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The renormalization group method, more specifically the Wegner-Houghton equation, is used to find
first order phase transitions in a simple scalar field theory with a polynomial potential. An improved
definition of the running parameters allows us to explore the renormalization group flow down to the IR
endpoint and to locate phase transitions. Beyond the expected first order transition further radiative
correction generated first and second order transitions are found. The phase diagram is reviewed by a
Monte-Carlo simulation of the lattice regulated version of the theory but the serious slow down of the
convergence prevents us from obtaining conclusive results from the simulation.
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I. INTRODUCTION

Phase transitions are defined as singularities in the
relation between the infrared (IR) and the ultraviolet
(UV) quantities of a system. The origin of the singularities
is a subtle question because systems with finite number of
degrees of freedom possess analytic scale dependence
therefore display no phase transition. Phase transitions
take place only in strictly infinite systems which are beyond
our experimental and analytical possibilities hence they
have to be considered as useful approximations for systems
with a large but finite number of degrees of freedom.
The theoretical challenge of phase transitions is to find

the origin of a singularity in the relation between the IR
and the UV quantities. Field theories can be rendered finite
by introducing an UVand an IR cutoff and phase transitions
appear when one of these cutoffs is removed. Since the
physical laws are known up to a finite spatial resolution
only the IR cutoff can be removed in a realistic theory.
The best method to deal with such a problem is the

renormalization group, devised just to follow the scale
dependence. The renormalization group was used origi-
nally to send the UV cutoff to infinity in relativistic
quantum field theory by keeping the physics fixed at a
finite scale [1,2]. The method was recovered independently
later in statistical mechanics to explain the emergence of
power like singularities and universality at the critical
points of second order phase transitions by constructing

block spin variables by the decrease of the UV cutoff in
finite steps, [3–5]. The relation between the two procedures
was understood soon [6] and can be summarized in a
simple cases of a relativistic massive quantum field theory
and a spin model as follows: The models have two
important scales, one is the UV cutoff, say the highest
momentum Λ and the lattice spacing a in quantum field
theory and lattice spin models, respectively and the other is
an intrinsic IR scale, say the Compton wavelength λC and
the correlation length ξ of the spin system. The Compton
wavelength serves as a correlation length for the quantum
field because a particle cannot be localized within its
Compton wavelength.
The intrinsic scale separates the UV and the IR scaling

regimes, defined by the cutoff dependence of physical
quantities in such a manner that the cutoff-dependence is
weak in the IR scaling regime. This is easiest to see in the
spin system where the evolution of the parameters of the
Hamiltonian during an increase of the lattice spacing is due
to the fluctuations within a block with length scale between
the old and the new lattice spacing. Since these parameters
are usually defined as the value of some special connected
Green functions, one-particle irreducible vertex functions,
their evolution slows down as we enter into the IR scaling
regime beyond the correlation length.
We can now return to the question of the singularities. It

was found that the contributions to the relation between the
UV and IR quantities pile up in an approximately scale
invariant manner in the UV scaling regime. Hence the
diverging length of this scaling regime, ΛλC ¼ ξ=a → ∞,
serves as the source of the singularities of quantum field
theories and critical systems.
We have surveyed the origin of the singularities in

continuous phase transition to motivate the question
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leading to the topic of this work: Where do the singularities
of a first order phase transition with finite the correlation
length come from? The pictured suggested here is that the
continuous and the discontinuous phase transitions agree
that the singularities emerge from the piling up fluctuations
in a long scale window rather than from the dynamics at a
given scale but differ in the scale window. The critical
behavior comes from the UV asymptotic scaling regime.
The dynamics is approximatively scale invariant here
because the only scale parameter here, the cutoff, is hidden
by the running of the parameters of the action. The first
order phase transitions are driven by processes at a finite
scale, the formation of critical droplets [7–10] but the
singularities appear only after a long non scale-invariant
evolution in the IR scaling regime, in the thermodynam-
ical limit.
The goal of this work is to find a first order transition in a

simple ϕ6 Euclidean scalar model in three dimensions by
the help of the renormalization group method. This method
is usually employed locally, around an UV fixed point, to
remove the UV cutoff from quantum field theories and
establish universal critical exponents. Another fixed points
such as the Wilson-Fisher [11] and the Kosterlitz-Thouless
[12] have been found useful to understand the origin of
separatrices in the renormalization group flow at phase
boundaries. A more systematic global extension of the
renormalization group flow, the global renormalization
group [13], shows the richness of the scale dependence
in more realistic theories with several intrinsic scales by
offering different classification schemes for the same
observable algebra. The proposed view of first order
transitions is motivated by this approach where the
emphasis lies on the scale dependence beyond a simple
asymptotic scaling analysis close to a fixed point.
The renormalization group method becomes more

powerful by exploiting a new small parameter, the step
size of the scale change. When the gliding UV cutoff,
denoted below by k, is defined in momentum space then its
changeΔk can be as small asOð1=LÞ in units of c ¼ ℏ ¼ 1
where L is the IR cutoff, the size of the system. The beta
functions, the derivative of the running parameters with
respect to k, are given by the one-loop expression in the
infinitesimal blocking limit Δk → 0 because the higher
loop contributions areOðΔkÞ [6,14,15]. A slightly different
way to use such a possibility of arriving at exact evolution
equations is to give up the plan of keeping the physics
independent of the running cutoff and to follow the
evolution of the effective action along an artificial trajectory
in the space of theories connecting a soluble theory with the
physical one by the help of an IR cutoff [16].
There is an arbitrary step in setting up the renormaliza-

tion group method. The point is that the running parameters
of the action are not uniquely defined due to a conflict: On
the one hand, the analytic form of the action must be fixed
for any practical calculation, and the other hand, the

elimination of degrees of freedom during the lowering of
the UV cutoff induces infinitely many new terms to the
action. In other words, while we can handle actions with a
limited number of parameters the renormalization group
keeps generating infinitely many new one. Thus the
definition of the new parameters is an overdetermined
problem. This is actually the strength rather than a draw-
back of the renormalization group method because it forces
us to find an appropriate definition of few running
parameters which characterize a large number of physical
processes. This step, the choice of the blocking procedure
in Kadanoff’s scheme or the subtraction procedure in the
perturbative renormalization in quantum field theory, is not
unique and needs optimization.
There have already been a number of works about the

use of the renormalization group method for first order
phase transitions. The indication that this method can
capture discontinuous phase transitions came from the
finding that the radiative corrections of a gauge field
generate a first order transition in superconductors [17]
and in scalar quantum electrodynamics (QED) [18]. In the
same time a first order transition was found in simpler
models, in anisotropic cubic systems [19] and its relation to
the loss of a fixed point was noted in Ref. [20]. A sufficient
condition of a first order transition was identified as a fixed
point with a strongly relevant operator [21]. The dynamical
renormalization group was used, as well, to describe first
order transitions by noncritical fixed point [22]. The
essential singularities of the coexistence region can be
recovered as the renormalized trajectory passes a fixed
point [23]. The rounding effect of the finite size scaling on
first order transition was the subject of Ref. [24]. The first
order phase transition may lead to multivalued thermody-
namical potential in certain approximations. In a similar
manner the blocking transformation may become singular
in the vicinity of first order transition [25]. This result
underlines the importance of the proper choice of the
subtraction procedure, our main concern here. The temper-
ature driven first order transitions can be classified by the
help of the renormalization group [26]. The functional
renormalization group method was used to describe first
order transitions in lattice-gas models [27] and in the
Nambu-Jona-Lasinio model [28].
The evolution of the effective action during the lowering

of an IR cutoff has already been used to reproduce first
order phase transitions. The first order transition was
located in a model with two scalar fields [29,30], in the
Abelian Higgs model [31] and in a scalar matrix field
model [32]. The universal susceptibilities near a weak first
order transition have been considered [33], as well. The
tunneling and the bubble formation mechanism underlying
a first order phase transition was the focus of the works
[34,35]. A part of the phase structure of the ϕ6 scalar model
discussed here has been found by the help of the traditional
subtraction procedure, based at vanishing field [36].
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Some higher dimensional terms in the potential have been
included into the calculation in [37]. The first order transition
occurring in fermionic system has been discussed [38], too.
The choice of the Wilsonian bare renormalization group

scheme, used in this work, can be motivated in two
different manners. While the bare Wilsonian action is
evolved during the UV cutoff by keeping the physics fixed
the physical content of the effective action changes due to a
non-physcial ingredient of the scheme, the IR cutoff. Hence
only the IR end point of the renormalized trajectory for the
effective action possesses physical meaning since the IR
cutoff is eliminated there. This is not a important issue close
to a critical point where the universal long range dynamics
is governed by the approximately scale invariant UV
scaling regimes but can be a serious problem for first
order transitions which are driven by large amplitude
collective modes, the critical droplets, residing at a well
defined scale. Another advantage of the Wilsonian scheme
is the transparent way the saddle point structure emerges.
The critical droplet dynamics is semiclassical and the
saddle point contributions can easily be isolated in the bare
renormalization group scheme. For instance the tree-level
contributions to the blocking relations produces a dynamical
generalization of the Maxwell-cut, a degeneracy of the
potential in the mixed phase regime [39]. The effective
action is convex by definition and the Maxwell-cut of the
effective potential hides the semiclassical dynamics leav-
ing no room to recover it owing to the formally exact nature
of the evolution equation. The Wilsonian bare potential
approaches the effective potential only as the gliding UV
cutoff reaches the IR end point, k ¼ 0, and the saddle point
dynamicsmakes itself manifest when k is about the inverse
critical droplet size.
We start with presentation of the appropriate choice of

the subtraction point, the key to recover first order phase
transitions in the IR scaling regime, in Sec. II. As a simple
consistency check of the new subtraction procedure the
recovery of the Wilson-Fisher fixed point is shown in
Sec. III. The renormalization group flow of the new
subtraction scheme generates a complicated phase structure
with several radiation correction induced first and second
order transitions, these results are reported in Sec. IV. Such a
rich structure is unexpected and a Monte-Carlo simulation
was carried out to clarify the situation.As discussed in Sec.V
the simulation slows down enormously just in the interesting
regions of the parameter space and it can neither prove nor
disprove the predictions of the renormalization group
method. Finally our results are summarized in Sec. VI.

II. SOLVING A THEORY BY THE
RENORMALIZATION GROUP

The renormalization group method is used below to find
the evolution of the bare action during the lowering of the
UV momentum space cutoff k of an Euclidean scalar field
theory given by the action

S½ϕ� ¼
Z

ddx

�
1

2
ð∇ϕðxÞÞ2 þUðϕðxÞÞ

�
ð1Þ

where the potential is a NUth order polynomial,

UðϕÞ ¼
XNU

n¼1

gn
n!

ϕn: ð2Þ

The only dimension of the model is expressed in units
of the initial cutoff by using the bare theory ki ¼ 1 and
gn ¼ gBn as initial condition for the lowering of k.

A. Gliding UV cutoff

The blocking in momentum space, the lowering
k → k − Δk of the UV cutoff, is supposed to preserve
the partition function

Z ¼
Z

D½ϕ�e−Sk½ϕ� ð3Þ

hence Sk−Δk is found by integrating out the modes with
wave vector k − Δk < jpj < k [14],

e−Sk−Δk½ϕ� ¼
Z

D½ϕ0�e−Sk½ϕþϕ0� ð4Þ

where the field variables ϕðxÞ and ϕ0ðxÞ are nonvanishing
for jpj < k − Δk and k − Δk < jpj < k in the momentum
space, respectively. The evolution equation

Sk½ϕ� − Sk−Δk½ϕ� ¼ −
1

2
Tr ln

�
δ2Sk½ϕ�
δϕ0δϕ0

�
þOðΔkÞ ð5Þ

obtained by ignoring saddle points contains corrections
beyond the simple one-loop expression because the loop
integration is over a shell of Δk thickness in momentum
space. These corrections are vanishing in the small step size
limit governed by the functional differential equation

∂kSk½ϕ� ¼ − lim
Δk→0

1

2Δk
Tr ln

�
δ2Sk½ϕ�
δϕ0δϕ0

�
: ð6Þ

The right-hand side is finite since the functional trace is
taken over a momentum shell of thickness Δk.
To arrive at a manageable problem one employs the only

approximation of the calculation, the projection of the
evolution equation onto a restricted functional ansatz space
for the blocked bare action. Such a functional space is
usually defined by the help of the Landau-Ginzburg double
expansion in Euclidean space-time, by assuming that the
field has long distance fluctuations compared to the cutoff
with small amplitude. To keep our calculation as simple as
possible we consider a single component scalar field theory
within the local potential approximation where the bare
action is assumed to be of the form (1) and (2). The value
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NU ¼ 6 will be used in the numerical work with d ¼ 3 and
the potential is assumed to be symmetric, g2nþ1 ¼ 0, except
if it is stated contrary.

B. IR effective theory

The promise of Eq. (6) is to deliver a more dilute theory
with a lower cutoff which is easier to handle. To find a
suitable approximation for this reduced theory we intro-
duce an IR cutoff by placing the IR effective theory into a
box of size L ¼ 2Npπ=k, Np being an integer cutoff
parameter, equipped with periodic boundary conditions.
One has Nd

p modes in the path integral (3) for the field
variable

ϕðxÞ ¼
XNp−1

mμ¼0

ϕneipmx ð7Þ

where pμ
m ¼ 2πmμ=L, with the action density

S½ϕ�
Ld ¼ −

1

2

Y2
j¼1

XNp−1

mj;μ¼0

δm1þm2;0pm1
pm2

ϕm1
ϕm2

þ
X
n

gn
n!

Yn
j¼1

XNp−1

mj;μ¼0

δP
j
mj;0

ϕpm1
� � �ϕpmn

: ð8Þ

By assuming that the cutoff k is low enough and no IR
singularities left we take a radical step and restricts the size
to L ¼ 2π=k leaving a single mode ϕ0 without kinetic
energy,

Z ¼
Z

dϕ0e−ð
2π
k ÞdUkðϕ0Þ: ð9Þ

This approximation is easier to understand in Kadanoff’s
real space blocking [5] where the field variable is defined
on a space-time lattice and one increases the lattice spacing
by a fixed ratio a → sa. The blocked action, defined for the
more dilute blocked lattice, is given by

eSas½ϕ0� ¼
Y
n

Z
dϕne−Sa½ϕ�

Y
n0
δðϕ0

n0 − Bn0 ½ϕ�Þ ð10Þ

where Bn0 ½ϕ� denotes the blocked field variable of the block
at n0. The approximation (9) correspond to have a single
site blocked lattice. One looses completely the resolution in
the space-time but retains enough information in the field
dynamics. This approximation motivates our next step, the
choice of the blocking procedure.

C. Full potential

The traditional subtraction scheme of the local potential
ansatz with an arbitrary potential UðϕÞ is to evaluate the

evolution equation (6) at the most IR field configuration,
ϕðxÞ ¼ ϕ. The result is theWegner-Houghton equation [14],

U̇ðϕÞ ¼ −
αd
2
kd ln½k2 þ Uð2ÞðϕÞ�; ð11Þ

where αd ¼ Ωd=ð2πÞd, Ωd stands for the d-dimensional
solid angle, the dot denotes the derivative with respect to
t ¼ ln k=ki, ki stands for the initial value of the cutoff
and UðnÞðϕÞ ¼ ∂

n
ϕUðϕÞ.

It is known that the bare potential at k ¼ 0 agrees with the
effective potential and both display the Maxwell-cut, a
degeneracy in between the physical vacuums, −jhϕðxÞij ≤
ϕ ≤ jhϕðxÞij. The Maxwell-cut characterizes the mixed
phase and is driven by the tree-level zero-mode dynamics
of the domain walls. Despite the possibility of having
concave parts of the bare potential for k ≠ 0 a dynamical,
fluctuation driven, Maxwell-cut was found for k ≠ 0 by a
second order phase transition by solving (11) numerically
[40]. The convexity of the effective potential has been
demonstrated, too, by solving its evolution equation. This
result has later been confirmed and a formal analogy with
hydrodynamicswas offered to explain the cutoff-dependence
of the singularities of the potential [41–43].
One should mention a technical difficulty of finding the

solution by numerical integration, namely the missing of
auxiliary condition(s): The evolution equation contains
second order derivatives with respect to the field requiring
two auxiliary conditions for a unique solution. However
there is no place for these auxiliary conditions in the
renormalization group method. The problem can tempo-
rarily be circumvented by applying empty, 0 ¼ 0, auxiliary
condition [40] or keeping the auxiliary condition of the
initial condition during the evolution [41] but a satisfactory
solution remains to be worked out.
The order parameter is the location of the absolute

minimum of the potential ϕa at the IR end point, k ¼ 0.
Hence the solution of the Wegner-Houghton equation
places the phase transition at a separatrix among the
renormalized trajectories, where an infinitesimal change
of the initial conditions at ki induces finite changes at
k ¼ 0. Such a characterization of the phase transition is
possible only in the thermodynamical limit since for a large
but finite quantization box L < ∞ the momentum spectrum
is discrete, the minimal step size at the blocking (4) is
Δk ¼ Oð1=LÞ, and there are corrections to the Wegner-
Houghton equation.

D. Polynomial potential

One does not need the full form of the bare potential as
long as the fluctuations are small, an assumption behind
any attempt to restrict the functional evolution equation into
a restricted ansatz space. We might be satisfied by the
knowledge of the potential around the expectation value of
the field where the potential is assumed to be analytic.
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To avoid the problem posed by the dynamical Maxwell-cut
one introduces a weak symmetry breaking linear term in
the potential to keep the expectation value slightly in the
nondegenerate region. The polynomial ansatz for the
potential with a base point ϕb is

UðϕÞ ¼
XNU

n¼1

GnðϕbÞ
n!

ðϕ − ϕbÞn ð12Þ

and the first NU derivatives of the Wegner-Houghton
equation define the beta function of GnðϕbÞ,

βnðϕbÞ ¼ ∂
n
ϕU̇ðϕbÞ: ð13Þ

The parametrization (13) contains twice as may param-
eters as necessary when the potential is even,
UðϕÞ ¼ Uð−ϕÞ, and sometime a more economical para-
metrization is used which is based on the variable ρ ¼ ϕ2,

UðϕÞ ¼ VðρÞ ¼
XNU=2

n¼1

λnðρbÞ
n!

ðρ − ρbÞn; ð14Þ

with ρb ¼ ϕ2
b and g2n ¼ λnð2nÞ!=n!. But one should bear in

mind that the beta functions of the two parametrizations
agree only for the trivial case ϕb ¼ ρb ¼ 0. The nonequiv-
alence of the beta functions is actually expected by noting
that we see different features of the right-hand side of the
evolution equation

Zβ ¼ −
αd
2
kd ln½k2 þ Uð2ÞðϕÞ�

¼ −
αd
2
kd ln½k2 þ 2Vð1ÞðρÞ þ 4ρVð2ÞðρÞ�: ð15Þ

In fact, the first NU=2 and the NU derivatives of Zβ enter in
the ρ and the ϕ parametrization, respectively. Another,
more physical difference between the two parametrization
is visible by comparing the beta functions with their
perturbation expression: The usual Feynman graphs are
recovered only for the ϕ parametrization since there is no
Wick-theorem for the composite operator ρ.
A more constructive way to compare the two para-

metrizations starts by considering Zβ as the generator
function of the β-functions at vanishing field,

Zβ ¼
XNU=2

n¼1

βϕ2n
ð2nÞ!ϕ

2n;

¼
XNU=2

n¼1

βρn
n!

ρn; ð16Þ

with βϕ2n ¼ βρnð2nÞ!=n!. The β-functions at nonvanishing
field are defined by

βϕmðϕÞ ¼ ∂
m
ϕAðϕÞ ¼

XNU=2

n¼½m
2
�

βϕ2n
ð2n −mÞ!ϕ

2n−m;

βρmðρÞ ¼
XNU=2

n¼m

βρn
ðn −mÞ! ρ

n−m; ð17Þ

where [x] denotes the smallest integer equal or greater
than x. The use of the identity ∂ρ ¼ ð1=2ϕÞ∂ϕ results

βρmðρÞ ¼
XNU=2

n¼½m
2
�

βϕ2nn!

ð2nÞ!ðn −mÞ!ϕ
2ðn−mÞ ð18Þ

yielding βϕ2mðϕÞ ≠ βρmðρÞð2mÞ!=m! for ϕ ≠ 0. The rescal-
ing factor ð2mÞ!=m! keeps the beta functions of order
Oðϕ2mÞ equivalent however different orders are mixed
when the base point is nontrivial ϕb ≠ 0.
Another reason we refrained from using this paramet-

rization is our goal to incorporate a linear term in the
potential, used in Sec. IVG below.

E. Optimized base points

The renormalized trajectories depend on the choice of ϕb
owing to the nonpolynomial nature of the right-hand side
of the evolution equation in Uð2Þ. To find the best choice
of the base point one needs information about the way the
parameters are used later, below the current cutoff. The
simplest tree-level approximation within the blocked theory
is the choice Np ¼ 1, described above in Sec. II B, where
the beta functions are calculated at the absolute minimum
ϕa of the potential. The Wegner-Houghton equation taken
at the evolving minimum,

U̇ðϕaÞ ¼ ϕ̇aUð1ÞðϕaÞ −
αd
2
kd ln½k2 þ Uð2ÞðϕaÞ�; ð19Þ

yields the evolution equation

ϕ̇a ¼ −
β1
G2

ð20Þ

for the minimum and

Ġn ¼ βn − β1
Gnþ1

G2

ð21Þ

for the parameters of the potential. The parameters corre-
sponding to the vanishing base point will be used fre-
quently and are denoted by gn ¼ Gnð0Þ.
The guidance of the tree-level approximation in the

thinned blocked theory leads to serious difficulties as soon
asϕa changes discontinuously during the evolution. In fact, a
necessary condition of the local uniqueness of the solution of
the differential equation ẋ ¼ fðx; tÞ is the continuity of the
right-hand side in x. Hence the renormalized trajectory, the
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integral of the evolution equation, is not unique when ϕa
jumps. A simple numerical manifestation of this problem is
the ill-defined nature of the beta functions when the absolute
minimum becomes degenerate. One would have thought
that this case can safely be ignored for the blocking steps
k → k − Δkwith finiteΔk but such a naive argument proves
to be wrong, cf. Fig. 4(b) below.
A discontinuous jump of the beta functions defined at ϕa

is unacceptable on physical grounds, too, and more
involved physical processes to be taken into account by
an extension of the ansatz for the blocked action or the
subtraction procedure should smear out these discontinuity.
In fact, it is a basic tenet of the renormalization group
method that the dynamics of any finite scale window is
regular and the possible singularities of phase transitions
build up from the diverging size of the scale window.
The discontinuity generated by the tree-level approxi-

mation of the thinned blocked theory can be smeared out by
using the average beta functions

βnðϕbÞ ¼
R
D½ϕ�βnðϕb;ϕ0Þe−Sk½ϕ�R

D½ϕ�e−Sk½ϕ� ; ð22Þ

where ϕ0 denotes the homogeneous component of ϕðxÞ and
βnðϕb;ϕ0Þ stands for the beta function obtained by expand-
ing the Wegner-Houghton equation at ϕ0 and transforming
its beta function for the Taylor expansion parametersGðϕbÞ
of the potential defined to the base point ϕb. This average
simplifies to

βnðϕbÞ ¼
R
dϕ0βnðϕb;ϕ0Þe−ð2πk ÞdUkðϕ0ÞR

dϕ0e−ð
2π
k ÞdUkðϕ0Þ

ð23Þ

by the help of the approximation (9). A further simplification
can be made by applying the saddle point approximation,

βnðϕbÞ ¼
P

jβnðϕb;ϕjÞbjP
jbj

ð24Þ

where

bj ¼
e−csð

2π
k ÞdUkðϕjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Uð2Þ
k ðϕjÞ

q ; ð25Þ

and the points ϕj are local minima of the potential,

Uð1Þ
k ðϕjÞ ¼ 0, Uð2Þ

k ðϕjÞ > 0. The dimensionless parameter
of the subtraction procedure cs is introduced to diagnose the
sensitivity of the renormalized trajectory on the choice of the
absoluteminimumbut its value is kept at ce ¼ 1 in the results
presented below.
The transformation of the beta function to a different

base point ϕb → ϕ0
b is made by the linear transformation of

the Taylor coefficients,

Gmðϕ0
bÞ ¼

X2NU

n¼1

Am;nðϕ0
b − ϕbÞGnðϕbÞ ð26Þ

with

Am;nðϕÞ ¼
� ϕn−m

ðn−mÞ! m ≤ n

0 n < m
: ð27Þ

This results from a direct and trivial calculation or from the
introduction of the ladder matrix Smn ¼ δnþ1;m with the
properties Sjmn ¼ δnþj;m and SNU ¼ 0 allowing us to write
AðΦÞ ¼ eΦS. The average beta function at ϕb ¼ 0

βnð0Þ ¼ −
αd
2
kd

P
jbj

P
mAnmð−ϕjÞ∂mϕ ln½k2 þ Uð2ÞðϕjÞ�P

jbj

ð28Þ

is used to integrate the evolution equation ġn ¼ βnð0Þ.
Few remarks are in order at this point:
(1) The use of the minima assures G2 ≥ 0 and excludes

the instability k2 þ G2 ≤ 0 during the evolution.
(2) The summation in (28) over the different minima is

needed since the approximation (9) keeps the vol-
ume finite and the vacuum unique for k > 0.

(3) The weighted average of the beta functions at
different minima is more and more dominated by
the absolute minimum as the IR end point k ¼ 0 is
approached. Phase transition occurs when the min-
ima are degenerate in the limit k → 0.

(4) In case of symmetric initial condition the symmetry
is preserved during the evolution. Nevertheless it is
advised to reinforce the symmetry with respect to
ϕ → −ϕ and to cancel the beta functions of odd
orders g2nþ1 because the small rounding errors at
small n appear as relevant and their growth in the
UV scaling regime lead to the gradual loss of the
symmetry.

III. FIXED POINTS

Important features of the phase structure follow from the
fixed points of the evolution equation. The fixed potential
satisfies the dimensionless Wegner-Houghton equation,

dṼ − dϕϕ̃Ṽð1Þ ¼ −
αd
2
lnð1þ Ṽð2ÞÞ; ð29Þ

where dϕ ¼ d=2 − 1 denotes the mass dimension of the
field and the tilde indicates that the dimension is removed
by the help of the cutoff, ϕ ¼ kdϕϕ̃, gn ¼ kd−ndϕ g̃n, and
UðϕÞ ¼ kdṼðϕ̃Þ. The solutions of the fixed point equations
form a two-dimensional manifold. Apart of two discrete
points, the trivial Gaussian and the nontrivial Wilson-Fisher
fixed points, these fixed-potentials correspond to strongly
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nonperturbative theories with diverging repulsion at finite
particle density [44–46]. As long as our intuitive ideas
about quantum field theories are taken from the perturba-
tion expansion and its partial resummation we have to be
contended by the two discrete fixed points.
The approximation of the potential by a finite order

polynomial leads to the evolution equation ˙̃Gn ¼ β̃n for the
dimensionless parameters of the potential at a fixed
expansion point ϕ̃b and results the fixed point equation

ðd − ndϕÞG̃n ¼ β̃n: ð30Þ

A further simplification at the fixed point where k can be
arbitrarily small is that the exponential weighted beta
function (28) can be replaced by the beta function calcu-
lated at the absolute minimum.
One finds easily the trivial Gaussian fixed point at

ϕ̃b ¼ 0. The values of g̃�2, g̃
�
4, and g̃�6 at the nontrivial fixed

point for symmetric potential, g�1 ¼ g�3 ¼ g�5 ¼ 0, together
with their minimum are shown in Fig. 1 as the function of
the base point ϕ̃b. One finds the traditional Wilson-Fisher
fixed point for ϕ̃b ¼ 0. The corresponding potential has a
nontrivial minimum hence this fixed point is inconsistent,
its potential is obtained by expanding around an unstable
base point. The extension of the fixed point, the curve

leaving the Wilson-Fisher fixed point, exists for small ϕ̃b

and the potential becomes complex for ϕ̃b > 0.04, far from
the actual minimum.
One can find a consistent fixed point by choosing the

base point of the expansion at the minimum of the potential.
The solution of Eq. (30) together with this auxiliary
condition, shown by the dot in Fig. 1, can be extended
for a larger interval of the base points but this manifold of
solutions is substantially different than the Wilson-Fisher
fixed point manifold. Hence the renormalized trajectories
of the present subtraction procedure passing in the vicinity
of the nontrivial fixed point are qualitatively different than
the traditional one, guided by the beta functions calculated
around the original Wilson-Fisher fixed point.
The fixed point Wegner-Houghton equation (29) pos-

sesses asymmetric solutions, Ṽðϕ̃Þ ≠ Ṽð−ϕ̃Þ. However no
nontrivial sixth order fixed point polynomial was found by
relaxing the symmetry of the potential indicating that the
critical phenomenon is strictly related to spontaneous
symmetry breaking in this model.

IV. PHASE STRUCTURE

Themodel supports a number of phase transitionswith and
without spontaneous symmetry breaking with symmetric
UðϕÞ ¼ Uð−ϕÞ and with full potential UðϕÞ ≠ Uð−ϕÞ,
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FIG. 1. The parameters of the sixth order symmetric polynomial, (a) g̃�2, (b) g̃
�
4, (c) g̃

�
6, and (d) the minimum ϕ̃�
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respectively. As of the former, there is the traditional second
order phase transition with bare parameters with initial
conditions gB2 < 0, gB4; gB6 ≥ 0. The absolute minimum
of the potential depends in a continuous manner in the bare
parameters around this transition hence one expects only
quantitative changes compared to the traditional subtraction
procedure at ϕb ¼ 0 around this transition. Therefore we
devote our attention to other possible phase transitions.

A. Tree-level phase diagram

The simple rule, namely that a the term ϕn in the
potential with larger n becomes dominant for larger values
of jϕj, predicts a number of tree-level phase transitions. Let
us consider first a symmetric potential UðϕÞ ¼ Uð−ϕÞ
where the quadratic term is dominant around zero hence the
point g2 ¼ 0 is a second order transition. The higher power
terms are important for larger field hence one may have first
order transition if two non-Gaussian monomials compete.
The stability of the model requires that the highest power
comewith positive coefficient hence we need at least a sixth
order potential,

UðϕÞ ¼ g2
2
ϕ2 þ g4

4!
ϕ4 þ g6

6!
ϕ6; ð31Þ

with g2, g6 > 0 and g4 < 0 for a first order transition. The
nontrivial minima appear for g4 < −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6g2g6=5

p
with abso-

lute magnitude

ϕm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10

−g4 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g24 − 6

5
g2g6

q
g6

vuut ð32Þ

which are the absolute minima as long as g4 < −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8g2g6=5

p
.

The potential at the first order transition satisfies g4 ¼
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8g2g6=5

p
with G2ðϕmÞ ¼ 4g2, the mass is doubled as

we cross the transition line from the symmetric to the
symmetry broken phase. The three dimensional parameter
space ðg2; g4; g6Þ with g6 ≥ 0 is cut into two parts by the
second and the first order transition surfaces, g2tr ¼ 0 and
g2 > 0, g4tr ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8g2g6=5

p
, respectively. The potential is

plotted on Fig. 2 for three typical set of parameters.
The appearance of a condensate in a theory with

symmetric potential amounts to a spontaneous symmetry
breaking. But phase transitions may occur with asymmetric
potential without spontaneous symmetry breaking, too. It is
easy to see for instance that one can fine tune a quartic
asymmetric potential either to a critical point where the
curvature at the minimum tends to zero or to a first order
transition where ϕa jumps. The phases with and without
symmetry breaking differ in the vertex structure of the
fluctuations around ϕa. However the difference of the two
phases of a theory with asymmetric potential is only
quantitative since ϕa ≠ 0 in both cases.

The tree-level phase structure is not reliable in three
dimensions since the fluctuations strongly deform the
transition surface. Furthermore they generate latent heat
where the order parameter is discontinuous and may
produce multi-critical points. The modification of the
phase structure by fluctuations is referred to as radiative
corrections induced phase transitions. An additional
complications of the first order transitions is that they
support tree-level fluctuations, the droplet dynamics, a
highly nontrivial saddle point structure. It is an interesting
question whether the renormalization group evolution
equation which were obtained by ignoring the possible
saddle point contributions can give account of the coex-
istence region, dominated by the droplets.

B. Beta functions

The beta functions (13) assume a particularly simple
form for a symmetric potential at ϕb ¼ 0,

β2ð0Þ ¼ −
αd
2
kd

g4
k2 þ g2

;

β4ð0Þ ¼ −
αd
2
kd

g6ðk2 þ g2Þ − 3g24
ðk2 þ g2Þ2

;

β6ð0Þ ¼ −
αd
2
kd

15g4½2g24 − g6ðk2 þ g2Þ�
ðk2 þ g2Þ3

;

β1ð0Þ ¼ β3ð0Þ ¼ β5ð0Þ ¼ 0 ð33Þ

allowing a qualitative understanding of the renormalized
trajectories. However these beta function can not be used
for strong fluctuations because the large value of the
propagator around the trivial vacuum 1=ðk2 þ g2Þ drives
g6 to negative values indicating a serious inconsistency of
the subtraction procedure based at ϕb ¼ 0.
The instability is avoided by expanding the Wegner-

Houghton equation around the minimum of the potential
however this comes with a high price, the resulting beta
functions are much more complicated. The expression of βn
contains the first n derivative of the right-hand side of the
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U

FIG. 2. The symmetric potential with g2 ¼ 0.01, g4 ¼ −0.035;
−0.04;−0.045, and g6 ¼ 0.1. The minima are degenerate for
g4 ¼ g4tr ¼ −0.04.
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Wegner-Houghton equation (11). By bringing these con-
tributions to a common denominator one generates rather
complicated expressions involving fourth order polyno-
mials of g2 with coefficients up to approximately 109. The
inspection of the analytical structure confirms the triviality
of the IR scaling laws below k ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2ðϕaÞ

p
and the highly

nontrivial dependence on the other parameters GnðϕaÞ
suggests the existence of several further characteristic

scales. The global feature of the renormalized trajectory
is rendered even more complicated by the possibility that a
jump of ϕa may place the system at the other side of such
an intrinsic scale. It is not practical to reproduce the
expression of the beta functions here and we content
ourself with showing it for the sake of an example at
the tree-level first order transition, g4 ¼ g4tr, calculated at
the nontrivial minimum (32),

β1ðϕmÞ ¼ −αdkd3
ffiffiffi
3

p �
2

5

�1
4 g

3
4

2g
1
4

6

k2 þ 4g2
;

β2ðϕmÞ ¼ −αdkd
1ffiffiffiffiffi
10

p ð−13k2 þ 56g2Þ
ffiffiffiffiffiffiffiffiffi
g2g6

p
ðk2 þ 4g2Þ2

;

β3ðϕmÞ ¼ −αdkd
ffiffiffi
3

p

2
1
45

3
4

ð5k4 − 194k2g2 þ 440g22Þ
g
1
4

2g
−1
4

6

ðk2 þ 4g2Þ3
;

β4ðϕmÞ ¼ −αdkd
1

10
ð5k6 − 1674k4g2 þ 20064k2g22 − 32608g32Þ

g6
ðk2 þ 4g2Þ3

;

β5ðϕmÞ ¼ −αdkd
ffiffiffi
3

p

5

�
2

5

�1
4ð−725k6 þ 32520k4g2 − 210480k2g22 þ 270976g32Þ

g
3
4

2g
5
4

6

ðk2 þ 4g2Þ5
;

β6ðϕmÞ ¼ −αdkd
3ffiffiffiffiffi
10

p ð−165k8 − 25948k6g2 − 485376k4g22 þ 2107584k2g32 − 2256128g42Þ
ffiffiffiffiffi
g2

p
g
3
2

6

ðk2 þ 4g2Þ3
: ð34Þ

The final averaged beta function

βnð0Þ ¼
X
m

Anmð−ϕmÞβmðϕmÞ ð35Þ

can generate highly complex renormalized trajectories.
The UVand the IR scaling laws correspond to the cutoff

interval where G̃2 ¼ G2=k2 < 1 and G̃2 > 1, respectively.
Hence G̃2 can be considered as the measure of the IR-ness
of the scaling laws. It usually increases monotonously
during the evolution and the scale interval 0 < k < ki is
split into two parts separated by the UV-IR crossover at
G̃2 ¼ 1. Another equivalent definition of the cutoff at the
UV-IR crossover is kcross ¼ m where m ¼ ffiffiffiffiffiffi

G2

p
is inter-

preted as the mass of the elementary excitations. The
asymptotic UV and IR scaling simplifies by replacement
1=ðk2 þ G2Þ by 1=k2 and 1=G2 in the beta functions,
respectively. The evolution is slow in the IR scaling
regime in theories with a gap in their excitation spectrum
and trivial, i.e., the only relevant operator around the
Gaussian fixed point is the quadratic ϕ2. We shall see that
ϕa may jump during the evolution and there might be
several IR scaling regimes along some renormalized
trajectories.

C. Strong renormalization close to the phase boundary

The absolute minimum of the potential remains either
vanishing ϕa ¼ 0 or nonvanishing ϕa ¼ ϕm all along the
renormalized trajectories deeply within the symmetric or
the symmetry broken phase, respectively. But contrary to
continuous phase transitions ϕa may jump between 0 and
ϕm during the evolution close to the first order phase
transition. The corresponding jump of G2ðϕaÞ may throw
the system from one scaling regime to another rendering
the global features of the renormalized trajectory, in
particular the relation between the UV and the IR param-
eters, becomes highly involved.
This mechanism is demonstrated in Fig. 3 where the

evolution of the parameters are shown close to the
separatrix of the first order transition for different gB4 with
fixed gB2 and gB6. The tree-level transition line is at gB4 ¼
g4tr ¼ −0.4 and the trajectories with initial value gB4 ¼
−0.38;−0.39;−0.4;−0.41;−0.42 are displayed. The evo-
lution of g4 is weak and smooth for gB4 > −0.4 in the
symmetric phase where ϕa remains vanishing according to
Fig. 3(a). But a violent renormalization sets in slightly
below gB4 ¼ −0.4 because the beta functions change in a
discontinuous manner at gB4 ¼ −0.4. Thus the slightest
renormalization of g2 and g6 just below gB4 ¼ −0.4 may
induce a jump of ϕa along the trajectory. Actually β2ðϕmÞ is
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slightly positive and β6ðϕmÞ is very close to zero at
k ∼ ki ¼ 1 hence the tree level transition point g4tr is
increased by radiative corrections and the trajectory with
gB4 ¼ −0.4 is actually driven by β2ðϕmÞ startig with the
first infinitesimal k → k − Δk step. As a result the sepa-
ratrix is pushed toward slightly larger g4 values compared
to the tree-level solution.
The beta functions at ϕa ¼ ϕm tend to be larger in

absolute magnitude than the those at ϕa ¼ 0 and when ϕa
jumps and the evolution slows down (speeds up) at the
jump ϕa ¼ ϕm → 0 (ϕa ¼ 0 → ϕm). The renormalization
becomes more violent immediately after a jump ϕa ¼
0 → ϕm owing to the larger beta functions. However the
jump throws the system into an IR scaling regime where the
renormalization slows down. Such a phenomenon is well
recognizable on the trajectoires of Fig. 3 belonging to the
symmetry broken phase where ϕa jumps twice along the
trajectories and ϕa ¼ 0 for −0.33 < t < −0.08.
The evolution of ϕa and the value of the potential UðϕaÞ

are shown in Figs. 4(a) and 4(b) for few typical trajectories
for the same initial value of gB2 and gB6 and different choice
of gB4. Deeply within the symmetrical (gB2 ¼ −0.2) and the
symmetry broken phase (gB2 ¼ −0.8;−1.1) ϕa starts and
stays at ϕa ¼ 0 and ϕa ≠ 0, respectively, as expected.
These trajectories constitute the picture of the first order
phase transition, found in earlier works [33,36], where the
competition of the minima was not followed. However the

minimum ϕa ¼ ϕm falls back to ϕa ¼ 0 in our treatment
within a finite scale interval t1 < t < t2 during the evolu-
tion within the symmetry broken phase closer to the
transition, at gB4 ¼ −0.5 and −0.7.
It is important to keep in mind that the trajectories remain

an analytic function of the initial conditions and of the
scale k for 0 < k < ki < ∞ owing to the continuity of the
weighted average (28) with cs < ∞. The discontinuity of
ϕa in Fig. 4(a) is a mathematical artefact without relevance
for physics.

D. Locking into a degenerate potential

What is rather remarkable on Fig. 4(b) that the potential
remains degenerate in a finite scale interval 0 < t2 − t1 < ∞.
Closer inspection of these trajectories reveals an oscillatory
behavior: When ϕa ¼ 0 then the simple the beta functions
evolve the potential in such a manner that UðϕmÞ > 0
decreases and until it becomes negative. From that on the
complicated beta functions are used at ϕm and they push
UðϕmÞ back to positive values and the cycle starts again.
Such an oscillation can be understood by the linearization of
the beta functions around the degenerate values gnd,

Δġn ¼ ΘcsðΔgnÞΔβðþÞ
n þ Θcsð−ΔgnÞΔβð−Þn ð36Þ

where Δgn ¼ gn − gnd is the deviation from the degeneracy
g4 ¼ g4tr, ΘcsðxÞ is the Heaviside function smeared in an

(a) (b)

(c) (d)

FIG. 3. The evolution of the parameters along the first order phase boundary for gB2 ¼ 0.1, gB4 ¼ −0.38;−0.39;−0.4;−0.41;−0.42,
and gB6 ¼ 1. (a) g4 close to the initial cutoff, (b) g4, (c) g2, and (d) g6 following a longer evolution.
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Oðc−1s Þ interval around zero and Δβð�Þ
n are continuous

functions of the parameters. Such an OðΔkÞ oscillation of
the renormalized trajectory appears to be stable against the
change of the parameter cs and is supported only in a limited

scale interval t1 < t < t2where�Δβð�Þ
n > 0. The oscillation

starts when the inequality sets in and stops when the ongoing
renormalization leads to its violation.
Such a locking into a degenerate potential is important

because the size t2 − t1 of the scale window was found to
be a discontinuous function of the initial condition, gBn.
Therefore the locking in mechanism generates a disconti-
nuity between the UVand the IR parameters, namely a first
order phase transition. This is shown in Fig. 4(c) where ϕa is
plotted against gB4 at different scale k. The evolution is weak
in the IR regime andϕa at t ¼ −3 can alreadyqualitatively be
treated as the order parameter which is the location of the
absoluteminimumat k ¼ 0. The curves display two jumps in
the IR scaling regime for t < −0.5, one around gB4 ¼ −0.38
and another around gB4 ¼ −0.76. The jump around
gB4 ¼ −0.38 is due to the separatrix seen in Fig. 3. The
emergence of the second first order transition is due to the
abrupt disappearance of the locking mechanism.
The locking of the renormalized trajectory into a

degenerate potential is reminiscent of the phase mixing

at the transition point. In fact, one expects that a droplet
changes the dynamics when the cutoff is between size of
the domain wall and the full domain. However we tend to
disregard the identification of the phase coexisting region
and the interval between the two fist order transitions
because the former joins the two phases without first order
transitions at the edges.
The strong evolution within the symmetry broken phase

but close to the phase boundary generates a complicated
scale dependence for ϕa for t∼0 around gB4¼gtr4¼−0.4.
In fact, ϕa ¼ ϕm during a very short evolution the but it
jumps to zero on some trajectories before t ¼ −0.02. The
length of the scale window with ϕ0 ¼ 0 is increasing during
the evolution but disappears before we reach t ¼ −0.25.
The two jumps stabilize its position in the final IR scaling
regime t < −0.5.
It is worthwhile noting that the weak dependence of the

location of the jumps of ϕa on the scale k, seen in Fig. 3(c),
is not an indication of weak dressing, a slow evolution
along the renormalized trajectories as in the case of
continuous phase transitions. What happens here is that
the discrete jump of ϕa taking place at a certain value of k
leaves a nonrecoverable impact on the trajectories and
remains to be felt down to k ¼ 0.
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FIG. 4. The location of the absolute minimum and the value of the potential for gB2 ¼ 0.1, gB6 ¼ 1. (a) ϕa, (b) UðϕaÞ as functions of
the gliding scale parameter t. The values of gB4 are in the inset. (c) ϕa as the function of gB4, read off at different scale parameter t, shown
in the figure.
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E. Quasiparticle mass

The running parameter G2 can be interpreted with a
slight abuse of the language as the mass square of the
quasiparticles at the actual scale k. How does the running
quasiparticle mass evolve compared to the initial cutoff ki?
We see the tree-level value of ϕa at the initial conditions
and the mass changes by a factor two as we pass the case of
degenerate initial potential. Since the location of this
discontinuity is shifted very weakly there seems to be
no problem to place the phase transition separating the
symmetric and the symmetry broken phases at any mass at
the initial condition in the symmetry broken phase.
However this picture is changed considerably according

to Fig. 5. The mass square G2 remains remarkably close to
it tree-level value, gB2 ¼ 0.1 with weak evolution along the
trajectory gB4 ¼ −0.2 in the symmetric phase where the
UV-IR crossover is around t ¼ −0.4 according to Fig. 5(a).
But the trajectories in the symmetry broken phase suffer
strong renormalization. In fact, the trajectories undergo a
strong renormalization at the very beginning of the evo-
lution close to g4B ¼ g4tr ¼ −0.4 decreasing quickly the
running mass. The mass stays approximately constant
within the locking in scale window but is pushed up again
by the returning of the ϕa ¼ ϕm scaling laws, governing the
evolution from the rest of the trajectory. The IR values of
G2 is reproduced in Fig. 5(b) shows clearly that the
symmetry broken theory is fully in the IR scaling regime
without UV scaling laws apart of the finite locking in scale
interval which exists close to the phase boundary.
Hence the free choice of the initial mass is strongly

overwritten by the strong renormalization at ϕ ¼ ϕm.
Actually no light mass symmetry broken phase,G2=k2i ≪ 1,
was found numerically.

F. Second order transition

We have so far sought first order transitions driven by
sufficiently negative gB4 with gB2; gB6 > 0. But there might
be second order transitions for less negative gB4, as well.
The second order spontaneous symmetry breaking of the

Ising model universality class in the traditional ϕ4 model is
the result of large fluctuations around the trivial vacuum,
ϕ ¼ 0, supported by a double well bare potential. The
potential of the ϕ6 model has local minima at ϕm in the
symmetric phase for −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8g2g6=5

p
< g4 < −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6g2g6=5

p
around which finite lifetime quasiparticles can be formed.
For low enough tunneling probability to the trivial mini-
mum the life-time might be long enough to induce a second
order phase transition.
A second order phase transition is indeed found in the ϕ6

model as indicated by Fig. 6 where ϕa is plotted as the
function of gB4 for g2B; gB6 > 0. We are in the symmetric
phase at gB4 ¼ 0 and the moving of gB4 in the negative
direction makes UðϕmÞ smaller, the excitations around it
more stable which facilitates a second order spontaneous
symmetry breaking. The location of the nontrivial mini-
mum, ϕm, is increased during the decrease of gB4 and the
increasing tunneling factor brings ultimately the system
back to the vicinity of the energetically favorable ϕ ¼ 0 by
restoring the symmetry. The result is a narrows strip of
symmetry broken phase within the symmetric region.
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FIG. 5. (a) The evolution of G̃2 and (b)G2 deep in the IR at t ¼ −3 as the functions of gB4 for the same value of gB2 and gB6 as in Fig. 4.
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FIG. 6. The location of the absolute minimum, ϕa, deep in the
IR at t ¼ −3 as the functions of gB4. The other bare parameters
are gB2 ¼ 10−6 and gB6 ¼ 10−2.
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But such an explanation is very naive and can not be
taken more than an educated guess. In fact, g4tr ¼
10−4

ffiffiffiffiffiffiffiffi
8=5

p
for the parameters of the figure hence fluctua-

tions must be very strong to push the first order phase
transition away from g4tr and invalidate the tree-level
estimate. The first order transition was found at more
negative gB4 but a much more detailed analysis is needed to
find out whether the first and second order transitions for
gB2; gB6 > 0, gB4 < 0 and gB4; gB6 > 0, gB2 < 0, respec-
tively match and together separate the symmetric and the
symmetry broken phases or there is a region connecting the
two phases without phase transition.

G. Alternative signature of spontaneous
symmetry breaking

The usual test of the ferromagnetic phase is to apply an
external magnetic field and to follow the magnetization as
the external field is decreased. The nonvanishing limit of
the magnetization when the external field is removed is the
signature of the ferromagnetic phase. Naturally the first
order phase transition seen by scanning in the external
magnetic field is not identical, only a related, to the second
order phase transition in the temperature.
Thereby we can corroborated the phase structure by

introducing a linear term in the potential, UðϕÞ →
UðϕÞ þ g1ϕ, and by scanning the dependence of ϕa on
gB1. One expects a continuous gB1-dependence within the
symmetric phase and a discontinuity at gB1 ¼ 0 in the phase
with spontaneous symmetry breaking. The absolute mini-
mum ϕm as the function of g1, shown on the two sides of the
first and the second order transition line in Fig. 7 affirms this
behavior. Note that the latent heat is vanishing in these first
order phase transitions.

V. LATTICE REGULARIZATION

The impressive richness of the phase structure, produced
by radiative corrections, raises the question of reliability
and calls for an independent check. In fact, the radiative

corrections may substantially be modified by our approxi-
mation, the restriction of the blocked action space, and the
choice of the subtraction procedure. A natural way to
check the phase structure is to calculate the order param-
eter by a Monte-Carlo simulation of a lattice regulated
version of the theory.
The bare action is given by the space-time sum

S½ϕ� ¼
X
n

�
1

2

X3
j¼1

ðϕnþĵ − ϕnÞ2 þ gL1ϕn þ
gL2
2

ϕ2
n

þ gL4
4!

ϕ4
n þ

gL6
6!

ϕ6
n

�
ð37Þ

for lattice spacing a ¼ 1where vector n ¼ ðn1; n2; n3Þwith
nj ¼ 1;…; NL labels the lattice sites of an N3

L lattice
equipped with periodic boundary conditions, ĵ denotes
the unit vector in the direction j and the partition function is
given by the integral

Z ¼
Y
n

Z
dϕne−S: ð38Þ

A sweep of the Monte-Carlo update consists of bringing
the local field into contact with a heat bath over the
whole lattice in a sequential manner. The heat bath was
a particular realization of the Metropolis algorithm where a
shift, ϕn → ϕn þ Δϕ distributed homogeneously in the
interval −χ < Δϕ < χ, was offered to the field variable.
This change was accepted with the probability minð1; rÞ
where r denotes the ratio of the integrand of the partition
function with the shifted and the original field value. This
process was repeated nM ¼ 6 times before moving to the
next lattice site and the parameter χ was chosen in such a
manner that the acceptance ratio averaged over a sweep
stayed within the interval [0.45, 0.55].
The path integral (38) has two regulators, the UVand the

IR cutoffs, the lattice spacing a and the lattice size NL,
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FIG. 7. The restoration of the symmetry as gB1 → 0. (a) The first order phase transition of Fig. 4. (b) The second order phase transition
of Fig. 6.
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respectively and they leave important differences compared
to the partition function (3) in the continuous space-time.
We intend to compare observables obtained by different
regularizations thus one should determine first the bare
parameters of the theory by matching some observables
obtained in both calculations. This is beyond the scope of
this work where we content ourself to compare the
qualitative features of the phase structure.
To minimize the lattice artefacts the correlation length in

lattice spacing units ξ=a should be large. The correlation
lengths, the Compton wavelength of the lightest particle
created by the local field, is found by projecting the field
variable onto the vanishing spatial momentum sector,
φn1 ¼

P
n2;n3 ϕn and calculating the connected correlation

function

Gð0Þ
n1−n01

¼ hφn1φn0
1
i − hφn1ihφn0

1
i: ð39Þ

The asymptotic decay Gð0Þ
n1 ≈ ce−man1 for large n1 defines

the lightest mass, the inverse Compton wavelength in units
of the UV cutoff, ma ¼ a=ξ.
The numerical calculation are restricted to a finite

volume where there are no phase transitions. Thus the
lattice should be large enough to avoid the symmetry
restoration by the flip-flops of the slow mode, the sudden
changes of sign of the order parameter

Φ ¼ 1

N3
L

X
n

ϕn ð40Þ

during the simulation. The lattice size NL ¼ 100 was used
in the numerical work and no flip-flop was seen.

A. Hysteresis cycles

In order to check the convergence of the Monte-Carlo
iterations two hysteresis cycles were made in gL4 with the
results shown in Fig. 8. The simulation started with an
ordered configuration ϕn ¼ 0 and gL4 was moved through
the values gL4 ¼ −0.01n, n ¼ 0;…; 14 by executing 1000
sweeps with fixed gL2 ¼ 0.01, gL6 ¼ 0.1 in such a manner
that the last configuration at a gL4 value was used as the
initial configuration for the next gL4 point. At the end the
final configuration was taken and the values gL4 ¼
−0.115þ 0.01n were visited in an opposite move in a
similar sequential manner. Another hysteresis cycle was
performed with at most 250000 sweeps at the same gL4
values but in this case the initial configuration was ϕn ¼ 0
and 5 at gL4 ¼ −0.01n and gL4 ¼ −0.115þ 0.01n, respec-
tively. The iterations stopped when the order parameter
converged in the last 40000 sweeps in the energetically
preferred phase. This rearrangement allows to see the speed
of convergence of the simulation.
The action S and the order parameter Φ, depicted in

Figs. 8(a) and 8(b), represent an UV and an IR observable
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FIG. 8. The hysteresis cycle for the action S, the order parameter Φ, and the inverse mass 1=ma in the coupling constant gL4 with
gL2 ¼ 0.01 and gL6 ¼ 0.1. The symbols plus (square) and times (black dot) indicate the down and the up moving part of the cycle with
1000 (at most 250000) sweeps at each point. The inverse mass is shown only for the longer iteration series.
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with a much faster convergence for the former than for
the latter. The approximately linear dependence of the
action on gL4 can be understood by assuming that the
fluctuations are weak at the scale of the lattice spacing
since the expectation value of the order parameter is
approximately gL4 independent within this range accord-
ing to Fig. 8(b).
The first order phase transition behind the hysteresis

cycle Fig. 8 separates the disordered (hΦi ¼ 0) and the
ordered (hΦi ≠ 0) phases. Another first order transition in
this theory is between the two ordered vacua, hΦi ¼ �Φ0,
its signature is the hysteresis cycle plotted in Fig. 9. Here
gL1 was moved through the interval −0.3 < gL1 < 0.3 from
left to right in the symmetry broken phase in a sequential
manner as in the case of the previous hysteresis cycle with
1000 iterations. In the other half of the cycle, not shown in
the figure, one finds the same curve with the transforma-
tion gL1 → −gL1.

B. Limitation in the UV

The rich phase structure predicted by the renormaliza-
tion group method is due to the strong renormalization. To
recover the fine balance between the diferent contribu-
tions to the beta functions one has to suppress the lattice
artefacts of the free lattice propagator, achieved by
performing the continuum limit ξ ¼ 1=ma → ∞ diverges.
The calculation of the mass gap is shown for gL4 ¼ −0.07
in Fig. 10, the result of a fit of the logarithm of the
connected correlation function (39) by a linear function of
the distance. The mass gap, obtained by such fitting, is
shown for the full hysteresis cycle on Fig. 8(c). The
statistical errors are smaller than the symbol size and the
systematic errors can be estimated by the difference
between the two hysteresis series.
The lesson is that we are far from the continuum limit

when the order parameter is nonvanishing. One could
reduce the mass by going closer to the Gaussian fixed
point but a large amplitude, slow wandering of the order
parameter creates a serious numerical problems. Such a
critical slowing down close to a second order phase
transition can in principle be reduced by Fourier accel-
eration of the slow modes [47], multigrid [48], and cluster
update [49].

C. Limitation in the IR

A fully converged simulation produces no hysteresis cycle
which arises from the simulation getting stuck in the false
vacuum. Thus Figs. 8 and 9 report a serious slow down of the
convergence around first order phase transitions, a well
known limitation of the Monte-Carlo method.
The point ϕ ¼ 0 remains a local minimum of the bare

potential for any gL4. However the finite length Monte-
Carlo iteration series lead to the stable vacuum with
nonvanishing order parameter only for sufficiently negative
gL4, beyond the true transition point. A few typical Monte-
Carlo series are shown in Fig. 11, they represent three
points on Fig. 8(b). The simulation time needed to find the
energetically stable true vacuum is supposed to increase
exponentially with the volume within the interval
−0.09 < gL4 < −0.07. Once the stable vacuum is reached
the system stays there. There is a similar problem to find the
transition by starting from the ordered phase with non-
vanishing order parameter. It is interesting that this part of
the cycle with more iterations closes at the tree-level
transition point at gL4 ¼ g4tr ¼ −0.04. This might be an
accident since the renormalization between the lattice
spacing and the size of the lattice is very strong, see
Sec. V D below. The lesson of Fig. 9 is similar since the
simulation with finite iteration series find the transition
only when the true vacuum is much below the false one.
The hysteresis cycle of Fig. 4 covers the region where

one expects the second first order transition predicted by
the renormalization group method. as far as the second
order phase transitions of Fig. 6 are concerned, one needs
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FIG. 9. Half of the hysteresis cycle of the order parameter in gL1
with the bare parameters are gL2 ¼ 0.01, gL4 ¼ 0, and gL6 ¼ 0.1.
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FIG. 10. The connected φn1 correlation function denoted by
squares and its fit indicated by dotted line for gL2 ¼ 0.01,
gL4 ¼ −0.07, and gL6 ¼ 0.1. The best estimate of the error bar
is the difference between the average at n1 ¼ 25 and the
exponential fit. The figure is based on the dataset corresponding
to the last 200 points of the series shown in Fig. 11.
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small bare parameters. However the order parameter
follows a slow but large amplitude oscillation during the
simulation in the symmetric phase because the restoring
force at Φ ¼ 0, U0ð0Þ, is very weak and one encounters a
slow down similar to the one arising in the continuum limit.

D. Droplets

The droplets are supposed to provide the driving force of
a first order transition [7–10] hence their presence is crucial
in the Monte-Carlo simulation. Their identification during
the iteration serves two goals in the same time. First, it may
help to find the phase coexisting region, a problem raised in
Sec. IV D, and it might help to design improved update
schemes with faster convergence.
It is easy to see whether the droplets are present in the

simulation by calculating the histogram of the local field
variable. For this end a hysteresis cycle was made by

moving gB4 through the values −0.01n, n ¼ 3; 4;…; 8 and
performing twice 40000 sweeps with initial configurations
ϕn ¼ 0 and ϕn ¼ 5 at each point. This hysteresis cycle
closes at the end points, at gL4 ¼ −0.03 and −0.08 but the
Monte-Carlo series are not convergent in between,
cf. Fig. 8. The histogram, the probability distribution of
ϕn, is calculated for ϕ∈ ½−Φ0;Φ0� by dividing the interval
½−Φ0;Φ0� into Nh subinterval and by counting the number
of field variable found within each subinterval.
The normalized histograms with Φ ¼ 8 and Nh ¼ 200

are shown in Fig. 12(a) at the six values of gL4. The
histograms corresponding to the initial configuration
ϕn ¼ 0 peak around zero and are undistinguishable on
the plot with linear scale for Φ except the one at
gL4 ¼ −0.08 which displays two peaks, indicating that
the system found the way to the energetically stable
vacuum approximatively at half-time of the iteration series.
The histograms of the initial configuration ϕn ¼ 5 show the
gradual decrease of the average Φ as gL4 moves in the
positive direction, the last histogram at gL4 ¼ −0.03 is
already in the disordered phase and is undistinguishable
from the other curves peaking around zero.
The double peak of the histogram at gL ¼ −0.8 with the

initial condition ϕn ¼ 0 shows that both ordered and
disordered vacuum droplets occur in this Monte-Carlo
series. To find out whether they show up in the same
configuration we zoom into that part of the Monte-Carlo
iteration whereΦ changes fast, the result being displayed in
Fig. 12(b). The part of the series where the distribution
displays double peak with gradually changing maximal
values proves the Φ converges by inhomogeneous droplets
formation rather than by a continuous homogeneous drift
of a single peak probability distribution. This suggest a
qualitative similarity between the coexisting region and
such subseries of the simulation where the order parameter
jumps between the phases. One thus arrives at the result that
the droplets are absent or play a negligible role in the long,
converged Monte-Carlo series. An immediate result is the
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FIG. 12. (a) The normalized distributions of ϕn. The bare parameters are gL2 ¼ 0.01, gB4 ¼ −0.01n, n ¼ 3; 4;…; 9, gL6 ¼ 0.1.
(b) The evolution of the histogram at gL4 ¼ −0.8 with initial configuration ϕn ¼ 0 by collecting statistics for the sweeps 190000þ
1000n ≤ nsw < 191000þ 1000n where n ¼ 0;…; 9. No local field was found at values without historgram curve.
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FIG. 11. The Monte-Carlo sequences of the order parameter. A
point corresponds to the absolute magnitude of the order
parameter averaged over 100 sweeps. The bare parameters are
gL2 ¼ 0.01, gL6 ¼ 0.1, and gL4 ¼ −0.07;−0.08;−0.09, and
−0.1. The order parameter increases as gL4 moves toward the
negative direction.
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conjecture that the phase coexisting region collapses to a
point in the parameter space gLn.

E. Improving the Monte-Carlo algorithms

No droplet was found in the relaxed Monte-Carlo series
hence one expects that their inclusion should speed up the
algorithm around the phase transition. But such an
improvement opens a new question about ergodicity:
The dynamical description of phase transitions is based
on the separation of the short and the long characteristic
timescales. The short microscopic timescales converge and
the long timescales of certain collective modes diverge and
generate discontinuities between the UV and the IR
parameters in the thermodynamical limit. The phase
transition is understood dynamically as an approximation
where such slow modes are kept time independent. The
view leads to the static characterization of a phase transition
as a particular breakdown of ergodicity and the statistical
ensembles should be appropriately redefined. The trouble-
some point is that the slow dynamical modes are usually
slow in the simulation time, too. Hence the speed up the
slowmodes in the simulation time may change the handling
of the slow dynamical modes and lead to an inappropriate
breakdown of ergodicity.
Another way to phrase the problem is to recall the

difference between the bare and the renormalized param-
eters of the theory. On the one hand, the Monte-Carlo
algorithm is defined on the level of the bare action
characterizing the dynamics close to the UV cutoff. On
the other hand, the slowmodes to speed up are nonlocal and
their dynamics is expressed in terms of renormalized IR
parameters. Thus the proper improvement of the algorithm
must include the relation between the UV and the IR
parameters.
There are several tested proposals to reduce the critical

slow down in the vicinity of second order phase transitions.
The replacement of the Monte-Carlo iteration series by an
artificial, supposedly ergodic, dynamics allows us to use
different discrete time steps for different modes of the
theory [47,50]. The choice of larger time step for the long
wavelength Fourier modes of the space-time lattice can
strongly reduce the relaxation time in the vicinity of a
critical point. One can introduce the update of Kadanoff’s
block variables and interpret the resulting random walk as a
multigrid generalization of the Monte-Carlo algorithm [48].
The direct introduction of the nonlocal update of a cluster
of parallel spins [49] became a generally used acceleration
method close to the critical point of lattice spin models. As
long as the modification of a local Monte-Carlo update is
restricted to scales close to the lattice spacing, as in the
multigrid Monte-Carlo and the cluster update schemes, the
breakdown of ergodicity remains unchanged at a second
order phase transition. However the Fourier acceleration
method applied for the long range collective modes opens

the question whether the artificial IR dynamics breaks
ergodicity just in the desired manner.
While the multigrid and the cluster algorithms improve

the convergence around critical points we believe that
similar nonlocal updates run into a problem at a first order
transition. The reason can be demonstrated by a very simple
cluster update step to be offered when the bare potential
supports several local minima gL4 < −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6gL2gL6=5

p
:

Within a box of size Nb we reflect the local field variable
across �ϕm=2, ϕn → signðϕnÞϕm − ϕn. The size Nb is
chosen to bring the phenomenological droplet action,

Sd ¼N3
b½Uðminðϕm;0ÞÞ−Uðmaxðϕm;0ÞÞ�þ3N2

bϕ̄
2; ð41Þ

as close to zero as possible from below to reach reasonable
acceptance ratio. Such a procedure gives Nb ¼
½3ϕ2

0=ΔU� þ 1 where [x] stands for the integer part of x
and ϕ̄ is a fixed parameter. This tentative update is
mentioned here only for the sake of the argument, the
realistic version needs further refinement to reach better
acceptance ratio. The point is that the domain where the
local field variables are changed should approach the total
lattice volume close to the unrenormalized tree-level phase
boundary. Hence we enter into the modification of the
update at arbitrary long length scales without any infor-
mation about the renormalized long range dynamics which
determines the true transition point.

VI. SUMMARY

The renormalization group method was used to sketch
the phase structure of the three dimensional ϕ6 scalar field
theory. The order parameter is obtained by integrating the
Wegner-Houghton equation for the bare potential as the UV
cutoff is lowered. The usual method, based on the beta
functions at vanishing order parameter, produces an
unbounded potential from below at a finite value of the
cutoff and prevents us from reaching the IR regime. An
improved implementation of the Wegner-Houghton equa-
tion is used which is based on a weighted average of the
beta functions at the different minima of the potential and
provides a stable renormalized trajectory. The absolute
minimum plays an increasing role in the weighted average
as the cutoff is lowered and the location of the absolute
minimum of the potential at the IR end point can be
identified with the expectation value of the order parameter.
One finds the Wilson-Fisher fixed point at a different

location and several phase transitions by the help of this
procedure. The absolute minimum of the potential stays at
zero or remains at a nonzero value along the renormalized
trajectories deeply in the symmetric and symmetry broken
side of the first order transition, respectively. But close to
the first order transition line a new radiative corrections
generated first phase transitions arises. A remarkable
feature of the strip between the two transitions is that
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the potential is locked into a degenerate minimum shape
within a finite scale window of the running cutoff. The
degenerate minima of the potential make this region
reminiscent of usual the phase coexisting region.
The mass of elementary excitations is determined in the

symmetry broken phase mainly by the order parameter and
such a dynamically generated mass was found to be larger
than the UV cutoff. By assuming that this result survives
the Wick rotation back to real time where the UV-IR
crossover marks the separation of the relativistic and
nonrelativistic domain one is left with the conjecture that
the first order symmetry breaking is an intrinsically non-
relativistic phenomenon in this model.
The symmetric phase has a surprising feature, as well, it

supports a new second order transition at the spontaneous
breakdown of the symmetry ϕ → −ϕ due to the local
minima of the potential appearing for sufficiently negative
quartic coupling constant. Several other phase transitions
are expected due to the competition of different terms in the
potential.

The phase structure is checked by Monte-Carlo simu-
lation but the result is inconclusive owing to the presence of
lattice artefacts modifying the scaling behavior, and the
slowness of the convergence of the random walk just in the
region of the parameter space where the new phase
transitions may appear. It is pointed out that the known
methods to speed up a local update algorithm by nonlocal
steps have to be refined close to a first order phase
transition.
We are therefore left with the conjecture of a more

involved phase diagram of the ϕ6 model and a number of
problems waiting for clarification, we mention but few of
them: How does the phase structure change by extending
the calculation for higher order polynomials? What kind of
further phase transitions occur as the result of the com-
petition of different nonquadratic terms in the potential?
How to reach the phase mixing region of the model? Is
there first order phase transition with mass below the
cutoff? How to improve the Monte-Carlo algorithm to
go closer to the first order transition?
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