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We employ the FORCER algorithm to renormalize a variety of six dimensional field theories to four loops.
In order to achieve this we construct the FORCER master integrals in six dimensions from their four
dimensional counterparts by using the Tarasov method. The ϵ expansion of the six dimensional masters are
determined up to weight 9 where d ¼ 6 − 2ϵ. By applying the FORCER routine the four loop MS
renormalization of ϕ3 theory is reproduced before gauge theories are considered. The renormalization of

these theories is also determined in the gMOM scheme. For instance the absence of ζ4 and ζ6 is confirmed to

five loops in the gMOM renormalization of ϕ3 theory. We also evaluate the three loop β-function of the
gauge coupling in six dimensional QCD.

DOI: 10.1103/PhysRevD.110.045015

I. INTRODUCTION

There have been significant developments in recent years
to progress our knowledge of the renormalization group
functions of four dimensional quantum field theories and in
particular those of various sectors of the Standard Model.
The main development rests in the advances in the
algorithms used to calculate Feynman integrals and the
implementation of these algorithms in highly efficient
computer algebra and symbolic manipulation languages.
The classic representation of these advances is the estab-
lishment of the five loop β-function of quantum chromo-
dynamics (QCD) which is the field theory that relates to the
strong interactions. Several groups produced the result
contemporaneously [1–5] using one of two separate meth-
ods to achieve this impressive level of precision. One is the
Laporta algorithm [6], which is a systematic way of solving
integration by parts relations to write all the Feynman
integrals of the Green’s function of interest in terms of a
relatively small basis set of core or master integrals. The
evaluation of the latter by nonintegration by parts methods
allows for the Green’s function to be fully determined.
While such a systematic approach will always reach its
goal, it is not always the case that this will be achieved in a
reasonable time frame. One other main technique that led to
five loop QCD renormalization group functions [2,7] was
the development of an efficient four loop integration

package termed FORCER [8,9]. It is written in the symbolic
manipulation language FORM [10,11]. The FORCER package
is tailored specifically to evaluate four loop massless
2-point functions in d-dimensional spacetime. For realistic
computations the ϵ expansion in d ¼ 4 − 2ϵ dimensions
can be extracted within the FORCER framework up to weight
12. The routine represents a generational advance on its
precursor which was MINCER [12]. That was an algorithm
for evaluating massless three loop 2-point Feynman inte-
grals. Although it was developed in the 1980s, it was very
much ahead of its time given our current knowledge of the
mathematics underlying Feynman integral computations.
However, the increase in experimental precision in recent
years has meant that higher loop order algorithms for
automatically evaluating Feynman integrals are now nec-
essary. In fitting this requirement, FORCER implements a
new integration rule for massless fields that extends
the core rule central to MINCER. Moreover this diamond
rule [13] represents an efficient improvement for the more
algebraically demanding four loop Feynman integrals.
While FORCER is now the default package of massless

four loop 2-point functions and was central to [2,7], there
are theories and problems in other spacetime dimensions
that it could be useful for. For instance, in six dimensions
there has been interest in gauge theories with and without
supersymmetry. In [14] the one loop β-functions of the two
coupling non-Abelian gauge theory was studied to ascer-
tain whether the model was unitary and perturbatively
conformal. Aside from [14] there is interest in the ultra-
violet completion of four dimensional theories. As an
example of this we recall that four dimensional scalar ϕ4

theory has scalar ϕ3 theory as its ultraviolet completion in
six dimensions. In other words ϕ4 theory with an OðNÞ
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symmetry lies in the same universality class in d-dimen-
sions at the Wilson-Fisher fixed point asOðNÞ ϕ3 theory in
six dimensions, [15–17]. This concept extends beyond
scalar theories to include fermionic ones such as those with
scalar-Yukawa interactions [18–20], scalar and fermionic
quantum electrodynamics (QED) and QCD [21,22]. In the
latter two cases the ultraviolet completion of six dimen-
sional QED and QCD begins in two dimensions with the
Abelian and non-Abelian Thirring model respectively. The
completion of non-Abelian gauge theories to six dimen-
sions was verified at two loops in [22]. To establish the
connection between the theories in the same universality
class requires the explicit values of the renormalization
group functions of each theory in its critical dimension to as
high a loop order as is computationally possible. Once
these are available, the respective critical exponents are
computed in an ϵ expansion around the critical dimension.
The expressions can then be compared with the same
exponents computed explicitly in d-dimensions with
respect to a universal expansion parameter that is common
to all the theories in the universality class. For example, for
OðNÞ theories this expansion parameter is usually 1=N
where N is regarded as large. The agreement of the ϵ
expansion of these d-dimensional large N exponents for
each critical dimension of the theories in the same
universality class establishes the ultraviolet completion.
There will be other ultraviolet completions aside from the
few we mentioned, but in order to concretely establish them
requires high loop order computations in dimensions
beyond four for which FORCER would be an indispensable
integration tool. As it stands, FORCER evaluates integrals in
a similar ethos to the Laporta algorithm in that a rule, based
on an integration by parts construction, efficiently reduces
all contributing Feynman integrals to a basis. The advan-
tage of FORCER is that a database of integral relations does
not have to be solved en route as is the case for packages
that implement the algorithm of [6]. Rules such as the
diamond one are already encoded to circumvent that
necessity. Effectively the ultimate point of the FORCER

routine is the expression of the Green’s functions as d-
dimensional integrals with the option of subsequently
expanding in powers of ϵ up to weight 12 if needed.
Therefore, to adapt the FORCER routine to six dimensional
problems requires the ϵ expansion of the basis integrals
relative to six dimensions. That is one of the main purposes
of this article. We will provide the six dimensional FORCER
master integrals expanded to weight 9 in d ¼ 6 − 2ϵ
dimensions. To achieve this requires a straightforward
application of the Tarasov method [23,24] that relates
Feynman integrals in d-dimensions to a set of integrals
in (dþ 2) dimensions with the same or reduced topology as
that of the original d-dimensional integral.
Having achieved this extension, the use of the FORCER

package becomes straightforward with a FORM module
slotted into the automatic integration of the Green’s

functions of interest at the point where the four dimensional
masters would be called. To verify the correctness of the
masters we determine, the extension is used to reproduce
the known four loop modified minimal subtraction (MS)
scheme renormalization group functions in scalar ϕ3 theory
with and without OðNÞ symmetry although we note that
higher loop MS information is already available [25,26].
Having established this check, we apply the algorithm to
various Abelian and non-Abelian gauge theories to verify
their ultraviolet completeness at a newer level. As a by-
product we will also study the renormalization group
functions in several other schemes. While one of these is
the canonical MS one, we will also renormalize ϕ3 theory
with and without OðNÞ symmetry in the gMOM scheme as
well as introduce a new scheme not unrelated to it. In four
dimensional studies [27–34], the gMOM scheme has the
property that at least to five loops the core renormalization
group functions of QCD do not involve the numbers ζ4 and
ζ6 where ζn is the Riemann zeta function. It is worth
recalling that the minimal momentum (mMOM) scheme
of [35] also shares the same property. The definition of that
scheme is based specifically on the ghost-gluon vertex.
However unlike the gMOM schemes the absence of ζ4 and
ζ6 is only manifest in mMOM in the Landau gauge. Indeed
a no-π theorem has been constructed that indicates under
certain conditions there should be no even zetas to all
orders [30,31]. The FORCER algorithm in six dimensions is
essential to verify or otherwise whether this property
remains purely four dimensional or is true in six dimen-
sions as well since the finite part of the various Green’s
functions are required. Indeed we can exploit the known
five loop MS renormalization group functions of [25,26] to
deduce the five loop gMOM expressions for ϕ3 theory.
Aside from establishing the FORCER masters in six dimen-
sions, the study of these scheme properties and ultraviolet
completion is the second main aim of this investigation.
The article is organized as follows. Section II summarizes

the algorithm used to construct the six dimensional FORCER
master integrals up toweight 9. In order to verify that known
results are reproduced, we focus on such a check in Sec. III
by considering ϕ3 theory. En route we also construct thegMOM renormalization group functions for the OðNÞ cubic
theory. In Sec. IV the four loop renormalization group
functions ofQED and scalar QED are determined in both the
MS and gMOMschemes to further investigate the presence or
otherwise of even zetas in renormalization group functions.
This analysis is continued in Sec. V where six dimensional
QCD is studied with the three loop gauge β-function being
computed.We provide an overview of our efforts in Sec. VI.
Finally, there are two appendices. The ϵ expansion of the
FORCER masters are provided in Appendix A while
Appendix B records the two β-functions ofOðNÞ ϕ3 theory
in the gMOM scheme at five loops.
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II. FORCER MASTERS IN SIX DIMENSIONS

As the first phase for studying six dimensional field
theories at four loops is to employ the FORCER package
[8,9], we need to discuss the specifics of what this entails.
To do so we recall that it was primarily developed to
evaluate four loop massless 2-point functions to high order
in the ϵ expansion in d ¼ 4 − 2ϵ dimensions. Indeed it
extended the earlier three loop MINCER algorithm [12] that
was the main working tool for many decades to compute
three loop massless 2-point functions in the same ϵ
expansion. In many ways MINCER was ahead of its time
in that it relied heavily on integration by parts and the use of
what is termed the carpet rule [36] that allowed for an
efficient reduction of a class of topologies. The last step of
such an integration algorithm was the substitution of a
small class of core integrals whose expansion near four
dimensions was deduced without the use of integration by
parts. It is only since the development of the Laporta
algorithm [6] that one can appreciate the prescience of the
MINCER construction. The summary of how MINCER oper-
ates represents the essence of the Laporta approach where
integration by parts is the engine room of the method which
reduces the Feynman graphs contributing to a Green’s
function to a basis set of integrals now known as master
integrals. Again these have to be determined by techniques
other than integration by parts. While the ethos of both
approaches is the same, there are several key differences.
The Laporta algorithm is applicable not only to 2-point but
also to higher n-point functions as well as the situation
where the Green’s functions involve masses. One of the
main limitations to applying the Laporta algorithm is
technological rather than procedural. By this we mean
the speed of an actual reduction reduces with the increase of
external legs of the Green’s function, the presence of a
larger number of variables, such as masses and external
momenta, and increase in loop order. What has been
beneficial in the years after [6] is the improvement of
the reduction algorithm through pure mathematics results.
The other main difference is that the MINCER algorithm
includes a routine that is more efficient at reducing the
topologies and subtopologies of a Feynman graph. Such a
routine is necessarily connected with the fact that MINCER is
restricted to 2-point functions [12,36]. These aspects reflect
the tension between having a reasonably general algorithm
applicable in virtually all desired setups and one which is
customized to a specific set of Green’s functions. Put
another way, one has a choice of automatic Feynman
integration evaluation tools which are extremely efficient in
their respective domains.
With the need for higher precision in renormalizing

quantum field theories and determining Green’s functions
that contribute to observables for experiments, there was a
clear need to extend MINCER to the next order. This was
achieved with the FORCER package [8,9]. The core
approach is the same as MINCER exploiting integration

routines tailored to the Feynman integrals that contribute to
four loop massless 2-point functions. In particular for a
subclass of topologies a new routine was required where the
carpet rule of MINCER was not applicable. This rule, termed
the diamond rule, was provided in [13] and moreover was
encoded in an efficient way within the final symbolic
manipulation routine written in FORM [10,11]. In assem-
blying the package, several new aspects were included that
were not in MINCER. In the intervening years between the
two packages being developed the understanding as to what
the independent master integrals were was resolved. In
particular there are two three loop master integrals and
fourteen at four loops in the FORCER routine. In each case
several of the masters are elementary integrals such as those
where there are nested bubbles. However there were others
whose ϵ expansion near four dimensions had only been
available to a few orders in ϵ. Encoded within FORCER are
the ϵ expansions of the master integrals which were
compiled from [37,38] except for lower loop masters where
one or two bubble insertions have been mapped to a closely
related topology [8,9]. Therefore the FORCER algorithm has
a range of applicability greater than MINCER. One particular
feature of the package is the option to express the value of a
2-point function in terms of its masters as a function of d
where the masters are not expanded in powers of ϵ near four
dimensions. It is this specific feature that we aim to exploit
here. In other words FORCER has the potential to be adapted
to the renormalization of six dimensional field theories to
high loop order if that can be achieved by the evaluation of
massless 2-point functions. The missing ingredient is the ϵ
expansion of the d-dimensional four loop master integrals
in d ¼ 6 − 2ϵ dimensions.
In fact the ϵ expansion of the masters near six dimensions

can be extracted from the masters near four dimensions that
are already available in FORCER. The key to determining
them is the Tarasov construction [23,24]. Briefly this is a
method that relates an L loop Feynman integral in
d-dimensions to a sum of Feynman integrals in (dþ 2)
dimensions which has the same topology as the original
lower dimensional one but with the powers ofL propagators
increased by unity. The distribution of the increase in
propagator powers is determined by the structure of the
second Symanzik graph polynomial which reflects and
identifies the original topology. A useful tool for extracting
the specific exponent distribution for each of the master
topologies was the HYPERINT package of [39] written in
MAPLE. Subsequently each of the integrals in the uplift to
(dþ 2) dimensions can then be reduced using integration by
parts to produce a sum of Feynman integrals, one of which is
equivalent to the original topology aside from being a
(dþ 2) dimensional integral. The remaining integrals in
this sum correspond to Feynman graphs with fewer propa-
gators in the sense that they are derived from the original
topology but with propagators deleted. Therefore if we take
the reference dimension d to be four, knowledge of its ϵ
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expansion means that, provided the same expansion of the
graphs with a lower number of propagators is known, the
only unknown is the six dimensional master that we seek.
This is the procedure we have followed to determine the
FORCER masters in six dimensions. It has already been used
in [17] to carry out the four loop renormalization of ϕ3

theory. In that instance, as FORCER was not available then,
the ϵ expansion for the four dimensionalmasters required for
that computation was provided in [37]. Although the
FORCER master basis was not known at the time of [17],
this was not necessary as the basis of [37] was sufficient to
determine the MS scheme ϕ3 renormalization group func-
tions at four loops. Other schemes such as gMOM that
required the finite part of Green’s functions were not
considered at that time. The derivation of the relation
between the four and six dimensional integrals using the
Tarasov technique relied upon the Laporta algorithm [6] and
its implementation in the REDUZE package [40].
While the Laporta approach could have been repeated to

deduce all the FORCER masters in six dimensions, we chose
a different strategy here. This was to use the d-dimensional
aspect of the FORCER algorithm itself to effect the reduction
of the (dþ 2) dimensional integrals that the Tarasov
method produces at the first step. One benefit of this
approach is that the reduction of integrals in FORCER is fast
and more efficient than constructing an appropriate size
database of relations between quite intricate topologies
using the Laporta algorithm. This is because the increase in
powers of the propagators by four requires a brute force
integration by parts whereas FORCER applies the custom
built diamond rule and is designed solely for 2-point
functions. Moreover as we wish to determine the masters
to a high order in ϵ, at some point the four dimensional
FORCER masters would have to be imported if the Laporta
reduction had been employed. In addition, employing
FORCER itself as a de facto reduction tool offers an
independent way to check on the previous masters. At
four loops the construction followed an iterative approach.
The Tarasov method was applied to the lowest level master
defined as the one with the smallest number of propagators
that could not be evaluated by simple integration such as
those comprised as bubbles. One has to begin at this point
since in the reduction step these will appear for master
topologies with a larger number of propagators. Once the
lowest order masters have been determined then one moves
to the next level. In each case one is effectively finding the
terms in the ϵ expansion by solving for the unknown
coefficients of ϵ in the required master. In Appendix A
we have recorded the explicit ϵ expansions of the 16
FORCER masters using the same labelling as that of [9] and
to the same order in weight as the four dimensional masters
that appear in Appendix C of [9]. The expressions in

Appendix A should be sufficient for carrying out a five loop
renormalization where the higher powers of ϵ in the four
loop masters are required to extend the calculation of the
lower loop graphs contributing to a Green’s function.
Included in our Appendix A list are two three loop masters
labelled as no and t105. In other words the six dimensional
masters are provided up to and including weight 9 where ζ9
would be a representative. Though, we note that the FORM

module in the actual FORCER code of [9] that corresponds to
the four dimensional masters includes expressions up to
weight 12 which were derived from the higher order ϵ
expansion of the masters provided in [38].

III. ϕ3 THEORIES

We are now in a position to renormalize a variety of six
dimensional theories to four loops in the MS scheme as
well as the gMOM one which has been examined in four
dimensions [27–34]. Such an exercise will act partly as a
check on the construction of the FORCER masters as well as
confirm an underlying aspect of the gMOM scheme that is
apparent in four dimensions. In the former instance an error
in a master could produce an inconsistency with the
application of the renormalization group formalism to
extract and encode the renormalization constants in the
respective β-functions and anomalous dimensions. ThegMOM scheme and issues related to it have become of
interest in recent years. Its prescription is that in theories
with a cubic interaction the 2-point functions and 3-point
vertex functions are renormalized by absorbing the finite
part of the respective divergent Green’s functions into the
wave function and coupling renormalization constants. In
the case of the 3-point functions the Feynman graphs are
evaluated where one of the external momenta is nullified. If
there are several fields leading to more than one 3-point
interaction then there will be a gMOM scheme attached to
each of the vertices. We will focus in this section on several
six dimensional renormalizable scalar cubic theories. The
first is the basic single field instance with Lagrangian

L ¼ 1

2
ð∂μϕÞ2 þ

g
6
ϕ3: ð3:1Þ

As far as we are aware the gMOM scheme renormalization
group functions for (3.1) are not yet available although
the five loop renormalization group functions are known in
the MS scheme [17,25,26,41–43]. It is worth recording
these for completeness since they are needed as the
foundation for deriving the gMOM five loop equivalent
renormalization group functions. For completeness we
recall [17,25,26,41–43]
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βϕ
3

MS
ðaÞ ¼ 3

4
a2 −

125

144
a3 þ 5½2592ζ3 þ 6617� a4

20736

þ ½−4225824ζ3 þ 349920ζ4 þ 1244160ζ5 − 3404365� a5

746496

þ ½41570496ζ23 þ 356380884ζ3 − 33912351ζ4 þ 295089480ζ5 þ 15746400ζ6

− 576843120ζ7 þ 102052031� a6

6718464
þOða7Þ;

γϕ
3

ϕ;MS
ðaÞ ¼ −

1

12
aþ 13

432
a2 þ ½2592ζ3 − 5195� a3

62208

þ ½10080ζ3 þ 18144ζ4 − 69120ζ5 þ 53449� a4

248832

þ ½−3499200ζ23 − 18368532ζ3 − 4119579ζ4 þ 8691624ζ5 − 8748000ζ6

þ 46294416ζ7 − 16492987� a5

20155392
þOða6Þ; ð3:2Þ

where a ¼ g2, and we note the parameters will always be in
the same scheme as that indicated on the renormalization
group function itself. In situations where otherwise there
might be an ambiguous interpretation, the parameters will
carry the scheme label explicitly. We note the same
conventions for the coupling constant as that of [17] are
used here rather than those of [27]. The expressions of (3.2)
can readily be mapped to the conventions of [26] via
a → −a. We recall that the gMOM renormalization pre-
scription is to remove the finite parts of both the 2- and
3-point functions at the subtraction point and absorb them

into the respective wave function and coupling renormal-
ization constants. For the 3-point function one of the two
independent external momenta is set to zero when the
vertex function is evaluated. In this configuration the
3-point function is equivalent to a 2-point one whence
the FORCER algorithm can be applied. We have first
checked that the four loop MS results of (3.2) are
reproduced. This also provides an initial check on the
six dimensional FORCER masters in a field theory calcu-
lation. Consequently it is straightforward to deduce thegMOM scheme renormalization group functions which are

βϕ
3gMOM

ðaÞ ¼ 3

4
a2 −

125

144
a3 þ ½−1296ζ3 þ 26741� a4

10368

þ ½−1370736ζ3 þ 2177280ζ5 − 2304049� a5

186624

þ ½389670912ζ23 þ 3307195440ζ3 þ 89151840ζ5 − 5640570432ζ7

þ 2190456157� a6

26873856
þOða7Þ;

γϕ
3

ϕ;gMOM
ðaÞ ¼ −

1

12
aþ 37

432
a2 þ ½−1296ζ3 − 4435� a3

31104

þ ½122256ζ3 þ 155520ζ5 þ 135149� a4

559872

þ ½6718464ζ23 − 51538896ζ3 − 108669600ζ5 − 185177664ζ7

þ 38661817� a5

80621568
þOða6Þ: ð3:3Þ

Over several years there has been interest in which
elements of the ζn sequence appear in the renormalization
group functions in four dimensions [27–34]. In the MS
scheme ζn is present at successive loop orders with n ≥ 3

where the loop order that ζ3 first occurs depends on the
underlying theory. It transpires that in the gMOM prescrip-
tion in four dimensions only ζ2nþ1 for 1 ≤ n ≤ 3 appears to
five loops. In other words ζ4 and ζ6 are absent. A similar
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feature arises in six dimensional ϕ3 theory as is apparent in
(3.3). So the basic four dimensional property of the gMOM
scheme is preserved in another spacetime dimension.
The results of (3.3) were derived from a basic property of

the renormalization group equation which relates the
renormalization group functions in one scheme to those
in another. For a single coupling theory such as (3.1) there
is a simple relation between the coupling constant in one
scheme to that in another which is derived from the relation
of each coupling to the bare one which formally gives

ggMOM
ðμÞ ¼ ZMS

g

ZgMOM
g

gMSðμÞ: ð3:4Þ

The right-hand side is interpreted as being a function of gMS

although ZgMOM
g is a function of ggMOM

. In other words

ZgMOM
g ≡ ZgMOM

g

�
agMOM

ðaMSÞ
� ð3:5Þ

with the explicit gMS dependence being deduced via an
iterative process. Such a change of variables is necessary as
otherwise the relation (3.4) would have singularities in ϵ.
Once the mapping is available at four loops then the five
loop β-function can be found from

βϕ
3gMOM

ðagMOM
Þ ¼

�
βϕ

3

MS
ðaMSÞ

∂agMOM

∂aMS

�
MS→gMOM

: ð3:6Þ

The restriction indicates that the coupling constant, which
would otherwise be in the MS scheme, has to be mapped to
the gMOM scheme from the inverse of (3.4). A similar
process is applied to determine the five loop field anoma-
lous dimension using the conversion function defined by

Cϕ3

ϕ ðaMSÞ ¼
�
ZgMOM
ϕ

ZMS
ϕ

�
gMOM→MS

ð3:7Þ

where the coupling a in conversion functions will always
be an MS variable, and the relation

γϕ
3

ϕ gMOM
ðagMOM

Þ

¼
�
γϕ

3

ϕMS
ðaMSÞ þ βϕ

3

MS
ðaMSÞ

∂

∂aMS

lnCϕ3

ϕ ðaMSÞ
�
MS→gMOM

ð3:8Þ

uses the same process as that to determine the β-function.
To assist with verifying (3.3) we record the relevant

explicit expressions are

agMOM
¼ aMS −

4

3
a2
MS

þ ½−1728ζ3 þ 8005�
a3
MS

1728

þ ½659232ζ3 − 116640ζ4 þ 2488320ζ5 − 7758845�
a4
MS

373248

þ ½11384064ζ23 þ 69803208ζ3 þ 6620292ζ4 − 120916800ζ5 − 2332800ζ6

− 123451776ζ7 þ 262216343�
a5
MS

2239488
þOða6

MS
Þ ð3:9Þ

and

Cϕ3

ϕ ðaÞ ¼ 1þ 2

9
a −

511

1728
a2 þ ½−6240ζ3 − 2592ζ4 þ 122099� a3

124416

þ ½−46656ζ23 − 2058228ζ3 − 299862ζ4 þ 2251152ζ5 þ 583200ζ6 − 12882121� a4

3359232
þOða5Þ: ð3:10Þ

As it sometimes turns out to be useful, for completeness we note the coupling constant conversion function is

Cϕ3

g ðaÞ ¼ 1þ 2

3
aþ ½1728ζ3 − 5701� a2

3456

þ ½87264ζ3 þ 116640ζ4 − 2488320ζ5 þ 4853645� a3

746496

þ ½−155271168ζ23 − 1372972032ζ3 − 83529792ζ4 þ 1456911360ζ5 þ 37324800ζ6

þ 1975228416ζ7 − 2620417103� a4

71663616
þOða5Þ ð3:11Þ
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to the same order where

Cϕ3

g ðaMSÞ ¼
�
ZgMOM
g

ZMS
g

�
MS→gMOM

: ð3:12Þ

We can extend the five loop gMOM study of the cubic
scalar theory to the case where there is an OðNÞ symmetry.
In this case there are two coupling constants since the
renormalizable Lagrangian is [15,16]

L ¼ 1

2
ð∂μϕiÞ2 þ 1

2
ð∂μσÞ2 þ

g1
2
σϕiϕi þ g2

6
σ3 ð3:13Þ

where we use the same conventions as [17]. The original
single field cubic theory is clearly recovered in the limit
g1 → 0 in (3.13). To determine the OðNÞ ϕ3 gMOM
renormalization group functions, we follow the same
procedure as before by constructing the four loop con-
version function but with the formalism extended to
accommodate two coupling constants. For instance the
relation between the coupling constants in the respective
schemes is

g
i gMOM

ðμÞ ¼ ZMS
gi

ZgMOM
gi

giMSðμÞ ð3:14Þ

for i ¼ 1 and 2 where there is no summation over i. Then
simply differentiating with respect to the renormalization
scale μ leads to

βOðNÞ
igMOM

ðggMOM
Þ¼

�X2
j¼1

βOðNÞ
jMS

ðgMSÞ
∂ggMOM

i

∂gMS
j

�
MS→gMOM

ð3:15Þ

where the scheme of the coupling constants now appears as
subscripts. The scheme label is included to avoid ambiguity
as there is a mapping of variables. To deduce the five loop
anomalous dimensions the conversion functions for the two
fields are given by

COðNÞ
ϕ ðgMSÞ ¼

�
ZgMOM
ϕ

ZMS
ϕ

�
gMOM→MS

;

COðNÞ
σ ðgMSÞ ¼

�
ZgMOM
σ

ZMS
σ

�
gMOM→MS

ð3:16Þ

where the restriction indicates that the argument of each
conversion function is expressed in terms of the MS
variables as the reference scheme. The explicit expressions
for the gMOM anomalous dimensions are derived from

γOðNÞ
ϕ gMOM

ðggMOM
Þ ¼

�
γOðNÞ
ϕMS

ðgMSÞ þ
X2
i¼1

βOðNÞ
iMS

ðgMSÞ
∂

∂giMS

ln

�
COðNÞ
ϕ ðgMSÞ

��
MS→gMOM

γOðNÞ
σ gMOM

ðggMOMÞ ¼
�
γOðNÞ
σMS

ðgMSÞ þ
X2
i¼1

βOðNÞ
iMS

ðgMSÞ
∂

∂giMS

ln

�
COðNÞ
σ ðgMSÞ

��
MS→gMOM

: ð3:17Þ

The final stage of the process is to recall that the OðNÞ ϕ3

MS five loop renormalization group functions are avail-
able from [25]. In addition we have carried out the explicit
four loop renormalization of (3.13) in the gMOM scheme
which allows us to determine the field conversion func-
tions and coupling constant mappings to four loops. With
these we have established the OðNÞ five loop gMOM
renormalization group functions. The main motivation for
doing so is to ascertain whether there are any terms

involving ζ4 or ζ6 which are absent in the single coupling
case for (3.1). We find the same outcome, in keeping with
the analysis of [33], in that ζ4 or ζ6 are absent from each of
the four renormalization group functions for all N. The
full expressions together with the conversion functions
and coupling constant mappings are provided in [44] but
we have provided the two β-functions in Appendix B. By

way of example the expressions for the γOðNÞ
σ gMOM

ðg1; g2Þ and
βOðNÞ
1 gMOM

ðg1; g2Þ for N ¼ 2 are

γOð2Þ
σ gMOM

ðg1; g2Þ ¼
�
−
1

6
g21 −

1

12
g22

�
þ
�
−

11

216
g21g

2
2 þ

4

9
g31g2 þ

13

108
g41 þ

37

432
g42

�
þ
�
−

4435

31104
g62 −

1247

1296
g41g

2
2 −

505

972
g61 −

89

216
g51g2 −

83

324
g31g

3
2 −

5

12
ζ3g41g

2
2

−
1

6
ζ3g61 −

1

24
ζ3g62 þ

169

1944
g21g

4
2

�
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þ
�
−

26969

139968
g21g

6
2 −

439

648
ζ3g61g

2
2 −

23

162
ζ3g21g

6
2 −

11

432
ζ3g31g

5
2 þ

5

18
ζ5g82

þ 20

9
ζ5g41g

4
2 þ

20

9
ζ5g81 þ

40

9
ζ5g61g

2
2 þ

127

324
ζ3g81 þ

139

54
ζ3g71g2

þ 283

1296
ζ3g82 þ

1279

1296
ζ3g41g

4
2 þ

2486

729
g71g2 þ

24283

46656
g31g

5
2 þ

55901

69984
g61g

2
2

þ 68407

69984
g81 þ

101983

46656
g51g

3
2 þ

135149

559872
g82 þ

170393

279936
g41g

4
2 þ 3ζ3g51g

3
2

�
þ
�
−
18870089

40310784
g21g

8
2 −

10106999

5038848
g81g

2
2 −

453335

157464
g101 −

119303

186624
ζ3g102

−
98207

7776
ζ3g51g

5
2 −

43223

11664
ζ3g61g

4
2 −

20011

1944
ζ3g91g2 −

18665

2592
ζ5g41g

6
2

−
13975

10368
ζ5g102 −

10157

3888
ζ3g81g

2
2 −

8815

216
ζ5g91g2 −

5755

108
ζ5g71g

3
2

−
4555

1296
ζ3g71g

3
2 −

2585

1296
ζ5g101 −

2401

32
ζ7g81g

2
2 −

1323

32
ζ7g61g

4
2 −

755

144
ζ5g31g

7
2

−
539

32
ζ7g41g

6
2 −

441

16
ζ7g101 −

147

64
ζ7g102 −

95

27
ζ5g51g

5
2 −

4

27
ζ3g31g

7
2

−
1

6
ζ23g

5
1g

5
2 −

1

12
ζ23g

2
1g

8
2 −

1

12
ζ23g

6
1g

4
2 þ

1

3
ζ23g

3
1g

7
2 þ

1

12
ζ23g

10
2 þ 5

6
ζ23g

9
1g2

þ 5

12
ζ23g

4
1g

6
2 þ

5

36
ζ23g

8
1g

2
2 þ

7

12
ζ23g

10
1 þ 11

3
ζ23g

7
1g

3
2 þ

1505

1296
ζ5g21g

8
2

þ 3665

1296
ζ5g81g

2
2 þ

10151

5184
g31g

7
2 þ

10255

1728
ζ5g61g

4
2 þ

13667

11664
ζ3g21g

8
2

þ 41861

11664
ζ3g101 þ 204311

93312
ζ3g41g

6
2 þ

652231

104976
g91g2 þ

5288099

20155392
g61g

4
2

þ 6725627

3359232
g51g

5
2 þ

24943961

1679616
g71g

3
2 þ

28840009

20155392
g41g

6
2 þ

38661817

80621568
g102

�
þOðg12i Þ ð3:18Þ

and

βOð2Þ
1 gMOM

ðg1; g2Þ ¼
�
−

1

24
g1g22 þ

1

2
g21g2 þ

1

4
g31

�
þ
�
−
337

432
g31g

2
2 −

59

72
g51 −

1

12
g21g

3
2 −

1

18
g41g2 þ

37

864
g1g42

�
þ
�
−

4435

62208
g1g62 −

1

6
ζ3g31g

4
2 −

1

48
ζ3g1g62 þ

1

2
ζ3g41g

3
2 þ

7

4
ζ3g71 þ

7

24
ζ3g51g

2
2

þ 559

1728
g21g

5
2 þ

2189

2592
g41g

3
2 þ

2803

1296
g71 þ

5075

2592
g51g

2
2 þ

6367

1296
g61g2

þ 7079

7776
g31g

4
2 − 3ζ3g61g2

�
þ
�
−
3188293

139968
g71g

2
2 −

1584779

46656
g81g2 −

843827

139968
g51g

4
2 −

721603

23328
g61g

3
2

−
482599

23328
g91 −

72569

15552
g31g

6
2 −

38011

31104
g21g

7
2 −

2579

1296
ζ3g71g

2
2 −

2339

1296
ζ3g31g

6
2

−
1931

108
ζ3g61g

3
2 −

1603

288
ζ3g51g

4
2 −

1253

54
ζ3g91 −

1189

864
ζ3g41g

5
2 −

613

24
ζ3g81g2
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−
35

9
ζ5g71g

2
2 −

5

2
ζ5g41g

5
2 þ

1

48
ζ3g21g

7
2 þ

5

36
ζ5g1g82 þ

70

3
ζ5g91

þ 85

18
ζ5g31g

6
2 þ

95

18
ζ5g51g

4
2 þ

130

3
ζ5g61g

3
2 þ

283

2592
ζ3g1g82 þ

325

6
ζ5g81g2

þ 135149

1119744
g1g82 þ

202163

186624
g41g

5
2

�
þ

�
2392700219

80621568
g31g

8
2 þ

3141423697

5038848
g91g

2
2 þ

10824707071

40310784
g71g

4
2

−
117194495

13436928
g41g

7
2 −

2042725

10368
ζ5g71g

4
2 −

713515

864
ζ5g91g

2
2

−
604061

31104
ζ3g41g

7
2 −

122227

96
ζ7g101 g2 −

119303

373248
ζ3g1g102 −

44255

864
ζ5g111

−
44009

32
ζ7g81g

3
2 −

42133

192
ζ7g71g

4
2 −

32977

96
ζ7g61g

5
2 −

32179

64
ζ7g91g

2
2

−
26125

2592
ζ5g31g

8
2 −

13975

20736
ζ5g1g102 −

10017

16
ζ7g111 −

9485

64
ζ7g51g

6
2

−
215

144
ζ5g21g

9
2 −

182

3
ζ7g31g

8
2 −

147

128
ζ7g1g102 þ 1

24
ζ23g1g

10
2 þ 17

24
ζ23g

4
1g

7
2

þ 65

12
ζ23g

5
1g

6
2 þ

287

8
ζ23g

11
1 þ 287

72
ζ23g

3
1g

8
2 þ

293

12
ζ23g

6
1g

5
2 þ

1085

12
ζ23g

10
1 g2

þ 1477

96
ζ7g41g

7
2 þ

1601

72
ζ23g

7
1g

4
2 þ

1679

24
ζ23g

8
1g

3
2 þ

3725

432
ζ5g61g

5
2

þ 7391

10368
ζ3g21g

9
2 þ

15881

432
ζ3g31g

8
2 þ

18805

864
ζ5g41g

7
2 þ

29225

108
ζ5g101 g2

þ 158255

288
ζ5g81g

3
2 þ

190625

5184
ζ5g51g

6
2 þ

663761

1296
ζ3g101 g2 þ

1065955

5832
ζ3g71g

4
2

þ 2616893

15552
ζ3g61g

5
2 þ

3783533

7776
ζ3g111 þ 9270535

15552
ζ3g81g

3
2

þ 16931831

23328
ζ3g91g

2
2 þ

17933611

186624
ζ3g51g

6
2 þ

31673845

4478976
g21g

9
2

þ 38661817

161243136
g1g102 þ 46773469

373248
g81g

3
2 þ

82651885

419904
g111 þ 155899681

419904
g101 g2

þ 351087313

2239488
g61g

5
2 þ

427400711

40310784
g51g

6
2 þ 72ζ23g

9
1g

2
2

�
þOðg13i Þ: ð3:19Þ

One check on the full OðNÞ gMOM results is that the
respective expressions of (3.2) correctly emerged in the
g1 → 0 limit.
Having evaluated the four loop FORCER masters to high

order in powers of ϵ we can study the properties of a

scheme that is not unrelated to the gMOMone. In the gMOM
prescription the finite part of the Green’s function at the
subtraction point is absorbed into the respective renorm-
alization constants. One natural extension of this pre-
scription is to not only absorb the finite or Oð1Þ part with
respect to ϵ but also the higher order terms in the ϵ
expansion. By introducing such a scheme one is in effect
absorbing the full structure of the underlying Feynman
graphs determined as a function of the regularizing

parameter. In other words one subtracts all properties
of the quantum corrections. This may appear to be an
unusual prescription and there is no clear expectation as to
what it means for the properties of the resultant renorm-
alization group functions. However it is an easy algebraic
exercise to pursue in this toy scalar field theory in order to
explore the consequences. There is the tacit assumption
that whatever transpires in this example ought to have
exact parallels in four dimensional theories in much the
same way that the even zetas are absent in the gMOM
scheme for theories in both four and six dimensions to a
specific loop order. As this prescription is the polar
opposite to the MS one we will term this new scheme
the maximal subtraction scheme and denote it by MaxS
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where the overline retains the nod to the absence of ζ2 in
the MS renormalization group functions. Therefore we
have repeated the procedure that resulted in the gMOM
renormalization group functions of (3.3). In other words
we have applied the MaxS prescription to the 2- and
3-point functions and deduced the respective coupling and

wave function renormalization constants before construct-
ing the coupling constant map and the wave function
conversion function. Retaining the higher order terms in ϵ
necessarily involved an additional quantity of intermedi-
ate algebra. However, we were able to determine that the
two MaxS renormalization group functions are

βϕ
3

MaxS
ðaÞ ¼ 3

4
a2 −

125

144
a3 þ ½−1296ζ3 þ 26741� a4

10368

þ ½−1370736ζ3 þ 2177280ζ5 − 2304049� a5

186624

þ ½389670912ζ23 þ 3307195440ζ3 þ 89151840ζ5 − 5640570432ζ7 þ 2190456157� a6

26873856
þOða7Þ;

γϕ
3

ϕ;MaxS
ðaÞ ¼ −

1

12
aþ 37

432
a2 þ ½−1296ζ3 − 4435� a3

31104

þ ½122256ζ3 þ 155520ζ5 þ 135149� a4

559872

þ ½6718464ζ23 − 51538896ζ3 − 108669600ζ5 − 185177664ζ7 þ 38661817� a5

80621568
þOða6Þ: ð3:20Þ

What is interesting is that the expressions are formally the
same as the respective gMOM ones to five loops. This is not
unexpected given that even zeta contributions were absent
in the gMOM scheme renormalization group functions but
are present in the Oðϵ0Þ part of the gMOM and MaxS
renormalization constants. The higher order MaxS ϵ terms
will involve the subsequent terms of the ζ-series as well as
rationals. Such higher order zeta contributions cannot for
instance appear in the renormalization group functions
before a certain loop order. This is preserved naturally in
the MaxS scenario. Where the difference in the gMOM and
MaxS renormalization group functions would be manifest
is in the ultimate step that results in (3.20). That step is to
set the regularizing parameter, ϵ, to zero. Prior to that the
renormalization group functions are ϵ dependent with the
coefficients of ϵ being in a direct relationship with the
constant and OðϵÞ terms of the respective renormalization
constants. In the case of the gMOM scheme the dependence
on ϵwould be linear in contrast to the structure of the MaxS
renormalization group functions. In that instance the
coefficients of a would be an infinite series in ϵ. However
for practical reasons in our construction we restricted our
analysis to weight 9 as that was the weight we determined
the six dimensional FORCER masters to. What this exercise
has revealed in addition to the above is that the gMOM and
MaxS schemes are synonymous in the critical dimension of
ϕ3 theory. Moreover at least to five loops, the gMOM

scheme is equivalent to the scheme where the full Feynman
integrals themselves are completely subtracted at the
renormalization point which is something we believe has
not been examined previously.

IV. ABELIAN GAUGE THEORIES

Having established the usefulness of the four loop FORCER

masters in the cubic scalar theory we devote this section to
extending their application to gauge theories in six dimen-
sions. In particular our focus here will be on Abelian gauge
theories as these are of interest in [21]. The aim is to extend
the renormalization of both quantum electrodynamics
(QED) and scalar QED (sQED) to four loops. First we
recall the QED Lagrangian in six dimensions is [21]

Lð6Þ
����
QED

¼ iψ̄ i=Dψ i −
1

4
ð∂μFνσÞð∂μFνσÞ

−
1

2α
ð∂μ∂νAνÞð∂μ∂σAσÞ; ð4:1Þ

where g is the gauge coupling constant, α is the gauge
parameter, Fμν ¼ ∂μAν − ∂μAν, Aμ is the photon and ψ i is
the electron with 1 ≤ i ≤ Nf. The linear gauge fixing term is
such that the photon propagator takes the form

hAμðpÞAνð−pÞi ¼ −
1

ðp2Þ2
�
ημν − ð1 − αÞpμpν

p2

�
: ð4:2Þ
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We note that the second order pole in the propagator is not
infrared pathological in six dimensions as it would be
in four dimensions. Moreover it is not an obstruction
to extending the three loop renormalization group

functions to the next order using FORCER. Since we have
followed the same algorithm that produced the renormaliza-
tion group functions of the previous section for ϕ3 theory, we
record the equivalent QED four loop results are

βQED
MS

ðg; αÞ ¼ −
2Nf

15
g3 −

19Nf

27
g5 þ 17½−111Nf þ 200� Nfg7

12150

þ ½170362N2
f þ 17107200ζ3Nf − 14025425Nf − 7500000� Nfg9

8201250
þOðg11Þ;

γQED
A;MS

ðg; αÞ ¼ −
4Nf

15
g2 −

38Nf

27
g4 þ 17½−111Nf þ 200�Nfg6

6075

þ ½170362N2
f þ 17107200ζ3Nf − 14025425Nf − 7500000� Nfg8

4100625
þOðg10Þ;

γQED
α;MS

ðg; αÞ ¼ −γQED
A;MS

ðg; αÞ;

γQED
ψ ;MS

ðg; αÞ ¼ ½3αþ 5� g
2

6
þ 2½32Nf − 125� g4

135

þ ½2864N2
f − 648000ζ3Nf þ 730375Nf þ 1944000ζ3 − 1033000� g6

243000

þ ½−518400ζ3N3
f − 25824N3

f − 43156800ζ3N2
f þ 17496000ζ4N2

f þ 28663075N2
f

− 1560999600ζ3Nf − 52488000ζ4Nf þ 3061800000ζ5Nf − 1179131300Nf

þ 1552770000ζ3 − 3061800000ζ5 þ 1003751250� g8

16402500
þOðg10Þ;

γQED
m;MS

ðgÞ ¼ −
5

3
g2 − ½68Nf þ 25� g4

135

þ ½13456N2
f þ 648000Nfζ3 − 818575Nf þ 1215000ζ3 − 726875� g6

121500

þ ½518400N3
fζ3 − 216384N3

f þ 31492800N2
fζ3 − 17496000N2

fζ4 − 6336415N2
f

− 137011500Nfζ3 − 32805000Nfζ4 þ 656100000Nfζ5 − 318912625Nf

þ 2574281250ζ3 − 4538025000ζ5 þ 845045625� g8

8201250
þOðg10Þ ð4:3Þ

in the MS scheme. We note that the β-function is derived
from the Ward-Takahashi identity

β1ðgÞ ¼
g
2
γAðg; αÞ ð4:4Þ

to four loops. The previous three loop results of [22] are
recovered partially verifying our procedure. Another check
is that the electron anomalous dimension has the same
feature as four dimensional QED in that the only depend-
ence on the gauge parameter α is in the one loop term.
Interesting properties of this renormalization group func-
tion in four dimensional QED were initially discussed in
[45,46] in the on-shell renormalization scheme. There it
was noted that the anomalous dimension was gauge

independent. Subsequently it was shown in [47] that in
the MS scheme the gauge parameter of a linear covariant
gauge fixing appears only in the one loop term of the
electron anomalous dimension in four dimensional QED.
That analysis made use of a Landau-Khalatnikov-Fradkin
(LKF) transformation [48,49] and this formalism should be
equally applicable to establish the same property in scalar
QED. In more recent years the absence of α in the two and
higher order corrections in four dimensions was examined
from the Hopf algebra point of view in [50–52]. It seems
clear that the LKF transformation approach as well as the
graphical and algebraic arguments could be extended to the
six dimensional theory of (4.1). The expression for

γQED
ψ ;MS

ðg; αÞ in (4.3) would support that expectation. Any
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proof that α only appears at one loop in the MS electron
anomalous dimension though should probably be con-
structed in a way that is applicable to all even dimensions
beginning from four. This is simply because it is known that
the same property is present at two loops in eight dimen-
sional QED [22]. However such a proof is beyond the scope
of the current article.
In light of the discussion concerning the location of the set

of numbers ζn of the previous section, we recall that the MS

β-function has the same property as its four dimensional
counterpart in that ζ3 is absent at three loops but appears for
the first time at four loops which is a consequence of gauge
symmetry. By contrast ζ3 is present in the three loop MS
β-function of ϕ3 theory as well as in the gMOM scheme.
Thereforewe have repeated the renormalization of (4.1) in thegMOM scheme to ascertain whether ζ3 first appears at three or
four loops. We found the analogous expressions to (4.3) are

βQEDgMOM
ðg; αÞ ¼ −

2Nf

15
g3 −

19Nf

27
g5 þ ½2592ζ3Nf − 2889Nf þ 1700�Nfg7

6075

þ ½165888ζ3N2
f − 306876N2

f þ 4976640ζ3Nf − 4665600ζ5Nf

− 692335Nf − 500000� Nfg9

546750
þOðg11Þ;

γQED
A;gMOM

ðg; αÞ ¼ −
4Nf

15
g2 −

38Nf

27
g4 þ 2½2592ζ3Nf − 2889Nf þ 1700�Nfg6

6075

þ ½165888ζ3N2
f − 306876N2

f þ 4976640ζ3Nf − 4665600ζ5Nf

− 692335Nf − 500000� Nfg8

273375
þOðg10Þ;

γQED
α;gMOM

ðg; αÞ ¼ −γQED
A;gMOM

ðg; αÞ;

γQED
ψ ;gMOM

ðg; αÞ ¼ ½3αþ 5� g
2

6
þ 2½4Nf − 25� g

4

27

þ ½976N2
f − 675αNf þ 8555Nf þ 38880ζ3 − 20660� g6

4860

þ ½54675α2Nf − 97200ζ3α
2Nf þ 103680ζ3αN2

f − 144720αN2
f − 324000ζ3αNf

þ 81000αNf þ 150528N3
f − 1731456ζ3N2

f þ 3643432N2
f − 72595440ζ3Nf

þ 139968000ζ5Nf − 59802795Nf þ 82814400ζ3 − 163296000ζ5

þ 53533400� g8

874800
þOðg10Þ;

γQED
m;gMOM

ðg; αÞ ¼ −
5

3
g2 − ½Nf þ 5� g

4

27

þ ½1215αNf − 1184N2
f þ 5184Nfζ3 − 12613Nf þ 48600ζ3 − 29075� g6

4860

þ ½194400α2Nfζ3 − 103275α2Nf − 207360αN2
fζ3 þ 136080αN2

f

þ 1069200αNf − 4992N3
f þ 2094336N2

fζ3 − 4752992N2
f þ 10886400Nfζ3

þ 9331200Nfζ5 − 29410965Nf þ 274590000ζ3 − 484056000ζ5

þ 90138200� g8

874800
þOðg10Þ: ð4:5Þ

Clearly ζ3 arises for the first time at three loops more in keeping with ϕ3 theory and similar to the properties of the gMOM
scheme renormalization group functions in four dimensional gauge theories. One other feature of (4.5) is that unlike
γQED
ψ ;MS

ðg; αÞ there is α dependence in γQED
ψ ;gMOM

ðg; αÞ beyond one loop. However it first appears at three loops, like gMOM
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schemes in four dimensional QED, rather than at two loops
for the MOM schemes of Celmaster and Gonsalves [53,54].
The contrast in this structural difference may be attributed
to the difference in the underlying renormalization pre-
scription. For instance in the gMOM suite of schemes the
subtraction for 3-point functions is carried out at a point
where one of the external legs has its momentum nullified.
By contrast for the MOM schemes of [53,54] the pre-
scription is that the vertex subtraction is enacted at the fully
symmetric point where the squared momenta of all three
external legs are nonzero and equal. So it would appear that
the properties of the vertex kinematics has a bearing on the
structure of the renormalization group functions and in
particular this is manifest in the electron renormalization in
an Abelian theory.

It is worth examining whether these observations are
peculiar to six dimensional QED or a more general feature.
Therefore to explore this we have repeated the above QED
analysis but for the version where the fermions are replaced
by a scalar field ϕi. The corresponding Lagrangian is

LsQED¼Dμϕ
iDμϕi−

1

4
∂μFνσ∂

μFνσ−
1

2α
ð∂μ∂νAνÞð∂μ∂σAσÞ

ð4:6Þ

which is the ultraviolet compeletion of four dimensional
scalar QED where 1 ≤ i ≤ Nf. Carrying out the renorm-
alization process we find that the MS renormalization
group functions are

βsQED
MS

ðgÞ ¼ −
Nf

60
g3 −

37Nf

216
g5 − ½1017Nf þ 59600� Nfg7

97200

þ ½214131600ζ3Nf − 407787250Nf − 282521N2
f þ 118098000ζ3

− 456939750� Nfg9

1049760000
þOðg11Þ;

γsQED
A;MS

ðg; αÞ ¼ −
Nf

30
g2 −

37Nf

108
g4 − ½1017Nf þ 59600� Nfg6

48600

þ ½214131600ζ3Nf − 407787250Nf − 282521N2
f þ 118098000ζ3

− 456939750� Nfg8

524880000
þOðg10Þ;

γsQED
α;MS

ðg; αÞ ¼ −γsQED
A;MS

ðg; αÞ;

γsQED
ϕ;MS

ðg; αÞ ¼ ½3α − 10� g
2

6
þ ½−98Nf þ 1375� g4

1080

þ ½662N2
f þ 648000ζ3Nf − 1430875Nf þ 1458000ζ3 þ 516500� g6

972000

þ ½12960ζ3N3
f − 2382N3

f þ 8631360ζ3N2
f − 3499200ζ4N2

f − 12293840N2
f

− 1435890240ζ3Nf − 7873200ζ4Nf þ 2536920000ζ5Nf − 470052370Nf

þ 1663578000ζ3 þ 2274480000ζ5 − 3242042625� g8

104976000

þOðg10Þ: ð4:7Þ

The lower loop expressions are in agreement with [55,56].
As another check we have computed the critical exponents
for the scalar electron and the photon from (4.7) in powers of
1=Nf at the Wilson-Fisher fixed point of the β-function in
d ¼ 6 − 2ϵ dimensions. These were compared with the
direct large Nf expansion of the same quantities computed

in the underlying universal theory in d-dimensions in [55].
Expanding the results of [55] to Oðϵ3Þ we find exact
agreement. From a careful comparison it is evident the
properties of (4.3) that were highlighted earlier are the same
for (4.7). The same situation occurs for the four loop gMOM
renormalization group functions which we determined as
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βsQEDgMOM
ðg; αÞ ¼ −

Nf

60
g3 −

37Nf

216
g5 þ ½648ζ3Nf − 1701Nf − 59600� Nfg7

97200

þ ½6480ζ3N2
f − 18039N2

f þ 2610792ζ3Nf − 933120ζ5Nf

− 3049985Nf þ 787320ζ3 − 3046265� Nfg9

6998400
þOðg11Þ;

γsQED
A;gMOM

ðg; αÞ ¼ −
Nf

30
g2 −

37Nf

108
g4 þ ½648ζ3Nf − 1701Nf − 59600� Nfg6

48600

þ ½6480ζ3N2
f − 18039N2

f þ 2610792ζ3Nf − 933120ζ5Nf

− 3049985Nf þ 787320ζ3 − 3046265� Nfg8

3499200
þOðg10Þ;

γsQED
α;gMOM

ðg; αÞ ¼ −γsQED
A;gMOM

ðg; αÞ;

γsQED
ψ ;gMOM

ðg; αÞ ¼ ½3α − 10� g
2

6
þ ½−4Nf þ 275� g4

216

þ ½270αNf − 49N2
f − 648ζ3Nf − 1684Nf þ 14580ζ3 þ 5165� g6

9720

þ ½194400α2ζ3Nf − 97200α2Nf − 25920αζ3N2
f þ 17280αN2

f − 1296000αζ3Nf

þ 2349000αNf − 1176N3
f þ 222912ζ3N2

f − 1008229N2
f − 160535520ζ3Nf

þ 218116800ζ5Nf − 7940520Nf þ 110905200ζ3 þ 151632000ζ5

− 216136175� g8

6998400
þOðg10Þ: ð4:8Þ

The emergence of the same ζn and α structures for both
theories only reinforces the notion that the kinematics of the
vertex subtraction point have an influence on the scheme
dependent parts of the renormalization group functions.
Although this was already apparent in theMOM schemes of
[53,54], the new insight here is that the α dependence of the
MOMand gMOMschemes is dependent onwhether there is a
nullification of an external vertex leg or not. Finally we note
that like ϕ3 theory, the Abelian gauge theory gMOM scheme
renormalization group functions are devoid of even zetas to
the order we have calculated to in complete agreement with
four dimensional studies [27–34]. While there are clear
similarities with the zeta structure of four dimensional
theories, a formal proof of the absence of even zetas in
six dimensions may only be possible if, for instance, the
approach using the KLF formalism for massless correlation
functions of [57] could be generalized to six dimensions.
To the high loop orders discussed here and other places
[27–34], this may not be as straightforward as it would seem
at first. For instance in the context of the explicit calculations
carried out here one would have to establish that there is no
primitive graph that arises as a FORCER master at very high
loop order whose simple pole residue is an even power of π.
However there is some evidence in four dimensions [58] that
there may be one or more such primitive graphs at weight 12
whose residue involves ζ12. If such an integral remained in
the determination of the renormalization constant of a

massless correlation function then the no-π theorem
of [30–32] may need to be revisited. Similar reasoning
should equally apply to six dimensions.

V. SIX DIMENSIONAL QCD

Next we turn to the six dimensional version of QCD that
has been studied at one and two loops in [14,22,59]. We
will use the Lagrangian of [22] which is

Lð6Þ ¼ −
1

4
ðDμGa

νσÞðDμGaνσÞ þ g2
6
fabcGa

μνGbμσGcν
σ

−
1

2α
ð∂μ∂νAa

νÞð∂μ∂σAa
σÞ − c̄a□ð∂μDμcÞa þ iψ̄ iI=Dψ iI

ð5:1Þ

where the gauge coupling g1 is embedded in the covariant
derivative and field strength Ga

μν and the indices lie in the
ranges 1 ≤ i ≤ Nf, 1 ≤ a ≤ NA and 1 ≤ I ≤ NF with
NF and NA corresponding to the dimension of the funda-
mental and adjoint representations of the color group
respectively and Nf is the number of quarks. The operator
associated with g2 is sometimes referred to as a spectator.
In [14,59] the Lagrangian took different forms. This is
because there are three possible gauge invariant dimension
six operators but only two are independent in the action
which can be deduced from the Bianchi identity and
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integration by parts. The renormalization group functions
of one formulation of the Lagrangian can be translated to
those of another via [14]

ðDμGa
μσÞðDνGaνσÞ ¼ 1

2
ðDμGa

νσÞðDμGaνσÞ
þ g1fabcGa

μνGbμσGcν
σ ð5:2Þ

which is used to connect the respective coupling constants.
The gauge fixing terms have been chosen to ensure the
gluon and ghost dimensions match. The one and two
loop renormalization of (5.1) was carried out in the MS
scheme by a direct computation of Feynman integrals.
Subsequently the one loop renormalization for a more
general version of (5.1) was performed using the heat
kernel expansion in [14]. Included for instance in that
generalization were scalar fields as well as others that
matched the field content of the supersymmetric extension.
Taking the limit of the one loop results of [14] to recover
the field content of (5.1) and using the relation between the
coupling constants of both formulation that results from
(5.2) produced agreement between the β-function at this
one loop order. Given that we now have a six dimensional
version of FORCER it is possible to extend results for the
renormalization group functions to three loops. This
required the renormalization of the gluon, ghost and quark
2-point functions and, to extract the gauge coupling
β-function, the ghost-gluon vertex. Additionally we renor-
malized the quark mass operator. The number of graphs
that were evaluated are recorded in Table I. To initiate the
automatic Feynman integration process requires the com-
pilation of the electronic representation of the graphs. This
was effected with QGRAF, [60]. At the outset we need to be
clear and record the fact that with FORCER it is not possible
to deduce the three loop β-function of the nongauge

coupling g2. To do so requires the renormalization of the
triple gluon vertex. The structure of the triple gluon vertex
Feynman rule will involve both g1 and g2 in contrast to the
ghost-gluon vertex that only contains g1. So by determining
the renormalization of g1 from the ghost vertex that of g2
can only be deduced from the triple gluon vertex renorm-
alization. However as the cubic term of (5.1) involves the
product of Ga

μν nullifying any external leg of the triple
gluon vertex Feynman rule, the terms involving g2 vanish
identically. Therefore FORCER cannot be employed.
Moreover rewriting the cubic operator of (5.1) to redefine
it in terms of the other two operators of (5.2) produces the
same outcome. Any nullification of an external gluon
momentum in the resultant triple gluon Feynman rule
excludes access to the nongauge coupling constant. The
only route to find the β-function for g2 is to evaluate the
triple gluon vertex at a nonexceptional momentum con-
figuration such as the symmetric point one that was
employed in [22]. At three loops this is clearly beyond
the scope of the present article.
Having explained the background to the renormalization

of (5.1), we record the MS renormalization group func-
tions. For the gauge coupling β-function we have

β1ðg1; g2Þ ¼ −½249CA þ 16NfTF�
g31
120

þ ½−50682C2
Ag

3
1 þ 2439C2

Ag
2
1g2 þ 3129C2

Ag1g
2
2 − 315C2

Ag
3
2 − 1328CANfTFg31

− 624CANfTFg21g2 þ 96CANfTFg1g22 − 3040CFNfTFg31�
g21

4320

þ ½−7464290865C3
Ag

6
1 þ 1091499579C3

Ag
5
1g2 þ 809468904C3

Ag
4
1g

2
2

− 141762510C3
Ag

3
1g

3
2 − 15628455C3

Ag
2
1g

4
2 þ 1812375C3

Ag1g
5
2

þ 94500C3
Ag

6
2 − 495581080C2

ANfTFg61 − 66132288C2
ANfTFg51g2

þ 63346632C2
ANfTFg41g

2
2 − 1733040C2

ANfTFg31g
3
2 − 652320C2

ANfTFg21g
4
2

− 411047360CACFNfTFg61 − 37440000CACFNfTFg51g2

þ 14592000CACFNfTFg41g
2
2 þ 987520CAN2

fT
2
Fg

6
1 − 4732416CAN2

fT
2
Fg

5
1g2

þ 728064CAN2
fT

2
Fg

4
1g

2
2 þ 17408000C2

FNfTFg61

− 9661440CFN2
fT

2
Fg

6
1�

g1
62208000

þOðg9i Þ: ð5:3Þ

TABLE I. Number of Feynman diagrams computed for various
Green’s functions at L loops.

Green’s function L ¼ 1 L ¼ 2 L ¼ 3 Total

Aa
μAb

ν 3 18 267 288
cac̄b 1 6 78 85
ψψ̄ 1 6 78 85
cac̄bAc

σ 2 33 702 737

Total 7 63 1125 1195
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As all the results in this section will be in the MS scheme, we do not include the scheme label on the renormalization group
functions. For the renormalization of the fields, we have the gauge parameter dependent expressions

γAðg1; g2; αÞ ¼ ½20αCA − 199CA − 16NfTF�
g21
60

þ ½130α2C2
Ag

3
1 þ 1095αC2

Ag
3
1 − 81412C2

Ag
3
1 þ 2178C2

Ag
2
1g2 þ 5658C2

Ag1g
2
2

− 630C2
Ag

3
2 − 1568CANfTFg31 − 1248CANfTFg21g2 þ 192CANfTFg1g22

− 6080CFNfTFg31�
g1

4320

þ ½−1215000ζ3α3C3
Ag

6
1 þ 1800375α3C3

Ag
6
1 þ 891000ζ3α

2C3
Ag

6
1 − 314125α2C3

Ag
6
1

− 4617000ζ3αC3
Ag

6
1 þ 82449225αC3

Ag
6
1 − 1944000ζ3αC3

Ag
5
1g2

− 7416000αC3
Ag

5
1g2 − 1842000αC3

Ag
4
1g

2
2 þ 5906400αC2

ANfTFg61

þ 90477000ζ3C3
Ag

6
1 − 6130578488C3

Ag
6
1 − 66744000ζ3C3

Ag
5
1g2

þ 829769679C3
Ag

5
1g2 − 2592000ζ3C3

Ag
4
1g

2
2 þ 718180404C3

Ag
4
1g

2
2

þ 3888000ζ3C3
Ag

3
1g

3
2 − 127466010C3

Ag
3
1g

3
2 − 13886955C3

Ag
2
1g

4
2

þ 1812375C3
Ag1g

5
2 þ 94500C3

Ag
6
2 þ 62208000ζ3C2

ANfTFg61

− 449504664C2
ANfTFg61 − 61797888C2

ANfTFg51g2 þ 56482632C2
ANfTFg41g

2
2

− 1733040C2
ANfTFg31g

3
2 − 652320C2

ANfTFg21g
4
2 − 82944000ζ3CACFNfTFg61

− 307447360CACFNfTFg61 − 37440000CACFNfTFg51g2

þ 14592000CACFNfTFg41g
2
2 − 734848CAN2

fT
2
Fg

6
1 − 4732416CAN2

fT
2
Fg

5
1g2

þ 728064CAN2
fT

2
Fg

4
1g

2
2 þ 17408000C2

FNfTFg61

− 9661440CFN2
fT

2
Fg

6
1�

1

31104000
þOðg8i Þ;

γcðg1; g2; αÞ ¼ ½α − 5�CAg21
12

þ ½−55α2CAg21 þ 60αCAg21 − 19952CAg21 þ 2700CAg1g2 þ 600CAg22

− 1088NfTFg21�
CAg21
8640

þ ½−2673000ζ3α3C2
Ag

4
1 þ 3385125α3C2

Ag
4
1 − 891000ζ3α

2C2
Ag

4
1

þ 867625α2C2
Ag

4
1 − 2187000ζ3αC2

Ag
4
1 þ 27779025αC2

Ag
4
1

− 1944000ζ3αC2
Ag

3
1g2 − 1764000αC2

Ag
3
1g2 − 336000αC2

Ag
2
1g

2
2

þ 2457600αNfTFCAg41 − 90477000ζ3C2
Ag

4
1 − 1333712377C2

Ag
4
1

þ 66744000ζ3C2
Ag

3
1g2 þ 261729900C2

Ag
3
1g2 þ 2592000ζ3C2

Ag
2
1g

2
2

þ 91288500C2
Ag

2
1g

2
2 − 3888000ζ3C2

Ag1g
3
2 − 14296500C2

Ag1g
3
2

− 1741500C2
Ag

4
2 − 62208000ζ3NfTFCAg41 − 46076416CANfTFg41

− 4334400CANfTFg31g2 þ 6864000CANfTFg21g
2
2 þ 82944000ζ3CFNfTFg41

− 103600000CFNfTFg41 þ 1722368N2
fT

2
Fg

4
1�

CAg21
62208000

þOðg8i Þ;

γψðg1; g2; αÞ ¼ ½3αþ 5�CFg21
6

þ ½75α2CAg21 þ 1830αCAg21 þ 43617CAg21 − 600CAg22 − 8000CFg21
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þ 2048NfTFg21�
CFg21
4320

þ ½−972000ζ3α3C2
Ag

4
1 þ 1296375α3C2

Ag
4
1 þ 1215000ζ3α

2C2
Ag

4
1

− 1231875α2C2
Ag

4
1 þ 2430000ζ3αC2

Ag
4
1 þ 29389350αC2

Ag
4
1

− 1944000ζ3αC2
Ag

3
1g2 − 1971000αC2

Ag
3
1g2 − 747000αC2

Ag
2
1g

2
2

þ 2420400αCANfTFg41 þ 74601000ζ3C2
Ag

4
1 þ 816942603C2

Ag
4
1

− 44712000ζ3C2
Ag

3
1g2 − 1730025C2

Ag
3
1g2 þ 7776000ζ3C2

Ag
2
1g

2
2

− 55844625C2
Ag

2
1g

2
2 þ 4357125C2

Ag1g
3
2 þ 300375C2

Ag
4
2 − 62208000ζ3CACFg41

− 178896000CACFg41 þ 3240000CACFg31g2 þ 4800000CACFg21g
2
2

þ 20736000ζ3CANfTFg41 þ 41385824CANfTFg41 þ 7520400CANfTFg31g2

− 2580000CANfTFg21g
2
2 þ 62208000ζ3C2

Fg
4
1 − 33056000C2

Fg
4
1

− 20736000ζ3CFNfTFg41 þ 23372000CFNfTFg41

þ 91648N2
fT

2
Fg

4
1�

CFg21
7776000

þOðg8i Þ: ð5:4Þ

Finally we note that the quark mass dimension is given by

γmðg1; g2Þ ¼ −
5

3
CFg21 þ ½−11301CAg21 þ 300CAg22 − 200CFg21 − 544NfTFg21�

CFg21
1080

þ ½38880000ζ3C2
Ag

4
1 − 424927488C2

Ag
4
1 − 11664000ζ3C2

Ag
3
1g2

þ 54029025C2
Ag

3
1g2 þ 24506625C2

Ag
2
1g

2
2 − 2197125C2

Ag1g
3
2

− 435375C2
Ag

4
2 − 97200000ζ3CACFg41 þ 30950400CACFg41

þ 23328000ζ3CACFg31g2 − 22356000CACFg31g2 þ 240000CACFg21g
2
2

− 20736000ζ3CANfTFg41 − 8608304CANfTFg41 − 4712400CANfTFg31g2

þ 1716000CANfTFg21g
2
2 þ 38880000ζ3C2

Fg
4
1 − 23260000C2

Fg
4
1

þ 20736000ζ3CFNfTFg41 − 26194400CFNfTFg41

þ 430592N2
fT

2
Fg

4
1�

CFg21
3888000

þOðg8i Þ ð5:5Þ

which, like the β-function, is independent of α as it ought to
be in the MS scheme [61]. While part of the focus in
previous sections examined the gMOM scheme in six
dimensions, it is not possible to repeat that for (5.1). This
is primarily because interest in the gMOM scheme con-
cerned the absence of even zetas commencing from four
loops. As we do not have a full set of three loop
renormalization group functions yet, let alone at four loops,
that investigation clearly has to be postponed to a later
point. However any study of the gMOM schemes similar to
[27,34] may only be able to focus on the vertices that
determine β1ðg1; g2Þ since the renormalization of g2 cannot
be directly accessed when one of the external momenta of a
gluon 3-point vertex is nullified. For similar reasons we
have not constructed the equivalent of the mMOM scheme

of [35] to four loops. One check on our FORCER compu-
tation is that the two loop expressions of [22] have been
reproduced and we recall that [22] used the Laporta
approach. Another check is that β1ðg1; g2Þ satisfies the
Slavnov-Taylor identity being given by a linear combina-
tion of the Landau gauge gluon and ghost anomalous
dimensions. More specifically

βaðg1; g2Þ ¼
1

2
g1½γAðg1; g2; 0Þ þ 2γcðg1; g2; 0Þ� ð5:6Þ

as the ghost-gluon vertex of (5.1) is finite in the Landau
gauge for the same reasons as its four dimensional
counterpart, [62].
A separate check on the three loop contributions to the

gluon, ghost, quark and quark mass anomalous dimensions
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lies in comparing with known critical exponents of the
fields computed to several orders in the 1=Nf expansion.
These renormalization group invariants have been com-
puted as a function of d at the Wilson-Fisher fixed point
defined as the nontrivial solution of βiðg1; g2Þ ¼ 0 closest
to the origin. Evaluating the anomalous dimensions at the
Wilson-Fisher critical point produces critical exponents
which will be functions of d and Nf as well as the group
Casimirs. They can be expanded as a double Taylor series
in powers of 1=Nf, where Nf is large, and ϵ where
d ¼ dc − 2ϵ. Here dc is the critical dimension of any of
the quantum field theories that lie in the same universality
class. In this situation these are the two dimensional non-
Abelian Thirring model, QCD in four dimensions and (5.1)
in six dimensions as well as the tower of theories that lie in
eight dimensions and beyond. Therefore the expansion of
the large Nf exponents when dc ¼ 6 have to be consistent
with the analogous critical anomalous dimensions evalu-
ated at the same fixed point and expanded in the same
double Taylor series. This is the background to the three
loop large Nf check extending the previous two loop check
of [22]. It is in fact possible to carry out such an analysis

even though the three loop terms of β2ðg1; g2Þ have not
been found. The evidence for this is deduced from
examining the g2 and Nf dependence of γAðg1; g2; αÞ,
γcðg1; g2; αÞ, γψðg1; g2; αÞ and γmðg1; g2Þ. It is apparent
that the coupling constant associated with the spectator
interaction, which is g2, first appears at two loops. In
addition at three loops there are no g22 terms in γψ ðg1; g2; αÞ
and γmðg1; g2Þ meaning that their associated exponents can
be expanded to Oð1=N2

fÞ without the three loop correction
to the g2 critical coupling and then compared with the ϵ
expansions of the large Nf exponents of [63]. For
γAðg1; g2; αÞ and γcðg1; g2; αÞ only the Oð1=NfÞ d-dimen-
sional exponents are known [64]. More concretely, follow-
ing the large Nf approach of [21,22] we set

g1 ¼
i
2

ffiffiffiffiffiffiffiffiffiffiffiffi
15ϵ

TFNf

s
x; g2 ¼

i
2

ffiffiffiffiffiffiffiffiffiffiffiffi
15ϵ

TFNf

s
y ð5:7Þ

and solve βiðg1; g2Þ ¼ 0 to find the Wilson-Fisher fixed
point is located at

x ¼ 1þ
�
−
249

32
CA þ

�
475

48
CF þ 5855

768
CA

�
ϵ −

�
3145

384
CF þ 104729

18432
CA

�
ϵ2
�

1

TFNf

þ
�
186003

2048
C2
A −

�
197125

512
CACF þ 7530655

32768
C2
A

�
ϵ

þ
�
549125

1536
C2
F þ 12040925

18432
CACF þ 1150323311

3145728
C2
A

�
ϵ2
�

1

T2
FN

2
f

þO

�
ϵ3

T3
FN

3
f

�
;

y ¼ 13

4
þ
�
−
51327

2048
CA þ

�
2325

64
CF þ 62385

4096
CA

�
ϵ

�
1

TFNf
þO

�
ϵ2

T2
FN

2
f

�
ð5:8Þ

in the large Nf expansion where the order symbols indicate the truncation order of both the ϵ and large Nf expansions.
Substituting into the various anomalous dimensions we have

γAðg⋆1 ; g⋆2 ; 0Þ ¼ ϵ −
�
25

8
ϵþ 85

24
ϵ2 þ 841

288
ϵ3
�

CA

TFNf
þO

�
ϵ3

T2
FN

2
f

�
;

γcðg⋆1 ; g⋆2 ; 0Þ ¼
�
25

16
ϵ −

85

48
ϵ2 −

841

576
ϵ3
�

CA

TFNf
þO

�
ϵ3

T2
FN

2
f

�
;

γψðg⋆1 ; g⋆2 ; 0Þ ¼
�
−
25

8
ϵþ 20

3
ϵ2 −

179

288
ϵ3
�

CF

TFNf
þ
�
6225

128
CAϵ −

�
5625

64
CF þ 102755

768
CA

�
ϵ2

þ
��

199

32
−
1125

8
ζ3

�
CA þ

�
60125

384
þ 1125

8
ζ3

�
CF

�
ϵ3
�

CF

T2
FN

2
f

þO

�
ϵ3

T3
FN

3
f

�
;

γmðg⋆1 ; g⋆2 Þ ¼
�
25

4
ϵ −

85

12
ϵ2 −

841

144
ϵ3
�

CF

TFNf
þ
�
−
6225

64
CAϵþ

�
3875

32
CF þ 161185

768
CA

�
ϵ2

þ
��

98741

1536
þ 1125

4
ζ3

�
CA −

�
5275

192
þ 1125

4
ζ3

�
CF

�
ϵ3
�

CF

T2
FN

2
f

þO

�
ϵ3

T3
FN

3
f

�
ð5:9Þ
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for the exponents where g⋆i are the critical couplings
evaluated at x and y. These exponents are in full agreement
with the ϵ expansion of the large Nf exponents of [63,64]
near six dimensions. One caveat to this is that for the first
three exponents of (5.9) the check is restricted to the
Landau gauge since that is a fixed point of the renormal-
ization group equations.
With the present renormalization group equations we can

examine one property which has parallels in the four
dimensional counterpart of (5.1). It is known that aside
from the Banks-Zaks fixed point of [65,66], treating the
gauge parameter as a second coupling constant opens up a
richer critical point phase plane [67], which has been
studied more recently in four dimensions in [68]. This is the
observation that there is a nonzero critical value of the
gauge parameter that leads to an infrared stable fixed point
in the plane of gauge coupling and parameter. Moreover
one can redefine the renormalization group function for α in
such a way that this critical value is exposed at leading
order [69]. For (5.1) we recall the parallel transformation is
derived by first redefining the gauge field by [69]

Âa
μ ¼ g1Aa

μ: ð5:10Þ

With this the relevant sector of the Lagrangian becomes

Lð6Þ
gluonic ¼ −

1

4g21

�
D̂μĜ

a
νσ

��
D̂μĜaνσ

�
−

1

2αg21

�
∂μ∂

νÂa
ν

��
∂
μ
∂
σÂa

σ

�þ… ð5:11Þ

where the hatted quantities are the same as the unhatted
ones but expressed as a function of Âa

μ. This identifies the
transverse and longitudinal operators with separate inde-
pendent coupling constants. If we compute the renormal-
ization group function for the combination αg21 given in
[69] we find

γ̂αðg1; g2; αÞ ¼
2

g1
β1ðg1; g2Þ þ γαðg1; g2; αÞ ð5:12Þ

which gives

γ̂αðg1; g2; αÞ ¼ −½2αþ 5�CAg21
6

þ ½2700CAg1g2 þ 600CAg22 − 130α2CAg21 − 1095αCAg21

− 19952CAg21 − 1088NfTFg21�
CAg21
4320

þ ½1215000ζ3α3C2
Ag

4
1 − 1800375α3C2

Ag
4
1 − 891000ζ3α

2C2
Ag

4
1 þ 314125α2C2

Ag
4
1

þ 4617000ζ3αC2
Ag

4
1 − 82449225αC2

Ag
4
1 þ 1944000ζ3αC2

Ag
3
1g2

þ 7416000αC2
Ag

3
1g2 þ 1842000αC2

Ag
2
1g

2
2 − 5906400NfTFαCAg41

− 90477000ζ3C2
Ag

4
1 − 1333712377C2

Ag
4
1 þ 66744000ζ3C2

Ag
3
1g2

þ 261729900C2
Ag

3
1g2 þ 2592000ζ3C2

Ag
2
1g

2
2 þ 91288500C2

Ag
2
1g

2
2

− 3888000ζ3C2
Ag1g

3
2 − 14296500C2

Ag1g
3
2 − 1741500C2

Ag
4
2

− 62208000ζ3CANfTFg41 − 46076416CANfTFg41 − 4334400CANfTFg31g2

þ 6864000CANfTFg21g
2
2 þ 82944000ζ3CFNfTFg41 − 103600000CFNfTFg41

þ 1722368N2
fT

2
Fg

4
1�

CAg21
31104000

þOðg8i Þ: ð5:13Þ

Therefore in the ðg1; αÞ plane there is a critical gauge
parameter value of α ¼ − 5

2
. In four dimensions the analo-

gous value was (−3) and it was suggested that defining the
combination αg21 in [67,69] as a second coupling then that
coupling in effect was an accounting parameter for the
longitudinal modes of the gluon in the perturbative ex-
pansion of gauge variant Green’s functions. In fact such a
pattern of a rational value for a critical gauge parameter
extends to the next case which is the eight dimensional
extension of (5.1) and was renormalized at one loop in [70].

Examining the (5.12) for eight dimensions gave ð− 7
3
Þ for

the critical gauge parameter, α⋆. In fact it is straightforward
to deduce the d dependence of α⋆ and we note

α⋆ðdÞ ¼ −
2ðd − 1Þ
ðd − 2Þ : ð5:14Þ

This is a monotonically increasing function of d for d > 2
with limits
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lim
d→2þ

α⋆ ¼ −∞; lim
d→∞

α⋆ ¼ −2: ð5:15Þ

The singular behavior in strictly two dimensions may be
indicative of the absence of longitudinal modes in the gluon
in that dimension. One puzzle that arose in four dimensions
was the relation of the integer value of α⋆ð4Þ to the value
for the Yennie gauge. The latter is α ¼ 3 and α⋆ð4Þ
has been referred to as the anti-Yennie gauge in, for
example, [71]. This apparent connection does not translate
to the six and higher dimensional generalizations of QCD
since the defining criterion for the Yennie gauge is the
vanishing of the ghost anomalous dimension at leading
order. Clearly in six dimensions this occurs at α ¼ 5 while
in eight dimensions α would be 7. The generalization is

αYennieðdÞ ¼ d − 1: ð5:16Þ

It is straightforward to check this directly by computing the
one loop correction to the ghost 2-point function that
eventually produces γcðgi; αÞ in the higher dimensional
Lagrangians. The key sector of those is the ghost term
given by

LðdÞ
ghost ¼ −ð□nd c̄aÞð∂μDμcÞa ð5:17Þ

where nd ¼ 1
2
d − 2 when d is integer. Extracting the gluon

propagator from the relevant sector of

LðdÞ
gluonke ¼−

1

4
ðDμ1…DμndGaμνÞ2− ð−1Þnd

2α
ð∂μAa

μÞ□ndð∂νAa
νÞ

ð5:18Þ

and using the ghost-gluon interaction from (5.17), the one
loop ghost 2-point function can be computed in d-dimen-
sions. Expanding it in powers of ϵ near each even critical
dimension strictly above two produces (5.16). We note that
for higher dimensions the Lagrangian can always be written
in terms of one independent gauge invariant operator with
two gluons. While an alternative operator to the first term
of (5.18) is Ga

μν□
ndGaμν, the latter can be rewritten in terms

of it using integration by parts in the Lagrangian plus
additional gauge invariant operators with three or more
gluon legs.

VI. DISCUSSION

One of our main tasks was to provide the missing
information that prevented the symbolic manipulation
FORCER algorithm being used to study properties of
quantum field theories in six dimensions. This required
mapping the ϵ expansion of the known four dimensional
FORCER masters to six dimensions using the Tarasov
method [23,24] with the six dimensional counterparts
available now at weight 9. By way of checks we reproduced
the available four loop renormalization group functions of

ϕ3 theory both with and without OðNÞ symmetry. As a
consequence of the masters being available to high order in
powers of ϵ we were able to explore the gMOM scheme
property of the cubic theory to five loops and verify that the
absence of even zetas to this order is not restricted to four
dimensions. As the scalar ϕ3 interaction is devoid of
derivatives, it was relatively easy to explore a new scheme
which was MaxS whereby all the terms of the ϵ expansion
of the sum of the Feynman integrals are removed from
the two divergent Green’s functions. This scheme had the
interesting feature that in strictly six dimensions the
renormalization group functions were equivalent to those
of the gMOM scheme. Such a property should also hold in
four dimensional theories including gauge theories. Having
studied ϕ3 theory and extended the three loop renormal-
ization of six dimensional QED to four loops, we were able
to repeat the same exercise for scalar QED in six dimen-
sions. One outcome of the latter was to verify the ultraviolet
completion of the four dimensional version of QED to six
dimensions. In essence this demonstrates the usefulness of
compiling the new masters and opens the way to extend
other theories to a similar level. A first step in that direction
has also been provided here in that all the renormalization
group functions of the six dimensional ultraviolet com-
pletion of QCD have been determined to three loops bar
one. That outstanding β-function is not accessible using a
2-point function approach due to the fact that the operator
associated with the coupling involves the product of three
field strengths. If that could be overcome at three loops then
the three loop QCD renormalization group functions
computed here could be extended to four loops. There
are other six dimensional theories which have been of
interest recently whose ultraviolet completeness has been
studied at one or two loops. For instance in [55,56] the six
dimensional version of the CPðNÞ nonlinear σ model has
been studied to two loops and in the large Nf expansion.
For a certain configuration of the coupling constants it
contains scalar QED. The CPðNÞ σ model contains an
additional scalar field and in principle it can now be
examined using the FORCER construction and the ultraviolet
completion studied that will necessarily build on the earlier
work of [72] and the large N results of [73] that allow for a
connection of theories in d-dimensions.
One reason we mention this particular theory is by way

of caution. In the course of the application of the new
masters to renormalizing a variety of theories they have all
carried the same feature with respect to the renormalization
of the vertices. This is that when nullifying the momentum
of one external leg of the 3-point function no infrared
singularities arise. For ϕ3 theory the propagators at the
nullified vertex will reduce to a contribution of 1

ðp2Þ2 where
p is the momentum of a propagator. In six dimensions,
unlike four dimensions, this is infrared safe. So we have not
needed to introduce any infrared rearrangement. For certain
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theories in six dimensions this may be necessary and is
usually the case for gauge fields since they have a higher
derivative kinetic term as is evident in (4.1) and (5.1). For
the cases considered here no infrared rearrangement was
required. For the ghost-gluon vertex of (5.1) the extra
derivatives in the interaction were the redeeming feature.
However for the six dimensional version of the CPðNÞ
nonlinear σ model infrared rearrangement may be neces-
sary given the absence of derivatives in the basic inter-
actions involving the gauge field. Some evidence of such
difficulties have been implicit in this article. For instance,
the mass dimension of the scalar field of (4.6) was not
provided despite the fact the electron mass dimension was
computed from (4.1). The reason for this has been given
previously in [55,73] which is that the scalar electron mass
operator mixes with other operators. One is the square of
the photon field strength. The remainder include the square
of the operator defining the linear covariant gauge con-
dition and those which are total derivative operators. Of the
latter the gauge variant ones will not play a role in the
extraction of the eigen-anomalous dimensions of the two
gauge invariant mass operators. However to extract the
renormalization constants for the photon mass operator,
inserting it at zero momentum in a photon 2-point will
immediately produce an infrared issue which would require
either an infrared rearrangement ahead of a FORCER

evaluation or determining the mixing matrix by routing
the external momentum in one external leg and out through

the operator itself. In this latter case the mixing with gauge
variant and total derivative operators would have to be
included in the construction. While this is beyond the scope
of the current article we note it as a reminder and
illustration of the potential pitfalls in naively applying
Feynman graph integration routines.

The data representing the main results here are accessible
from [44].
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APPENDIX A: SIX DIMENSIONAL FORCER

MASTERS

In this appendix we record the ϵ expansion of the 16
three and four loop FORCER masters in six dimensions. The
name of each topology matches exactly with those of [8,9]
where the respective Feynman graphs are defined graphi-
cally. We have carried out the expansion of each master to
the level of ζ9 which does not equate to the same order in ϵ
for each master. Similar to [9] each is expressed in the
G-scheme. Using the same master label as that of the
Masters.prc file of the FORCER release we have

haha ¼ −
1

72ϵ2
þ
�
−

17

108
−

1

36
ζ3 þ

5

36
ζ5

�
1
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þ
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þ
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þ
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33133204459

9754214400
ζ4

þ 268698233469613

18435465216000
ζ3 −

8088181

8467200
ζ3ζ4 −

12819

12800
ζ8 þ

51

400
ζ5;3

þ 2183

2016
ζ3ζ5 þ

46385

6912
ζ6 þ

23604521

2419200
ζ7 þ

151421381

11612160
ζ5

�
ϵ4

þ
�
−
5101030757005946137661

13379723235164160000
−
38332734677761

4480842240000
ζ23 −

7099705903

1185408000
ζ3ζ4

þ 69388016609

1016064000
ζ7 þ

873900507443

14631321600
ζ5 þ

268698233469613

12290310144000
ζ4

þ 80588867392532353

860321710080000
ζ3 −

14767793

1411200
ζ3ζ5 −

75241

15120
ζ9 −

7501

10080
ζ33

þ 95

36
ζ3ζ6 þ

4489

6720
ζ4ζ5 þ

145967

56000
ζ5;3 þ

23625397

746496
ζ6 þ

163411417

6912000
ζ8

�
ϵ5 þOðϵ6Þ;
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cross ¼ 1

69120ϵ2
þ 47

497664ϵ
þ 9241

29859840
þ
�
−

1

288
ζ5 þ

1

405
ζ3 þ

383903

358318080

�
ϵ

þ
�
−

65

3456
ζ5 −

5

576
ζ6 þ

1

270
ζ4 þ

7

1440
ζ23 þ

107

38880
ζ3 þ

49253441

4299816960

�
ϵ2

þ
�
−

36259

233280
ζ3 −

325

6912
ζ6 −

127

2880
ζ7 þ

7

480
ζ3ζ4 þ

91

3456
ζ23 þ

107

25920
ζ4 þ

10889

207360
ζ5 þ

160435019

1146617856

�
ϵ3

þ
�
275319668651

206391214080
−
10696109

5598720
ζ3 −

36259

155520
ζ4 −

1651

6912
ζ7 −

27

200
ζ5;3 −

11

720
ζ3ζ5

þ 91

1152
ζ3ζ4 þ

1153

9216
ζ6 þ

4129

19200
ζ8 þ

52129

207360
ζ23 þ

1273231

2488320
ζ5

�
ϵ4

þ
�
78476268381583

7430083706880
−
68574311

4478976
ζ3 −

10696109

3732480
ζ4 −

871

2160
ζ33 −

173

2160
ζ9

−
143

1728
ζ3ζ5 −

117

160
ζ5;3 −

1

16
ζ3ζ6 þ

95

96
ζ4ζ5 þ

52129

69120
ζ3ζ4 þ

53677

46080
ζ8

þ 1164091

414720
ζ7 þ

1266383

995328
ζ6 þ

2105237

829440
ζ23 þ

2121787

9953280
ζ5

�
ϵ5 þOðϵ6Þ;

bebe ¼ 1

41472ϵ3
þ 173

1382400ϵ2
þ
�

1

28800
ζ3 þ

245651

746496000

�
1

ϵ

−
46303

4976640000
þ 1

19200
ζ4 þ

2989

5184000
ζ3

þ
�
−

18489907021

2687385600000
−

23

28800
ζ5 þ

2989

3456000
ζ4 þ

13087

3840000
ζ3

�
ϵ

þ
�
−

1087166778487

17915904000000
−

1

480
ζ6 þ

29

28800
ζ23 þ

13087

2560000
ζ4 þ

25751

1728000
ζ5 þ

318793381

18662400000
ζ3

�
ϵ2

þ
�
−
3908335481909509

9674588160000000
þ 33530592221

373248000000
ζ3 −

67019

5184000
ζ23 −

221

11520
ζ7 þ

29

9600
ζ3ζ4

þ 9283

259200
ζ6 þ

404999

3840000
ζ5 þ

318793381

12441600000
ζ4

�
ϵ3

þ
�
−
155391945049543423

64497254400000000
þ 2964690079

6220800000
ζ5 þ

33530592221

248832000000
ζ4

þ 33844757157949

67184640000000
ζ3 −

242977

3840000
ζ23 −

67019

1728000
ζ3ζ4 −

9403

128000
ζ8 þ

27

4000
ζ5;3

þ 1153

14400
ζ3ζ5 þ

48989

192000
ζ6 þ

252157

691200
ζ7

�
ϵ4

þ
�
−
472681590682990336861

34828517376000000000
−

2341117451

18662400000
ζ23 þ

735800616917

373248000000
ζ5

þ 33844757157949

44789760000000
ζ4 þ

3881209963480309

1343692800000000
ζ3 −

304861

864000
ζ3ζ5

−
242977

1280000
ζ3ζ4 −

967

14400
ζ33 −

643

1800
ζ9 þ

281

1440
ζ3ζ6 þ

667

9600
ζ4ζ5 þ

7767

80000
ζ5;3

þ 12090239

4608000
ζ7 þ

61097399

69120000
ζ8 þ

1071909607

933120000
ζ6

�
ϵ5 þOðϵ6Þ;
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nostar6 ¼ 1

20736ϵ3
þ 11

248832ϵ2
þ
�

1

576
ζ3 þ

3377

2985984

�
1

ϵ
þ 1

384
ζ4 þ

95

20736
ζ3 þ

924031

35831808

þ
�
−

9827

248832
ζ3 −

13

576
ζ5 þ

95

13824
ζ4 þ

40074923

143327232

�
ϵ

þ
�
3824875973

1719926784
−
1629893

2985984
ζ3 −

9827

165888
ζ4 −

1625

6912
ζ5 −

35

576
ζ6 þ

19

576
ζ23

�
ϵ2

þ
�
930294184801

61917364224
−
152188699

35831808
ζ3 −

1629893

1990656
ζ4 −

66521

27648
ζ5 −

12425

20736
ζ6 −

341

432
ζ7

þ 19

192
ζ3ζ4 þ

8417

20736
ζ23

�
ϵ3

þ
�
−
3901210535

143327232
ζ3 þ

68481144449711

743008370688
−
152188699

23887872
ζ4 −

19005437

995328
ζ5

−
1472155

248832
ζ6 −

257761

69120
ζ8 −

21965

3456
ζ7 þ

21

40
ζ5;3 þ

2899

864
ζ3ζ5 þ

8417

6912
ζ3ζ4 þ

981187

248832
ζ23

�
ϵ4

þ
�
−
272730778249

1719926784
ζ3 −

3901210535

95551488
ζ4 þ

4741980017952065

8916100448256
−
1512777571

11943936
ζ5

−
138466045

2985984
ζ6 −

7866851

276480
ζ8 −

753571

13824
ζ7 −

47587

2592
ζ9 −

4307

2592
ζ33 þ

621

160
ζ5;3

þ 631

576
ζ4ζ5 þ

7105

864
ζ3ζ6 þ

99673

3456
ζ3ζ5 þ

981187

82944
ζ3ζ4 þ

87305845

2985984
ζ23

�
ϵ5 þOðϵ6Þ;

nostar5 ¼ −
1

5184ϵ4
−

53

62208ϵ3
−

497

746496ϵ2
þ
�
−

59

5184
ζ3 þ

169241

8957952

�
1

ϵ

−
3847

62208
ζ3 −

59

3456
ζ4 þ

7291429

35831808

þ
�
−
234397

746496
ζ3 −

3847

41472
ζ4 −

881

1728
ζ5 þ

651732331

429981696

�
ϵ

þ
�
151848323951

15479341056
−
17417963

8957952
ζ3 −

234397

497664
ζ4 −

6217

2304
ζ5 −

1615

1296
ζ6 þ

2029

5184
ζ23

�
ϵ2

þ
�
10963043240449

185752092672
−
468045319

35831808
ζ3 −

17417963

5971968
ζ4 −

916561

82944
ζ5 −

205015

31104
ζ6

−
45301

3456
ζ7 þ

2029

1728
ζ3ζ4 þ

124469

62208
ζ23

�
ϵ3

þ
�
−
36911324041

429981696
ζ3 þ

757459450377103

2229025112064
−
468045319

23887872
ζ4 −

146327317

2985984
ζ5

−
10018315

373248
ζ6 −

2876173

41472
ζ7 −

2334341

69120
ζ8 −

223

80
ζ5;3 þ

13361

864
ζ3ζ5 þ

124469

20736
ζ3ζ4 þ

6561335

746496
ζ23

�
ϵ4

þ
�
−
8331112515413

15479341056
ζ3 −

36911324041

286654464
ζ4 −

3041772121

11943936
ζ5 þ

50829818629660001

26748301344768

−
526954985

4478976
ζ6 −

144123917

829440
ζ8 −

135196807

497664
ζ7 −

9290029

31104
ζ9 −

48359

7776
ζ33

−
5397

320
ζ5;3 þ

25403

576
ζ4ζ5 þ

95135

2592
ζ3ζ6 þ

258347

3456
ζ3ζ5 þ

6561335

248832
ζ3ζ4

þ 424883665

8957952
ζ23

�
ϵ5 þOðϵ6Þ;
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no ¼ −
1

36ϵ2
þ
�
−
11

72
þ 1

18
ζ3

�
1

ϵ
−

631

1296
þ 1

6
ζ3 þ

1

12
ζ4 þ

�
−
797

864
−
4

9
ζ5 þ

1

4
ζ4 þ

14

81
ζ3

�
ϵ

þ
�
−
215

324
ζ3 −

5

4
ζ6 −

4

3
ζ5 þ

7

9
ζ23 þ

7

27
ζ4 þ

31829

46656

�
ϵ2

þ
�
−
29345

5832
ζ3 −

1709

162
ζ5 −

215

216
ζ4 −

67

6
ζ7 −

15

4
ζ6 þ

7

3
ζ3ζ4 þ

7

3
ζ23 þ

1674437

93312

�
ϵ3

þ
�
−
252601

11664
ζ3 −

29345

3888
ζ4 −

20015

324
ζ5 −

17989

360
ζ8 −

965

36
ζ6 −

67

2
ζ7 þ

36

5
ζ5;3

þ 121

3
ζ3ζ5 þ

2147

162
ζ23 þ

201342089

1679616
þ 7ζ3ζ4

�
ϵ4

þ
�
−
16004225

209952
ζ3 −

1673735

5832
ζ5 −

252601

7776
ζ4 −

17989

120
ζ8 −

14522

81
ζ9 −

10609

54
ζ7

−
1375

9
ζ6 −

337

27
ζ33 þ

13

2
ζ4ζ5 þ

108

5
ζ5;3 þ

1745

18
ζ3ζ6 þ

2147

54
ζ3ζ4 þ

21263

324
ζ23

þ 2095164001

3359232
þ 121ζ3ζ5

�
ϵ5 þOðϵ6Þ;

fastar2 ¼ −
1

31104ϵ4
−

7

46656ϵ3
−

4061

11197440ϵ2
þ
�
−

25

15552
ζ3 þ

164153

134369280

�
1

ϵ

−
175

23328
ζ3 −

25

10368
ζ4 þ

498311

19906560

þ
�
−

264677

5598720
ζ3 −

175

15552
ζ4 −

155

1728
ζ5 þ

1468119763

6449725440

�
ϵ

þ
�
382027011479

232190115840
−
24144799

67184640
ζ3 −

264677

3732480
ζ4 −

3425

15552
ζ6 −

1085

2592
ζ5 þ

1247

15552
ζ23

�
ϵ2

þ
�
29537619574489

2786281390080
−
24144799

44789760
ζ4 −

8528651

3317760
ζ3 −

399797

207360
ζ5 −

23975

23328
ζ6

−
12503

5184
ζ7 þ

1247

5184
ζ3ζ4 þ

8729

23328
ζ23

�
ϵ3

þ
�
−
54343033589

3224862720
ζ3 þ

2131076904260791

33435376680960
−
8767813

829440
ζ5 −

8528651

2211840
ζ4 −

5264921

1119744
ζ6

−
1397189

207360
ζ8 −

87521

7776
ζ7 −

3

10
ζ5;3 þ

1087

288
ζ3ζ5 þ

8729

7776
ζ3ζ4 þ

10919251

5598720
ζ23

�
ϵ4

þ
�
−
12001629023377

116095057920
ζ3 −

54343033589

2149908480
ζ4 þ

146881530580013753

401224520171520
−
343024027

13436928
ζ6

−
91051111

1866240
ζ7 −

22782833

368640
ζ5 −

9780323

311040
ζ8 −

2619709

46656
ζ9 −

37081

23328
ζ33 −

7

5
ζ5;3

þ 1519

192
ζ4ζ5 þ

7609

432
ζ3ζ5 þ

70255

7776
ζ3ζ6 þ

10919251

1866240
ζ3ζ4 þ

819297737

67184640
ζ23

�
ϵ5 þOðϵ6Þ;

t155 ¼ −
1

15552ϵ4
−

23

93312ϵ3
−

679

5598720ϵ2
þ
�
−

31

7776
ζ3 þ

123281

22394880

�
1

ϵ

−
713

46656
ζ3 −

31

5184
ζ4 þ

15165583

268738560
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þ
�
−

213343

2799360
ζ3 −

713

31104
ζ4 −

449

2592
ζ5 þ

88785839

214990848

�
ϵ

þ
�
307092224429

116095057920
−

5868103

11197440
ζ3 −

213343

1866240
ζ4 −

10327

15552
ζ5 −

1645

3888
ζ6 þ

983

7776
ζ23

�
ϵ2

þ
�
21968267826851

1393140695040
−
482659289

134369280
ζ3 −

5868103

7464960
ζ4 −

2356007

933120
ζ5 −

37835

23328
ζ6

−
5669

1296
ζ7 þ

983

2592
ζ3ζ4 þ

22609

46656
ζ23

�
ϵ3

þ
�
−
2458665145

107495424
ζ3 þ

300549734350057

3343537668096
−
482659289

89579520
ζ4 −

48004847

3732480
ζ5

−
3427339

559872
ζ6 −

242437

20736
ζ8 −

130387

7776
ζ7 −

3

4
ζ5;3 þ

6817

1296
ζ3ζ5 þ

22609

15552
ζ3ζ4 þ

6051689

2799360
ζ23

�
ϵ4

þ
�
−
7956272660107

58047528960
ζ3 −

3353771761

44789760
ζ5 −

2458665145

71663616
ζ4 þ

3693436841274617

7430083706880

−
69073219

2239488
ζ6 −

55868149

933120
ζ7 −

5576051

124416
ζ8 −

2293555

23328
ζ9 −

23959

11664
ζ33 −

23

8
ζ5;3

þ 11677

864
ζ4ζ5 þ

24335

1944
ζ3ζ6 þ

156791

7776
ζ3ζ5 þ

6051689

933120
ζ3ζ4 þ

150129569

11197440
ζ23

�
ϵ5 þOðϵ6Þ;

t124 ¼ −
1

51840ϵ3
−

31

155520ϵ2
−

2339

1866240ϵ
−

3667

559872
þ 1

1296
ζ3

þ
�
−

2148781

67184640
þ 1

864
ζ4 þ

199

31104
ζ3

�
ϵ

þ
�
−
1289797

8398080
þ 37

2592
ζ5 þ

199

20736
ζ4 þ

70097

1866240
ζ3

�
ϵ2

þ
�
−
447731989

604661760
−

17

1080
ζ23 þ

175

5184
ζ6 þ

215

1944
ζ5 þ

70097

1244160
ζ4 þ

4467643

22394880
ζ3

�
ϵ3

þ
�
−
104687174539

29023764480
−

3131

25920
ζ23 −

17

360
ζ3ζ4 þ

13157

51840
ζ7 þ

16205

62208
ζ6 þ

146803

233280
ζ5

þ 4467643

14929920
ζ4 þ

92262887

89579520
ζ3

�
ϵ4

þ
�
−
1236480137413

69657034752
−
129191

186624
ζ23 −

3131

8640
ζ3ζ4 −

1829

3240
ζ3ζ5 þ

3

400
ζ5;3 þ

40901

27648
ζ6

þ 123043

172800
ζ8 þ

1191553

622080
ζ7 þ

18642809

5598720
ζ5 þ

23369059

4423680
ζ3 þ

92262887

59719680
ζ4

�
ϵ5

þ
�
−
368047815281083

4179422085120
þ 1047221158789

38698352640
ζ3 −

13947499

3732480
ζ23 −

129191

62208
ζ3ζ4

−
82493

19440
ζ3ζ5 −

3901

4320
ζ4ζ5 −

1727

1296
ζ3ζ6 þ

89

1600
ζ5;3 þ

2161

9720
ζ33 þ

735227

155520
ζ9

þ 11097827

2073600
ζ8 þ

23369059

2949120
ζ4 þ

70103593

8957952
ζ6 þ

80333051

7464960
ζ7 þ

1165361683

67184640
ζ5

�
ϵ6 þOðϵ7Þ;
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t145 ¼ −
5

124416ϵ3
−

1873

7464960ϵ2
−

80371

89579520ϵ
−

566551

358318080
−

19

31104
ζ3

þ
�
−

7463

1866240
ζ3 −

19

20736
ζ4 þ

30715831

4299816960

�
ϵ

þ
�
−

600293

22394880
ζ3 −

7463

1244160
ζ4 −

341

10368
ζ5 þ

358030103

3439853568

�
ϵ2

þ
�
1513492357733

1857520926720
−
17437313

89579520
ζ3 −

600293

14929920
ζ4 −

130957

622080
ζ5 −

1255

15552
ζ6 þ

493

15552
ζ23

�
ϵ3

þ
�
118328890166123

22290251120640
−
1445143903

1074954240
ζ3 −

17437313

59719680
ζ4 −

8077207

7464960
ζ5 −

16619

20736
ζ7

−
3011

5832
ζ6 þ

493

5184
ζ3ζ4 þ

189527

933120
ζ23

�
ϵ4

þ
�
−
36938283067

4299816960
ζ3 þ

1692801725704513

53496602689536
−
1445143903

716636160
ζ4 −

172335787

29859840
ζ5

−
3182639

622080
ζ7 −

738479

279936
ζ6 −

91817

41472
ζ8 −

3

32
ζ5;3 þ

3617

2592
ζ3ζ5 þ

189527

311040
ζ3ζ4 þ

12287453

11197440
ζ23

�
ϵ5

þ
�
−
23912983818461

464380231680
ζ3 −

36938283067

2866544640
ζ4 −

11522465077

358318080
ζ5

þ 63870314319138931

356644017930240
−
188849819

7464960
ζ7 −

8795191

622080
ζ8 −

3902891

279936
ζ6

−
3258785

186624
ζ9 −

6583

11664
ζ33 −

19

32
ζ5;3 þ

151

54
ζ4ζ5 þ

25895

7776
ζ3ζ6 þ

1386853

155520
ζ3ζ5

þ 12287453

3732480
ζ3ζ4 þ

283280153

44789760
ζ23

�
ϵ6 þOðϵ7Þ;

t105 ¼ −
1

648ϵ3
−

17

3888ϵ2
−

121

23328ϵ
−

7

324
ζ3 þ

3025

139968
þ
�
−

119

1944
ζ3 −

7

216
ζ4 þ

186539

839808

�
ϵ

þ
�
−

2935

11664
ζ3 −

119

1296
ζ4 −

7

12
ζ5 þ

6682285

5038848

�
ϵ2

þ
�
−
97013

69984
ζ3 −

2935

7776
ζ4 −

455

324
ζ6 −

119

72
ζ5 þ

113

324
ζ23 þ

203468495

30233088

�
ϵ3

þ
�
5727067633

181398528
−
3107395

419904
ζ3 −

97013

46656
ζ4 −

7735

1944
ζ6 −

6485

1296
ζ5 −

245

27
ζ7 þ

113

108
ζ3ζ4 þ

1921

1944
ζ23

�
ϵ4

þ
�
153930181235

1088391168
−
92052137

2519424
ζ3 −

3107395

279936
ζ4 −

159719

7776
ζ5 −

138575

11664
ζ6 −

99647

4320
ζ8

−
4165

162
ζ7 −

6

5
ζ5;3 þ

53

6
ζ3ζ5 þ

1921

648
ζ3ζ4 þ

40817

11664
ζ23

�
ϵ5

þ
�
−
2571366511

15116544
ζ3 þ

4014789658453

6530347008
−
92052137

1679616
ζ4 −

4418665

46656
ζ5 −

3351145

69984
ζ6

−
1693999

25920
ζ8 −

123547

972
ζ9 −

35311

486
ζ7 −

1315
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ζ33 −

17

5
ζ5;3 þ

89

4
ζ4ζ5 þ

901

36
ζ3ζ5

þ 3295

162
ζ3ζ6 þ

40817

3888
ζ3ζ4 þ

1194619

69984
ζ23

�
ϵ6 þOðϵ7Þ: ðA1Þ

Here ζ5;3 denotes the multiple zeta that was discovered in [74]. In [17] the ϵ expansion for the set of masters that was
required to renormalize ϕ3 to four loops in six dimensions was provided but in the same master basis as [37]. We have
checked that those masters derived from FORCER in this paper are in agreement up to the order in ϵ given in [17]. To assist
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with this comparison we note the mapping of the overlapping masters in each basis is haha ↔ M61, no1 ↔ M63, no2
↔ M62, no6 ↔ M51, cross ↔ M36, nono ↔ M45 and bebe ↔ M35.

APPENDIX B: OðNÞ ϕ3 β-FUNCTIONS

In this appendix we record the two β-functions in OðNÞ ϕ3 theory for all N in the gMOM scheme. We have

βOðNÞ
1 gMOM

ðg1; g2Þ ¼
�
−

1
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þ
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37

864
g1g42

�
þ
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2
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4435
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3
2 −
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2
2

−
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1
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Ng31g

4
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2 þ
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3
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þ
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−
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2
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72
ζ3Ng61g

3
2

−
155

18
ζ5Ng71g

2
2 −
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2 þ
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2 þ
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2 þ
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2 þ
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2 þ
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þ 100885
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2 þ 10ζ5Ng61g

3
2

�
þ
�
4787589055

20155392
Ng91g

2
2 −

44097997

4478976
N2g81g

3
2 −

43577579

13436928
g41g

7
2

−
23131849

8957952
N3g111 −

19776671

6718464
Ng111 −

18870089

161243136
Ng31g

8
2

−
17762039

3359232
N2g101 g2 −

9924857

2519424
Ng51g

6
2 −

6134743

2239488
Ng41g

7
2

−
1465675

124416
ζ3Ng51g

6
2 −

818735

2592
ζ5Ng91g

2
2 −

626087

31104
ζ3g41g

7
2

−
475265

10368
ζ5N2g91g

2
2 −

431969

1119744
N2g71g

4
2 −

362675

20736
ζ5Ng71g

4
2

−
310787

3359232
N3g91g

2
2 −

254395

1728
ζ5g71g

4
2 −
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1323

16
ζ7Ng61g

5
2

−
995

15552
ζ3N2g51g

6
2 −
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5
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2 þ
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4
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11
2
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ζ3N4g91g

2
2 þ
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3
ζ23N

2g91g
2
2 þ
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ζ5N3g61g

5
2 þ
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24
ζ23N

3g111
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8
ζ23Ng31g

8
2 þ
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8
ζ23Ng51g

6
2 þ
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2g61g
5
2
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ζ5N4g111 þ 441

8
ζ7N2g61g

5
2 þ
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ζ7Ng21g

9
2 þ
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8
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2
2
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8
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144
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5
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1195
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2
2 þ

1235
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4
2 þ
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864
ζ5Ng51g

6
2 þ

44449
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5
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2
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4
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8
2
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4
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3
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7
2
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2
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4
2
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2
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7
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5
2
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8
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2
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þ 128402411

1492992
Ng51g

6
2 þ

213879685

3359232
N2g81g

3
2 þ

287841901

6718464
Ng101 g2

þ 331932757

1119744
Ng91g

2
2 þ

470815561

6718464
Ng41g

7
2 þ

588615251

3359232
N2g101 g2

þ 759191107

2239488
Ng81g

3
2 þ

2002332845

26873856
Ng61g

5
2 þ 15ζ23N

2g71g
4
2

�
þOðg13i Þ: ðB2Þ

It is evident from both expressions that no terms involve ζ4 or ζ6. The situation is the same for the other two renormalization

group functions γOðNÞ
ϕ gMOM

ðg1; g2Þ and γOðNÞ
σ gMOM

ðg1; g2Þ as is apparent by using a search tool on the respective expressions
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