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We consider a Z3 gauge theory coupled to three degenerate massive flavors of fermions, which we term
Quantum Z(3) Dynamics, QZD. The spectrum can be computed in 1þ 1 dimensions using tensor
networks. In weak coupling the spectrum is that of the expected mesons and baryons, although the
corrections in weak coupling are nontrivial, analogous to those of nonrelativistic QED in 1þ 1 dimensions.
In strong coupling, besides the usual baryon, the singlet meson is a baryon-antibaryon state. For two special
values of the coupling constant, the lightest baryon is degenerate with the lightest octet meson, and the
lightest singlet meson, respectively.
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I. INTRODUCTION

Confinement in gauge theories is of fundamental impor-
tance for a wide variety of problems. This ranges from
quantum chromodynamics (QCD) in the strong inter-
actions [1,2] to numerous systems in condensed matter [3].
Especially interesting is its nontrivial effect on the mass
spectrum.
The simplest examples of confining gauge theories are of

course in the fewest number of spacetime dimensions,
which is 1þ 1. A canonical example is the Schwinger
model, in which fermions are coupled to an Abelian gauge
theory [4–11]. For a single, massless fermion, Schwinger
showed that the only gauge invariant state is a single, free,
massive boson [4]. When the fermions are massive,
however, there are an infinite number of gauge invariant,
fermion antifermion pairs. These are mesons, and arise at
arbitrarily high mass [7]. Recent studies include how to
implement a discrete chiral symmetry on the lattice [10],
and the phase diagram as a function of θ [11].
While classical computers can be used to numerically

compute many properties of field theories, there are some

aspects—notably the evolution in real time, or theories with
a sign problem—for which quantum computers are neces-
sary. This requires controlling the Hilbert space of a field
theory, which even with a lattice regularization is exponen-
tially large. In 1þ 1 dimensions though, polynomial
approximations have been developed, as matrix product
states efficiently represent the ground states of gapped
systems [12–14]. Studies of the Schwinger model on
quantum computers include Refs. [15–28]. Other properties
analyzed include how mesons scatter [29–31], thermal-
ization [32,33], string breaking [34–38], entanglement
production in jets [39], spin-entanglement dynamics [40]
and the dynamics in θ-vacuum [41–43].
In the massive Schwinger model the only states which

survive confinement are mesons. It would be useful to have
a model where confinement produces states which carry net
fermion number, analogous to baryons in QCD.
There are several such models in 1þ 1 dimensions. One

can take Nf flavors of heavy quarks in the fundamental
representation, coupled to a SUðNcÞ non-Abelian gauge
field. When Nc → ∞ and Nf ≪ Nc, this is the ’t Hooft
model [44–50]. This model has baryons, but their proper-
ties are opaque [51,52].
For SU(3) gauge fields, Farrell et al. [53] studied both

mesons and baryons with two massive quark flavors. Using
a quantum computer, they found a spectrum similar to that
of QCD. They did so by directly integrating out the SUðNcÞ
gauge fields, which is possible in 1þ 1 dimensions.
When the quarks are light, for small Nc and Nf the

theory can be analyzed using conformal field theory
[54–57]. At large distances a Wess-Zumino-Novikov-
Witten model emerges, but the correlation functions are
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typical of theories in two dimensions, unlike those in higher
dimensions: notably, there are massless baryons.
Alternately, one can couple a (Majorana) fermion in the

adjoint representation to a SUðNcÞ gauge field [58–64].
Quarks in the adjoint representation then combine with
gluons to form gauge invariant “gluinoballs.” These gluino-
balls can be either fermions or bosons, but such states
are special to quarks in the adjoint representation, and
have no counterpart in QCD. A similar model is that of
Rico et al. [65], who take a SO(3) gauge theory coupled to
adjoint quarks, and so whose spectrum is that of SO(3)
gluinoballs.
While these models are all useful, we wish to study a

simpler model where fermions emerge as gauge invariant
states, like those in QCD. We also wish to construct a
model which is simple enough that it could be analyzed on
a quantum computer not just in two, but higher spacetime
dimensions.
Before doing so, it is necessary to explain in detail why

in the Schwinger model a single, massive flavor has no
gauge invariant states with net fermion number. In
Minkowski spacetime, the total Hamiltonian is

H ¼
Z

dx½ψ̄ðγ1ð−i∂1 þ A1Þ þmÞψ � þ g2

2
E2; ð1Þ

where A1 is the gauge potential, and E is the canonically
conjugate operator for the electric field. Gauge invariance
requires that we impose Gauss’s law,

∂1E ¼ ψ̄γ0ψ ≡ ψ†ψ ; ð2Þ

where ψ̄ ≡ ψ†γ0. We express the gamma matrices in terms
of Pauli matrices as

γ0 ¼ σz; γ1 ¼ −iσy; γ5 ¼ γ0γ1 ¼ −σx: ð3Þ

The right hand side is just the charge density for the
fermion field, which, for a single flavor, is identical to the
density for fermion number (to represent Wilson loops
it is necessary to add an external charge density to the
right hand side, which manifestly extends the Hilbert
space [66–68]). Computing the total electric charge, Qtot,
Gauss’s law gives

Qtot ¼
Z

dx ∂1E ¼ Eð∞Þ − Eð−∞Þ: ð4Þ

For the system to be well defined in the limit of infinite
volume, we require that there is no net electric field,
Eð∞Þ ¼ Eð−∞Þ. From Eq. (4), the total electric charge
then vanishes, Qtot ¼ 0. Further, since for a single flavor
the total fermion number equals the total charge, it vanishes
as well, Ntot ¼ 0. Here N refers to the number of particles

relative to half-filling, or equivalently, with respect to the
ground state.
Thus in a U(1) theory in 1þ 1 dimensions, for a single

flavor Gauss’s law prevents us from introducing any
net fermion number. In short, the global U(1) symmetry of
fermion number is already part of the U(1) gauge symmetry.
This can be seen explicitly by trying to introduce a

chemical potential for fermion number, μ. In the
Hamiltonian formalism all thermodynamics quantities fol-
low from the partition function,

ZðT; μÞ ¼ Tr
�
e−ðH−μNtotÞ=T�; ð5Þ

where the trace is over all physical states. Physical states,
though, must obey Gauss’s law. For U(1), this enforces
Qtot ¼ Ntot ¼ 0, and consequently, that the partition func-
tion is independent of μ, ZðT; μÞ ¼ ZðT; 0Þ.
This can also be seen by directly using the Lagrangian

formalism. For a single flavor, μ ≠ 0 can be eliminated
simply by shifting the timelike component of the vector
potential by an imaginary constant, A0 → A0 − iμ=g [69].
With two or more flavors, a chemical potential can be

introduced for one flavor relative to another, and still keep
the total electric charge to zero. For example, consider two
flavors, which we call up, u, and down, d. Then a net
electric charge from an excess of u fermions over ū anti-
fermions can be precisely cancelled by an excess of down
antifermions, d̄, over d fermions. This is just a chemical
potential for isospin between the up and down quarks.
While an isospin chemical potential exhibits interesting
phenomena, such as spatially varying phases [70–72], it
still leaves us bereft of a chemical potential for gauge
invariant fermions.
A simple model where there are both gauge invariant

fermions and bosons was proposed in Ref. [73]. Consider
a Z3 gauge theory coupled to three degenerate massive
flavors of fermions, adding strange fermions, s, to up and
down, u and d, which we term quantum Z(3) dynamics
(QZD). Since fermions in 1þ 1 dimensions do not carry
spin, by the Fermi exclusion principle we cannot put two
identical fermions at the same point in space, since u2 ¼ 0,
etc. This is unlike QCD, where three quarks of the same
flavor can sit on the same point in space, as long as they
each carry a different color; for example, in QCD the Ω
baryon is sss. Assuming that the Z3 gauge theory confines,
the only way to put fermions at the same point in space is if
they have different flavors. Thus the simplest singlet under
the Z3 gauge group is uds, which is like the Λ baryon in
QCD. The vacuum and lowest excitations on the lattice,
at strong coupling are illustrated in Fig. 1 and further
discussed in Sec. III B.
We note that there are baryons even for a single flavor. In

the continuum these are constructed from three point split
fermions, as uð∂xuÞð∂2xuÞ. On the lattice this corresponds to
putting fermions on three different (particle) sites. Relative
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to the uds baryon above, though, presumably this is a state
of higher energy. This is certainly true in strong coupling,
since the mass of the point split baryon grows as ∼g2, while
that of the uds baryon is finite. It is not clear if the Fermi
sea of baryons with a single flavor is analogous to QCD,
but it is certainly would be of interest to study.
We comment that Z3 gauge theories with a single flavor

have been studied previously, particularly in Ref. [74].
They did not consider baryons in Z3, though, which is
novel to our analysis.
Confinement also produces mesons, but these are simple

to understand. Since there are three degenerate flavors, we
can form Z3 singlets in two ways. There is a flavor singlet,

η0 ¼
X3
f¼1

ψ̄fψf; ð6Þ

and a flavor octet,

πA ¼
X3
f;g¼1

ψ̄ftAfgψ
g; ð7Þ

f and g are indices for the fundamental representation of
flavor, f, g ¼ 1, 2, 3, while tAfg is a SU(3) flavor matrix in
the adjoint representation, A ¼ 1…8. As suggested by the
notation, the singlet meson is like the η0 meson in QCD,
while the octet multiplet πA is analogous to the π, K, and η
mesons.
Thus we have a model with both baryons and mesons. To

avoid the subtleties and complications of chiral symmetry
in two spacetime dimensions, we take the fermions to all
have the same, nonzero mass.
In this paper we study the mass spectrum of the lightest

states of QZD as a function of the coupling constant on the
lattice. In Sec. II we discuss the theory on a lattice, and
how to obtain a Z3 gauge theory from the spontaneous
breaking of a U(1) gauge theory. In Sec. III we use tensor

networks [75–78] and the Density Matrix Renormalization
Group (DMRG) to compute the mass spectrum of the
lightest excitations. We find that QZD exhibits a fascinating
and unexpected relation between the masses of the lightest
fermions and bosons. Results and an outlook are given in
Sec. IV. Technical details are given in Appendices.
All of the states which we measure are gauge invariant,

and so confined. This coincides with general arguments
that a Z2 gauge theory, without dynamical quarks, confines
in all dimensions [79].
There is a long history suggesting that confinement in

2þ 1 and 3þ 1 dimensions are dominated by the Z3

vortices of SU(3) gauge theories [80–84]. In 1þ 1 dimen-
sions, these Z3 vortices are points in spacetime, and our
results show that they also confine. Thus the extension of
QZD to 2þ 1 and 3þ 1 dimensions is interesting, as a
model of a confining theory with mesons and baryons, like
those in QCD.

II. LATTICE QZD

Our starting point is the standard lattice Hamiltonian

HL ¼ −
i
2a

XL−1
x¼1

�
U†

xχ
†
x · χ xþ1 − H:c:

�
−m

XL
x¼1

ð−1Þxnx

þ ag2

2

XL−1
x¼1

E2
x; ð8Þ

where χ x ≡ ðχ1;…; χNf
ÞTx are staggered fermions of Nf

flavors that live on even/odd sites representing the original
left/right chiralities (see Appendix A for the equivalent spin
theory). The particle number at a site

nx ≡ χ †x · χ x ≡
XNf

f¼1

χf†x χfx ð9Þ

includes a symmetric sum over all flavors. It follows from
Eq. (8), that like Ex,Ux lives on the bond in between sites x
and xþ 1. We consider a finite system with a total of L sites
together with open boundary conditions (BCs). The unit of
energy is assumed in terms of the hopping amplitude
1=ð2aÞ ≔ 1, i.e., a ¼ 1=2, unless specified otherwise. For
the remainder of the paper, we focus on the case of Nf ¼ 3

fermionic flavors.
The model differs from the Schwinger model in that

Ux, Ex and Gauss’s law implement a local Z3 algebra
[74,85–97]. Defining the operator

Px ≡ exp

�
2πi
3

Ex

�
; ð10Þ

we impose

P3
x ¼ U3

x ¼ 1; P†
xPx ¼ U†

xUx ¼ 1 ð11Þ

FIG. 1. Illustration of the strong coupling limit. The top row is
the ground state with half-filling. Deviations from the ground
state are highlighted in orange. In the second row one antiparticle
is moved to a particle state, giving a meson. Moving three gives a
baryon-antibaryon pair in the third row. Adding three quarks in
the fourth row gives a baryon.
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UxPx ¼ e2πi=3PxUx: ð12Þ

In the basis where the electric field is diagonal,Ux takes the
role of a cyclic permutation operator,

Ux ¼

0
B@

0 1 0

0 0 1

1 0 0

1
CA; ð13Þ

that increments (or for U†, decrements) the gauge field.
This is supplemented by a Z3 Gauss law

PxP
†
x−1 ¼ exp

�
2πi
3

qx

�
; ð14Þ

with the charge density defined as usual for staggered
fermions,

qx ¼
�
nx for x odd

nx − Nf for x even ðNf ¼ 3Þ: ð15Þ

This permits the simple interpretation that odd sites behave
like ‘particles’ which carry electrical charge þ1, with
qx ¼ ðþ1Þnx, whereas even sites behave like ‘holes,’ carry-
ing electrical charge −1 for every hole relative to the
completely filled state, with qx ¼ ð−1ÞðNf −nxÞ ¼ nx−Nf.
While the variables are similar to the implementation

of a U(1) gauge theory by quantum links [98,99], Gauss’s
law is different, as the flux is only conserved modulo 3.
We further massage Eq. (8) to make it more amenable to
numerical simulations. We start by imposing open BCs on
our chain E0 ¼ EL ¼ χLþ1 ¼ 0. This allows us to use the
remaining gauge transformations to remove the links Ux
from the theory (see for instance Ref. [100]) and solve
Gauss’s law, expressing the electric field operators in terms
of the fermionic fields. We have

Ex ¼ ðQx mod 3Þ ð16Þ

with the cumulative charge

Qx ≡
X
x0≤x

qx0 ; ð17Þ

and where modulo is taken symmetric around zero, i.e.,
having Ex ∈ f−1; 0; 1g. Thus in 1þ 1 dimensions the
gauge fields are not dynamical, as they can be completely
determined by the charge configuration. This permits
one to express a long-range Hamiltonian entirely in
terms of the fermion fields. By exploiting Abelian U(1)
particle number symmetry in the simulation, this is con-
veniently done relative to half-filling all along. With this
then the symmetry label for the cumulative block particle
number is

Nx ≡
X
x0≤x

ðnx0 − n0Þ; ð18Þ

and with n0 ¼ Nf=2 the average half-filling directly
specifies Qx for even block size, i.e., Qx ¼ Nx. For odd
block size this requires a minor tweak based on Eq. (15)
ensuring that Qx ∈Z.
A continuum form of a Z3 gauge theory can be

constructed following Krauss, Preskill, and Wilczek
[73,101,102]. One begins with a U(1) gauge field, coupled
to fermions with unit charge, and a scalar field, ϕ, not with
unit charge, but with charge three. Arranging the potential
for the scalar field to develop an expectation value in
vacuum, ϕ0, the photon develops a massmγ ¼ 3gϕ0, and so
is screened over distances > 1=mγ. Since the scalar field
has charge three, the ϕ field is insensitive to the presence of
Z3 vortices, which leaves a local Z3 symmetry, at least over
distances > 1=mγ . Remember that a scalar field has zero
mass dimension in two dimensions, so by taking ϕ0 ≫ 1,
the U(1) photon is very heavy, and the theory only goes
from the effective Z3 gauge symmetry to the full U(1) at
short distances ≤ 1=mγ .
The continuum version of the Z3 can be used to analyze

the role which the axial anomaly plays over large distances.
In QCD, the axial anomaly is responsible for splitting the
mass of the singlet meson, the η0, from that of the octet.
What, then, is the role of the axial anomaly in QZD?
To answer this, consider the flavor singlet current,

J5μðxÞ ¼
XNf

f¼1

ψ̄fðxÞγμγ5ψfðxÞ; ð19Þ

with γ5 defined in Eq. (3). The two point function of this
current involves a diagram involving the exchange of a
single photon, as illustrated in Fig. 2. This diagram is
directly analogous to that which splits the mass of the η0
from the octet mesons in 3þ 1 dimensions, which involves
the exchange of two (and more) gluons. The current-current
correlation function for a massive fermion has a piece
which as usual is transverse in the external momentum, pμ,
plus an anomalous piece which is not, Eq. (22) of Ref. [9].
Using this identity, the two point function for the diver-
gence of the singlet current is

h∂μJ5μ∂νJ5νi ∼ e2
p2

p2 þm2
γ
; p ≪ mγ: ð20Þ

FIG. 2. The anomalous contribution to the two point function of
two singlet currents, Eq. (20).
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For the Z3 theory, where mγ ≠ 0, this correlator vanishes
as p → 0. Thus over distances larger than 1=mγ , in the
quantum theory the singlet current is conserved, as it is
classically. This demonstrates that there is no axial anomaly
over large distances in QZD.
In contrast, without spontaneous symmetry breaking,

mγ ¼ 0, and this contribution is nonzero as the momenta
p → 0. Thus there is an axial anomaly for an unbroken
Uð1Þ gauge theory.
Thus in QZD, the axial anomaly does not affect the mass

spectrum, and the splitting between the singlet and adjoint
mesons is due to other dynamics. This is illustrated by our
results: while in QCD the η0 is heavier than the adjoint
mesons, at any nonzero coupling in QZD the singlet meson
is lighter than the adjoint.

A. Symmetries

The states in the theory can be labeled by their total
particle numberNtot which for convenience we take relative
to half-filling. In addition, they are classified by the
representation of SUð3Þf flavor symmetry ðns; naÞ, where
ns=na denotes the symmetric/antisymmetric rank of the
representation. As explained in Appendix B, we then use
ðNtot; nsnaÞ as a compact notation to label all symmetry
sectors. We restrict ourselves to the ground state sector
(0;00), and the lightest states (0;11), (3;00), (3;11). Here
ð11Þ≡ 8 (octet) specifies the adjoint representation of
SU(3). Mesons live in the Ntot ¼ 0 sector, while baryons
live in the Ntot ¼ 3 sector. As explained in the Introduction,
this is unlike a U(1) theory, i.e., in the gauge invariant
sector which satisfies Gauss’s law. The ground state in the
(0;00) sector represents the QZD vacuum, and has no
baryon or meson excitations.

III. RESULTS

A. Weak coupling regime

Naively, one might expect that the weak coupling
behavior of this theory would be the usual power series
in g2. To understand why this is not so, start first with the
case of a U(1) gauge theory in two spacetime dimensions.
In the continuum, the Coulomb potential is

VðxÞ ¼ g2
Z

dk
eikx

k2
∼ g2jxj ð21Þ

and is confining. For very small coupling, the fermions are
heavy, and we should be able to use a nonrelativistic
approximation:

Hnon−rel ¼ −
1

2m
d2

dx2
þ g2

jxj
4
: ð22Þ

Because this is a confining potential, the weak coup-
ling expansion is not a power series in g2=m2, but in

ðg2=m2Þ2=3 [47–50]. In Appendix C we show that the
meson mass behaves as

Mmeson

2m
¼ 1þ 0.40431

�
g2

4m2

�
2=3

þO

�
g2

m2

�
: ð23Þ

B. Strong coupling regime

Another limit that is under control is the strong coupling
region of the lattice model, keeping the lattice spacing a
fixed as g → ∞. The vacuum at infinite coupling is
elementary, and direct to expand about. It corresponds to
half-filling: for each flavor, all even sites are occupied,
while all odd sites are empty, as in Fig. 1. The first
excitation is a “baryon,” with one fermion of each flavor
sitting at the same site. Thanks to the periodicity of Gauss’s
law for Z3, such a configuration has zero net charge. Thus
to zeroth order in 1=g, the mass of the baryon is just 3m, see
Fig. 3 below. The leading correction in 1=g2 comes from
the virtual hopping of a single fermion. This hopping costs
ag2 in energy, and occurs with probability 1=ð4a2Þ, in 3
possible ways. To leading order in perturbation theory, the
baryon mass is then shifted by

mB ¼ 3mþ 3 ·
1

4a2
·
1

ag2
¼ 3mþ 3

4a3
1

g2
: ð24Þ

FIG. 3. Low-lying excitation energies vs coupling g2 for mass
m ¼ 0.125, and lattice of size L ¼ 120. The red line corresponds
to the lowest-lying SUð3Þf baryon, the blue line to the singlet
meson. Their behavior is qualitatively different from adjoint
mesons, in yellow, and the lowest SUð3Þf -octet baryon, in
purple. This results because flavor singlets remain light at strong
coupling. The black dashed lines indicate limiting values for
weak and strong coupling. The vertical guides indicate the value
g ¼ m which separates weak from strong coupling, as well as
g ¼ 1=2a ¼ 1 where the interaction becomes equal to the
hopping amplitude; the continuum limit is approached when
g≲ 1.
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In contrast, mesons behave very differently in strong
coupling. Consider first a meson in the adjoint representa-
tion. To carry net flavor, they must be composed of a
fermion on one site and an antifermion on an adjacent site,
so unavoidably there is a nonzero electric flux connecting
the two. As the energy from a single link is ∼g2, adjoint
mesons are very heavy at strong coupling, with a mass ∼g2.
Further, at g2 ¼ ∞ they are small, only a single link in size.
Somewhat unexpectedly, this is not true for a meson

which is a flavor singlet. For a Z3 gauge theory, three
fermions of different flavors, uds, are themselves a singlet
under Z3. Thus at infinite coupling, we can form a singlet
meson by putting uds on one site, and ū d̄ s̄ on any other
site—no matter how far apart. At g2 ¼ ∞, then, the mass of
the flavor singlet meson is just 6m.
For large but finite coupling, the positions of the uds and

ū d̄ s̄ are correlated with one another, as the singlet meson
mixes with three adjoint mesons. To ∼1=g2 one can show
that the correction to the mass of the singlet meson is
identical to that of the baryon, Eq. (24).
The size of the singlet meson is also surprising. At

infinite coupling it is of infinite size, with the size of the
singlet meson large when g2 is large.

C. DMRG spectra

In order to access the spectrum at all couplings, we
perform simulations using the DMRG. We take full
advantage of the flavor SUð3Þf global symmetry of our
system by using the QSpace tensor network library [103],
which is highly efficient. Utilizing this symmetry also
allows us to target different symmetry sectors and gives us
direct access to lowest-lying excitations. Data on DMRG
convergence is presented in Appendix D.
For a given mass m, the spectrum is shown in Fig. 3 as a

function of g2. We show the energy difference between the
lowest-lying state above the vacuum in a given symmetry
sector and the vacuum, normalized by the bare massm. The
particle content of these states can be easily identified in
two limits. At weak coupling, the singlet and octet states are
degenerate. ForNtot ¼ 0, they correspond to a single meson
of mass ∼2m. For Qtot ¼ 3, they correspond to a single
baryon of mass ∼3m. While for a baryon we can put uds on
a single site and satisfy Gauss’s law for the gauge group, we
cannot do this for mesons. In weak coupling mesons are
created by putting a fermion on one site, and an antifermion
on another site. This implies that they create a nonzero
value for Z3 electric flux. This does not matter at weak
coupling as contributions to the energy from electric flux is
small, a fractional power of ∼g2.
Given the discussion above, the particle content of these

states is easy to identify in weak and strong coupling. A
meson with symmetry (0;00) continuously interpolates
from a single meson at weak coupling to a baryon-
antibaryon pair, bb̄, at large coupling.

At weak coupling, the singlet and octet states are
degenerate, with mass 2m at g2 ¼ 0. For Ntot ¼ 3, there
is a single baryon whose mass is 3m at g2 ¼ 0.
The behavior of the masses as the coupling constant

increases is shown in Fig. 4. It is striking that the mass of
the adjoint meson agrees well with the perturbative result of
Eq. (23), which we compute only up to leading order, up to
rather large coupling, certainly up to g ∼ 1. In contrast, by
g ∼ 1 the result for the singlet meson is significantly lower
than the perturbative result at leading order. This is natural
because the singlet meson of QZD has no analogy in either
the ’t Hooft model or in QED.
At strong coupling, the first excited state in the (0;00)

channel corresponds to multiparticle states, including both
the baryon-antibaryon pair, bb̄, and states with three
mesons. The dotted lines show the leading 1=g2 correc-
tions, Eq. (24). There is good agreement with our numeri-
cal data.
In particular, the fact that the octet meson becomes heavy

in strong coupling, and that the (0;00) sector are heavier
than the (3;00) sector at strong coupling, indicates that there
are two values of the coupling constant where there is a
degeneracy between a baryon and a meson state. As the
coupling increases, the first is where the singlet baryon is
degenerate with the octet meson. The second, at larger
coupling, is where the singlet baryon and the singlet meson
are degenerate. Note that this prediction is specific toZ3, as
even the singlets decouple in U(1). This is illustrated in
Fig. 3. These two crossings may simply be fortuitous. The
second crossing, where the singlet baryon and singlet

FIG. 4. Weak coupling regime (g2 ≪ 1). Dependence of the
gap on the coupling constant after subtracting the free case value
Δm ¼ ðE − E0 − EfreeÞ=m with Efree ¼ 2m; 3m for mesons and
baryons, respectively. We show the meson (empty purple) and
baryon (filled gray) values for different masses. The dotted lines
correspond to the weak coupling ðg2Þ2=3 expansion of [49]. The
heavier mass is deep in the lattice regime and unsurprisingly
shows large deviation. For smaller masses, QCD2 is surprisingly
close to the Z3 data. We further discuss the remaining finite
volume effects in Fig. 5. The ðg2Þ2=3 is a striking indication of
confinement.
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meson are degenerate, is suggestive of supersymmetry.
However, we have not checked whether this degeneracy
remains true for the excited states at higher mass.
The precision of our data also allows us to confirm that

the theory confines. In particular, we can extract the small
coupling dependence of the mass gap, and illustrate this in
Fig. 4. We plot the energy of a state, relative to the ground
state, minus the value at g ¼ 0 in the continuum,

Δm ¼ E − E0 − Efree

m
; ð25Þ

with Efree ¼ 2m and 3m for mesons and baryons, respec-
tively. As discussed in Sec. III A and Appendix C, in two
spacetime dimensions a Coulomb potential confines, so
perturbation theory is an expansion in ðg2Þ2=3 instead of g2.
We show data for different masses for the singlet meson and
baryons, and compare to the prediction of Ziyatdinov,
Ref. [49], with dotted lines. For larger masses, we see
strong deviations, which is natural, as then we are deep in a
lattice regime, where ma ∼ 1. For smaller masses, though,
the prediction agrees well with our data. Deviations from
the ðg2Þ2=3 behavior at small g2, which is most prominent
for mesons, can be attributed to finite-size effects.
We make this more quantitative in Fig. 5. We estimate

the exponent of g by computing the logarithmic deriva-
tive of logðΔmÞ, which gives an estimate of the leading
exponent at small g2. We first show the result for the baryon
singlet with dark orange lines. The exponent converges to
ðg2Þ2=3 for all different masses. We can also cleanly identify
finite-size effects: they bend the curves away to zero, as
seen by comparing the data at m ¼ 0.25. The plain line
corresponds to L ¼ 120 while the dotted one corresponds
to L ¼ 36. By looking at the same quantity for the mesons,

we can substantiate our claims that the finite volume effects
are stronger in the sector, consistent with a smaller gap. We
show in yellow the behavior of the meson octet atm ¼ 0.25
for L ¼ 36 and L ¼ 120. The exponent still shows a strong
dependence on volume size. The trend is however con-
sistent with the ðg2Þ2=3 expectation, confirmed in the
baryon channel.

D. Topological edge modes vs bulk excitations

Beyond the spectrum, we also study the spatial distri-
bution of excited states. Because of staggering and open
BCs, the spatial structure of the ground state is nontrivial.
Indeed, the use of staggered fermions in the Hamiltonian
(8) gives it a simple topological nature with topologically
protected edge modes at the open boundaries for the
ground state. We emphasize, though, that this already also
holds for the plain noninteracting model in the absence
of any gauging, i.e., g ¼ 0, in which case the topological
aspect is known as the Su-Schrieffer-Heeger (SSH) model
[104,105]. However, at finite g this raises several nontrivial
questions: (i) Do the edge modes remain topologically
protected when turning on finite g? (ii) If yes, how are these
edge modes characterized in terms of excess particle
number and excess electric charge? (iii) To what extent
is the nature of the excited states affected by the presence of
open boundaries, i.e., are the excited states true bulk modes,
or rather a property of the boundary?
The edge mode in the ground state for the noninteracting

case (g ¼ 0) is analyzed in Fig. 6(a) at massm ¼ 0.2 for an
L ¼ 60 system. Clearly, the alternating onsite energy εx ¼
mð−1Þx−1 directly translates to even/odd variations of the
local occupations around the average filling n0 ¼ 3=2
(half-filling) throughout the system. However, this occu-
pation pattern changes systematically towards the open
boundaries. The data in Fig. 6(a) bends down at the left
boundary, and up at the right. The cumulative local particle
number relative to half-filling, Nx ≡P

x
x0¼1

ðnx − n0Þ, is
shown in Fig. 6(b), in light blue in the background. As this
data is still alternating around a well-defined mean value,
it is averaged over even and odd lengths [darker blue for
g ¼ 0 in Fig. 6(b)]. This averaged data N̄x shows that the
particle number offset due to the open boundary is nedge ¼
N̄x¼L=2 ¼ 3=4. The precise nature of the averaging matters
here: by the procedure above, N̄x ¼

P
x−1
x0¼1

ðnx0 − n0Þ þ
ðnx − n0Þ=2. If instead, for example, one had computed the
cumulative particle number over unit cells which pairs up
neighboring sites, the resulting excess particle number
would not have been strictly universal.
Eventually, the cumulative excess particle number on the

left boundary is exactly compensated at the right boundary.
The cumulative total particle number offset over the entire
system again returns to zero in Fig. 6(b). Therefore the
excess particle number of the edge modes have the same
value, but opposite signs for the two boundaries.

FIG. 5. Leading exponent for small g. Logarithmic derivative of
data in Fig. 4. All the slopes converge to an exponent of ðg2Þ2=3.
The bending of the curves away from the limiting value at small
g2 signal finite volume effects in this region. This is best
appreciated by comparing the dotted circle with the plain circle;
they correspond to data at the same mass but different volumes.
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A nonzero interaction g increases the gap in the system,
see Fig. 3. Consistently, the edge modes localize more
towards each open boundary [other colored lines in
Fig. 6(b)]. The topological aspect of the noninteracting
model remains preserved as long as the gap does not close.
Conversely, the topological protection remains intact in the
presence of finite gauge strength g.
The value of the fractional excess particle number can be

motivated straightforwardly for g → ∞: there one has a
simple product state of alternating completely empty and
filled sites [see first line (ground state) in Fig. 1]. There-
fore starting from the left open boundary, the particle
number relative to half-filling is given by nx − n0 ¼
½−n0;þn0;−n0;þn0;…� with n0 ¼ 3=2. Its cumulative
sum is ½−n0; 0;−n0; 0;…�. This averages to −n0=2, and
therefore nedge ¼ 3=4. This is precisely the excess number
of particles observed in Fig. 6. For the extremal case here
this excess particle number is strictly located right at the
boundary. When reducing g, the edge mode starts to reach
into the system as seen with Fig. 6(a). The cumulative
excess particle number with each open boundary, never-
theless, remains pinned to precisely the same value,

nedge ¼
3

4
¼ Nf

4
: ð26Þ

By having an odd number of flavors here, this shows that
the edge mode carries a fractional particle number. This
persists for any value of g all the way down to g ¼ 0 since
the gap of the system never closes. Hence as long as the
system is long enough, such that the overlap of the tails of
the boundary modes is negligible in the system center, one
always obtains precisely the same value �nedge for the
excess particle number with opposite sign for the left and
right boundary. Since this includes g ¼ 0, this shows that
the topological protection of the SSH model remains intact
also when gauging the system. Indeed, what protects SSH
is inversion symmetry [106]. Gauging leaves this symmetry
intact, e.g., for infinite systems or periodic systems of even
length.
Now for a lattice gauge theory, by having an excess

number of particles associated with an edge, one may
worry that there is an electric field throughout the bulk
connecting the two excess particle numbers of opposite
sign for each boundary. However, this is not the case: while
there is an excess number of particles due to the edge mode
in the ground state, it does not carry any net effective
electrical charge, therefore qedge ¼ 0.
This is demonstrated in the lower panels of Fig. 6 which

repeats the same analysis as in the upper panels, but now for
the electrical charge, using the number to charge conver-
sion in Eq. (15). From the analysis in panel (d) one finds
qedge ¼ Q̄x¼L=2 ¼ 0. The smooth averaged curves in
Fig. 6(b) simply got shifted to the zero base line in
Fig. 6(d). This can be similarly motivated as for excess
particle number above for the case g → ∞: given the
product state with alternating completely empty and filled
sites, in the present case one obtains for the charge, starting
from the left boundary, qx ¼ ½0; 0; 0;…� which averages to
zero, indeed.
Having a clear understanding of the edge modes due to

the open boundaries as discussed in Fig. 6, we now turn to
excited states. Specifically, we want to ensure that low-
energy baryon or meson excitations are true bulk excita-
tions, and not a consequence of the presence of the open
boundaries. In Fig. 7(a) we show the spatial distribution of
the differential particle number occupation δnx for the octet
meson (0;11) relative to the ground state for g2 ¼ 0.4 (same
parameters as in Fig. 6). The variations throughout the
entire system clearly demonstrate the bulk nature of this
excitation. The cumulative sum of the variation in Fig. 7(a)
is shown in Fig. 7(b), supporting a similar picture. Since
the total filling remained the same as for the ground state,
the data in Fig. 7(b) returns to δN ¼ 0 for x ¼ L. The
variations in Fig. 7(b) diminish quickly, though, when
increasing g2 (smaller g2 values will be analyzed in Fig. 9).
The lowest singlet baryon (b) excitation [(3;00) sym-

metry sector] is analyzed in Fig. 8. Analogous to the meson
flavor excitation in Fig. 7, this again plots the differential
variation of the particle number occupations δnx relative to
the ground state. Figure 7(a) suggests that the baryon is

(b)(a)

(d)(c)

FIG. 6. Edge modes for the QZD ground state, i.e., in the
symmetry sector (0;00) for a system of size L ¼ 60 for m ¼ 0.2.
(a) Local particle number nx ≡ hχ †x · χ xi vs position i along the
chain, for the free model g2 ¼ 0. Here N0

tot ≡P
x nx is the actual

number of the filled Fermi sea given a finite lattice size.
(b) Cumulative data in (a), after subtracting half-filling n0 ¼
Nf=2 ¼ 3=2 for each site, i.e., plotting Nx ¼

P
x
x0¼1

ðn0x − n0Þ.
This data (light blue) still shows alternating behavior. Averaging
over even and odd x yields the smooth curve (solid darker blue).
Additional averaged data for finite g is presented in different
colors, where the respective value of g2 is specified in the legend.
(c) Local electric charge based on Eq. (15). (d) (Averaged)
cumulative data of (c) [similar analysis as in (b), also sharing the
same legend].
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(weakly) attracted to the left boundary. It is still a bulk
excitation, though, in the sense that its extent clearly
exceeds the penetration depth of the edge mode for the
same g2 ¼ 0.4 as compared to Fig. 6(b).
By adding a baryon to the system, it is free to propagate.

Via the kinetic term in the Hamiltonian (hopping term),
the baryon has a tendency to delocalize across the entire
system. Because of the gauge field, however, this motion
generates electric fields which cost energy. Therefore in the
presence of open boundaries, this energy is minimized by
putting some of the excess particle number of ΔNtot ¼ 3
right at the very first site of the left boundary as this site is
particle-type: being below half-filled, this can hold more
extra particles. Since there is no hopping to the left of the
first site, there is less energy cost in terms of the electric
field this would generate. This weak energetic bias towards
the left boundary therefore is related to the convention
that the system starts with particlelike site, i.e., with local
energy ε1 ¼ mð−1Þ0 > 0. For this reason, we expect an
isolated antibaryon (b̄) to be attracted to the opposite
boundary at the right. From this perspective, one may
expect that the meson in Fig. 7(b) for sufficiently strong g2

starts to split a bb̄ pair separated to opposite boundaries.

This is supported by the weak double peak structure that
develops in Fig. 7(b) for larger g2, indeed. Clear evidence
for the same will be provided in Fig. 9.
It is instructive to track how excitations are distributed

over a finite system with open boundaries as the inter-
action g is increased. Let us start by discussing the baryon
excitations. As one would expect from the continuum
theory, the larger the coupling strength, the more localized
the baryon state can become around a perturbation of an
otherwise uniform system. In the present case this pertur-
bation is given by the abrupt end of the system due to the
open boundary. We expect such localization also to carry
over to the lattice model. In the extremal case g → ∞where
the ground state is a simple alternating product state as
depicted at the top of Fig. 1, the baryon excitation simply
fills any of the particlelike sites (last row in Fig. 1). This
results in degeneracy, and thus a flat-band excitation. For
large but finite g, there is a weak preference on the first site
(left boundary) because of the earlier argument. This is
especially so for large g, since the QZD interaction far
dominates the kinetic energy. From the QZD perspective,
due to the Z3 setup an excess charge of δNx ¼ 3 does not
generate an electric field since in that case the electric
charge is effectively zero, Qtot ¼ 0. Hence for larger g, this
confines the baryon in the neighborhood of the boundary as
is seen in Fig. 8(b): the data quickly transitions from
δNx ¼ 0 → 3. Both excess particle and electric charge are
attracted to the left boundary. For g → 0 eventually, the
bias of the above type diminishes. At g ¼ 0 the baryon
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FIG. 8. Lowest baryon excitation [lowest energy eigenstate in
the (3;00) symmetry sector]—same analysis as in Fig. 7 other-
wise. Since this is a baryon, eventually δNtot ¼ 3.
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FIG. 9. Same analysis as in Fig. 7, yet for the system parameters
as in Fig. 3, i.e., for twice the system size L ¼ 120 here, while
at the same time also smaller values of g2 are used. Having
m ¼ 0.125, the legend thus implies g2 ≤ ð4mÞ2 ¼ 0.25. The
x-axis in (a) is the same as in (b), with (b) shown on semilog-y
scale as compared to Fig. 7, in order to focus on the splitting of
the data into a double peak structure.
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FIG. 7. Lowest octet meson excitation [lowest energy eigen-
state in the (0;11) symmetry sector]. (a) Difference of local
particle number δnx relative to the ground state for g2 ¼ 0.4 [right
legend also applies to panel (a); same parameters as in Fig. 6
otherwise]. (b) Cumulative data of (a) starting from the left
boundary (light red) which is again even/odd averaged (solid
red). Other smooth lines are obtained the same way for different
g2 as specified with the legend. Since this is a meson, even-
tually δNtot ¼ 0.
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excitation is a true bulk excitation that is symmetric around
the system center [blue line in Fig. 8(b)] up to even/odd
alternations.
In this light we return to the low-energy mesons. We

argued with the spectra in Fig. 3 that the meson singlet
[in (0;00)] starts from a single particle/hole pair at weak
coupling. For strong coupling, however, this becomes a bb̄
pair. In Fig. 1 (third line) this is exemplified locally by
shifting the particles from a completely filled site to a
neighboring completely empty site.
From the present analysis we find that a single baryon is

attracted to the left open boundary. By symmetry we argued
that the antibaryon is attracted to the opposite boundary.
Hence in the presence of bb̄ meson at strong coupling, we
expect, due to the presence of the open boundaries, that the
bb̄ pair is dissociated towards the open boundaries as this
permits a weak energy gain.
Revisiting Fig. 7(b), we find, indeed, that for larger g2 a

weak double peak structure develops in the data. In order to
focus on this behavior, we repeat the analysis in Fig. 7(b)
for the system parameters in Fig. 3 and in Fig. 9 (hence
twice the system length, yet also smaller g values). By
specifying g in units ofm in the legend of Fig. 9(b), we find
that the double peak structure develops around g ≃m.
At close inspection, the same also holds for the para-
meters in Fig. 7.
Hence the appearance and dissociation of the bb̄ meson

occurs far before the peak in the data towards large g in
Fig. 3. That peak in Fig. 3 is located around g ∼ 1=a where
the coupling g becomes stronger than the one-particle
bandwidth. While the latter is a pure discretization effect,
the dissociation of the bb̄ occurs much sooner around
g ∼m. Hence this behavior is expected to be a true property
of QZD also in the continuum limit. The transition towards
a bb̄ meson around g ∼m thus is consistent with the
intuitive notion that g ∼m separates the weak from the
strong coupling regime in the lattice gauge theory.
In the weak to intermediate coupling regime, the ground

state (QZD vacuum) is far from the plain product state of
alternating filled and empty sites as in Fig. 3, as seen for
example in Fig. 6(a). This way the QZD vacuum state
acquires a nontrivial entanglement structure. Similarly, the
baryon, while attracted to the boundary, has significant
spatial extent. As such, from a symmetry perspective, it can
assume any flavor symmetry label that derives from the
combination of three particles. In terms of SU(3) symmetry
sectors this also permits octets (11) aside the singlet (00)
and (30) [cf. Eq. (B5)]. Hence baryons (and also anti-
baryons) also exist in the octet representation (11). In order
to get an octet meson then, the simplest way to achieve this,
is via an octet baryon with a singlet antibaryon or vice
versa. Given that the octet meson splits ðbb̄Þ across the
boundaries, the same may therefore also be expected for the
simpler situation of the meson singlet.

IV. SUMMARY AND OUTLOOK

In this work we studied QZD, a Z3 gauge theory with
three massive flavors of fermions, in 1þ 1 dimensions.
Using tensor network simulations that take advantage of the
full Uð1Þ × SUð3Þf global symmetries, we determined the
low-lying, symmetry resolved spectrum of the theory for
different masses. We identified two special points, where
level crossing happens between the different symmetry
sectors, and which may correspond to special theories. We
find that QZD is always in a confining phase, by showing
that at small coupling the expansion is nonanalytic in g2,
and starts at order ðg2Þ2=3. We also studied the spatial
distribution of the different excitations in our system,
confirming that baryons shrink at strong coupling. We
find that the lightest singlet meson transforms from a
single mesonic excitation at weak coupling, to a baryon-
antibaryon pair at strong coupling.
This work lays the ground work for other studies, both

in 1þ 1 dimensions and beyond. As discussed in the
Introduction, since baryons carry fermion number, it is
sensible to introduce a baryon chemical potential, μ. We
present an exploratory study at μ ≠ 0 in Appendix E,
showing how the number density jumps with μ.
In QCD, the sign problem prevents analyzing its behav-

ior at low temperature and nonzero chemical potential. The
real interest in QZD is to use it as a test model in which
properties, which appear to be special to QCD, are in fact
generic.
One of the central mysteries of nuclear matter in QCD is

why the binding energy, ∼15 MeV, is so much smaller than
any other mass scale in QCD. This is usually interpreted
as the delicate cancellation between two large terms: a
repulsive interaction from the exchange of a ωμ meson, and
an attractive interaction from the exchange of a σ meson.
It is then possible to consider changing the quark masses
in QCD, such as by going from 2þ 1 flavors to three
degenerate flavors, or changing the overall mass scale. In
doing so, surely the masses of the ωμ and σ mesons will
change by small amounts. Even so, the near cancellation in
the binding energy of nuclear matter is so delicate that it
should change by a large amount.
To determine the binding energy of nuclear matter is, in

principle, straightforward. In a free theory of fermions, at
zero temperature the chemical potential first matters when
it equals the fermion mass. If nuclear matter is bound,
however, a Fermi sea first forms at a chemical potential
which is equal to the fermion mass in vacuum, minus the
binding energy.
In QZD, we did not look for meson analogous to the ωμ,

but presumably it exists as an independent, confined state.
At weak coupling it’s mass is ∼2m, but as a meson, it’s
mass grows with g2. The exchange of the η0 meson
generates attraction, as it has positive parity, and is really
analogous to the σ meson in QCD.
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Determining the binding energy of QZD is not elemen-
tary, and will require precise numerical analysis on large
systems, taking g2 → 0 to obtain the continuum limit. This
is particularly true if the binding energy is small relative to
the other mass scales. However, it would then be interesting
to compute the variation in the binding energy, if it exists,
as one goes from three, degenerate fermions, to 2þ 1, or to
1þ 1þ 1 flavors. It would also be interesting to see if
nuclear matter with a single, massive flavor is bound.
More generally, besides the binding energy, it would also

be useful to analyze the properties of the Fermi sea in QZD
at μ ≠ 0. In QCD, as μ increases it is expected that after
a relatively narrow regime of nuclear matter, that cold,
dense quarks are quarkyonic [107]. This is a regime where
most of the Fermi sea is composed of quarks, and so the
pressure is dominated by that of quarks. Nevertheless, the
excitations near the Fermi surface are confined, and so
baryonic (indeed, it has recently been suggested that
nuclear matter is quarkyonic [108]). At sufficiently high
μ, by asymptotic freedom the Fermi sea is that of nearly free
quarks, up to pairing from color superconductivity and
similar phenomena.
It would be very useful to map out the regimes of QZD at

T ¼ 0 and μ ≠ 0. In the regimes of nuclear and quarkyonic
matter, the excitations near the Fermi surface will be
baryonic, composed of three fermions. Eventually, at very
high μ the excitations will be those of a single fermion. It
should be possible to distinguish the two by looking at the
flavor content of the excitations. Differentiating between
nuclear and quarkyonic matter follows from the behavior
of the pressure. Of course analysis at large μ requires
extremely large lattices, to avoid the lattice artifact of
simply filling the entire lattice with fermions. At all μ,
it would also be of interest to see if the excitations near
the Fermi surface, whether baryonic or that of quarks, are
gapped, or form a Fermi liquid.
Lastly, QZD can be analyzed using a quantum computer,

as has been done for the Schwinger model in 1þ 1
dimensions [28]. Because the gauge group is discrete,
QZD only requires six qubits per site in 1þ 1 dimensions:
two for bothKogut-Susskind fermions, times three flavors. In
higher dimensions, each sitewill require thenumber of qubits
for Kogut-Susskind fermions, times three flavors, times
only two for a Z3 gauge field. The latter is far fewer than
required, e.g., for a continuous gauge group such as SU(3) or
even U(1). This should be accessible even with the resources
of our current noisy intermediate-scale quantum era.
Finally, as discussed in the Introduction, QZD should

exhibit confining behavior in both 2þ 1 and 3þ 1 dimen-
sions. Along with the behavior of QZD in 1þ 1 dimen-
sions, it will be useful to the behavior at μ ≠ 0 in higher
dimensions. This is especially true since in higher dimen-
sions the gauge degrees of freedom cannot be integrated out
as they can in 1þ 1 dimensions. It would be useful to
analyze the behavior of nuclear matter in QZD in 2þ 1 and

3þ 1 using tensor networks or with quantum computers.
For a single flavor, there have been numerous studies using
analog computers [18,20,26,27]. In any case, QZD should
provide a soluble model of nuclear matter much ahead of
the much more difficult problem of a full non-Abelian
gauge theory.
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APPENDIX A: MAPPING TO THE SPIN
HAMILTONIAN

In this appendix, we provide the spin-chain equivalent
of Eq. (8). We obtain it using a standard Jordan-Wigner
transformation and provide it only to assist the interested
reader.
We introduce 3 · N spin operators σx;y;zI ; σ�I ¼

1=2ðσxI � σyI Þ, labeling them with an index I ¼ ðn − 1Þ ·
3þ f which uniquely maps onto indices ðn; fÞ for the
position in the lattice, n, and the flavor, f. The Jordan-
Wigner transformation becomes χI ¼ σ−I

Q
I−1
J¼1 σ

z
J, and

generates the spin Hamiltonian

H¼
XN
n¼1

X3
f¼1

�
−

i
2a

σþn;fσ
−
nþ1;fS

nþ1;f
n;f þH:c:

�

þ
XN
x¼n

X3
f¼1

�
m
2
ð−1Þnσzn;f

�

þ g2

2

XN
n¼1

�
2π

3

Xn
l¼1

��
σzn;f
2

þð−1Þn
2

�
mod 3

��
2

; ðA1Þ

where Snþ1;f
n;f ¼ Q3nþf

J¼3n−3þf σ
z
J is a string of σzn;f operators

arising from the multiflavor Jordan-Wigner transform.
Similar strings arise in mapping a SU(3) gauge theory in
1þ 1 dimensions onto spin variables [53].
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APPENDIX B: SYMMETRY LABELS

The Hamiltonian in Eq. (8) preserves particle number
and is fully symmetric in its Nf ¼ 3 fermionic flavors.
Hence it has Uð1ÞN ⊗ SUð3Þflavor symmetry. We fully
exploit these symmetries in our numerical simulations by
utilizing the QSpace tensor library [103,109,110].
Accordingly, we can differentiate all eigenstates according
to these symmetry sectors.
We specify symmetry labels in terms of the tuple of three

integer values

q≡ ðq0; q1; q2Þ≡ ðq0; q1q2Þ; ðB1Þ

where q0 ∈Z specifies the total number of particles relative
to half-filling, and ðq1; q2Þ≡ ðq1q2Þ specifies the SU(3)
multiplet. The latter are based on the standard multiplet
labels for SUðNÞ that directly specify the respective Young
tableaux [111,112]. This requires two labels q1, q2 ≥ 0 for
an SU(3) multiplet which specify a Young tableaux of
two rows,

ðB2Þ

where q1 and q2 indicate the offset of extra boxes per row,
starting from the top. This concept generalizes to general
SUðNÞ [112] with N − 1 rows there. E.g., for SU(2),
q1 ¼ 2S. Completely filled columns of N boxes represent
singlets and can be skipped from the tableau.

1. Local state space

With the symmetries above, all 23 ¼ 8 states of a single
site are organized into symmetry multiplets as follows: the
completely filled state has symmetry labels ð3=2; 00Þ, the
completely empty state ð−3=2; 00Þ. The three states with
only one particle transform in the defining representation of
SU(3) hence represent the combined symmetry multiplet
ð−1=2; 10Þ. Conversely, removing a particle from the
completely filled state transforms in the dual to the defining
representation. Hence these states represent the symmetry
multiplet ð1=2; 01Þ. In their union, 1þ 1þ 3þ 3 ¼ 8, this
exhausts the local state space.
We note that having half-integer labels for the particle

number above is purely due to the definition relative to
half-filling, having n0 ¼ Nf=2 with Nf ¼ 3 odd. Half-
integer labels thus also arise for blocks containing an odd
number of sites, while blocks with an even number of sites
have plain intuitive integer particle number. In practice, via
the tensor library QSpace [103] we use twice the particle
number relative to half-filling as symmetry label for the

particle number. A single site then acquires the integer
labels q00 ≡ 2q0 ∈ f−3;−1; 1; 3g.

2. Examples for SU(3)

The defining representation has symmetry labels
ð10Þ≡ 3, and its dual ð01Þ≡ 3̄. The ‘spin’ operator
transforms in the adjoint representation ð11Þ≡ 8 (octet),

3 ⊗ 3̄≡ ð10Þ ⊗ ð01Þ ¼ ð00Þ þ ð11Þ; ðB3Þ

with ð00Þ≡ 1 the scalar representation (singlet). This also
represents the symmetry labels of a single particle-hole
excitation (cf. meson). Note that this is completely analo-
gous to SU(2) where 1

2
⊗ 1

2
¼ 0þ 1, with S ¼ 1 the SU(2)

spin operator.
Two particles transform in the combined space,

3 ⊗ 3≡ ð10Þ ⊗ ð10Þ ¼ ð20Þ þ ð01Þ; ðB4Þ

with ð20Þ≡ 6 the symmetric and ð01Þ≡ 3̄ the antisym-
metric subspace. Three particles like the baryon transform
in the combined space,

3 ⊗ 3 ⊗ 3≡ ð10Þ ⊗ ð10Þ ⊗ ð10Þ
¼ ð00Þ þ ð11Þ2 þ ð30Þ; ðB5Þ

where superscript indicates multiplicities, and ð30Þ≡ 10
is the fully symmetric decuplet. Dual representations are
simply given by q ¼ ðq1q2Þ → q̄ ¼ ðq2; q1Þ. Hence all
irreducible representations (ireps) with q1 ¼ q2 are self-
dual, while all others are not.
We emphasize that the specification of an irep for

SUðN > 2Þ via the single label of its multiplet dimension
only is generally insufficient because it is not unique. For
example for SU(3), the ireps (40) and (21) accidentally
share the same multiplet dimension d ¼ 15, aside from
their respective duals (04) and (12).

APPENDIX C: WEAK COUPLING EXPANSION

We derive here the weak coupling expansion (23)
presented in the main text. The “Coulomb” potential is
obtained by solving Gauss’s law for a test charge EðxÞ ¼
1
2
SignðxÞ and integrating. To obtain the correct small

coupling expansion, it is crucial to remember we are using
staggered fermion, so that the correct nonrelativistic poten-
tial is obtained by integrating up to x=2,

VðxÞ ¼ g2jxj
4

ðC1Þ

[equivalently, one could rescale g2 → g2=2 in Eq. (8)]. The
spectrum of the nonrelativistic Hamiltonian is found by
solving the associated nonrelativistic Schrödinger equa-
tion [46–50]. As suggested by dimensional analysis, after
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rescaling x → y=ðmg2Þ1=3,
�
g4

m

�
1=3

�
−
1

2

d2

dy2
þ jyj

4

�
ψðyÞ ¼ EnψðyÞ: ðC2Þ

The function ψðyÞ are solutions to the Airy equations.
Imposing continuity relations, we get

ψðyÞ ∼ Ai

��
4m
g4

�
1=3

�
−2En þ

1

2
g2y

��
: ðC3Þ

Valid solutions are split into symmetric and antisymmetric
sectors. The symmetric sector is characterized by ψ 0ð0Þ ¼ 0
and contains the lowest-lying meson. The first zero of
Ai0ð−zÞ is z ≈ 1.01879 [113], which gives Eq. (23).
This analysis is identical to that in the ’t Hooft model

[44,47–50], which is a SUðNÞ gauge theory in 1þ 1
dimensions as N → ∞, keeping the number of quark
flavors, Nf fixed. In this limit corrections to the gluon
propagator from the quark loop are suppressed by ∼Nf=Nc,
and the gluon propagator remains ¼ 1=k2 for any value of
the coupling constant. In contrast, for QED in 1þ 1
dimensions, in general the photon propagator is modified
by fermion loops. However, in weak coupling, where
g2=m2 → 0, corrections to the photon propagator from
fermion loops are suppressed by ∼ðg2=m2Þ1=3, and so can
be neglected.

APPENDIX D: DMRG CONVERGENCE

We use DMRG [114,115] in the fermionic setting where
we fully exploit the SU(3) flavor symmetry for the sake of
numerical efficiency [103,109,110]. Data such as in Fig. 3
was obtained by simultaneously targeting several low-
energy multiplets (cf. Appendix B): this included four
multiplets in (0,00), and one multiplet in each of ð�3; 00Þ,
(0,11), and (3,11), i.e., a total of eight multiplets, or
equivalently, 6þ 2 × 8 ¼ 20 states.
The bond dimension in terms of D� multiplets was

usually ramped up uniformly in an exponential way,
increasing it by a factor of 21=3 ∼ 1.26 for each full sweep.
By keeping up to D� ¼ 4; 096 multiplets, this effectively
corresponded to keeping up to D ∼ 70; 000 states
[Fig. 10(c)]. Thus by fully exploiting SU(3) flavor sym-
metry the effective bond dimension was effectively reduced
by an average factor of ∼17 by switching to a multiplet-
based description. Bearing in mind the numerical cost of
DMRG scales like OðD3Þ, this implies a gain in numerical
efficiency by at least three orders of magnitude.
For the data in Fig. 3, overall, this gave rise to a

discarded weight of δρ≲ 10−5 as shown in Fig. 10, with
the entanglement entropy [Fig. 10(a)] and thus also the
discarded weight largest for small g.

APPENDIX E: NONZERO CHEMICAL
POTENTIAL

We present in this Appendix exploratory results of QZD
at nonzero baryon chemical potential. They are of value
for this work as they provide a completely independent
determination of the baryon mass and provide a convincing
cross-check of our numerical analysis. For context, the
behavior of QCD at low temperatures and chemical
potential is directly relevant to the collision of heavy ions
at moderate energies [116] and to the behavior of neutron
stars as observed by multimessenger astronomy [117].
At nonzero quark chemical potential μqk the quark deter-
minant in the Euclidean action is complex, and so direct
numerical simulations using importance sampling are not
feasible. When μqk < T, thermodynamics quantities can be
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FIG. 10. DMRG convergence analysis for the data in Fig. 3 vs
QZ3 coupling g2 (having m ¼ 0.125, L ¼ 120). In the simu-
lations a total of eight multiplets was targeted simultaneously:
four multiplets in (0,00), and one multiplet in each of ð�3; 00Þ,
(0,11), and (3,11), corresponding to a total of 6þ 2 × 8 ¼ 20
states. (a) Exponentiated block entanglement entropy in the
system center, and also the overall maximum along chain (the
entanglement profile is strongly asymmetric around the system
center, because multiple states are targeted). (b) Maximum and
average discarded weight for last 2-site DMRG sweep. (c) DMRG
bond dimension in last sweep, keeping up to Nkeep ¼ D� ≤
4; 096 multiplets (corresponding up to D ≤ 69; 748 states).

MASS GAPS OF A Z3 GAUGE THEORY WITH THREE FERMION … PHYS. REV. D 110, 045013 (2024)

045013-13



computed in several ways, including: expanding in a
Taylor series in μqk [118–122]; analytic continuation from
imaginary chemical potential [123–126]; reweighting tech-
niques [127,128]; strong coupling expansions [129–135];
complex Langevin equations [136–139]; approximate sol-
utions [140], including especially the Schwinger-Dyson
equations [141–146]; and the functional renormalization
group [147–156].
As a first step we consider QZD at μ ≠ 0, finding the

ground state of

Hμ ¼ H0 − μ
X
x

nx ðE1Þ

as a function of μ, with H0 the Hamiltonian in Eq. (1). For
this simulation we had used the package ITensor [157,158]
without imposing any symmetry constraint. In this DMRG
simulation we kept up to 600 states.
In Fig. 11 we show the expectation value of the particle

number as a function of μ. It vanishes until μ ¼ mð3;00Þ,
where mð3;00Þ is the mass of the lightest baryon. It is then
constant until it jumps again, to various multiples of three.
That the number density vanishes until μ > mð3;00Þ illus-
trates “silver blaze” phenomenon [159,160]: the ground
state at μ ¼ 0 remains the ground state of the grand
canonical ensemble until the chemical potential exceeds
the mass of the lightest state which carries fermion number.
It is an important consistency check that mð3;00Þ determined
from the silver blaze phenomenon agrees with the direct
calculation in Sec. III C. That the number density only
jumps to multiples of three follows from gauge invariance
under the local Z3 symmetry: baryons always carry u, d,

and s fermions in common multiples. This is in contrast to a
U(1) gauge theory, where as we showed in the Sec. I,
Gauss’s law excludes a nonzero value for the electric
charge, or fermion number. As L → ∞, Fig. 11 would
be a smooth curve, with N=L a smoothly varying function.
For finite L, however, this is a series of steps that increases
in multiples of three, thus guaranteeing a well-defined
baryon number. The absence of some multiples of three is
an artifact due to our resolution in μ. Note also that the fact
the first plateau is larger than the other can probably be
attributed to the open boundary as discussed with Fig. 8 in
the main text.
A more detailed study at finite chemical potential is left

for future work.
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