
B Þ2 þ 4e−Γ

EM
A −ΓEM

B sin2
�
ΦEM

AB þΦEM
BA

4

�

þ e−2Γ
EM
A −2ΓEM

B sinh2½ΓEM
c �
�1

2

�
; ðB6Þ

λ0�½ðρEMAB ÞTA � ¼ 1

4

�
1þ e−Γ

EM
A −ΓEM

B cosh½ΓEM
c � �

�
ðe−ΓEM

A − e−Γ
EM
B Þ2 þ 4e−Γ

EM
A −ΓEM

B cos2
�
ΦEM

AB þΦEM
BA

4

�

þ e−2Γ
EM
A −2ΓEM

B sinh2½ΓEM
c �
�1

2

�
: ðB7Þ

Note that λ−½ðρEMAB ÞTA � is the minimum eigenvalue λEMmin

λEMmin ¼
1

4

�
1 − e−Γ

EM
A −ΓEM

B cosh½ΓEM
c � −

�
ðe−ΓEM

A − e−Γ
EM
B Þ2 þ 4e−Γ

EM
A −ΓEM

B sin2
�
ΦEM

AB þΦEM
BA

4

�

þ e−2Γ
EM
A −2ΓEM

B sinh2½ΓEM
c �
�1

2

�
: ðB8Þ
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3. Result of the concurrence

We present the results of the concurrence. As mentioned in the main text, the concurrence between two particles
A and B is

CðρEMAB Þ ≔ maxf0;αEM1 − αEM2 − αEM3 − αEM4 g ðB9Þ

with αEM1 ≥ αEM2 ≥ αEM3 ≥ αEM4 . Here αEMi (i ¼ 1;…; 4) are the square root of eigenvalues of the non-Hermitian density
matrix ρEMAB ðσAy ⊗ σBy ÞðρEMAB Þ�ðσAy ⊗ σBy Þ, where ðρEMAB Þ� is the complex conjugate of ρEMAB , and σ

A
y (σBy ) is the Pauli matrix for

local system A (B). The eigenvalues of αEMi (i ¼ 1;…; 4) are given as follows:

ðαEM1 Þ2 ¼ 1

16

�
1þ 2e−Γ

EM
A −ΓEM

B cosh½ΓEM
c � þ e−2Γ

EM
A −2ΓEM

B cosh½2ΓEM
c � − e−2Γ

EM
A cos½ΦEM

AB � − e−2Γ
EM
B cos½ΦEM

BA �

− 2e−Γ
EM
A −ΓEM

B cos

�
ΦEM

AB þΦEM
BA

4

�
þ
�
−4e−2ΓEM

A −2ΓEM
B

�
cosh½ΓEM

c � − cos

�
ΦEM

AB −ΦEM
BA

4

�

þ 2 sinh½ΓEM
A � sinh½ΓEM

B �
�

2

þ
�
1þ 2e−Γ

EM
A −ΓEM

B cosh½ΓEM
c � þ e−2Γ

EM
A −2ΓEM

B cosh½2ΓEM
c �

− e−2Γ
EM
A cos½ΦEM

AB � − e−2Γ
EM
B cos½ΦEM

BA � − 2e−Γ
EM
A −ΓEM

B cos

�
ΦEM

AB þΦEM
BA

4

��
2
�1

2

�
; ðB10Þ

ðαEM2 Þ2 ¼ 1

16

�
1þ 2e−Γ

EM
A −ΓEM

B cosh½ΓEM
c � þ e−2Γ

EM
A −2ΓEM

B cosh½2ΓEM
c � − e−2Γ

EM
A cos½ΦEM

AB � − e−2Γ
EM
B cos½ΦEM

BA �

− 2e−Γ
EM
A −ΓEM

B cos

�
ΦEM

AB þΦEM
BA

4

�
−
�
−4e−2ΓEM

A −2ΓEM
B

�
cosh½ΓEM

c � − cos

�
ΦEM

AB −ΦEM
BA

4

�

þ 2 sinh½ΓEM
A � sinh½ΓEM

B �
�

2

þ
�
1þ 2e−Γ

EM
A −ΓEM

B cosh½ΓEM
c � þ e−2Γ

EM
A −2ΓEM

B cosh½2ΓEM
c �

− e−2Γ
EM
A cos½ΦEM

AB � − e−2Γ
EM
B cos½ΦEM

BA � − 2e−Γ
EM
A −ΓEM

B cos

�
ΦEM

AB þΦEM
BA

4

��
2
�1

2

�
; ðB11Þ

ðαEM3 Þ2 ¼ 1

16

�
1 − 2e−Γ

EM
A −ΓEM

B cosh½ΓEM
c � þ e−2Γ

EM
A −2ΓEM

B cosh½2ΓEM
c � − e−2Γ

EM
A cos½ΦEM

AB � − e−2Γ
EM
B cos½ΦEM

BA �

þ 2e−Γ
EM
A −ΓEM

B cos

�
ΦEM

AB þΦEM
BA

4

�
þ
�
−4e−2ΓEM

A −2ΓEM
B

�
cosh½ΓEM

c � − cos

�
ΦEM

AB −ΦEM
BA

4

�

− 2 sinh½ΓEM
A � sinh½ΓEM

B �
�

2

þ
�
1þ 2e−Γ

EM
A −ΓEM

B cosh½ΓEM
c � þ e−2Γ

EM
A −2ΓEM

B cosh½2ΓEM
c �

− e−2Γ
EM
A cos½ΦEM

AB � − e−2Γ
EM
B cos½ΦEM

BA � − 2e−Γ
EM
A −ΓEM

B cos

�
ΦEM

AB þΦEM
BA

4

��
2
�1

2

�
; ðB12Þ

ðαEM4 Þ2 ¼ 1

16

�
1 − 2e−Γ

EM
A −ΓEM

B cosh½ΓEM
c � þ e−2Γ

EM
A −2ΓEM

B cosh½2ΓEM
c � − e−2Γ

EM
A cos½ΦEM

AB � − e−2Γ
EM
B cos½ΦEM

BA �

þ 2e−Γ
EM
A −ΓEM

B cos

�
ΦEM

AB þΦEM
BA

4

�
−
�
−4e−2ΓEM

A −2ΓEM
B

�
cosh½ΓEM

c � − cos

�
ΦEM

AB −ΦEM
BA

4

�

− 2 sinh½ΓEM
A � sinh½ΓEM

B �
�

2

þ
�
1þ 2e−Γ

EM
A −ΓEM

B cosh½ΓEM
c � þ e−2Γ

EM
A −2ΓEM

B cosh½2ΓEM
c �

− e−2Γ
EM
A cos½ΦEM

AB � − e−2Γ
EM
B cos½ΦEM

BA � − 2e−Γ
EM
A −ΓEM

B cos

�
ΦEM

AB þΦEM
BA

4

��
2
�1

2

�
: ðB13Þ
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4. Unified description of QED and gravitational field

As shown in Eqs. (B1)–(B3), (B8), and (B10)–(B13),
these quantities can be described using the quantities
ΓEM
i ði ¼ A;BÞ, ΓEM

c , ΦEM
AB , and ΦEM

BA . By replacing these
quantities with ΓGR

i ði ¼ A;BÞ, ΓGR
c , ΦGR

AB and ΦGR
BA, we

obtain the formulas for gravitational case. The quantities
ΓGR
i ði ¼ A;BÞ, ΓGR

c are

ΓGR
i ¼ 1

4

Z
d4x

Z
d4yΔTμν

i ðxÞΔTρσ
i ðyÞhfĥIμνðxÞ; ĥIρσðyÞgi;

ðB14Þ

ΓGR
c ¼ 1

2

Z
d4x

Z
d4yΔTμν

A ðxÞΔTρσ
B ðyÞhfĥIμνðxÞ; ĥIρσðyÞgi;

ðB15Þ

where we defined ΔTμν
i ¼ Tμν

iR − Tμν
iL with i ¼ A;B. The

gravitational case of the quantities ΦGR
AB and ΦGR

BA can be
expressed as

ΦGR
AB ¼

Z
d4xd4yΔTμν

A ðxÞΔTρσ
B ðyÞGr

μνρσðx; yÞ;

ΦGR
BA ¼

Z
d4xd4yΔTμν

B ðxÞΔTρσ
A ðyÞGr

μνρσðx; yÞ: ðB16Þ

Subsequently, we adopt simple notations Γiði ¼ A;BÞ, Γc,
ΦAB and ΦBA to describe the quantities above for the
electromagnetic and gravitational cases in a unified manner.

APPENDIX C: CALCULATION
OF ΓEM

A , ΓEM
B , AND ΓEM

c

Here, we exemplify the results of our calculations in
ΓEM
A , ΓEM

B , and ΓEM
c to understand the physical meaning of

these quantities. Note that we recover the constants c and ℏ
when we show the result of the calculation to emphasize
that it is a dynamical field effect. We first calculate the
quantities ΓEM

A and ΓEM
B . We assume the following trajec-

tories for particles A and B

Xμ
PðtÞ ¼ ½t; ϵPXðtÞ; 0; 0�T; ϵR ¼ −ϵL ¼ 1;

XðtÞ ¼ 8L

�
1 −

t
T

�
2
�
t
T

�
2

: ðC1Þ

Because of the time and spatial translation invariance of
the vacuum state, ΓEM

i is independent of the choice of the
origin. Thus, we can evaluate ΓEM

A and ΓEM
B by using the

formula of Eq. (18) as

ΓEM
A ¼ ΓEM

B ¼ e2

4

I
C
dxμ

I
C
dyμhfÂI

μðxÞ; ÂI
νðyÞgi

≈
e2

4

I
C
dxμ

I
C
dyμhfÂI

μðx0; 0Þ; ÂI
νðy0; 0Þgi

¼ e2

4

I
C
dxμ

I
C
dyμ

ημν
4π2

�
1

−ðt − t0 − iϵÞ2 þ
1

−ðt − t0 þ iϵÞ2
�

¼ e2

16π2

Z
T

0

dt

�
dXμ

R

dt
−
dXμ

L

dt

�Z
T

0

dt0
�
dXRμ

dt0
−
dXLμ

dt0

��
1

−ðt − t0 − iϵÞ2 þ
1

−ðt − t0 þ iϵÞ2
�

¼ e2

16π2

Z
T

0

dt
Z

T

0

dt0
�
dXR

dt
−
dXL

dt

�
·

�
dXR

dt0
−
dXL

dt0

��
1

−ðt − t0 − iϵÞ2 þ
1

−ðt − t0 þ iϵÞ2
�

¼ 32e2

3π2ℏc

�
L
cT

�
2

; ðC2Þ

where we took the limit ϵ → 0 after the integration, and in
the second line we used the dipole approximation [58,59]
which ignores the spatial dependence of the photon field.
The dipole approximation is valid when the wavelength of
the photon field λp ¼ T is considerably larger than the
typical size (∼L) of the region where the charge exists.
This condition is always satisfied if we assume a non-
relativistic velocity L=T ≪ 1. Note that the quantities
ΓA and ΓB vanish when we take the nonrelativistic
limit c → ∞. Thus, they represent relativistic corrections

originating from the dynamical component of the electro-
magnetic field.
This decoherence can be interpreted in the following two

ways. The first is the emission of photons, which is
estimated by using the Larmor formula for the power of
radiation emitted from a nonrelativistic charged particle
during the time T. The second is the vacuum fluctuation
due to the photon field, which induces the dephasing of the
charged particle. The above two interpretations give the
equivalent result discussed in Ref. [41].
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In the following, we calculate the quantity ΓEM
c by using

Eq. (B5), which characterizes the correlation between the
two particles. This quantity depends on the configuration of
two particles, so we divide two regimes D ≫ T ≫ L and
T ≫ D ≫ L and show the result of ΓEM

c .

1. T ≫ D ≫ L regime

Then, we focus on the regime T ≫ D ≫ L. In this
regime, two particles are causally connected and can
communicate with each other. The trajectories of two
particles A and B are supposed to be

Xμ
AP ¼ ½t; ϵPXðtÞ;0;0�T; Xμ

BQðtÞ ¼ ½t; ϵQXðtÞ þD;0;0�T;

ϵR ¼ −ϵL ¼ 1; XðtÞ ¼ 8L

�
1−

t
T

�
2
�
t
T

�
2

: ðC3Þ

In this configuration, we obtain the result of the ΓEM
c as

ΓEM
c ¼ e2

2

I
CA

dxμ
I
CB

dyνhfÂI
μðxÞ; ÂI

νðyÞgi

≈
64e2

3π2ℏc

�
L
T

�
2
�
1þ 4

�
D
cT

�
2

ln

�
D
cT

��

≈
64e2

3π2ℏc

�
L
cT

�
2

; ðC4Þ

where, in the last approximation, we neglected the term
proportional to D=T because of the condition T ≫ D ≫ L.
The detailed derivation is also presented in [41]. The results
of the electromagnetic case in Eqs. (C4) and (C6) are
extended to the result of the gravitational case (26) and (27).

2. D ≫ T ≫ L regime

We first focus on the regime D ≫ T ≫ L and calculate
the quantity Γc. We assume the following trajectories for the
two charged particles, A and B:

Xμ
APðtÞ ¼ ½t; ϵPXðtÞ;0;0�T;

Xμ
BQðtÞ ¼ ½t; ϵQXðt−DÞ þD;0;0�T;

ϵR ¼ −ϵL ¼ 1; XðtÞ ¼ 8L

�
1−

t
T

�
2
�
t
T

�
2

; ðC5Þ

where Xμ
BQ is defined in D ≤ t ≤ T þD. In this configu-

ration, the two particles are causally connected. However,
the particle B does not affect the system of particle A
system. The quantity ΓEM

c is computed as

ΓEM
c ¼ e2

2

I
CA

dxμ
I
CB

dyνhfÂI
μðxÞ; ÂI

νðyÞgi

≈ −
32e2

225π2ℏc

�
L
cT

�
2
�
cT
D

�
4

: ðC6Þ

The detailed calculation is presented in [41].

APPENDIX D: DERIVATION
OF THE TWO-POINT FUNCTION
OF THE GRAVITATIONAL FIELD

Here we derive the two-point function of the gravita-
tional field. The analysis in QED [41] suggested that only
the dynamical components of the electromagnetic field
contributes to the quantities ΓEM

A , ΓEM
B , and ΓEM

c (see also
Appendix B). Therefore, it is expected that the dynamical
components of the gravitational field, i.e., graviton, will
dominate the quantities ΓA, ΓB, and Γc. The two-point
function consisting only of dynamical degrees of freedom
of the gravitational field in the interaction picture is
hfĥIijðxÞ; ĥIklðyÞgi with the indices ði; j; k; lÞ running
from 1 to 3. The quantized gravitational field ĥIijðxÞ is
expanded into plane waves around Minkowski spacetime
as follows [47,60]:

ĥIijðxÞ¼
ffiffiffiffiffiffiffiffiffiffiffi
32πG

p X
λ

×
Z

d3kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ32k0

p ðϵλijðkÞaλðkÞe−ikμxμ þH:c:Þ; ðD1Þ

where we introduced the dispersion relation k0 ¼ jkj and
the transverse-traceless polarization tensor ϵλijðkÞ. The
index λ represents the polarization mode of the gravita-
tional field. The operators aλðkÞ and a†λðkÞ are the
annihilation and creation operators and obey the commu-
tation relations ½aλðkÞ; a†λ0 ðk0Þ� ¼ δλλ0δ

ð3Þðk − k0Þ and
½aλðkÞ; aλ0 ðk0Þ� ¼ ½a†λðkÞ; a†λ0 ðk0Þ� ¼ 0. Then the two-point
function hfĥIijðxÞ; ĥIklðyÞgi becomes

hfĥIijðxÞ; ĥIklðyÞgi ¼ 32πG
X
λ

Z
d3k

ð2πÞ32k0 ½ϵ
λ
ijðkÞϵλ�kl ðkÞe−ik·ðx−yÞ þ c:c:�

¼ 32πG
Z

d3k
ð2πÞ32k0 ½ΠijklðkÞe−ik·ðx−yÞ þ c:c:�; ðD2Þ
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where ΠijklðkÞ is the sum over the polarization tensors and satisfies ΠijklðkÞ ≔
P

λ ϵ
λ
ijðkÞϵλ�kl ðkÞ ¼ ðPikðkÞPjlðkÞ þ

PilðkÞPjkðkÞ − PijðkÞPklðkÞÞ=2 with the projection tensor PijðkÞ ¼ ηij − kikj=jkj2. Using the identities kikj=jkj2 ¼ ηij=3
and kikjkkkl=jkj4 ¼ ðηikηjl þ ηilηjk þ ηijηklÞ=15, we have

hfĥIijðxÞ; ĥIklðyÞgi ¼ 16πG
Z

d3k
ð2πÞ32k0 ½ðPikðkÞPjlðkÞ þ PilðkÞPjkðkÞ − PijðkÞPklðkÞÞe−ik·ðx−yÞ þ c:c:�

¼ 32πG
5

�
ηikηjl þ ηilηjk −

2

3
ηijηkl

��Z
d3k

ð2πÞ32k0 e
−ik·ðx−yÞ þ c:c:

�

¼ 8G
5π

�
ηikηjl þ ηilηjk −

2

3
ηijηkl

�
lim
ϵ→0

�
1

−ðx0 − y0 − iϵÞ2 þ jx − yj2 þ c:c:

�
; ðD3Þ

where we used the integral

Z
d3k

ð2πÞ32k0 e
−ik·ðx−yÞ ¼ 1

4π2
lim
ϵ→0

�
1

−ðx0− y0− iϵÞ2þjx− yj2
�

ðD4Þ

including the UV cutoff parameter ϵ.

APPENDIX E: PROOFS OF INEQUALITY (28)
AND EQ. (41)

The goal of this appendix is to prove inequality (28) and
Eq. (41). To achieve this, it is convenient to introduce the
Koashi-Winter relation [61] of a pure tripartite system
jΨABEi as follows:

SðρAÞ ¼ EfðρAEÞ þ J ðA;BÞ; ðE1Þ

where the entanglement of formation EfðρAEÞ is defined by

EfðρAEÞ ≔ min
fpi;jψAEiig

X
i

piSðTrE½jψAEiihψAEj�Þ ðE2Þ

with states jψAEii due to Schmidt decomposition jΨABEi ¼P
i
ffiffiffiffiffi
pi

p jψAEii ⊗ jψBii satisfying
P

i pi ¼ 1 and pi ≥ 0.
The minimization is taken over all ensembles fpi; jψAEiig
such that

P
i pijψAEiihψAEj ¼ ρAE. Roughly speaking,

this entanglement of formation characterizes at least
how many maximally entangled states jψAEi required to
generate the state TrE½jψAEihψAEj�. J ðA;BÞ in the second
term of Eq. (E1) is the classical correlation, which is seen
as the amount of information about subsystem A that can
be obtained by performing a measurement on subsystem
B, and is defined by

J ðA;BÞ ≔ SðρAÞ −min
fΠig

X
i

piSðρAjiÞ; ðE3Þ

where SðρAjiÞ is the von Neumann entropy of the post-
measurement state ρAji with the probability pi defined as

ρAji ≔
1

pi
TrB½ð1A ⊗ ΠB

i ÞρABð1A ⊗ ΠB
i Þ�;

pi ≔ TrAB½ð1A ⊗ ΠB
i ÞρABð1A ⊗ ΠB

i Þ�: ðE4Þ

Πi is the positive operator valued measure (POVM) acting
on the subsystem B. The condition minfΠig is introduced
not to disturb all states, i.e., we must choose the projective
operator fΠig so as to reduce the dependence on the
projection measure. Note that in contrast to classical
theory, the measurement in subsystem B disturbs the
subsystem A. When we measure the state of subsystem
B, the wave function collapses, and the state of subsystem
B is determined; that is, the projective measure makes a
condition to the state of subsystem A.
The classical correlation J ðA;BÞ is related to the

quantum discord DðA;BÞ [53]. The definition of quantum
discord is the difference between the quantum mutual
information IðA;BÞ ¼ SðρAÞ þ SðρBÞ − SðρABÞ and the
classical correlation J ðA;BÞ,

DðA;BÞ ¼ IðA;BÞ − J ðA;BÞ: ðE5Þ

The quantum mutual information IðA;BÞ quantifies the
total amount of correlations between the two subsystems
A and B. We note that the quantum mutual information is
always non-negative due to the subadditivity of von
Neumann entropy. In classical theory, DðA;BÞ ¼ 0 is
always correct; however, in quantum theory, it can
become DðA;BÞ > 0.
By using Eqs. (E1) and (E5), we can prove the inequality

EfðρAEÞ ≥ SðAjBÞ as follows:

EfðρAEÞ ¼ SðρAÞ − J ðA;BÞ
¼ SðρAÞ − IðA;BÞ þ IðA;BÞ − J ðA;BÞ
¼ SðρAÞ − IðA;BÞ þDðA;BÞ
≥ SðρAÞ − IðA;BÞ
¼ SðρABÞ − SðρBÞ ¼ SðAjBÞ; ðE6Þ
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where we inserted the quantum mutual information
IðA;BÞ in the second line and DðA;BÞ ≥ 0 was used in
the fourth line. Another reordered version of the inequality
(E6) is computed as

EfðρABÞ ≥ SðρAEÞ − SðρEÞ
¼ SðρBÞ − SðρABÞ
¼ −SðAjBÞ; ðE7Þ

where, in the second line, we used the properties
SðρEÞ ¼ SðρABÞ and SðρAEÞ ¼ SðρBÞ, which holds because
the state jψABEi is pure state. Note that these properties are
always satisfied because of the invariance of the von
Neumann entropy under unitary evolution when the initial
state is in a pure state. In the last line, we inserted
the definition of the conditional von Neumann entropy
SðAjBÞ ≔ SðρABÞ − SðρBÞ.
Furthermore, we can show the equation DðA;EÞ ¼

EfðρABÞ þ SðAjBÞ as follows:

DðA;EÞ ¼ EfðρABÞ þ SðρEÞ − SðρAEÞ
¼ EfðρABÞ þ SðρABÞ − SðρBÞ
¼ EfðρABÞ þ SðAjBÞ; ðE8Þ

where, in the first equality, we used another reordered
version of the Koashi-Winter relation (E1) with respect to B
and E,

SðρAÞ ¼ EfðρABÞ þ J ðA;EÞ
¼ EfðρABÞ þ IðA;EÞ − IðA;EÞ þ J ðA;EÞ
¼ EfðρABÞ þ IðA;EÞ −DðA;EÞ: ðE9Þ

In the inequality equations (28) and (41), state E is regarded
as the graviton state. Therefore, inequality equations (28)
and (41) has been proven.
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