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In this work we investigate possible actions for antisymmetric two-tensor field models subject to
constraints that force the field to acquire a nonzero vacuum expectation value, thereby spontaneously
breaking Lorentz invariance. In order to assure stability, we require that the associate Hamiltonian be
bounded from below. It is shown that this requirement rules out any quadratic action constructed only from
the antisymmetric tensor field. We then explicitly construct a hybrid model consisting of the antisymmetric
two-tensor field together with a vector field, subject to constraints forcing nonzero expectation values, that

is stable in Minkowski space.
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I. INTRODUCTION

Among the phenomenological signals that may arise in a
theory of quantum gravity is the possibility that Lorentz
invariance be violated. One of the possible mechanisms that
has been proposed for this is the spontaneous breaking of
Lorentz symmetry [1-3]. The resulting background values
of the fields provide signatures of Lorentz violation that can
be tested experimentally. A common theoretical framework
for their investigation is provided by the Standard-Model
extension (SME) [4-6]. Most proposals to date in the
context of spontaneous Lorentz breaking have concentrated
on the case of a single vector field with a nonderivative
potential that depends only on the squared norm of the
vector field, forcing the vector to acquire a nonzero vacuum
expectation value [2]. The vector field can be coupled in
general relativity to the curvature, leading to preferred-
frame effects. The general class of such theories has been
called bumblebee models [7-10]. Among these, a much-
studied model, the Einstein-aether theory [11-15], consid-
ers the most general diffeomorphism-invariant action that is
quadratic in derivatives with fixed norm for the vector field
(which can be imposed by a Lagrange-multiplier potential).
There is an extensive literature on bumblebee models and
their applications in models of gravity [16-23], astrophys-
ics [24-27], and cosmology [28-32].
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An important issue with regard to bumblebee models is
that of stability. A standard way to demonstrate this is to
show that the Hamiltonian is bounded from below. This
requirement severely restricts the possible models. Namely,
the norm of the vector field has to be fixed to a single
timelike value, while the kinetic term has to be of the
sigma-model type [33,34]. For any other bumblebee model
the Hamiltonian is not bounded from below. It should be
noted that a model with Hamiltonian that is unbounded
from below is not necessarily unstable; for instance, it
might be stabilized by conserved quantities other than the
Hamiltonian. The issue of stability of bumblebee models
has also been addressed in Refs. [35-39].

While the possibility that spontaneous breaking of
Lorentz invariance might occur for tensor fields of order
higher than one was proposed early on [4], relatively little
studies have appeared in the literature about these. One
exception is Ref. [40], where a theory of gravity is
constructed, based on the idea that massless gravitons
can arise as Goldstone bosons of broken Lorentz symmetry
[41,42]. Another possibility that has been proposed is that
of a Lorentz-breaking theory of a rank-two antisymmetric
tensor field [43]. While a number of studies have appeared
applying this idea (see, e.g., Refs. [44-48]), the study of
stability has received little attention.' In this work we
attempt to fill this gap. For various reasons it is important to
know which models describing the antisymmetric two-
tensor field are stable. First of all, any studies based on
unstable models are, at the very least, of dubious relevance.
Furthermore, the known existence of any stable models of

'See Ref. [49] for a study addressing this issue.
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spontaneous Lorentz breaking would be a relevant addition
to the class of known stable models that mediate sponta-
neous Lorentz breaking.

This paper is organized as follows. In Sec. Il we review the
(stable) bumblebee model with sigma-model-type kinetic
term. In Sec. III we investigate the stability of the models for
the antisymmetric two-tensor field in Minkowski space,
allowing for arbitrary parity-even form of the kinetic term,
quadratic in spacetime derivatives and in the field. We
consider, alternatively, Lagrange multiplier potentials that
fix either one or both of the quadratic invariants that can be
built from the antisymmetric two-tensor field. As we show,
no models with these requisites exist for which the
Hamiltonian is bounded from below. In order to remedy
this, we present in Sec. IV a hybrid model depending on the
antisymmetric two-tensor field together with a vector field,
which has a bounded Hamiltonian. We analyze some of its
properties, including, in Sec. V, the linearized equations of
motion and a discussion of the Nambu-Goldstone modes. In
Sec. VI, we consider its coupling to gravity and matter.
Finally, in Sec. VII, we present our conclusions.

In this work we will use natural units with ¢ = 7 =1,
and the spacetime metric convention (— + ++).

II. REVIEW OF THE SIGMA-MODEL
BUMBLEBEE

In this section we will review the stable bumblebee
model with Lagrange-multiplier potential, fixing a timelike
expectation value.

Consider the Lagrangian density

1
2

(AA; — A} - (0:4;)(9;A;) + (0;A0)(0;A0))

L (0,A,)(0"A%) 4+ A(A,A¥ + a?)

1
T2
+ A(=A3 + AA; + a?). (1)
Here A# is the bumblebee field, 1 a Lagrange-multiplier
field, and a a positive constant. Note that repeated indices
are summed over. The constraint A,A* + a* = 0 forces A,
to take a timelike expectation value, such that in its rest
frame A* = (ia;ﬁ).
The canonical momenta are

T = —gf = An (2)
oL .
=—=-A, 3
Ty 5A, 0 ( )
oL
) ~ 0, (4)

so there is one primary constraint. Note that the “x” sign
indicates weak equality in Dirac’s language, that is,

equality on the constraint surface in phase space. The
canonical Hamiltonian becomes

HC = ”iAi + HOAO —_ L:

= S (A, = A3+ (344 (9:A,) ~ (910) (9,40))

+ A(A% - AiAi - az). (5)

Following the Dirac procedure, we define the primary
Hamiltonian H, by adding to (26) the primary constraint
multiplied by a Lagrange multiplier:

Hp = Hc + U7y (6)

which defines time evolution in the extended phase space.
Next we impose that the constraint (4) is conserved in time,
i.e., it must have zero Poisson bracket with H,. This yields
the secondary constraint

2 = A2 — AA; - a* » 0. (7)

Continuing this process [that is, imposing that the
constraint (7) be conserved in time as well] can be shown
to yield two more constraints in phase space [34]. They
are all second class, that is, the matrix of their mutual
Poisson brackets is nondegenerate on the constraint
surface, and the number of dynamical degrees of freedom
is 5—-4/2=3.

It is convenient to take them to correspond to the spatial
components A;. Then A, is fixed by the constraint (7):

AO = i\/AiAi+az (8)

and is thus not an independent dynamical degree of
freedom. As a consequence, it is eliminated as a potential
ghost degree of freedom [note that its time derivative
appears with the wrong sign in Egs. (1) and (26)]. It then
follows from (8) that

. AA;
Ay =—1 9
0= ©)
so that
. AAN(AA; AAN(AA; .
i = AAAA) Ad)AA)
A Ap

where in the first inequality we used Schwarz’s inequality
and in the second one constraint (7). In the same way, it
follows that

(0:40)(0;A0) < (0:A;)(0:A)). (11)
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Consequently, we find that

H, ~ = (AA; — Af + (0,A;)(9;A;) — (0;A0)(9;A0)) > 0

| =

(12)

and we can conclude that the model is stable [33,34].
It is instructive to consider the equations of motion
following from the Lagrangian (1):

OA, + 214, =0, (13)
AM = =, (14)

where [ = d,0*. Multiplying Eq. (13) by A# and using the
constraint (14) yields

1
j, - 2—512A”DA”. (15)
Substituting Eq. (15) back into (13) yields the factored
expression

1
<5; + —ZA”A”> 04, =0 (16)
a

in which the factor in front projects onto fluctuations 6A,,
that are transverse to A, satisfying A#6A,, = 0. This shows
clearly that there are three dynamical massless degrees of
freedom.

It can be shown that the choice of other kinetic terms
than the “sigma-model-type” Lagrangian (1) always leads
to Hamiltonians that are not bounded from below [33,34].
For the case of the Maxwell kinetic term it turns out that
there are actually no linear modes that destabilize this
model [33]. Also, the latter can be shown to be stable on the
restricted phase space with 4 =0 [34]. In that case, the
Lagrange multiplier term no longer contributes any restor-
ing force in the equations of motion for the vector field and,
as a consequence, the dynamics of the model coincides
with that of pure Maxwell theory. However, this is no
longer the case whenever the Lagrange multiplier becomes
nonzero at any point in space, which may happen if the
vector field is coupled to external fields. In those situations
instabilities can be expected to set in. For instance, it is
known that the Maxwell kinetic term in models with
spontaneous Lorentz breaking can lead to the spontaneous
formation of shock waves [35].

III. ATTEMPT TO FORMULATE STABLE
MODEL WITH THE ANTISYMMETRIC
TWO-TENSOR FIELD

Next consider the antisymmetric two-tensor field
B,, = —B,,. It was considered first in the context of a
Lorentz-violating model in [43], where it was pointed out

that the most general nonderivative potential is of the
form V(Y,.Y,), where Yy = B, B* and Y, = ¢"/°B,,B,,
are the only two functionally independent (pseudo)scalar
combinations that can be built from B,,. Consequently, for
suitable potential, Y| and Y, can independently acquire a
vacuum expectation value. If either is nonzero, this implies
that Lorentz invariance is broken spontaneously. The
various ways in which this can happen, as well as the
dynamics of these models, are discussed at length in [43].

However, one issue that remained unexplored in [43] is
that of stability. Here we will investigate the stability of
models with the most general possible kinetic term that is
quadratic in B,,. For the potential we will first consider the
Lagrange-multiplier potential

V/IMZ = /11 (Bszlw - yl) + ’12 (eﬂvpaByqua - yZ) (17)

which fixes the values of Y; and Y,, not allowing any
fluctuations from their vacuum value. As an alternative, we
will also consider the potential

Vi = A(B,B" =) (18)
which fixes only the value of Y, leaving Y, free. It would
be interesting to consider also the case of a smooth
potential. However, this is beyond the scope of the current
work.

The most general kinetic term that is quadratic in B, and
parity even is

1 1
701 (V:B*)(V'B,,) + Eﬁz(sz’”)(quiu)
1
+ 503(VﬂB’“’)(ViB’1U). (19)

Passing to flat space, and performing a partial integration
of the second term, upon inclusion of the potential
terms, the Lagrangian density takes either one of the
alternative forms

1 1
L, = 301 (0,B*)(0"B,,) +§023(0;43””)(0AB/111) = Vi

(20)

1

1 1
L, = 50'1 (a/lB”D)(aiB/w) + 50—23(0/43””)(0/13/11/) Vi

(1)

where 0y3 = 0) + 03.

In order to assess the stability of Lagrangian (20), we will
pass to phase space, carry out a careful analysis of the
constraint structure, determine the Hamiltonian, and verify
if it is bounded from below. As it turns out, there are some
special values for the coefficients o, and 6,5 for which the
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constraint structure is different from the general case.
Therefore, we will distinguish the following three cases:
(A) 01 #0, 0123 #0;
(B) 01 #0, 6123 =0;
(©) 01 =0, 013 #0.
Here we defined 0,53 = o) + %023.

A. Case (3] 56 0, 0123 ?ﬁ 0

We start with analyzing the canonical structure of
Lagrangian (20) for the general case, such that neither
o nor the combination 6,3 vanishes. First we introduce the
canonical momenta

oL :
7o = —22 = 26153 By; + 0230;Bj, (22)
0B;
6[,/1[,12 .
”ij = F = —UlBl'j, (23)

ij

where 61,3 = 0] + %023, and the overdot stands for deriva-
tive with respect to time. The momenta associated with the
Lagrange multipliers are identically zero, so that they will
give rise, in Dirac’s terminology, to the primary constraints

¢ =m, =0, (24)
¢, = m), = 0. (25)
The canonical Hamiltonian can be written as
H, = m0iBo; + ﬂijBij —L;,,
———(mo; + 6230,B;;)(mo; + 0230k Big) — 5— ;7

40123 261

1
+61(9;By;)(9;By;) + 5023(51'301')2

1 1
~50 (0;B)(0;B i) — 5023(0,/'Bij)(3k3ik) + Vi,

(26)
|

¢§4) = {4753)’ Hr}
1

Following Dirac’s procedure, one now defines the total
Hamiltonian by adding to . a linear combination of the
primary constraints:

Hr =He + uid1 + u2thy. (27)

Here u; and p, are, as yet, undetermined parameters. Next
one imposes that the primary constraints be conserved in
time, where time evolution is to be generated by the total
Hamiltonian H = [ Hrd®x. We thus obtain the secondary
constraints

¢§2) ={¢1.Hr} = =2By;By; + B;;B;; —y1 0, (28)

2
¢S = {ha. Hr} = —4eqiBoBj = y2 0, (29)

which are, of course, the constraints enforced by the
Lagrange multipliers 4; and 4,. Demanding that ¢§z) and

¢§2) be conserved in time yields two more constraints:

3 2 : '
o = {9 Hp} = —4ByBy; + 2B,B;;

2
= ——— By;(my; + 6230;B;;) (30)

2
- _Bl]”lj ~ 0,
0123 o]

3 2 . .
4'75 '= {(ﬁg >’HT} = —4e;jx(BoiBji + BoiB ji
1 1
= —deji | 57— (mo; +06230,B;;)Bj +—Boyzmji | =0.
20123 0]

(31)

Iterating this process yields yet one more set of secondary
constraints:

1
= (i + 6230;B;)(mo; + 6230 Biy) + 52 FiiTij
1

-
2013

BOi 023
+ <_26162B0i — 6236i6j30j - 4/11301‘ - 412€0ijkBjk + G—lajﬂu)

0123

B;; c
+J (GlazBij+023ajakBik— 23
0 2013

~0
~ U,

0;(my; + 6230k By) + 24, B;; — 4/12€0ijk30k>

(32)
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=gt )

1 1 1
= depiji [201% (2015 By + 6230;0;By; + 51”11) Bj +— o < o1 (moi + 6230,B)7jy
+ By, (010 Bji + 6230,0,Bj; — z—zl;ak(”oj' +0230,Bj;) + 24 Bj — 4/12601]'1{301) ﬂ ~ 0. (33)
For the time evolutions of ¢§4) and ¢§4) we find expressions of the form
@ 2 1 1o
{¢\" . Hr} = =24, | =———Bo;Bo; + —B;;B;; | + 4| — + €0ijkBOiBjk + (34)
0123 g 0123

1 1 2 1
{ff’z JHyh = 8uy | — + €OijkBOiBjk + 16y ( ———BoiBo; +—B;;Bjj | + -, (35)

0123 0123 |

where the ellipses denote terms that do not involve the
coefficients y;. We can impose that expressions (34)
and (35) vanish strongly by solving them for u; and pu,.
Consequently, there are no further secondary constraints.

The phase space has 2 x (6 +2) = 16 local degrees of
freedom (corresponding to the 6 independent components
of B,, and the Lagrange multipliers, together with their
canonical momenta) while there are 8 remaining con-
straints. It can be checked that they are second class.
Therefore, altogether, the system defined by Lagrangian
(20) has 8 degrees of freedom in phase space.

Next let us see if there is a subset of values of the
coefficients o; for which the Hamiltonian is bounded
from below. First of all, it follows from Eq. (26) that, in
order to avoid ghost instabilities, one needs to impose the
restrictions

0123 > 0 and o1 < 0. (36)

In terms of the vectors H; = %%ijkBjk and E; = By,, the
constraints (28) and (29) imply that

-

- 1 - 1
|H|2 - |E|2 = —Eh and

H-E:—Eyz. (37)
Now consider any configuration with Cartesian coordinates
H=(H cosa,H, sina,H), E=(00,E) (38)

with constants H, H, and E satisfying

1 1
H? + H? - EZ:—Ey, and HHE:—EyQ, (39)

and with a(7) some function of the spatial coordinates. The
conditions (39) can be readily solved for H and E for any

|

values of y;, y,, and H |. It is easy to check that, if H | is
taken to be nonzero and H2 > — fyl, it follows from
Egs. (39) that E # 0 even if y, = 0. Moreover, let us take
7ij =y + 06230, B =0, solving constraints (30) and (31).
Constraints (32) and (33) amount to conditions on the
Lagrange multipliers 4; and 1, of the form

(H2 )ﬂ,l 2H\EAy +--- =0, (40)

HHE/11 —4E2/12+"' :0’ (41)

where the ellipses correspond to expressions independent
of 4; and 4,. The system (40)—(41) can be readily solved for
the Lagrange multipliers in terms of H and E. This shows
the field configuration defined by conditions (37)—(39) is
compatible with the constraints.

The Hamiltonian density now becomes

1
H, = —0613(0;H;)(0;H;) + 5023(‘31'1{1')2
+ (9:2)*)

1 .
+3 o3H% (—(sina)d,a + (cosa)o,a).  (42)

= —o13H7 ((0,2)* + (0,)?

As the two terms in the last expression have opposite signs
(note that 1653 > 6123 > 0), it is not immediately obvious
if H, is positive definite, or whether negative values are
possible. In fact, it is easy to demonstrate that a(7) can be
chosen such that H,. is nonzero on a local region of space
such that the energy [d°xH, takes any finite negative
value. For example, let us take

a(F) = eexp [=(k,(x* +y*) +x.2%)/2]  (43)
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with positive constants €, k,, and k,. Substitution in
Eq. (42) yields

~ 2 2 2.2 2.2
HCNHLG [_0123(’(/)/] +KZZ)

1 -
3 oxskEp? sin (a(F) — )| e (44)
where we introduced cylindrical coordinates, with
x = pcos¢ and y = psin ¢. Expression (44) can be readily
integrated over space, yielding for the Hamiltonian (i.e., the
energy)

7/2H? €2 1
/d3XHc = Txll/z ((—20123 + 5”23)’9; - 0123’<z>-
Z

(45)

While the sign of the first term in this expression can be
either positive or negative, the last term is negative.
Consequently, we can choose the values of e, Ky, and x,
such that the energy takes any negative value.

Next, we consider Lagrangian (21). There is now only
the single primary constraint ¢; given by expression (24),
so in the canonical Hamiltonian (26), the potential term is
substituted by V), , while the total Hamiltonian (27) only
includes the term with the parameter u;. Applying Dirac’s

procedure yields the secondary constraints ¢§l) (i=2,3,4)
given by expressions (28), (30), and (32), with 4, set to

zero. The time evolution of ¢§4) is of the form of Eq. (34),
with u, set to zero. This condition can be immediately
solved for p;, so there are no further constraints.
The remaining four constraints can be shown to be second
class, and thus it follows that for this case there are
2x (64 1) —4 = 10 degrees of freedom in phase space.

The destabilizing configuration proposed above for
the case of two constraints can be applied to this case
as well.

We therefore conclude that, if both ¢; and o,; are
nonzero, the Hamiltonian is always unbounded from below.

B. Case (3] ?é 0, 0123 =0
In this case Lagrangian (20) becomes

1
‘Cﬂl/lz =501 [(aﬂBm/) (alB;w)

D) - 2(0143””)(0/1321/)] - VAMQ'

(46)

This Lagrangian can be cast in a more convenient form by
performing a partial integration in the action on the second
term, yielding

1
5,11/12 = EGIH’I””HAW - sz (47)

where H,,, = 9,B,, + 0,B,, + 9,B;, is the field strength
associated with B, invariant under the gauge transforma-
tion B,, —» B,, + d,A, — 9, A, for arbitrary gauge param-
eter A,. It is straightforward to demonstrate that, in the
absence of the potential term V), ,, the Hamiltonian
associated to Lagrangian (47) is non-negative definite for
o1 < 0, defining a stable gauge-invariant system. However,
we will see that, in the presence of the potential, this is no
longer the case.

In order to derive the Hamiltonian and the associated
constraints, we write Lagrangian (47) as

1 1
Ly = —501 Ho;jH;j _gHiijijk - Vi

1 . ,
=501 [(Bij +20;Bjj)(Byj + 20;Bj)o)
— (0iBj)(0:iBji) +2(0;B;j) (0 Bix)] — Via,  (48)

where we performed a partial integration in the last term.
For the momentum conjugate to B;; we find

”ij = —0] (BU + 20[1Bj]0> (49)
while the momenta conjugate to By, and the Lagrange

multipliers vanish identically, leading to the primary
constraints

¢l = 77,')” %O, (50)
¢2:77:/12N0, (51)
boi = 70 2 0(i = 1,2,3). (52)

We obtain for the canonical Hamiltonian

H. = m0;Bo; — L,
1 o
= —2—61”,‘,‘7%'/ + 2m;;0;By; — ?1 (0iB i) (9:Bji)
+01(0;B;;)(0kBix) + Vi 1,5 (53)

while the total Hamiltonian becomes

Hr =He + pihy + Hapy + poiois (54)

where y;, o, and p; are, as yet, undetermined parameters.

Just like in the previous case, we now follow Dirac’s
procedure and determine the secondary constraints, by
imposing that the primary constraints be conserved in time,
where time evolution is generated by the total Hamiltonian
Hy = ["Hyd®x. This yields the secondary constraints (28)
and (29), together with

¢g) = 2ajﬂji - 4/11301' - 4/12€OijkBjk ~ 0. (55)
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Imposing that the secondary constraints be conserved in
time gives the (tertiary) constraints

2
3
4’5 ) = —4p;Bo; — o_lBjk(”jk +2610;Bj0) #0,  (56)
1
3
¢§ = Hi€0ijk3jk - 6_]€OijkBOi(”jk + 2010[i3k]o) ~0, (57)

1,3
54)(()1‘) = aj(z/llBji - 4/1260ij1<30k) = 2u1Bo; — 24, po;
2
=+ 0—1/12€Oijk”jk - 4/12€0ijk5j30k - 2M2€0ijkBjk ~0.
(58)

By taking the combinations ¢(()§)Bo,- - ¢§3)/11 and
g{)(()?)em Bk + 4¢£3)/11 we obtain the system of equations

—4Bo;iBoipty + yaup + - =0, (59)
Yot — 8By Bjiuy +--- =0, (60)

where we used the constraint qbéz); the ellipses stand for
expressions that do not depend on the coefficients y;, u»,
and pg;. If y, # 0 these equations can always be solved for
the coefficients y; and p,. Finally, we can use constraint
(58) to solve for the coefficient pg;. Thus, the Dirac
procedure does not generate any further constraints.

Altogether there are 2 x 642 x2 = 16 field compo-
nents (corresponding to B,,, the two Lagrange multipliers,
and their conjugate momenta) and 10 remaining (second-
class) constraints, so this case has 6 local degrees of
freedom.

Let us now see if the Hamiltonian (53) is bounded from
below. Absence of ghost instabilities requires that o; < 0.
Let us define, as in the previous case, the vectors E; = By,
and H; = j€0;xBj, and moreover, P; = 5-¢€q;cr- The
secondary constraints imply conditions (37), as well as

L 1 - _
o]

The Hamiltonian density can be written as

Now consider the configuration

H = H(cosa,sina,0), (63)
E = E(cos(a + ¢), sin(a + ¢),0), (64)
P = E(0,0,0,(sin(a + ¢)) — o, (cos(a +))),  (65)

where H = |H|, E = |E|, and the angle ¢ between H and E
are chosen such that

1 1
HZ—Ezz—Eyl and HEcos¢:—§y2. (66)

We will assume that the vectors H and E are linearly
independent (i.e., sin¢ # 0). The function a(x,y,z) is
taken to be of the form

a(x,y,z) = eexp|—(kx* + Kyy2 +x.24)/2]  (67)

for positive constants e, k., k,, and k.. The curl of P

¥y
becomes

VxP= E(9,(cos(a+ ¢)o,a + sin(a + ¢)d,a),
— 9, (cos(a + ¢)o,a + sin(a + ¢)d,a),0). (68)

Clearly, this can be written as a linear combination of the

vectors H and E, and therefore the constraint (61) is
satisfied for suitable values of the Lagrange multipliers
A1 and 4,. A straightforward calculation yields for the
Hamiltonian density (62):

H, ~ —010*[(—Ecos*(a + ¢) + Hsin*a)k2x*

+ (—Esin®(a + ¢) + H*cos*a)k2y*

— (E?sin(2a + 2¢)) — H? sin(2a) )&,k xy]. (69)
Let us now assume that ¢ < 1. Noting that o < ¢ < 1, we
can expand the terms in square brackets as a power series in
e. For our purposes it is sufficient to just keep the leading
(a-independent) term, and we obtain the approximate
expression
H, ~ —0,€* (—E*cos’p2x* + (H? — Esin’¢)x2y*

— E?sin(2¢) )k, K, xy) e~ (R Hry ) (70)

This can be readily integrated over space, yielding for the
energy

3/2
/ dxdydzH, ~ —c,€? G —E? cos? ¢ Sy (H? — E?sin® ) Al (71)
¢ N/ Ky Ky

045014-7



ROBERTUS POTTING

PHYS. REV. D 110, 045014 (2024)

If cos ¢ # 0, we can always choose the value of the ratio
K./, large enough such that the expression inside square
brackets is negative, corresponding to a negative value of
the total energy. However, if cos ¢ = 0 (corresponding to
the case y, = 0), Eq. (71) reduces to

7k,
/dxdydzHC ~—ce?(H> — E*) [—2.  (72)
KXKZ

By the first constraint in (66) this is negative definite for
y; > 0, but positive definite for y; < 0. (We will not
consider the possibility y; = 0, as this would imply there
is no spontaneous Lorentz violation.)

Lest one suspect that for y; < 0, y, = 0 the Hamiltonian
might be bounded from below, consider the configuration

H= (H(x,y,z),0,0), (73)
E= (0,0, E(x,y.z2)), (74)
P = (0,-0,E,0), (75)

where E(x,y, z) is some function of the spatial coordinates

and H(x,y,z) = y/E(x,y,2)* = y;. It follows that

= o
V x P = (0,0,E. 0, —0*E) (76)

which can be written as a linear combination of the vectors

H and E for suitable values of the Lagrange multipliers 4,
and 4,, satisfying constraint (61). It is easy to check that the
Hamiltonian density becomes

E2_H2

Hc = —0 H2

(0.E)? (77)

which is negative definite for y; < 0.

Let us consider now the Lagrangian (21). We have the
primary constraints ¢, ~# 0 and ¢,; %0 given by expres-
sions (50) and (52), so in the canonical Hamiltonian (53),
the potential term is substituted by V; , while the total
Hamiltonian (54) the term with the parameter p, is set to
zero. Applying Dirac’s procedure yields the secondary
constraints ¢\’ ) and ¢(()]i) (j =2, 3) given by expressions
(28) and (55)-(58), with A, and pu, set to zero. The
conditions ¢(13) =0 and (/)((3) =0 can be solved for p,
and pg;, so there are no further constraints. There are
8 remaining constraints, which form, once more, a
second-class system. It follows that for this case there
are 2 x (6 + 1) — 8 = 6 degrees of freedom in phase space.

Once again, in order to avoid ghost instabilities, one
needs to impose the restriction 61 < 0. Defining the vectors

H , E, and P as above, it follows from the constraints gbsz)
and qb(()? that

L 1
AP~ |EP =~ L. (79)
- 2 -
Vxpo-ME (79)
1

Now consider the ansatz

P =(0.0,P,(x.y.2)) (80)
with
a
R (e A

with positive constants o and . If we take the Lagrange
multiplier 4, to be given by

/2 2
o1\ X +y (82)

ﬂ.](x,yv Z) = [7)(1 —|—K'<x2 —|—y2 + 22)/2)3

for f constant, it follows from condition (79) that

_ap
NEE

E = (-y.x.0)

It is easy to check that

V xE = <O’O’\/x;LTy2>' (84)

We can satisfy constraint (78) if we choose the constants «
and S such that

> 1
|E|2 =a’f? > 5)’1- (85)

It follows that |H| = |/a?f? — 1y1 is constant, and we are

free to choose H independent of the space coordinates. It is
then straightforward to check that the energy of the
configuration becomes

-

/d3rHC = /d3r(|1_52—21?’- (?XE) + |VITI|2)

1 4p
= 12a? <2\/_2K3/2 — K> (86)

which is negative if f > 1/(8v/2«). This condition is
compatible with (85). We conclude that also in this case
the energy can take arbitrary negative values.
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In conclusion, for the case 61,3 = 0 the Hamiltonian is
always unbounded from below.

C. Case 0'1=0, 0123 ?é 0

In this case we find for the momentum conjugate to the
B(; components

- dCMZ

Ty = 3By, = 053(Bo; + 0;B;) (87)

while the remaining canonical momenta vanish identically,
leading to the primary constraints

¢1 :71'/11 %0, (88)
¢y = m), =0, (89)
by =m;~0 (i.j=12.3). (90)

For the canonical Hamiltonian we find

1 o
H, = 5—myimo; — m0;0;B;j + £<ajBOj)2 + Vi, (91
2623 2
and for the total Hamiltonian
Hr =He + pimy, + pomy, + pijmi; (92)

where the coefficient functions p;, u,, and y;; are to be
determined.

Just like in the previous case, we again obtain secondary
constraints demanding that time evolution preserves
the primary constraints. This yields the secondary con-
straints (28) and (29), together with

45512) - —6[,-7[/-]0 - Z/IIBU + 412601'/'](30]( ~ 0 (93)

Imposing that the secondary constraints be conserved in
time gives the (tertiary) constraints
() __ 4 ~
¢y = _G_BBOi”Oi +4B;0;B;; +2u;;B;; 0,  (94)

3 4
¢§ )= - 6_23601‘jkBjk7770i + 4€0ijkBjkalBil - 4€Oijk30i/4jk ~0,

(95)
1
Eqﬁﬁf) = 20};(41Byj)) + 20 (€ojjid2Bir) + Bijiy — Aipi;
2
= 2e0;jkBortr + 673/12601'1'1(7701( ~ 0. (96)

By taking the combinations Bijqﬁg’) —I—/11¢<13) and

2€; jkBO,-ci)lE.i) - /11479) we obtain the system of equations

2B;iBjjp; — yopp +--- =0, (97)
Yot — 16Bg;Boipty + - =0, (98)

where we used the constraint ¢(22); the ellipses stand for
expressions that do not depend on the coefficients yy, u»,
and p;;. If y, # 0 these equations can always be solved
for the coefficients y; and u,. Finally, we can use constraint
(96) to solve for the coefficients u;;. Thus, the Dirac
procedure does not generate any further constraints.

Just like in the previous case, there are 16 field
components and 10 remaining second-class constraints,
yielding 6 local degrees of freedom in phase space.

Let us now see if the Hamiltonian (91) is bounded from
below for 0,3 > 0 (as we saw, for negative 0,3 it is
unbounded from below even in the absence of the con-
straints). Let us define, as in the previous case, the vectors
Ei = BOi and Hi = %GOijkBjk’ and moreover, Pi = 0_—;ﬂ'0i.
The secondary constraints imply conditions (37), as well as

— - 1 o =
2023

The Hamiltonian density can then be written as

M, z% 1P]2=2P - (V xH)+ (V-E?.  (100)
Comparing Eqgs. (99) and (100) with the corresponding
Egs. (61) and (62) of the previous case, we see that they can
be obtained by performing the substitutions:

E—-H,  H--E (101

o] — —5623,

In fact, the two models are formally equivalent under these
substitutions. This is so because the Lagrangian (20) is
invariant if one performs the simultaneous set of duality
transformations,

1
B;w d §€ﬂyil)Blp,
1
0] = —0 —50237
023 = 023,
Ai_)_j’i (l:1,2),
yi— =y (i=12). (102)

This transformation interchanges the cases B and C. Thus
the special case C is dynamically equivalent to the case B
with Lagrangian (20).

This dynamical equivalence between the cases B and C
also holds for the Lagrangian (21).
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Now we had already concluded that for case B the
Hamiltonian is unbounded from below. The dynamical
equivalence implies that this conclusion also applies to
case C.

This completes the Dirac constraint analysis of the
Lagrangians (20) and (21). Our conclusion is that, for
any choice of the coefficients o;, the Hamiltonian is
unbounded from below. In the next section we try to
remedy this by presenting a model involving the antisym-
metric two-tensor field that does have a Hamiltonian that is
bounded from below, by coupling it with the sigma-model
bumblebee presented in Sec. II.

IV. A COUPLED HYBRID MODEL

Consider the following model, coupling the antisym-
metric two-tensor field with the sigma-model bumblebee:
Lap=Ly+ Lp. (103)

where
1
Ly = —E(aﬂA,,)(a”A”) + A (A”A,, +a?)  (104)
and
A*B,,A*B
EB — _;_BA;tAu(aiBlm)(a/{Bya) +/12< ﬂaz v b2>
a a

(105)
|

2067 'Hp, = D,D* = DD} — D}

= (COSh}{BOk - Sinh)(fiBik)(COSh)(BOk - Sinh)(ijjk) - (Sinh)()z(fiBiO)2'

To see that this expression is positive semidefinite, note that

DDy = (f1f1)(DiDy) 2 (f1Dy)* = (coshy fBo)*  (111)
where we used Schwarz’s inequality, and thus
207" Hp, 2 (coshy)*(fiBox)* = (sinhy)*(fiBjo)*

= (fiBo)* 2 0. (112)

Note that o7'Hp, is positive semidefinite rather than
positive definite, because there are nontrivial field con-
figurations for which it vanishes. More on this below.

The same logic follows with B;m replaced by 9B, for
i =1, 2, 3. In conclusion, the Hamiltonian density corre-
sponding to the Lagrangian (103) is positive semidefinite
for o; > 0.

The equations of motion that follow from the Lagrangian
(103) are

with o; a dimensionless constant. The two constraints

ensure that A, is a timelike vector satisfying A, A" = —a’,

while C, = A*B,, is spacelike, satisfying C,C* = a’b”.

We already know that the first two terms yield a positive
definite contribution H, to the Hamiltonian density. The
contribution of the terms involving the antisymmetric
tensor field is equal to

Hy = %A”AD [B,oB" + (0:B,o)(0;B)].  (106)
a
Now let us parametrize
Ag = acoshy, (107)
Ai = afl‘ Sinh)(, (108)

with f;f; = 1. Let us denote the term of Eq. (106) with time
derivatives by Hp,. Defining

1.
D, = EA”BW (109)
it follows that
(110)
(3
PA, +20,A, — a—éA”(alBW)(a‘B,ﬂ)

2
+ 5 B,,AYB,* =0, (113)

a
010" (A¥A(0,B,/)) + 24,AYAFB,P) = 0, (114)
APA, + a® =0, (115)
A*B,,AB,* — a’b* = 0. (116)

Contracting Eq. (113) with A* and Eq. (114) with B,, and
using the constraints (115) and (116) yields expressions for
the Lagrange multipliers in terms of the fields. Substituting
these back into Egs. (113) and (114) yields, after some
algebra, the factored equations
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. 1 © Ol 4 a
<5/4 + ;AMA > |:02AK - ?A (aiBKfl)(alB” ) -

and
kgl L4 . _
<5a 8 — A A[”B,/’]Baﬁ) 0;(AA7('B,)) =0, (118)

where the prefactors are projectors. Equations (117) and
(118) represent massless fields, with interactions due to the
nonlinear coupling between A, and B,,. We also see clearly
from Eq. (117) that A, continues to have 3 degrees of
freedom, while the prefactor in Eq. (118) projects out one
degree of freedom, leaving a total of 3 — 1 = 2 propagating
degrees of freedom for B,,,.

The situation is more clearly understood in the Lorentz
frame in which A, is purely timelike, that is, Ay = a and
A; =0 (i=1, 2, 3). Then the second constraint yields
By;By; = b?, thus fixing the modulus of the three-vector
By,. Note that there is no constraint in the remaining
components B;;. In this observer frame the two propagating
degrees of freedom referred to above correspond to the
fluctuations of By; that are orthogonal to its expectation
value. Clearly the three components B;; do not participate
in the dynamics described by the Lagrangian (103).

However, it is easy to extend the model and involve these
components in the dynamics as well. To this effect,
consider instead of (103) the extended model

Ly =Lyp+ Ly, (119)
where
Ly = _%A”AU(@B}:") (0*B;%) + 3 (w_ l‘,z) ’
(120)
in which
By, = %eﬂmB’”’ (121)

denotes the dual to B s and o, is a dimensionless constant.
The constraint enforced by 15 will force an expectation value
for the components By;, or, equivalently, for the components
Bjj. It is straightforward to show that Eq. (120) can be
written, by using the constraints enforced by 4, and 4,, as

L == 25 W 0,5,,) (0B, - 2 (0,5%)(0'B,.)

1 -
+ 23 <5 B, B" + b* — b2). (122)

01

pEyS) (117)

Bupdy (A7 (9'B,1)) B, A B,? | = 0

Note that the first kinetic term in Eq. (122) is identical to the
one appearing in Lagrangian (105), while the second one
corresponds to the “sigma-model” term proportional to o,
considered before in Eq. (19). It follows that

A"B,,A"B,”
L; =L+ (A*A, + a?) +/12<’“’2”—b2>

1 _
+ 43 (EBWB”” +b% - b2> (123)
with
1 . ) B .
L= _E (aﬂAu)(aﬂA ) - 242 ArA (aﬂB;m)(aﬂBy )
O
- f (0,B")(0"B,,,). (124)

This model has a total of 3 + 2 4+ 2 = 7 propagating degrees
of freedom. Because both the original model (103) and the
added model (120) are stable for positive values of o, and o,,
the same is true for the extended model (123).

Above we argued that it was natural to extend the
original model (103) because not all field components
participate in its dynamics. For the extended model the sum
of the number of propagating degrees of freedom and the
number of constraints, 7 + 3 = 10, exactly matches the
total number of field components (4 + 6). This demon-
strates that in the extended model all field components
participate in the dynamics, either as a propagating degree
of freedom or because its dynamics is fixed by the
constraints. Consequently, the Hamiltonian of the extended
model is positive definite for positive values of o; and o,,
rather than positive semidefinite.

In the limit o, — 0, while maintaining o; > 0, the
Lagrangian (123) reduces to the original model (103)
with 5 degrees of freedom. The case 6; — 0,06, > 0 can be
obtained from this case under the substitution B,, — B,
and so also has 5 degrees of freedom. Whenever either o,
or o, is negative, the Hamiltonian is unbounded from
below.

The equations of motion that result from the
Lagrangian (123) are
oL, oL 2 B
5147 = 5147 + 2/11A” + FAQBWJA By/’ =0, (125)
oL, oL 2
=+ S LAYAFB L + 1B =0, (126
6B,, 4B, tazn S (126)
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with
oL o1+ 0, v
A P’’A, - e A¥(0;B,,)(0"B,?), (127)
oL () o+ 0y
— = =B o' (AvAlko,B,rY), (128
5BW) 2 + a2 ( APv ) ( )
together with the constraints
A A+ a? =0, (129)
A*B,,A"B,f — a*b* =0, (130)

B +2(b* - b*) = 0. (131)

B,

By contracting Eq. (125) with A* and with B*’A°B,,, and
Eq. (126) with B,, and with A,A*B,, and using the
constraints (129)—(131), one obtains a set of linear equa-
tions for the 4;:

1 6L

a*ly —b*l, = EA” AR (132)

b*2, + F(A’B)/Iz = _Q_LZBWCP;TFM’ (133)

by + (b* — b*) Ay = —%Bﬂp%;, (134)

b*Ay — b5 = 12 AC, 5B£ (135)

Here we defined C,=AB,, and F(A,B)=

A”B”O,B"’ﬁ By, B™A, (which is not fixed by the constraints).
From Egs. (132)-(135) we obtain

1 oL 1 2 5L
M==A————(b’B -b*)A,C :
"2a A 2a2b2< Ty )53,,,,
(136)
1 2 b? sL
ﬂzz—ﬁ Bﬂp—’_? l_ﬁ A C §B (137)
@ e pwe B EETS
2a*b* + F(A,B) SAH’
1 2 oL
Iy =5z <B + 2A,,C,,) 55, (139)

We see from expressions (137) and (138) that there are
multiple ways to express 1, in terms of A* and B,,

Technically, this is a consequence of the fact that the
system of equations (132)—(135) is overconstrained.
The implied identity is a nontrivial relation between the
variations 6L/5A* and 6£/6B,,, that is valid on the surface
defined by the constraints. Also 4; and 13 can be rewritten
by using this identity.

The Lagrange-multiplier terms in the equations of motion
(125) and (126) impose the constraints (129)—(131), con-
straining the possible field variations accordingly. Therefore,
one expects that it should be possible to write the resulting
equations of motion in projected form. In Appendix it is
shown that this is indeed the case.

V. THE LINEARIZED EQUATIONS OF MOTION

Next, let us analyze the equations of motion at the
linearized level, by expressing the fields as a sum of their
expectation values and fluctuations around these:

AF = AHF + SAF, B,, = BM, +6B,,. (140)
We will assume that A* and Bﬂp are independent of
spacetime. From constraint (129) it follows that we can
express

A¥ =au'  with w'u, = -1 (141)
while the fluctuation vector a* satisfies
a'u, = 0. (142)
From constraint (130) it follows that
w’ B, u,B" = b* (143)
and
8A’B,,B%u, + au’B,,u,6B%* = 0. (144)
Finally, constraint (131) yields the conditions
B"B,, =2(b* - b?) (145)
and
B*6B,, = 0. (146)

It is helpful to choose an observer frame such that u* is
purely timelike, with u’ =1 and ' =0 (i =1, 2, 3). It
then follows from (142) that a° = 0. Egs. (143)—(146) then
yield the conditions

BOiBOi - bz, (147)

B..B.. =2b?

=y

(148)
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and

- 1 ... -
BOi(SBOi - _E(sAlBljBOj’ (149)

BljéBlj -

2 o o
—55A’Bi/30j (150)
(note that repeated indices i and j are summed over). We
see clearly that there are 7 degrees of freedom: 3 spacelike
components of 0A¥#, 2 (transverse) components of 6B,
satisfying By;0B(; = 0 and 2 (transverse) components of
0B;; satisfying BijéBij = 0. The respective longitudinal
components of 6By; and 6B;; are fixed by Egs. (149)
and (150) in terms of SA’.

Linearizing the equations of motion (127) and (128) it
follows that

5L
O~ ?6A,, (151)
SAH
5L
= n (5B + (6, + on)utultsB ). (152)
5B, 2

It is straightforward to verify that the linearized form of the
equations of motion (125) and (126) with the Lagrange
multipliers given by Egs. (136)—(139) imply that all
fluctuations are strictly massless degrees of freedom.

The degrees of freedom can be made more explicit if we
parametrize the antisymmetric tensor field as

0 E E, E;

-E, 0 Hy -H
B,=| ’ ? (153)
-E, -H; 0 H,
~E; H, -H, 0

with E; = By; and Hi:%eijkBjk. Expressing E=

(E, E,, E3) and H= (H,, H,, H3) as a sum of expectation
value and fluctuations:

E=E+6E,  H=H+5H, (154)
the constraints (147) and (148) imply that
IE|=b and |H|=b, (155)
while the conditions (149) and (150) become
s S = - 1 = = -
E-SE=H-6H =—(E X H) - 5A. (156)
a

We see that the components of SE and §H parallel to their
expectation values are fixed in terms of the component of

SA perpendicular to the plane defined by E and H.
Through subsequent observer rotations it is always
possible, in the frame in which u* is purely timelike, to

transform some of the components of E and H to zero.
For instance, a convenient possible form is E = (b,0,0)

and H = (13 cos @, bsin6, 0). In that case the conditions
(156) become

b
SE| = —5A5sin0, (157)
a

b
S6H | cos + S5H, sin = —5A; sin 0. (158)
a

A further simplification for the form of B, such as that
obtained in Ref. [43], is not possible in our case, as we do
not have the freedom anymore to apply an observer boost
(which would affect the purely timelike form of u*).

It is interesting to compare these massless modes with
the Nambu-Goldstone (NG) modes corresponding to the

broken Lorentz generators. Parametrizing infinitesimal
Lorentz transformations as

(159)

with the generators ®,, = —®,,, we have for the NG

2 e
modes

(5wA)ﬂ = CU”DAU? (560B)/4/1 = wMﬂBlf’ + wﬂﬂBW»' (160)

Adopting the observer frame mentioned above, with

a
=Y.
0
0
0 b 0 0
_ —b 0 0 —bsinf
B = 0 0 0 bcosO |’ (161)
0 bsind —bcosh 0

it is easy to check explicitly that the modes (160) satisfy the
conditions (156), as of course they should. It turns out that
all six Lorentz generators are broken, if sin@ # 0. (In the
special case when sin® = 0 there are five broken gener-
ators.) This leaves us with a puzzle, because we know there
are seven propagating massless fields. Clearly they cannot
all correspond to NG modes. The reason for the discrep-
ancy is that, as we saw above, to each of the expectation

values E and H there are two independent massless modes
associated. On the other hand, applying rotation generators
only yields a total of three NG modes. This is because

*Note that the NG modes for the antisymmetric two-tensor
field have been called phons [43].
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the rotation generators are applied simultaneously, not

independently, to the vectors E and H. The discrepancy
in the counting can be eliminated if we add another
Lagrange-multiplier term to the Lagrangian, such as

A4(e"7°B,,B,, £ b%) (162)

for some constant b. This will fix the angle between E and

B and reduce the total number of propagating modes to six,
all of which corresponding to NG modes.

Therefore we see that, in dynamical systems depending
of fields with Lorentz indices, in the presence of Lagrange-
multiplier constraints that depend on Lorentz scalars built
of the fields, forcing nonzero expectation values of the
fields, there are massless modes corresponding to fluctua-
tions compatible with the constraints. Part of these modes
(maximally six) can be identified with NG modes, however,
there may be additional independent modes which do not
correspond to NG modes. However, in that case it is always
possible to add additional independent constraints such that
the propagating massless degrees of freedom all correspond
to NG modes. Note that this argument also applies for
systems with smooth scalar potentials instead of Lagrange
multiplier constraints (in this case there are additional
massive modes).

/d4x\/_[16 G

To see another simple example of this, consider first just
the bumblebee with the field A# and Lagrangian (1). It has
three propagating massless degrees of freedom, all corre-
sponding to NG modes. Now add another, independent
bumblebee, constructed of the field B”. Then there are
clearly six propagating massless degrees of freedom.
However, only five of them can be NG modes. In order
to see this, fix the expectation value of A¥ to (a, 0, 0,0). We
can choose a frame such that the expectation value of B* will
be of the form (a cosh &, 0, 0, a sinh &) for some value £. This
means all boost generators and two of the three rotation
generators are broken. Thus one of the propagating modes is
not a NG mode. However, we can eliminate it by adding an
extra constraint, fixing the value of A,B*. Continuing this
example, we can add another bumblebee, depending on
another field C#. We then have nine propagating massless
modes. Six of them correspond to the broken Lorentz
generators, three do not. We can eliminate the latter by
adding constraints fixing A,B*, A,C*, B, C*, and so forth.

VI. COUPLINGS TO GRAVITY AND MATTER

Let us now generalize the extended hybrid model (123)
to curved space. To this effect, we replace the partial
derivatives by covariant derivatives. Moreover, there is the
possibility to add explicit couplings to curvature. The
action we consider is

1 o
~5 (VﬂAb)(V"A”) + A4 (A”A/, +a?) + aR, AFAY — Zz (VAB/“’)(V‘BW)

1 - +o
+ 23 (2 B,,B" + b* — b2> + 1Ry BB + BoR,, B" B, — o - L2 AFAY(V,B,,)(V*B,%)
AMBMGADBDQ 2 v RKA U AK R4
+ 12 T - b + lel//lAﬂAKBﬂ B + }/ZR”I/K/IAyB pA B
(o] + (90)

— [ x| R 5 (VA7)

A“B, A'B,* 1 _
+ 4 ("272 - b2) + 13 (5 B, B" + b* — b2> + TR+ GWRW:|

where a, B, p», 71, and y, are constants, and

o = aA'AY + B,B# B, +1,A,AB#BY,  (164)

Tkt — B BB | yZA”B”/,AKB’V’ , (165)
parametrize the couplings to the Riemann and the Ricci
tensor, respectively. We have suppressed couplings of the
Ricci scalar to scalar combinations of the vector field
and/or the antisymmetric two-tensor field, because the
values of the latter are all fixed by the constraints and thus
nondynamical. Note that this would not be the case for

O
— 22 (V,B)(V'B,,) -

A”Ay(vﬂBlm) (leva) + /11 (A”Aﬂ + a2)

(163)

smooth potentials instead of the Lagrange-multiplier
constraints considered here. An action similar to
Eq. (163) was considered in [43], albeit with different
kinetic terms and without the terms involving the vec-
tor field.

In the gravitational sector of the Standard-Model exten-
sion it is conventional to denote the Lorentz-violating
couplings to the traceless part of the Ricci tensor, the
Weyl tensor, and the scalar curvature as the coefficient
fields s#* (which is taken to be traceless), #*** (with the
symmetries of the Weyl tensor), and u. For our model (163)
it follows that
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t;wld — g T;wrd _

: %TMD ol gl — pligi 4 %Tgmxgﬂv,

(166)

1
§H = ot 4 27" — Zg’”’(d + 21), (167)

t;wk/l —

[SSII\S)

- 2
- (ﬂlByaBMa + 27/2(b2 - bz)AVAH)gK]ﬂ + g (b2 - bz)(ﬂl - azyZ)gﬂ[KgA]y’

1
U=-—-—-7+-o0,

S+ 3 (168)

where we defined 7 = 7%, 7 = 7*,, and ¢ = o*,, and
square brackets imply antisymmetrization. Using the
expressions (164) and (165), together with the three
constraints, we find

(ﬁlB/wBK/l 4 },ZA#BDPAKBA/) _ ﬂlB;t[KBﬂ]u _ yszB[KpAl]Bup) + (ﬂlB;mB[/la 4 2},2(52 _ bz)A”AH)g"]”

(169)

" = (2 + ) BB o + 11AA; B B* + (a + 4y, (b — b?))ArAY

1 )
- 19””[2(192 — b*)(2p) + po — 2a%y,) + a* (b?y, — a)],

u=(b*

These expressions generalize the gravity couplings that
have been obtained for the bumblebee [9] and for the
antisymmetric tensor field [43].

It is also straightforward to add matter couplings
J d*x/=gLy to the action. For instance, a (CPT-violating)
vector coupling could take the form

Ly D (EA* + EABY)jy, (172)
where j;, is a suitable matter current and &; and &,
coupling constants. For a Dirac fermion j; , can be taken

to be % wV,y, or, alternatively, e, “yy .y (where e, denotes
a local vierbein). This will give rise to contributions to the
coefficients e, or a, of the Standard-Model extension,
respectively, as was shown in Ref. [50] for the case of the
bumblebee. It is worthwhile to point out that the current
work provides, for the first time, an explicitly stable model,
not only for the case of a vector with timelike expectation
value [namely, the coupling parametrized by &, in
Eq. (172)], but also for the case of a spacelike expectation
value (the &, term).

A matter coupling involving a symmetric traceless two-
tensor can be taken in analogy to the coefficient s** in
Eq. (170) as

[E3AFAY + &,B ¥ BY + EsA,A BB

1

== (2B = bY)és + a*(D*Es — &))" o

Z (173)

For a Dirac fermion the current j, ,, can be taken to be

<>

ée””y'/yav,,y/. The expectation values of A# and B*

5 1 1
- b?) <—§ (p1 — a*r2) + §ﬂ2> + Zaz(bz},l - a).

(170)

(171)

will then give rise to a contribution to the SME
coefficient c,,.

Finally, an obvious candidate for a coupling involving an
antisymmetric two-tensor is

563/41/.]./3“/- (174)

For a Dirac fermion we can take j;" = ie*,e*, [y, v’ly,
in which case the expectation value for B, will lead to a
contribution to the SME coefficient H* [43].

VII. CONCLUSIONS

In this work we investigated the stability of systems
involving a rank-two antisymmetric tensor field with one or
two Lagrange multiplier terms forcing the latter to acquire a
vacuum expectation value, thereby breaking Lorentz invari-
ance spontaneously. As an alternative, we considered
Lagrange-multiplier potentials fixing the value of both
(pseudo)scalars B, B* and €"7°B,,,B,,,, or only the former
one. In the first part of this work we performed an
exhaustive Hamiltonian Dirac constraint analysis of
Lagrangians involving all possible linear combinations
of kinetic terms that are parity-even and quadratic in the
antisymmetric tensor field. It turned out to be necessary to
consider separately two edge cases, one of which corre-
sponding to the (gauge-invariant) Maxwell-like kinetic
term. Surprisingly, these two cases are related through a
duality symmetry, which, to our knowledge, has not been
pointed out before in the literature. Our conclusion is that
no kinetic term that is parity-even and quadratic in the field
leads to a Hamiltonian that is bounded from below.
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We then proposed a hybrid model combining a vector
field and an antisymmetric two-tensor field, with a
combination of three kinetic terms, one of which involv-
ing both fields. We showed this model does have a
Hamiltonian that is bounded from below in Minkowski
space and is therefore stable. We extended it to curved
space, with a number of coupling terms to the curvature,
and worked out the corresponding couplings in pure
gravity sector of the Standard-Model extension. The
formulation of this model extends the class of known
stable models exhibiting spontaneous Lorentz breaking,
up to now only encompassing that of a single vector field
with timelike expectation value.

We do not claim to have found the most general stable
Lorentz-breaking system describing an antisymmetric two-
tensor field and a vector. In particular, we have not explored
kinetic or potential terms that are parity odd, and neither
those that are higher than quadratic in the antisymmetric
tensor field.

It would be interesting to search for nontrivial solutions
in curved space, for instance those of of black-hole type.
Note that the hybrid model should allow for more general
stable Lorentz-violating backgrounds than the bumblebee
models that have been considered in the literature so far. It
would also be interesting to search for cosmological
solutions. Presumably, it will be necessary to go beyond
those of the Friedman-Lemaitre-Robertson-Walker type,
because any nontrivial background of the antisymmetric
two-tensor field will necessarily be direction dependent.

Another issue that we have not considered is a full
analysis of the dynamics of the degrees of freedom of the
curved-space hybrid model (163). For the curved-space
version of the sigma-model bumblebee presented in Sec. II,
such an analysis has been worked out in detail (this model
corresponds to the Einstein-& ther theory with c¢; # 0,
¢y = ¢3 = ¢4 = 0) [12]. For our hybrid model the analysis
is likely to be considerably more involved. In particular, the
expectation value of the antisymmetric tensor field neces-
sarily breaks rotational invariance, which means that the
propagation of the gravitational, vector, and antisymmetric
tensor waves will become direction dependent. Such an
analysis would also serve to investigate its consistency, as
theories of spin fields coupled to gravity are known to
possess potential instabilities [51].
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APPENDIX: PROJECTIVE FORM OF THE
EQUATIONS OF MOTION OF THE
HYBRID MODEL

The Lagrange-multiplier terms in the equations of
motion (125) and (126) project the latter on restricted
subspace corresponding to the field variations that are
compatible with the constraints.

Let us first consider constraint (129). Field variations
O0A* compatible with this constraint satisfy

0A*A, = 0. (A1)
We can implement this by replacing any arbitrary field
variation SA* with (P ), A, with the projector P, defined by

1

Variations of the Lagrangian density £ compatible with
constraint (129) can be expressed as

oL oL

= 2= (p))isA B
0L = o (P)LOAY + =76

(A3)

up:
up

Instead of taking the projector P, to act to the right on the field
variation 6A, we can choose to take it to act to the
left on the equation of motion 6L/5A*, leaving the field
variation arbitrary. This is exactly what happened in the
factored equation of motion we obtained for the sigma-
bumblebee model, Eq. (16). This way, inclusion of the
constraint has the effect of replacing the equation of motion
by its projected version:

5L (oL 5L,
Y <§)L =5 i

This projected equation of motion identically satisfies the

condition
OLN un o,

In other words, Eq. (AS5) is an empty condition that is
identically satisfied.

In the case at hand the situation is rather more compli-
cated, as we have to satisfy three constraints (129)—(131)
rather than just one. The strategy we will take is to
implement this by applying a suitable projector in the
space of the equations of motion. The first step is to
combine all equations of motion in a 10-dimensional vector
space V = {7}, with components

[ 8L/sAr
V= (55/53,,,,)'

(A4)

(AS)

(A6)
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Variations compatible with the constraints satisfy the three
conditions
SAFA, = 6AB,,C" + 6B, ,A*CP = 6B,,B" = 0. (A7)

Defining the vectors

- A¥ ~ B"C, . 0
(o) a (o) 37(s,)
0 Ay B,

the elements in the subspace V| = {7, } of V compatible
with the conditions (A7) formally satisfy the orthonormal-
ity relations
EL'&'lzﬁl-Eiz:El-%:O. (Ag)
Here the inner vector product amounts to contraction of
corresponding Lorentz indices. Taking the ansatz
Uy == P — Prdy — Pds (A10)
and imposing the conditions (A9) it follows that the
coefficients f3; are given by

pi=(Mz")d;- % (1<i,j<3).  (All)
where the coefficient matrix (M,);; is defined by
(M,);; = d; - dj. (A12)

We can evaluate its elements explicitly by using the
constraints (129)—(131):

Eil . (_il = AﬂAﬂ == —dz, (AIS)
d, - dy =A,B"C, = a’b?, (A14)
(_1'1 . 53 - 0, (AIS)

L 1
d,-d, =B"C,B,,C°+ AVCPIA,C, = F(A,B) — Ea4b2,
(A16)

d, - dy = A*C’B,, = a*b?, (A17)

53 . 53 — BW)BM} — 2(52 - bz)

(A18)

Straightforward calculation shows that the coefficients
p; in Eq. (A10) correspond exactly to the corresponding
expressions obtained for the Lagrange multipliers 4; in
Egs. (136)—(139), where it is necessary to make repeated
use of the nontrivial identity implied by Egs. (137)
and (138). We therefore conclude that the equations of
motion that belong to the projected vector space V|
coincide exactly with Eqgs. (125) and (126) after substitut-
ing expressions (136)—(139) for the Lagrange multipliers.
The projective representation allows for expressing the
equations of motion in factored form, analogously to
Eq. (16), by combining Eqgs. (A10) and (A11):
V]iag= {5aﬁ - aia(Ma_])ijaj/}]vﬂ' (Alg)
Here the indices a and f parametrize the (10-dimensional)
space of equations of motion. Explicitly, this yields the
expressions

oL
<51T,4>l = {5;11 - [A, (M), + B,,CP(M,"),,]A”
-1 » -1 vo 6L

- [A,(M7") 1, + B,,CP(M7")5,]B Ca}@

oL
- [A, (M), + Bm)C’)(MZl)zz]AuCaéT,
(A20)

oL
<5B> = {5£”5f;] — [B*(M7") 3 + A CPl(MZ") 53] B,
wp/ L
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