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In this work we investigate possible actions for antisymmetric two-tensor field models subject to
constraints that force the field to acquire a nonzero vacuum expectation value, thereby spontaneously
breaking Lorentz invariance. In order to assure stability, we require that the associate Hamiltonian be
bounded from below. It is shown that this requirement rules out any quadratic action constructed only from
the antisymmetric tensor field. We then explicitly construct a hybrid model consisting of the antisymmetric
two-tensor field together with a vector field, subject to constraints forcing nonzero expectation values, that
is stable in Minkowski space.
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I. INTRODUCTION

Among the phenomenological signals that may arise in a
theory of quantum gravity is the possibility that Lorentz
invariance be violated. One of the possible mechanisms that
has been proposed for this is the spontaneous breaking of
Lorentz symmetry [1–3]. The resulting background values
of the fields provide signatures of Lorentz violation that can
be tested experimentally. A common theoretical framework
for their investigation is provided by the Standard-Model
extension (SME) [4–6]. Most proposals to date in the
context of spontaneous Lorentz breaking have concentrated
on the case of a single vector field with a nonderivative
potential that depends only on the squared norm of the
vector field, forcing the vector to acquire a nonzero vacuum
expectation value [2]. The vector field can be coupled in
general relativity to the curvature, leading to preferred-
frame effects. The general class of such theories has been
called bumblebee models [7–10]. Among these, a much-
studied model, the Einstein-aether theory [11–15], consid-
ers the most general diffeomorphism-invariant action that is
quadratic in derivatives with fixed norm for the vector field
(which can be imposed by a Lagrange-multiplier potential).
There is an extensive literature on bumblebee models and
their applications in models of gravity [16–23], astrophys-
ics [24–27], and cosmology [28–32].

An important issue with regard to bumblebee models is
that of stability. A standard way to demonstrate this is to
show that the Hamiltonian is bounded from below. This
requirement severely restricts the possible models. Namely,
the norm of the vector field has to be fixed to a single
timelike value, while the kinetic term has to be of the
sigma-model type [33,34]. For any other bumblebee model
the Hamiltonian is not bounded from below. It should be
noted that a model with Hamiltonian that is unbounded
from below is not necessarily unstable; for instance, it
might be stabilized by conserved quantities other than the
Hamiltonian. The issue of stability of bumblebee models
has also been addressed in Refs. [35–39].
While the possibility that spontaneous breaking of

Lorentz invariance might occur for tensor fields of order
higher than one was proposed early on [4], relatively little
studies have appeared in the literature about these. One
exception is Ref. [40], where a theory of gravity is
constructed, based on the idea that massless gravitons
can arise as Goldstone bosons of broken Lorentz symmetry
[41,42]. Another possibility that has been proposed is that
of a Lorentz-breaking theory of a rank-two antisymmetric
tensor field [43]. While a number of studies have appeared
applying this idea (see, e.g., Refs. [44–48]), the study of
stability has received little attention.1 In this work we
attempt to fill this gap. For various reasons it is important to
know which models describing the antisymmetric two-
tensor field are stable. First of all, any studies based on
unstable models are, at the very least, of dubious relevance.
Furthermore, the known existence of any stable models of
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spontaneous Lorentz breaking would be a relevant addition
to the class of known stable models that mediate sponta-
neous Lorentz breaking.
This paper is organized as follows. In Sec. II we review the

(stable) bumblebee model with sigma-model-type kinetic
term. In Sec. III we investigate the stability of the models for
the antisymmetric two-tensor field in Minkowski space,
allowing for arbitrary parity-even form of the kinetic term,
quadratic in spacetime derivatives and in the field. We
consider, alternatively, Lagrange multiplier potentials that
fix either one or both of the quadratic invariants that can be
built from the antisymmetric two-tensor field. As we show,
no models with these requisites exist for which the
Hamiltonian is bounded from below. In order to remedy
this, we present in Sec. IVa hybrid model depending on the
antisymmetric two-tensor field together with a vector field,
which has a bounded Hamiltonian. We analyze some of its
properties, including, in Sec. V, the linearized equations of
motion and a discussion of the Nambu-Goldstone modes. In
Sec. VI, we consider its coupling to gravity and matter.
Finally, in Sec. VII, we present our conclusions.
In this work we will use natural units with c ¼ ℏ ¼ 1,

and the spacetime metric convention ð−þþþÞ.

II. REVIEW OF THE SIGMA-MODEL
BUMBLEBEE

In this section we will review the stable bumblebee
model with Lagrange-multiplier potential, fixing a timelike
expectation value.
Consider the Lagrangian density

L ¼ −
1

2
ð∂μAνÞð∂μAνÞ þ λðAμAμ þ a2Þ

¼ 1

2
ðȦiȦi − Ȧ2

0 − ð∂iAjÞð∂iAjÞ þ ð∂iA0Þð∂iA0ÞÞ
þ λð−A2

0 þ AiAi þ a2Þ: ð1Þ
Here Aμ is the bumblebee field, λ a Lagrange-multiplier
field, and a a positive constant. Note that repeated indices
are summed over. The constraint AμAμ þ a2 ¼ 0 forces Aμ

to take a timelike expectation value, such that in its rest
frame Aμ ¼ ð�a; 0⃗Þ.
The canonical momenta are

πi ¼
δL
δȦi

¼ Ȧi; ð2Þ

π0 ¼
δL
δȦ0

¼ −Ȧ0; ð3Þ

πλ ¼
δL

δλ̇
≈ 0; ð4Þ

so there is one primary constraint. Note that the “≈” sign
indicates weak equality in Dirac’s language, that is,

equality on the constraint surface in phase space. The
canonical Hamiltonian becomes

Hc ¼ πiȦi þ π0Ȧ0 − L

¼ 1

2
ðȦiȦi − Ȧ2

0 þ ð∂iAjÞð∂iAjÞ − ð∂iA0Þð∂iA0ÞÞ
þ λðA2

0 − AiAi − a2Þ: ð5Þ

Following the Dirac procedure, we define the primary
Hamiltonian Hp by adding to (26) the primary constraint
multiplied by a Lagrange multiplier:

Hp ¼ Hc þ μλπλ ð6Þ

which defines time evolution in the extended phase space.
Next we impose that the constraint (4) is conserved in time,
i.e., it must have zero Poisson bracket withHp. This yields
the secondary constraint

πð2Þλ ¼ A2
0 − AiAi − a2 ≈ 0: ð7Þ

Continuing this process [that is, imposing that the
constraint (7) be conserved in time as well] can be shown
to yield two more constraints in phase space [34]. They
are all second class, that is, the matrix of their mutual
Poisson brackets is nondegenerate on the constraint
surface, and the number of dynamical degrees of freedom
is 5 − 4=2 ¼ 3.
It is convenient to take them to correspond to the spatial

components Ai. Then A0 is fixed by the constraint (7):

A0 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AiAi þ a2

q
ð8Þ

and is thus not an independent dynamical degree of
freedom. As a consequence, it is eliminated as a potential
ghost degree of freedom [note that its time derivative
appears with the wrong sign in Eqs. (1) and (26)]. It then
follows from (8) that

Ȧ0 ¼
AiȦi

A0

ð9Þ

so that

Ȧ2
0 ¼

ðAiȦiÞðAjȦjÞ
A2
0

≤
ðAiAiÞðȦjȦjÞ

A2
0

≤ ȦiȦi ð10Þ

where in the first inequality we used Schwarz’s inequality
and in the second one constraint (7). In the same way, it
follows that

ð∂iA0Þð∂iA0Þ ≤ ð∂iAjÞð∂iAjÞ: ð11Þ
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Consequently, we find that

Hp ≈
1

2

�
ȦiȦi − Ȧ2

0 þ ð∂iAjÞð∂iAjÞ − ð∂iA0Þð∂iA0Þ
�
≥ 0

ð12Þ

and we can conclude that the model is stable [33,34].
It is instructive to consider the equations of motion

following from the Lagrangian (1):

□Aμ þ 2λAμ ¼ 0; ð13Þ

AμAμ ¼ −a2; ð14Þ

where □ ¼ ∂λ∂
λ. Multiplying Eq. (13) by Aμ and using the

constraint (14) yields

λ ¼ 1

2a2
Aμ

□Aμ: ð15Þ

Substituting Eq. (15) back into (13) yields the factored
expression �

δνμ þ
1

a2
AμAν

�
□Aν ¼ 0 ð16Þ

in which the factor in front projects onto fluctuations δAμ

that are transverse to Aμ, satisfying AμδAμ ¼ 0. This shows
clearly that there are three dynamical massless degrees of
freedom.
It can be shown that the choice of other kinetic terms

than the “sigma-model-type” Lagrangian (1) always leads
to Hamiltonians that are not bounded from below [33,34].
For the case of the Maxwell kinetic term it turns out that
there are actually no linear modes that destabilize this
model [33]. Also, the latter can be shown to be stable on the
restricted phase space with λ ¼ 0 [34]. In that case, the
Lagrange multiplier term no longer contributes any restor-
ing force in the equations of motion for the vector field and,
as a consequence, the dynamics of the model coincides
with that of pure Maxwell theory. However, this is no
longer the case whenever the Lagrange multiplier becomes
nonzero at any point in space, which may happen if the
vector field is coupled to external fields. In those situations
instabilities can be expected to set in. For instance, it is
known that the Maxwell kinetic term in models with
spontaneous Lorentz breaking can lead to the spontaneous
formation of shock waves [35].

III. ATTEMPT TO FORMULATE STABLE
MODEL WITH THE ANTISYMMETRIC

TWO-TENSOR FIELD

Next consider the antisymmetric two-tensor field
Bμν ¼ −Bνμ. It was considered first in the context of a
Lorentz-violating model in [43], where it was pointed out

that the most general nonderivative potential is of the
form VðY1; Y2Þ, where Y1 ¼ BμνBμν and Y2 ¼ ϵμνρσBμνBρσ

are the only two functionally independent (pseudo)scalar
combinations that can be built from Bμν. Consequently, for
suitable potential, Y1 and Y2 can independently acquire a
vacuum expectation value. If either is nonzero, this implies
that Lorentz invariance is broken spontaneously. The
various ways in which this can happen, as well as the
dynamics of these models, are discussed at length in [43].
However, one issue that remained unexplored in [43] is

that of stability. Here we will investigate the stability of
models with the most general possible kinetic term that is
quadratic in Bμν. For the potential we will first consider the
Lagrange-multiplier potential

Vλ1λ2 ¼ λ1ðBμνBμν − y1Þ þ λ2ðϵμνρσBμνBρσ − y2Þ ð17Þ

which fixes the values of Y1 and Y2, not allowing any
fluctuations from their vacuum value. As an alternative, we
will also consider the potential

Vλ1 ¼ λ1ðBμνBμν − y1Þ ð18Þ

which fixes only the value of Y1, leaving Y2 free. It would
be interesting to consider also the case of a smooth
potential. However, this is beyond the scope of the current
work.
The most general kinetic term that is quadratic in Bμν and

parity even is

1

2
σ1ð∇λBμνÞð∇λBμνÞ þ

1

2
σ2ð∇λBμνÞð∇μBλ

νÞ

þ 1

2
σ3ð∇μBμνÞð∇λBλ

νÞ: ð19Þ

Passing to flat space, and performing a partial integration
of the second term, upon inclusion of the potential
terms, the Lagrangian density takes either one of the
alternative forms

Lλ1λ2 ¼
1

2
σ1ð∂λBμνÞð∂λBμνÞ þ

1

2
σ23ð∂μBμνÞð∂λBλ

νÞ − Vλ1λ2 ;

ð20Þ

Lλ1 ¼
1

2
σ1ð∂λBμνÞð∂λBμνÞ þ

1

2
σ23ð∂μBμνÞð∂λBλ

νÞ − Vλ1 ;

ð21Þ

where σ23 ¼ σ2 þ σ3.
In order to assess the stability of Lagrangian (20), wewill

pass to phase space, carry out a careful analysis of the
constraint structure, determine the Hamiltonian, and verify
if it is bounded from below. As it turns out, there are some
special values for the coefficients σ1 and σ23 for which the
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constraint structure is different from the general case.
Therefore, we will distinguish the following three cases:
(A) σ1 ≠ 0, σ123 ≠ 0;
(B) σ1 ≠ 0, σ123 ¼ 0;
(C) σ1 ¼ 0, σ123 ≠ 0.

Here we defined σ123 ¼ σ1 þ 1
2
σ23.

A. Case σ1 ≠ 0, σ123 ≠ 0

We start with analyzing the canonical structure of
Lagrangian (20) for the general case, such that neither
σ1 nor the combination σ123 vanishes. First we introduce the
canonical momenta

π0i ¼
δLλ1λ2

δḂ0i
¼ 2σ123Ḃ0i þ σ23∂jBij; ð22Þ

πij ¼
δLλ1λ2

δḂij
¼ −σ1Ḃij; ð23Þ

where σ123 ¼ σ1 þ 1
2
σ23, and the overdot stands for deriva-

tive with respect to time. The momenta associated with the
Lagrange multipliers are identically zero, so that they will
give rise, in Dirac’s terminology, to the primary constraints

ϕ1 ¼ πλ1 ≈ 0; ð24Þ

ϕ2 ¼ πλ2 ≈ 0: ð25Þ

The canonical Hamiltonian can be written as

Hc ¼ π0iḂ0i þ πijḂij − Lλ1λ2

¼ 1

4σ123
ðπ0i þ σ23∂jBijÞðπ0i þ σ23∂kBikÞ −

1

2σ1
πijπij

þ σ1ð∂iB0jÞð∂iB0jÞ þ
1

2
σ23ð∂iB0iÞ2

−
1

2
σ1ð∂iBjkÞð∂iBjkÞ −

1

2
σ23ð∂jBijÞð∂kBikÞ þ Vλ1λ2 :

ð26Þ

Following Dirac’s procedure, one now defines the total
Hamiltonian by adding to Hc a linear combination of the
primary constraints:

HT ¼ Hc þ μ1ϕ1 þ μ2ϕ2: ð27Þ

Here μ1 and μ2 are, as yet, undetermined parameters. Next
one imposes that the primary constraints be conserved in
time, where time evolution is to be generated by the total
HamiltonianHT ¼ R

HTd3x. We thus obtain the secondary
constraints

ϕð2Þ
1 ¼ fϕ1; HTg ¼ −2B0iB0i þ BijBij − y1 ≈ 0; ð28Þ

ϕð2Þ
2 ¼ fϕ2; HTg ¼ −4ϵ0ijkB0iBjk − y2 ≈ 0; ð29Þ

which are, of course, the constraints enforced by the

Lagrange multipliers λ1 and λ2. Demanding that ϕð2Þ
1 and

ϕð2Þ
2 be conserved in time yields two more constraints:

ϕð3Þ
1 ¼ fϕð2Þ

1 ; HTg ¼ −4B0iḂ0i þ 2BijḂij

¼ −
2

σ123
B0iðπ0i þ σ23∂jBijÞ −

2

σ1
Bijπij ≈ 0; ð30Þ

ϕð3Þ
2 ¼ fϕð2Þ

2 ;HTg ¼−4ϵ0ijkðḂ0iBjkþB0iḂjk

¼−4ϵ0ijk
�

1

2σ123
ðπ0iþ σ23∂lBilÞBjkþ

1

σ1
B0iπjk

�
≈ 0:

ð31Þ

Iterating this process yields yet one more set of secondary
constraints:

ϕð4Þ
1 ¼ fϕð3Þ

1 ; HTg

¼ −
1

2σ2123
ðπ0i þ σ23∂jBijÞðπ0i þ σ23∂kBikÞ þ

1

σ21
πijπij

þ B0i

σ123

�
−2σ1∂2B0i − σ23∂i∂jB0j − 4λ1B0i − 4λ2ϵ0ijkBjk þ

σ23
σ1

∂jπij

�

þ Bij

σ1

�
σ1∂

2Bij þ σ23∂j∂kBik −
σ23
2σ123

∂jðπ0i þ σ23∂kBikÞ þ 2λ1Bij − 4λ2ϵ0ijkB0k

�
≈ 0; ð32Þ
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ϕð4Þ
2 ¼ −fϕð3Þ

2 ; HTg

¼ 4ϵ0ijk

�
1

2σ123

�
2σ1∂

2B0i þ σ23∂i∂jB0j þ
σ23
σ1

∂lπil

�
Bjk þ

1

σ1

�
−

1

2σ123
ðπ0i þ σ23∂lBilÞπjk

þ B0i

�
σ1∂

2Bjk þ σ23∂k∂lBjl −
σ23
2σ123

∂kðπ0j þ σ23∂lBjlÞ þ 2λ1Bjk − 4λ2ϵ0ljkB0l

���
≈ 0: ð33Þ

For the time evolutions of ϕð4Þ
1 and ϕð4Þ

2 we find expressions of the form

fϕð4Þ
1 ; HTg ¼ −2μ1

�
−

2

σ123
B0iB0i þ

1

σ1
BijBij

�
þ 4μ2

�
1

σ123
þ 1

σ1

�
ϵ0ijkB0iBjk þ � � � ; ð34Þ

fϕð4Þ
2 ; HTg ¼ 8μ1

�
1

σ123
þ 1

σ1

�
ϵ0ijkB0iBjk þ 16μ2

�
−

2

σ123
B0iB0i þ

1

σ1
BijBij

�
þ � � � ; ð35Þ

where the ellipses denote terms that do not involve the
coefficients μi. We can impose that expressions (34)
and (35) vanish strongly by solving them for μ1 and μ2.
Consequently, there are no further secondary constraints.
The phase space has 2 × ð6þ 2Þ ¼ 16 local degrees of

freedom (corresponding to the 6 independent components
of Bμν and the Lagrange multipliers, together with their
canonical momenta) while there are 8 remaining con-
straints. It can be checked that they are second class.
Therefore, altogether, the system defined by Lagrangian
(20) has 8 degrees of freedom in phase space.
Next let us see if there is a subset of values of the

coefficients σi for which the Hamiltonian is bounded
from below. First of all, it follows from Eq. (26) that, in
order to avoid ghost instabilities, one needs to impose the
restrictions

σ123 > 0 and σ1 < 0: ð36Þ

In terms of the vectors Hi ¼ 1
2
ϵ0ijkBjk and Ei ¼ B0i, the

constraints (28) and (29) imply that

jH⃗j2 − jE⃗j2 ¼ −
1

2
y1 and H⃗ · E⃗ ¼ −

1

2
y2: ð37Þ

Now consider any configuration with Cartesian coordinates

H⃗ ¼ ðH⊥ cos α; H⊥ sin α; HkÞ; E⃗ ¼ ð0; 0; EÞ ð38Þ

with constants Hk, H⊥, and E satisfying

H2⊥ þH2
k − E2 ¼ −

1

2
y1 and HkE ¼ −

1

2
y2; ð39Þ

and with αðr⃗Þ some function of the spatial coordinates. The
conditions (39) can be readily solved for Hk and E for any

values of y1, y2, and H⊥. It is easy to check that, if H⊥ is
taken to be nonzero and H2⊥ > − 1

2
y1, it follows from

Eqs. (39) that E ≠ 0 even if y2 ¼ 0. Moreover, let us take
πij¼π0iþσ23∂kBik¼0, solving constraints (30) and (31).
Constraints (32) and (33) amount to conditions on the
Lagrange multipliers λ1 and λ2 of the form

ðH2
k þH2⊥Þλ1 − 2HkEλ2 þ � � � ¼ 0; ð40Þ

HkEλ1 − 4E2λ2 þ � � � ¼ 0; ð41Þ

where the ellipses correspond to expressions independent
of λ1 and λ2. The system (40)–(41) can be readily solved for
the Lagrange multipliers in terms of H⃗ and E⃗. This shows
the field configuration defined by conditions (37)–(39) is
compatible with the constraints.
The Hamiltonian density now becomes

Hc ≈ −σ123ð∂iHjÞð∂iHjÞ þ
1

2
σ23ð∂iHiÞ2

¼ −σ123H2⊥ðð∂xαÞ2 þ ð∂yαÞ2 þ ð∂zαÞ2Þ

þ 1

2
σ23H2⊥ð−ðsin αÞ∂xαþ ðcos αÞ∂yαÞ2: ð42Þ

As the two terms in the last expression have opposite signs
(note that 1

2
σ23 > σ123 > 0), it is not immediately obvious

if Hc is positive definite, or whether negative values are
possible. In fact, it is easy to demonstrate that αðr⃗Þ can be
chosen such that Hc is nonzero on a local region of space
such that the energy

R
d3xHc takes any finite negative

value. For example, let us take

αðr⃗Þ ¼ ϵ exp ½−ðκρðx2 þ y2Þ þ κzz2Þ=2� ð43Þ
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with positive constants ϵ, κρ, and κz. Substitution in
Eq. (42) yields

Hc ≈H2⊥ϵ2
h
−σ123ðκ2ρρ2 þ κ2zz2Þ

þ 1

2
σ23κ

2
ρρ

2 sin2ðαðr⃗Þ − ϕÞ
i
e−κρρ

2−κzz2 ð44Þ

where we introduced cylindrical coordinates, with
x ¼ ρ cosϕ and y ¼ ρ sinϕ. Expression (44) can be readily
integrated over space, yielding for the Hamiltonian (i.e., the
energy)

Z
d3xHc ¼

π3=2H2⊥ϵ2

2κρκ
1=2
z

��
−2σ123 þ

1

2
σ23

�
κρ − σ123κz

�
:

ð45Þ

While the sign of the first term in this expression can be
either positive or negative, the last term is negative.
Consequently, we can choose the values of ϵ, κρ, and κz
such that the energy takes any negative value.
Next, we consider Lagrangian (21). There is now only

the single primary constraint ϕ1 given by expression (24),
so in the canonical Hamiltonian (26), the potential term is
substituted by Vλ1, while the total Hamiltonian (27) only
includes the term with the parameter μ1. Applying Dirac’s

procedure yields the secondary constraints ϕðiÞ
1 (i ¼ 2, 3, 4)

given by expressions (28), (30), and (32), with λ2 set to

zero. The time evolution of ϕð4Þ
1 is of the form of Eq. (34),

with μ2 set to zero. This condition can be immediately
solved for μ1, so there are no further constraints.
The remaining four constraints can be shown to be second
class, and thus it follows that for this case there are
2 × ð6þ 1Þ − 4 ¼ 10 degrees of freedom in phase space.
The destabilizing configuration proposed above for

the case of two constraints can be applied to this case
as well.
We therefore conclude that, if both σ1 and σ123 are

nonzero, the Hamiltonian is always unbounded from below.

B. Case σ1 ≠ 0, σ123 = 0

In this case Lagrangian (20) becomes

Lλ1λ2 ¼
1

2
σ1½ð∂λBμνÞð∂λBμνÞ − 2ð∂μBμνÞð∂λBλ

νÞ� − Vλ1λ2 :

ð46Þ

This Lagrangian can be cast in a more convenient form by
performing a partial integration in the action on the second
term, yielding

Lλ1λ2 ¼
1

6
σ1HλμνHλμν − Vλ1λ2 ð47Þ

where Hλμν ¼ ∂λBμν þ ∂μBνλ þ ∂νBλμ is the field strength
associated with Bμν, invariant under the gauge transforma-
tion Bμν → Bμν þ ∂μΛν − ∂νΛμ, for arbitrary gauge param-
eter Λμ. It is straightforward to demonstrate that, in the
absence of the potential term Vλ1λ2 , the Hamiltonian
associated to Lagrangian (47) is non-negative definite for
σ1 < 0, defining a stable gauge-invariant system. However,
we will see that, in the presence of the potential, this is no
longer the case.
In order to derive the Hamiltonian and the associated

constraints, we write Lagrangian (47) as

Lλ1λ2 ¼ −
1

2
σ1

�
H0ijH0ij −

1

3
HijkHijk

�
− Vλ1λ2

¼ −
1

2
σ1½ðḂij þ 2∂½iBj�0ÞðḂij þ 2∂½iBj�0Þ

− ð∂iBjkÞð∂iBjkÞ þ 2ð∂jBijÞð∂kBikÞ� − Vλ1λ2 ð48Þ

where we performed a partial integration in the last term.
For the momentum conjugate to Bij we find

πij ¼ −σ1ðḂij þ 2∂½iBj�0Þ ð49Þ

while the momenta conjugate to B0i and the Lagrange
multipliers vanish identically, leading to the primary
constraints

ϕ1 ¼ πλ1 ≈ 0; ð50Þ

ϕ2 ¼ πλ2 ≈ 0; ð51Þ

ϕ0i ¼ π0i ≈ 0ði ¼ 1; 2; 3Þ: ð52Þ

We obtain for the canonical Hamiltonian

Hc ¼ π0iḂ0i − Lλ1λ2

¼ −
1

2σ1
πijπij þ 2πij∂iB0j −

σ1
2
ð∂iBjkÞð∂iBjkÞ

þ σ1ð∂iBijÞð∂kBikÞ þ Vλ1λ2 ; ð53Þ

while the total Hamiltonian becomes

HT ¼ Hc þ μ1ϕ1 þ μ2ϕ2 þ μ0iϕ0i; ð54Þ

where μ1, μ2, and μ0i are, as yet, undetermined parameters.
Just like in the previous case, we now follow Dirac’s

procedure and determine the secondary constraints, by
imposing that the primary constraints be conserved in time,
where time evolution is generated by the total Hamiltonian
HT ¼ R

HTd3x. This yields the secondary constraints (28)
and (29), together with

ϕð2Þ
0i ¼ 2∂jπji − 4λ1B0i − 4λ2ϵ0ijkBjk ≈ 0: ð55Þ
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Imposing that the secondary constraints be conserved in
time gives the (tertiary) constraints

ϕð3Þ
1 ¼ −4μiB0i −

2

σ1
Bjkðπjk þ 2σ1∂½iBk�0Þ ≈ 0; ð56Þ

ϕð3Þ
2 ¼ μiϵ0ijkBjk −

1

σ1
ϵ0ijkB0iðπjk þ 2σ1∂½iBk�0Þ ≈ 0; ð57Þ

1

2
ϕð3Þ
0i ¼ ∂jð2λ1Bji − 4λ2ϵ0ijkB0kÞ − 2μ1B0i − 2λ1μ0i

þ 2

σ1
λ2ϵ0ijkπjk − 4λ2ϵ0ijk∂jB0k − 2μ2ϵ0ijkBjk ≈ 0:

ð58Þ

By taking the combinations ϕð3Þ
0i B0i − ϕð3Þ

1 λ1 and

ϕð3Þ
0i ϵ0ijkBjk þ 4ϕð3Þ

2 λ1 we obtain the system of equations

−4B0iB0iμ1 þ y2μ2 þ � � � ¼ 0; ð59Þ

y2μ1 − 8BjkBjkμ2 þ � � � ¼ 0; ð60Þ

where we used the constraint ϕð2Þ
2 ; the ellipses stand for

expressions that do not depend on the coefficients μ1, μ2,
and μ0i. If y2 ≠ 0 these equations can always be solved for
the coefficients μ1 and μ2. Finally, we can use constraint
(58) to solve for the coefficient μ0i. Thus, the Dirac
procedure does not generate any further constraints.
Altogether there are 2 × 6þ 2 × 2 ¼ 16 field compo-

nents (corresponding to Bμν, the two Lagrange multipliers,
and their conjugate momenta) and 10 remaining (second-
class) constraints, so this case has 6 local degrees of
freedom.
Let us now see if the Hamiltonian (53) is bounded from

below. Absence of ghost instabilities requires that σ1 < 0.
Let us define, as in the previous case, the vectors Ei ¼ B0i

and Hi ¼ 1
2
ϵ0ijkBjk, and moreover, Pi ¼ 1

2σ1
ϵ0ijkπjk. The

secondary constraints imply conditions (37), as well as

∇!× P⃗ ¼ −
1

σ1
ð2λ1E⃗þ 4λ2H⃗Þ: ð61Þ

The Hamiltonian density can be written as

Hc ≈ −σ1½jP⃗j2 − 2P⃗ · ð∇!× E⃗Þ þ ð∇! · H⃗Þ2�: ð62Þ

Now consider the configuration

H⃗ ¼ Hðcos α; sin α; 0Þ; ð63Þ

E⃗ ¼ E
�
cosðαþ ϕÞ; sinðαþ ϕÞ; 0�; ð64Þ

P⃗ ¼ E
�
0; 0; ∂x

�
sinðαþ ϕÞ� − ∂y

�
cosðαþ ϕÞ��; ð65Þ

whereH ¼ jH⃗j, E ¼ jE⃗j, and the angle ϕ between H⃗ and E⃗
are chosen such that

H2 − E2 ¼ −
1

2
y1 and HE cosϕ ¼ −

1

2
y2: ð66Þ

We will assume that the vectors H⃗ and E⃗ are linearly
independent (i.e., sinϕ ≠ 0). The function αðx; y; zÞ is
taken to be of the form

αðx; y; zÞ ¼ ϵ exp½−ðκxx2 þ κyy2 þ κzz2Þ=2� ð67Þ

for positive constants ϵ, κx, κy, and κz. The curl of P⃗
becomes

∇!× P⃗ ¼ E
�
∂y

�
cosðαþ ϕÞ∂xαþ sinðαþ ϕÞ∂yα

�
;

− ∂x

�
cosðαþ ϕÞ∂xαþ sinðαþ ϕÞ∂yα

�
; 0
�
: ð68Þ

Clearly, this can be written as a linear combination of the
vectors H⃗ and E⃗, and therefore the constraint (61) is
satisfied for suitable values of the Lagrange multipliers
λ1 and λ2. A straightforward calculation yields for the
Hamiltonian density (62):

Hc ≈ −σ1α2
	�
−Ecos2ðαþ ϕÞ þH2sin2α

�
κ2xx2

þ �
−Esin2ðαþ ϕÞ þH2cos2α

�
κ2yy2

−
�
E2 sinð2αþ 2ϕÞ −H2 sinð2αÞ�κxκyxy
: ð69Þ

Let us now assume that ϵ ≪ 1. Noting that α ≤ ϵ ≪ 1, we
can expand the terms in square brackets as a power series in
ϵ. For our purposes it is sufficient to just keep the leading
(α-independent) term, and we obtain the approximate
expression

Hc ≈ −σ1ϵ2
�
−E2cos2ϕκ2xx2 þ ðH2 − E2sin2ϕÞκ2yy2

− E2 sinð2ϕÞκxκyxy
�
e−ðκxx2þκyy2þκzz2Þ: ð70Þ

This can be readily integrated over space, yielding for the
energy

Z
dxdydzHc ≈ −σ1ϵ2

π3=2ffiffiffiffi
κz

p
�
−E2 cos2 ϕ

ffiffiffiffiffi
κx
κy

r
þ ðH2 − E2 sin2 ϕÞ

ffiffiffiffiffi
κy
κx

r �
: ð71Þ
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If cosϕ ≠ 0, we can always choose the value of the ratio
κx=κy large enough such that the expression inside square
brackets is negative, corresponding to a negative value of
the total energy. However, if cosϕ ¼ 0 (corresponding to
the case y2 ¼ 0), Eq. (71) reduces to

Z
dxdydzHc ≈ −σ1ϵ2ðH2 − E2Þ

ffiffiffiffiffiffiffiffiffi
π3κy
κxκz

s
: ð72Þ

By the first constraint in (66) this is negative definite for
y1 > 0, but positive definite for y1 < 0. (We will not
consider the possibility y1 ¼ 0, as this would imply there
is no spontaneous Lorentz violation.)
Lest one suspect that for y1 < 0, y2 ¼ 0 the Hamiltonian

might be bounded from below, consider the configuration

H⃗ ¼ �
Hðx; y; zÞ; 0; 0�; ð73Þ

E⃗ ¼ �
0; 0; Eðx; y; zÞ�; ð74Þ

P⃗ ¼ �
0;−∂xE; 0

�
; ð75Þ

where Eðx; y; zÞ is some function of the spatial coordinates

and Hðx; y; zÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eðx; y; zÞ2 − 1

2
y1

q
. It follows that

∇!× P⃗ ¼ ð∂x∂zE; 0;−∂2xEÞ ð76Þ

which can be written as a linear combination of the vectors
H⃗ and E⃗ for suitable values of the Lagrange multipliers λ1
and λ2, satisfying constraint (61). It is easy to check that the
Hamiltonian density becomes

Hc ¼ −σ1
E2 −H2

H2
ð∂xEÞ2 ð77Þ

which is negative definite for y1 < 0.
Let us consider now the Lagrangian (21). We have the

primary constraints ϕ1 ≈ 0 and ϕ0i ≈ 0 given by expres-
sions (50) and (52), so in the canonical Hamiltonian (53),
the potential term is substituted by Vλ1, while the total
Hamiltonian (54) the term with the parameter μ2 is set to
zero. Applying Dirac’s procedure yields the secondary

constraints ϕðjÞ
1 and ϕðjÞ

0i (j ¼ 2, 3) given by expressions
(28) and (55)–(58), with λ2 and μ2 set to zero. The

conditions ϕð3Þ
1 ¼ 0 and ϕð3Þ

0i ¼ 0 can be solved for μ1
and μ0i, so there are no further constraints. There are
8 remaining constraints, which form, once more, a
second-class system. It follows that for this case there
are 2 × ð6þ 1Þ − 8 ¼ 6 degrees of freedom in phase space.
Once again, in order to avoid ghost instabilities, one

needs to impose the restriction σ1 < 0. Defining the vectors

H⃗, E⃗, and P⃗ as above, it follows from the constraints ϕð2Þ
1

and ϕð2Þ
0i that

jH⃗j2 − jE⃗j2 ¼ −
1

2
y1; ð78Þ

∇!× P⃗ ¼ −
2λ1
σ1

E⃗: ð79Þ

Now consider the ansatz

P⃗ ¼ �
0; 0; Pzðx; y; zÞ

� ð80Þ

with

Pzðx; y; zÞ ¼
α�

1þ κðx2 þ y2 þ z2Þ=2�2 ; ð81Þ

with positive constants α and κ. If we take the Lagrange
multiplier λ1 to be given by

λ1ðx; y; zÞ ¼
σ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
β
�
1þ κðx2 þ y2 þ z2Þ=2�3 ð82Þ

for β constant, it follows from condition (79) that

E⃗ ¼ ð−y; x; 0Þ αβffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p : ð83Þ

It is easy to check that

∇!× E⃗ ¼
�
0; 0;

αβffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p �
: ð84Þ

We can satisfy constraint (78) if we choose the constants α
and β such that

jE⃗j2 ¼ α2β2 >
1

2
y1: ð85Þ

It follows that jH⃗j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2β2 − 1

2
y1

q
is constant, and we are

free to choose H⃗ independent of the space coordinates. It is
then straightforward to check that the energy of the
configuration becomes

Z
d3rHc ¼

Z
d3rðjP⃗j2 − 2P⃗ · ð∇!× E⃗Þ þ j∇! · H⃗j2Þ

¼ π2α2
�

1

2
ffiffiffi
2

p
κ3=2

−
4β

κ

�
ð86Þ

which is negative if β > 1=ð8 ffiffiffiffiffi
2κ

p Þ. This condition is
compatible with (85). We conclude that also in this case
the energy can take arbitrary negative values.
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In conclusion, for the case σ123 ¼ 0 the Hamiltonian is
always unbounded from below.

C. Case σ1 = 0, σ123 ≠ 0

In this case we find for the momentum conjugate to the
B0i components

π0i ¼
∂Lλ1λ2

∂B0i
¼ σ23ðḂ0i þ ∂jBijÞ ð87Þ

while the remaining canonical momenta vanish identically,
leading to the primary constraints

ϕ1 ¼ πλ1 ≈ 0; ð88Þ

ϕ2 ¼ πλ2 ≈ 0; ð89Þ

ϕij ¼ πij ≈ 0 ði; j ¼ 1; 2; 3Þ: ð90Þ

For the canonical Hamiltonian we find

Hc ¼
1

2σ23
π0iπ0i − π0i∂jBij þ

σ23
2

ð∂jB0jÞ2 þ Vλ1λ2 ð91Þ

and for the total Hamiltonian

HT ¼ Hc þ μ1πλ1 þ μ2πλ2 þ μijπij ð92Þ

where the coefficient functions μ1, μ2, and μij are to be
determined.
Just like in the previous case, we again obtain secondary

constraints demanding that time evolution preserves
the primary constraints. This yields the secondary con-
straints (28) and (29), together with

ϕð2Þ
ij ¼ −∂½iπj�0 − 2λ1Bij þ 4λ2ϵ0ijkB0k ≈ 0: ð93Þ

Imposing that the secondary constraints be conserved in
time gives the (tertiary) constraints

ϕð3Þ
1 ¼ −

4

σ23
B0iπ0i þ 4B0i∂jBij þ 2μijBij ≈ 0; ð94Þ

ϕð3Þ
2 ¼ −

4

σ23
ϵ0ijkBjkπ0i þ 4ϵ0ijkBjk∂lBil − 4ϵ0ijkB0iμjk ≈ 0;

ð95Þ

1

2
ϕð3Þ
ij ¼ 2∂½iðλ1B0j�Þ þ 2∂½iðϵ0j�klλ2BklÞ þ Bijμ1 − λ1μij

− 2ϵ0ijkB0kμ2 þ
2

σ23
λ2ϵ0ijkπ0k ≈ 0: ð96Þ

By taking the combinations Bijϕ
ð3Þ
ij þ λ1ϕ

ð3Þ
1 and

2ϵ0ijkB0iϕ
ð3Þ
jk − λ1ϕ

ð3Þ
2 we obtain the system of equations

2BijBijμ1 − y2μ2 þ � � � ¼ 0; ð97Þ

y2μ1 − 16B0iB0iμ2 þ � � � ¼ 0; ð98Þ

where we used the constraint ϕð2Þ
2 ; the ellipses stand for

expressions that do not depend on the coefficients μ1, μ2,
and μij. If y2 ≠ 0 these equations can always be solved
for the coefficients μ1 and μ2. Finally, we can use constraint
(96) to solve for the coefficients μij. Thus, the Dirac
procedure does not generate any further constraints.
Just like in the previous case, there are 16 field

components and 10 remaining second-class constraints,
yielding 6 local degrees of freedom in phase space.
Let us now see if the Hamiltonian (91) is bounded from

below for σ23 > 0 (as we saw, for negative σ23 it is
unbounded from below even in the absence of the con-
straints). Let us define, as in the previous case, the vectors
Ei ¼ B0i and Hi ¼ 1

2
ϵ0ijkBjk, and moreover, Pi ¼ 1

σ23
π0i.

The secondary constraints imply conditions (37), as well as

∇!× P⃗ ¼ 1

2σ23
ð2λ1H⃗ − 4λ2E⃗Þ: ð99Þ

The Hamiltonian density can then be written as

Hc ≈
σ23
2

½jP⃗j2 − 2P⃗ · ð∇!× H⃗Þ þ ð∇! · E⃗Þ2�: ð100Þ

Comparing Eqs. (99) and (100) with the corresponding
Eqs. (61) and (62) of the previous case, we see that they can
be obtained by performing the substitutions:

σ1 → −
1

2
σ23; E⃗ → H⃗; H⃗ → −E⃗: ð101Þ

In fact, the two models are formally equivalent under these
substitutions. This is so because the Lagrangian (20) is
invariant if one performs the simultaneous set of duality
transformations,

Bμν →
1

2
ϵμνλρBλρ;

σ1 → −σ1 −
1

2
σ23;

σ23 → σ23;

λi → −λi ði ¼ 1; 2Þ;
yi → −yi ði ¼ 1; 2Þ: ð102Þ

This transformation interchanges the cases B and C. Thus
the special case C is dynamically equivalent to the case B
with Lagrangian (20).
This dynamical equivalence between the cases B and C

also holds for the Lagrangian (21).
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Now we had already concluded that for case B the
Hamiltonian is unbounded from below. The dynamical
equivalence implies that this conclusion also applies to
case C.
This completes the Dirac constraint analysis of the

Lagrangians (20) and (21). Our conclusion is that, for
any choice of the coefficients σi, the Hamiltonian is
unbounded from below. In the next section we try to
remedy this by presenting a model involving the antisym-
metric two-tensor field that does have a Hamiltonian that is
bounded from below, by coupling it with the sigma-model
bumblebee presented in Sec. II.

IV. A COUPLED HYBRID MODEL

Consider the following model, coupling the antisym-
metric two-tensor field with the sigma-model bumblebee:

LA;B ¼ LA þ LB; ð103Þ

where

LA ¼ −
1

2
ð∂μAνÞð∂μAνÞ þ λ1ðAμAμ þ a2Þ ð104Þ

and

LB ¼ −
σ1
2a2

AμAνð∂λBμαÞð∂λBν
αÞ þ λ2

�
AμBμαAνBν

α

a2
− b2

�
ð105Þ

with σ1 a dimensionless constant. The two constraints
ensure that Aμ is a timelike vector satisfying AμAμ ¼ −a2,
while Cμ ¼ AλBλμ is spacelike, satisfying CμCμ ¼ a2b2.
We already know that the first two terms yield a positive
definite contribution HA to the Hamiltonian density. The
contribution of the terms involving the antisymmetric
tensor field is equal to

HB ¼ σ1
2a2

AμAν

	
ḂμαḂνα þ ð∂iBμαÞð∂iBναÞ
: ð106Þ

Now let us parametrize

A0 ¼ a cosh χ; ð107Þ

Ai ¼ afi sinh χ; ð108Þ

with fifi ¼ 1. Let us denote the term of Eq. (106) with time
derivatives by HB;t. Defining

Dα ¼
1

a
AμḂμα ð109Þ

it follows that

2σ−11 HB;t ¼ DαDα ¼ DkDk −D2
0

¼ ðcosh χḂ0k − sinh χfiḂikÞðcosh χḂ0k − sinh χfjḂjkÞ − ðsinh χÞ2ðfiḂi0Þ2: ð110Þ

To see that this expression is positive semidefinite, note that

DkDk¼ðflflÞðDkDkÞ≥ ðfkDkÞ2¼ðcoshχfkḂ0kÞ2 ð111Þ

where we used Schwarz’s inequality, and thus

2σ−11 HB;t ≥ ðcosh χÞ2ðfkḂ0kÞ2 − ðsinh χÞ2ðfiḂi0Þ2
¼ ðfkḂ0kÞ2 ≥ 0: ð112Þ

Note that σ−11 HB;t is positive semidefinite rather than
positive definite, because there are nontrivial field con-
figurations for which it vanishes. More on this below.
The same logic follows with Ḃμα replaced by ∂iBμα for

i ¼ 1, 2, 3. In conclusion, the Hamiltonian density corre-
sponding to the Lagrangian (103) is positive semidefinite
for σ1 > 0.
The equations of motion that follow from the Lagrangian

(103) are

∂
2Aμ þ 2λ1Aμ −

σ1
a2

Aνð∂λBμαÞð∂λBν
αÞ

þ 2

a2
λ2BμαAνBν

α ¼ 0; ð113Þ

σ1∂
λ
�
AνA½μð∂λBν

ρ�Þ�þ 2λ2AνA½μBν
ρ� ¼ 0; ð114Þ

AμAμ þ a2 ¼ 0; ð115Þ

AμBμαAνBν
α − a2b2 ¼ 0: ð116Þ

Contracting Eq. (113) with Aμ and Eq. (114) with Bμρ and
using the constraints (115) and (116) yields expressions for
the Lagrange multipliers in terms of the fields. Substituting
these back into Eqs. (113) and (114) yields, after some
algebra, the factored equations
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�
δκμ þ

1

a2
AμAκ

�h
∂
2Aκ −

σ1
a2

Aνð∂λBκαÞð∂λBν
αÞ − σ1

a4b2
Bαβ∂λðAαAγð∂λBγ

βÞÞBκρAνBν
ρ
i
¼ 0 ð117Þ

and

�
δ½μα δ

ρ�
β −

1

a2b2
AνA½μBν

ρ�Bαβ

�
∂λ

�
AαAγð∂λBγ

βÞ�¼0; ð118Þ

where the prefactors are projectors. Equations (117) and
(118) represent massless fields, with interactions due to the
nonlinear coupling between Aμ and Bμν. We also see clearly
from Eq. (117) that Aμ continues to have 3 degrees of
freedom, while the prefactor in Eq. (118) projects out one
degree of freedom, leaving a total of 3 − 1 ¼ 2 propagating
degrees of freedom for Bμν.
The situation is more clearly understood in the Lorentz

frame in which Aμ is purely timelike, that is, A0 ¼ a and
Ai ¼ 0 (i ¼ 1, 2, 3). Then the second constraint yields
B0iB0i ¼ b2, thus fixing the modulus of the three-vector
B0i. Note that there is no constraint in the remaining
components Bij. In this observer frame the two propagating
degrees of freedom referred to above correspond to the
fluctuations of B0i that are orthogonal to its expectation
value. Clearly the three components Bij do not participate
in the dynamics described by the Lagrangian (103).
However, it is easy to extend the model and involve these

components in the dynamics as well. To this effect,
consider instead of (103) the extended model

Lλ ¼ LA;B þ LB� ; ð119Þ

where

LB� ¼−
σ2
2a2

AμAνð∂λB�
μαÞð∂λB�α

ν Þþλ3

�
AμB�

μαAνB�α
ν

a2
− b̄2

�
;

ð120Þ

in which

B�
μν ¼

1

2
ϵμνρσBρσ ð121Þ

denotes the dual to Bμν, and σ2 is a dimensionless constant.
The constraint enforced by λ3 will force an expectation value
for the components B�

0i, or, equivalently, for the components
Bij. It is straightforward to show that Eq. (120) can be
written, by using the constraints enforced by λ1 and λ2, as

LB� ¼ −
σ2
2a2

AμAνð∂λBμαÞð∂λBν
αÞ − σ2

4
ð∂λBμνÞð∂λBμνÞ

þ λ3

�
1

2
BμνBμν þ b2 − b̄2

�
: ð122Þ

Note that the first kinetic term in Eq. (122) is identical to the
one appearing in Lagrangian (105), while the second one
corresponds to the “sigma-model” term proportional to σ1
considered before in Eq. (19). It follows that

Lλ ¼ Lþ λ1ðAμAμ þ a2Þ þ λ2

�
AμBμαAνBν

α

a2
− b2

�

þ λ3

�
1

2
BμνBμν þ b2 − b̄2

�
ð123Þ

with

L ¼ −
1

2
ð∂μAνÞð∂μAνÞ − σ1 þ σ2

2a2
AμAνð∂λBμαÞð∂λBν

αÞ

−
σ2
4
ð∂λBμνÞð∂λBμνÞ: ð124Þ

This model has a total of 3þ 2þ 2 ¼ 7 propagating degrees
of freedom. Because both the original model (103) and the
added model (120) are stable for positive values of σ1 and σ2,
the same is true for the extended model (123).
Above we argued that it was natural to extend the

original model (103) because not all field components
participate in its dynamics. For the extended model the sum
of the number of propagating degrees of freedom and the
number of constraints, 7þ 3 ¼ 10, exactly matches the
total number of field components (4þ 6). This demon-
strates that in the extended model all field components
participate in the dynamics, either as a propagating degree
of freedom or because its dynamics is fixed by the
constraints. Consequently, the Hamiltonian of the extended
model is positive definite for positive values of σ1 and σ2,
rather than positive semidefinite.
In the limit σ2 → 0, while maintaining σ1 > 0, the

Lagrangian (123) reduces to the original model (103)
with 5 degrees of freedom. The case σ1 → 0; σ2 > 0 can be
obtained from this case under the substitution Bμν → B�

μν,
and so also has 5 degrees of freedom. Whenever either σ1
or σ2 is negative, the Hamiltonian is unbounded from
below.
The equations of motion that result from the

Lagrangian (123) are

δLλ

δAμ ¼
δL
δAμ þ 2λ1Aμ þ

2

a2
λ2BμρAνBν

ρ ¼ 0; ð125Þ

δLλ

δBμρ
¼ δL

δBμρ
þ 2

a2
λ2AνA½μBν

ρ� þ λ3Bμρ ¼ 0; ð126Þ
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with

δL
δAμ ¼ ∂

2Aμ −
σ1 þ σ2

a2
Aνð∂λBμρÞð∂λBν

ρÞ; ð127Þ

δL
δBμρ

¼ σ2
2
∂
2Bμρ þ σ1 þ σ2

a2
∂
λðAνA½μ

∂λBν
ρ�Þ; ð128Þ

together with the constraints

AμAμ þ a2 ¼ 0; ð129Þ

AμBμρAνBν
ρ − a2b2 ¼ 0; ð130Þ

BμρBμρ þ 2ðb2 − b̄2Þ ¼ 0: ð131Þ

By contracting Eq. (125) with Aμ and with BμρAσBσρ and
Eq. (126) with Bμρ and with AμAκBκρ and using the
constraints (129)–(131), one obtains a set of linear equa-
tions for the λi:

a2λ1 − b2λ2 ¼
1

2
Aμ δL

δAμ ; ð132Þ

b2λ1 þ
FðA;BÞ

a4
λ2 ¼ −

1

2a2
BμρCρ

δL
δAμ ; ð133Þ

b2λ2 þ ðb̄2 − b2Þλ3 ¼ −
1

2
Bμρ

δL
δBμρ

; ð134Þ

b2λ2 − b2λ3 ¼
1

a2
AμCρ

δL
δBμρ

: ð135Þ

Here we defined Cρ ¼ AαBαρ and FðA; BÞ ¼
AμBμαBαβBβγBγνAν (which is not fixed by the constraints).
From Eqs. (132)–(135) we obtain

λ1¼
1

2a2
Aμ δL

δAμ−
1

2a2b̄2

�
b2Bμρþ

2

a2
ðb2− b̄2ÞAμCρ

�
δL
δBμρ

;

ð136Þ

λ2 ¼ −
1

2b̄2

�
Bμρ þ

2

a2

�
1 −

b̄2

b2

�
AμCρ

�
δL
δBμρ

ð137Þ

¼ −
1

2

a2

a2b4 þ FðA;BÞ ðb
2Aμ þ BμρCρÞ

δL
δAμ ; ð138Þ

λ3 ¼ −
1

2b̄2

�
Bμρ þ

2

a2
AμCρ

�
δL
δBμρ

: ð139Þ

We see from expressions (137) and (138) that there are
multiple ways to express λ2 in terms of Aμ and Bμρ.

Technically, this is a consequence of the fact that the
system of equations (132)–(135) is overconstrained.
The implied identity is a nontrivial relation between the
variations δL=δAμ and δL=δBμρ that is valid on the surface
defined by the constraints. Also λ1 and λ3 can be rewritten
by using this identity.
The Lagrange-multiplier terms in the equations of motion

(125) and (126) impose the constraints (129)–(131), con-
straining the possible field variations accordingly. Therefore,
one expects that it should be possible to write the resulting
equations of motion in projected form. In Appendix it is
shown that this is indeed the case.

V. THE LINEARIZED EQUATIONS OF MOTION

Next, let us analyze the equations of motion at the
linearized level, by expressing the fields as a sum of their
expectation values and fluctuations around these:

Aμ ¼ Āμ þ δAμ; Bμρ ¼ B̄μρ þ δBμρ: ð140Þ

We will assume that Āμ and B̄μρ are independent of
spacetime. From constraint (129) it follows that we can
express

Āμ ¼ auμ with uμuμ ¼ −1 ð141Þ

while the fluctuation vector aμ satisfies

aμuμ ¼ 0: ð142Þ

From constraint (130) it follows that

uρB̄ρμuσB̄σμ ¼ b2 ð143Þ

and

δAρB̄ρμB̄σμuσ þ auρB̄ρμuσδBσμ ¼ 0: ð144Þ

Finally, constraint (131) yields the conditions

B̄μνB̄μν ¼ 2ðb̄2 − b2Þ ð145Þ

and

B̄μνδBμν ¼ 0: ð146Þ

It is helpful to choose an observer frame such that uμ is
purely timelike, with u0 ¼ 1 and ui ¼ 0 (i ¼ 1, 2, 3). It
then follows from (142) that a0 ¼ 0. Eqs. (143)–(146) then
yield the conditions

B̄0iB̄0i ¼ b2; ð147Þ

B̄ijB̄ij ¼ 2b̄2 ð148Þ
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and

B̄0iδB0i ¼ −
1

a
δAiB̄ijB̄0j; ð149Þ

B̄ijδBij ¼ −
2

a
δAiB̄ijB̄0j ð150Þ

(note that repeated indices i and j are summed over). We
see clearly that there are 7 degrees of freedom: 3 spacelike
components of δAμ, 2 (transverse) components of δB0i

satisfying B̄0iδB0i ¼ 0 and 2 (transverse) components of
δBij satisfying B̄ijδBij ¼ 0. The respective longitudinal
components of δB0i and δBij are fixed by Eqs. (149)
and (150) in terms of δAi.
Linearizing the equations of motion (127) and (128) it

follows that

δL
δAμ ≈ ∂

2δAμ; ð151Þ

δL
δBμρ

≈ ∂
2

�
σ2
2
δBμρ þ ðσ1 þ σ2Þuνu½μδBν

ρ�
�
: ð152Þ

It is straightforward to verify that the linearized form of the
equations of motion (125) and (126) with the Lagrange
multipliers given by Eqs. (136)–(139) imply that all
fluctuations are strictly massless degrees of freedom.
The degrees of freedom can be made more explicit if we

parametrize the antisymmetric tensor field as

Bμν ¼

0
BBB@

0 E1 E2 E3

−E1 0 H3 −H2

−E2 −H3 0 H1

−E3 H2 −H1 0

1
CCCA ð153Þ

with Ei ¼ B0i and Hi ¼ 1
2
ϵijkBjk. Expressing E⃗ ¼

ðE1; E2; E3Þ and H⃗ ¼ ðH1; H2; H3Þ as a sum of expectation
value and fluctuations:

E⃗ ¼ ¯E⃗þ δE⃗; H⃗ ¼ ¯H⃗ þ δH⃗; ð154Þ
the constraints (147) and (148) imply that

j ¯E⃗j ¼ b and j ¯H⃗j ¼ b̄; ð155Þ
while the conditions (149) and (150) become

¯E⃗ · δE⃗ ¼ ¯H⃗ · δH⃗ ¼ 1

a
ð ¯E⃗ × ¯H⃗Þ · δA⃗: ð156Þ

We see that the components of δE⃗ and δH⃗ parallel to their
expectation values are fixed in terms of the component of

δA⃗ perpendicular to the plane defined by ¯E⃗ and ¯H⃗.
Through subsequent observer rotations it is always

possible, in the frame in which uμ is purely timelike, to

transform some of the components of ¯E⃗ and ¯H⃗ to zero.

For instance, a convenient possible form is ¯E⃗ ¼ ðb; 0; 0Þ
and ¯H⃗ ¼ ðb̄ cos θ; b̄ sin θ; 0Þ. In that case the conditions
(156) become

δE1 ¼
b̄
a
δA3 sin θ; ð157Þ

δH1 cos θ þ δH2 sin θ ¼ b
a
δA3 sin θ: ð158Þ

A further simplification for the form of Bμν, such as that
obtained in Ref. [43], is not possible in our case, as we do
not have the freedom anymore to apply an observer boost
(which would affect the purely timelike form of uμ).
It is interesting to compare these massless modes with

the Nambu-Goldstone (NG) modes corresponding to the
broken Lorentz generators. Parametrizing infinitesimal
Lorentz transformations as

Λμ
ν ¼ δμν þ ωμ

ν ð159Þ

with the generators ωμν ¼ −ωνμ, we have for the NG
modes2

ðδωAÞμ¼ωμ
νĀν; ðδωBÞμρ¼ωμ

λB̄λρþωρ
λB̄μλ: ð160Þ

Adopting the observer frame mentioned above, with

Āμ ¼

0
BBB@

a

0

0

0

1
CCCA;

B̄μρ ¼

0
BBB@

0 b 0 0

−b 0 0 −b̄ sin θ
0 0 0 b̄ cos θ

0 b̄ sin θ −b̄ cos θ 0

1
CCCA; ð161Þ

it is easy to check explicitly that the modes (160) satisfy the
conditions (156), as of course they should. It turns out that
all six Lorentz generators are broken, if sin θ ≠ 0. (In the
special case when sin θ ¼ 0 there are five broken gener-
ators.) This leaves us with a puzzle, because we know there
are seven propagating massless fields. Clearly they cannot
all correspond to NG modes. The reason for the discrep-
ancy is that, as we saw above, to each of the expectation

values ¯E⃗ and ¯H⃗ there are two independent massless modes
associated. On the other hand, applying rotation generators
only yields a total of three NG modes. This is because

2Note that the NG modes for the antisymmetric two-tensor
field have been called phons [43].
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the rotation generators are applied simultaneously, not

independently, to the vectors ¯E⃗ and ¯H⃗. The discrepancy
in the counting can be eliminated if we add another
Lagrange-multiplier term to the Lagrangian, such as

λ4ðϵμνρσBμνBρσ � b̃2Þ ð162Þ

for some constant b̃. This will fix the angle between E⃗ and
B⃗ and reduce the total number of propagating modes to six,
all of which corresponding to NG modes.
Therefore we see that, in dynamical systems depending

of fields with Lorentz indices, in the presence of Lagrange-
multiplier constraints that depend on Lorentz scalars built
of the fields, forcing nonzero expectation values of the
fields, there are massless modes corresponding to fluctua-
tions compatible with the constraints. Part of these modes
(maximally six) can be identified with NGmodes, however,
there may be additional independent modes which do not
correspond to NG modes. However, in that case it is always
possible to add additional independent constraints such that
the propagating massless degrees of freedom all correspond
to NG modes. Note that this argument also applies for
systems with smooth scalar potentials instead of Lagrange
multiplier constraints (in this case there are additional
massive modes).

To see another simple example of this, consider first just
the bumblebee with the field Aμ and Lagrangian (1). It has
three propagating massless degrees of freedom, all corre-
sponding to NG modes. Now add another, independent
bumblebee, constructed of the field Bμ. Then there are
clearly six propagating massless degrees of freedom.
However, only five of them can be NG modes. In order
to see this, fix the expectation value of Aμ to ða; 0; 0; 0Þ. We
can choose a frame such that the expectation value of Bμ will
be of the form ða cosh ξ; 0; 0; a sinh ξÞ for some value ξ. This
means all boost generators and two of the three rotation
generators are broken. Thus one of the propagating modes is
not a NG mode. However, we can eliminate it by adding an
extra constraint, fixing the value of AμBμ. Continuing this
example, we can add another bumblebee, depending on
another field Cμ. We then have nine propagating massless
modes. Six of them correspond to the broken Lorentz
generators, three do not. We can eliminate the latter by
adding constraints fixing AμBμ, AμCμ, BμCμ, and so forth.

VI. COUPLINGS TO GRAVITY AND MATTER

Let us now generalize the extended hybrid model (123)
to curved space. To this effect, we replace the partial
derivatives by covariant derivatives. Moreover, there is the
possibility to add explicit couplings to curvature. The
action we consider is

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

16πG
R −

1

2
ð∇μAνÞð∇μAνÞ þ λ1ðAμAμ þ a2Þ þ αRμνAμAν −

σ2
4
ð∇λBμνÞð∇λBμνÞ

þ λ3

�
1

2
BμνBμν þ b2 − b̄2

�
þ β1RμνκλBμνBκλ þ β2RνλBμνBμ

λ −
σ1 þ σ2

a2
AμAνð∇λBμαÞð∇λBν

αÞ

þ λ2

�
AμBμαAνBν

α

a2
− b2

�
þ γ1RνλAμAκBμνBκλ þ γ2Rμ

νκλAμBν
ρAκBλρ

�

¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

16πG
R −

1

2
ð∇μAνÞð∇μAνÞ − σ2

4
ð∇λBμνÞð∇λBμνÞ −

σ1 þ σ2
a2

AμAνð∇λBμαÞð∇λBν
αÞ þ λ1ðAμAμ þ a2Þ

þ λ2

�
AμBμαAνBν

α

a2
− b2

�
þ λ3

�
1

2
BμνBμν þ b2 − b̄2

�
þ τμνκλRμνκλ þ σμνRμν

�
ð163Þ

where α, β1, β2, γ1, and γ2 are constants, and

σμν ¼ αAμAν þ β2BλμBλ
ν þ γ1AλAκBλμBκν; ð164Þ

τμνκλ ¼ β1BμνBκλ þ γ2AμBν
ρAκBλρ; ð165Þ

parametrize the couplings to the Riemann and the Ricci
tensor, respectively. We have suppressed couplings of the
Ricci scalar to scalar combinations of the vector field
and/or the antisymmetric two-tensor field, because the
values of the latter are all fixed by the constraints and thus
nondynamical. Note that this would not be the case for

smooth potentials instead of the Lagrange-multiplier
constraints considered here. An action similar to
Eq. (163) was considered in [43], albeit with different
kinetic terms and without the terms involving the vec-
tor field.
In the gravitational sector of the Standard-Model exten-

sion it is conventional to denote the Lorentz-violating
couplings to the traceless part of the Ricci tensor, the
Weyl tensor, and the scalar curvature as the coefficient
fields sμν (which is taken to be traceless), tκλμν (with the
symmetries of the Weyl tensor), and u. For our model (163)
it follows that
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tμνκλ ¼ 2

3
τμνκλ −

2

3
τμ½κλ�ν þ τμ½λgκ�ν − τν½λgκ�μ þ 1

3
τgμ½κgλ�ν;

ð166Þ

sμν ¼ σμν þ 2τμν −
1

4
gμνðσ þ 2τÞ; ð167Þ

u ¼ −
5

6
τ þ 1

4
σ; ð168Þ

where we defined τμν ¼ τμλνλ, τ ¼ τμμ, and σ ¼ σμμ, and
square brackets imply antisymmetrization. Using the
expressions (164) and (165), together with the three
constraints, we find

tμνκλ ¼ 2

3
ðβ1BμνBκλ þ γ2AμBν

ρAκBλρ − β1Bμ½κBλ�ν − γ2AμB½κ
ρAλ�BνρÞ þ ðβ1BμαB½λ

α þ 2γ2ðb̄2 − b2ÞAμA½λÞgκ�ν

− ðβ1BναB½λ
α þ 2γ2ðb̄2 − b2ÞAνA½λÞgκ�μ þ 2

3
ðb̄2 − b2Þðβ1 − a2γ2Þgμ½κgλ�ν; ð169Þ

sμν ¼ ð2β1 þ β2ÞBμαBν
α þ γ1AκAλBμκBμλ þ ðαþ 4γ2ðb̄2 − b2ÞÞAμAν

−
1

4
gμν½2ðb̄2 − b2Þð2β1 þ β2 − 2a2γ2Þ þ a2ðb2γ1 − αÞ�; ð170Þ

u ¼ ðb̄2 − b2Þ
�
−
5

3
ðβ1 − a2γ2Þ þ

1

2
β2

�
þ 1

4
a2ðb2γ1 − αÞ: ð171Þ

These expressions generalize the gravity couplings that
have been obtained for the bumblebee [9] and for the
antisymmetric tensor field [43].
It is also straightforward to add matter couplingsR
d4x

ffiffiffiffiffiffi−gp
LM to the action. For instance, a (CPT-violating)

vector coupling could take the form

LM ⊃ ðξ1Aμ þ ξ2AλBλμÞj1;μ ð172Þ
where j1;μ is a suitable matter current and ξ1 and ξ2
coupling constants. For a Dirac fermion j1;μ can be taken

to be i
2
ψ̄∇↔μψ , or, alternatively, eμaψ̄γaψ (where eμa denotes

a local vierbein). This will give rise to contributions to the
coefficients eμ or aμ of the Standard-Model extension,
respectively, as was shown in Ref. [50] for the case of the
bumblebee. It is worthwhile to point out that the current
work provides, for the first time, an explicitly stable model,
not only for the case of a vector with timelike expectation
value [namely, the coupling parametrized by ξ1 in
Eq. (172)], but also for the case of a spacelike expectation
value (the ξ2 term).
A matter coupling involving a symmetric traceless two-

tensor can be taken in analogy to the coefficient sμν in
Eq. (170) as

½ξ3AμAν þ ξ4Bλ
μBλν þ ξ5AλAκBλμBκν

−
1

4
ð2ðb̄2 − b2Þξ4 þ a2ðb2ξ5 − ξ3ÞÞgμν�j2;μν: ð173Þ

For a Dirac fermion the current j2;μν can be taken to be

i
2
eμaψ̄γa∇

↔

νψ . The expectation values of Aμ and Bμν

will then give rise to a contribution to the SME
coefficient cμν.
Finally, an obvious candidate for a coupling involving an

antisymmetric two-tensor is

ξ6Bμνj
μν
3 : ð174Þ

For a Dirac fermion we can take jμν3 ¼ i
2
eμaeνbψ̄ ½γa; γb�ψ ,

in which case the expectation value for Bμν will lead to a
contribution to the SME coefficient Hμν [43].

VII. CONCLUSIONS

In this work we investigated the stability of systems
involving a rank-two antisymmetric tensor field with one or
two Lagrange multiplier terms forcing the latter to acquire a
vacuum expectation value, thereby breaking Lorentz invari-
ance spontaneously. As an alternative, we considered
Lagrange-multiplier potentials fixing the value of both
(pseudo)scalars BμνBμν and ϵμνρσBμνBρσ, or only the former
one. In the first part of this work we performed an
exhaustive Hamiltonian Dirac constraint analysis of
Lagrangians involving all possible linear combinations
of kinetic terms that are parity-even and quadratic in the
antisymmetric tensor field. It turned out to be necessary to
consider separately two edge cases, one of which corre-
sponding to the (gauge-invariant) Maxwell-like kinetic
term. Surprisingly, these two cases are related through a
duality symmetry, which, to our knowledge, has not been
pointed out before in the literature. Our conclusion is that
no kinetic term that is parity-even and quadratic in the field
leads to a Hamiltonian that is bounded from below.
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We then proposed a hybrid model combining a vector
field and an antisymmetric two-tensor field, with a
combination of three kinetic terms, one of which involv-
ing both fields. We showed this model does have a
Hamiltonian that is bounded from below in Minkowski
space and is therefore stable. We extended it to curved
space, with a number of coupling terms to the curvature,
and worked out the corresponding couplings in pure
gravity sector of the Standard-Model extension. The
formulation of this model extends the class of known
stable models exhibiting spontaneous Lorentz breaking,
up to now only encompassing that of a single vector field
with timelike expectation value.
We do not claim to have found the most general stable

Lorentz-breaking system describing an antisymmetric two-
tensor field and a vector. In particular, we have not explored
kinetic or potential terms that are parity odd, and neither
those that are higher than quadratic in the antisymmetric
tensor field.
It would be interesting to search for nontrivial solutions

in curved space, for instance those of of black-hole type.
Note that the hybrid model should allow for more general
stable Lorentz-violating backgrounds than the bumblebee
models that have been considered in the literature so far. It
would also be interesting to search for cosmological
solutions. Presumably, it will be necessary to go beyond
those of the Friedman-Lemaitre-Robertson-Walker type,
because any nontrivial background of the antisymmetric
two-tensor field will necessarily be direction dependent.
Another issue that we have not considered is a full

analysis of the dynamics of the degrees of freedom of the
curved-space hybrid model (163). For the curved-space
version of the sigma-model bumblebee presented in Sec. II,
such an analysis has been worked out in detail (this model
corresponds to the Einstein-æ ther theory with c1 ≠ 0,
c2 ¼ c3 ¼ c4 ¼ 0) [12]. For our hybrid model the analysis
is likely to be considerably more involved. In particular, the
expectation value of the antisymmetric tensor field neces-
sarily breaks rotational invariance, which means that the
propagation of the gravitational, vector, and antisymmetric
tensor waves will become direction dependent. Such an
analysis would also serve to investigate its consistency, as
theories of spin fields coupled to gravity are known to
possess potential instabilities [51].

ACKNOWLEDGMENTS

It is a pleasure to thank Alan Kostelecký for discus-
sions and helpful suggestions. The author is grateful to
the anonymous referee for numerous helpful comments
(in particular, the insistence on the completeness of
the proof of instability in Sec. III) that improved the
quality of the manuscript. Financial support from
Fundação para a Ciência e a Tecnologia (Portugal)
through the research grant 10.54499/UIDB/00099/2020
is gratefully acknowledged.

APPENDIX: PROJECTIVE FORM OF THE
EQUATIONS OF MOTION OF THE

HYBRID MODEL

The Lagrange-multiplier terms in the equations of
motion (125) and (126) project the latter on restricted
subspace corresponding to the field variations that are
compatible with the constraints.
Let us first consider constraint (129). Field variations

δAμ compatible with this constraint satisfy

δAμAμ ¼ 0: ðA1Þ

We can implement this by replacing any arbitrary field
variation δAμ with ðP1ÞμνδAν, with the projectorP1 defined by

ðP1Þμν ¼ δμν þ 1

a2
AμAν: ðA2Þ

Variations of the Lagrangian density L compatible with
constraint (129) can be expressed as

δL ¼ δL
δAμ ðP1ÞμνδAν þ δL

δBμρ
δBμρ: ðA3Þ

Instead of taking the projectorP1 to act to the right on the field
variation δA, we can choose to take it to act to the
left on the equation of motion δL=δAμ, leaving the field
variation arbitrary. This is exactly what happened in the
factored equation of motion we obtained for the sigma-
bumblebee model, Eq. (16). This way, inclusion of the
constraint has the effect of replacing the equation of motion
by its projected version:

δL
δAμ →

�
δL
δAμ

�
⊥
¼ δL

δAν ðP1Þνμ: ðA4Þ

This projected equation of motion identically satisfies the
condition

�
δL
δAμ

�
⊥
Aμ ¼ 0: ðA5Þ

In other words, Eq. (A5) is an empty condition that is
identically satisfied.
In the case at hand the situation is rather more compli-

cated, as we have to satisfy three constraints (129)–(131)
rather than just one. The strategy we will take is to
implement this by applying a suitable projector in the
space of the equations of motion. The first step is to
combine all equations of motion in a 10-dimensional vector
space V ¼ fv⃗g, with components

v⃗≡
�

δL=δAμ

δL=δBμρ

�
: ðA6Þ
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Variations compatible with the constraints satisfy the three
conditions

δAμAμ ¼ δAμBμρCρ þ δBμρAμCρ ¼ δBμρBμρ ¼ 0: ðA7Þ

Defining the vectors

a⃗1¼
�
Aμ

0

�
; a⃗2¼

�
BμρCρ

A½μCρ�

�
; a⃗3¼

�
0

Bμρ

�
; ðA8Þ

the elements in the subspace V⊥ ¼ fv⃗⊥g of V compatible
with the conditions (A7) formally satisfy the orthonormal-
ity relations

v⃗⊥ · a⃗1 ¼ v⃗⊥ · a⃗2 ¼ v⃗⊥ · a⃗3 ¼ 0: ðA9Þ

Here the inner vector product amounts to contraction of
corresponding Lorentz indices. Taking the ansatz

v⃗⊥ ¼ v⃗ − β1a⃗1 − β2a⃗2 − β3a⃗3 ðA10Þ

and imposing the conditions (A9) it follows that the
coefficients βi are given by

βi ¼ ðM−1
a Þija⃗j · v⃗ ð1 ≤ i; j ≤ 3Þ; ðA11Þ

where the coefficient matrix ðMaÞij is defined by

ðMaÞij ¼ a⃗i · a⃗j: ðA12Þ

We can evaluate its elements explicitly by using the
constraints (129)–(131):

a⃗1 · a⃗1 ¼ AμAμ ¼ −a2; ðA13Þ

a⃗1 · a⃗2 ¼ AμBμρCρ ¼ a2b2; ðA14Þ

a⃗1 · a⃗3 ¼ 0; ðA15Þ

a⃗2 · a⃗2 ¼ BμρCρBμσCσ þA½μCρ�A½μCρ� ¼ FðA;BÞ− 1

2
a4b2;

ðA16Þ

a⃗2 · a⃗3 ¼ AμCρBμρ ¼ a2b2; ðA17Þ

a⃗3 · a⃗3 ¼ BμρBμρ ¼ 2ðb̄2 − b2Þ: ðA18Þ

Straightforward calculation shows that the coefficients
βi in Eq. (A10) correspond exactly to the corresponding
expressions obtained for the Lagrange multipliers λi in
Eqs. (136)–(139), where it is necessary to make repeated
use of the nontrivial identity implied by Eqs. (137)
and (138). We therefore conclude that the equations of
motion that belong to the projected vector space V⊥
coincide exactly with Eqs. (125) and (126) after substitut-
ing expressions (136)–(139) for the Lagrange multipliers.
The projective representation allows for expressing the

equations of motion in factored form, analogously to
Eq. (16), by combining Eqs. (A10) and (A11):

v⊥;α ¼ ½δαβ − aiαðM−1
a Þijajβ�vβ: ðA19Þ

Here the indices α and β parametrize the (10-dimensional)
space of equations of motion. Explicitly, this yields the
expressions

�
δL
δAμ

�
⊥
¼

n
δνμ − ½AμðM−1

a Þ11 þ BμρCρðM−1
a Þ21�Aν

− ½AμðM−1
a Þ12 þ BμρCρðM−1

a Þ22�BνσCσ

o δL
δAν

− ½AμðM−1
a Þ12 þ BμρCρðM−1

a Þ22�AνCσ
δL
δBνσ

;

ðA20Þ

�
δL
δBμρ

�
⊥
¼

n
δ½μν δ

ρ�
σ − ½BμρðM−1

a Þ33 þ A½μCρ�ðM−1
a Þ23�Bνσ

− ½BμρðM−1
a Þ32 þ A½μCρ�ðM−1

a Þ22�AνCσ

o δL
δBνσ

− ½BμρðM−1
a Þ32 þ A½μCρ�ðM−1

a Þ22�BνσCσ
δL
δAν :

ðA21Þ
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