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We examine the question of scale versus conformal invariance on maximally symmetric curved
backgrounds and study general two-derivative conformally invariant free theories of vectors and tensors.
For spacetime dimension D > 4, these conformal theories can be diagonalized into standard massive fields
in which unbroken conformal symmetry nontrivially mixes components of different spins. In D ¼ 4, the
tensor case becomes a conformal theory mixing a partially massless spin-2 field with a massless spin-1
field. For massless linearized gravity in D ¼ 4, we confirm through direct calculation that correlation
functions of gauge-invariant operators take the conformally invariant form, despite the absence of standard
conformal symmetry at the level of the action.
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I. INTRODUCTION

Quantum field theories (QFTs) are generically expected
to arrive at renormalization group (RG) fixed points in their
low-energy limit (and high-energy limit if the theory is UV
complete). By definition, the physics of theories at RG
fixed points is unchanged as the energy of the theory is
scaled up or down. In flat space this is equivalent to the
theory being invariant under a rigid scaling of the Cartesian
coordinates:

δxμ ¼ λxμ; ð1:1Þ

where λ is a constant. When studied in detail, many of these
theories are found to also be invariant under the entire
conformal algebra, a larger algebra of transformations that
includes the special conformal transformations

δxμ ¼ 2ðb · xÞxμ − bμx2; ð1:2Þ

where bμ is a constant vector. Invariance under the full
conformal algebra is very desirable; it is a highly con-
straining property, and there are numerous well-developed

techniques for understanding conformal theories. However
it is unclear what properties a general theory must have in
order to undergo this symmetry enhancement. There are
proofs and strong arguments in both two and four space-
time dimensions that scale-invariant theories which are
unitary and have a local stress energy tensor and a discrete
operator spectrum are conformally invariant [1–4] as well
as examples of nonunitary and nonlocal theories that are
scale but not conformally invariant [5,6]. However in
general dimension there are examples of theories with
the same assumptions that do not have this symmetry
enhancement [7–9] (see also [10,11] for more general
arguments from the algebraic QFT viewpoint). Recently,
it was conjectured that shift symmetry may play a vital role,
as it can explain the lack of enhancement to conformal
invariance in known examples of interacting scale-invariant
theories [9,12], but this argument does not extend to free
theories. Clearly more work is needed to understand the
interplay between these two symmetries (see [13] for a
general overview of scale vs conformal invariance).
For theories with a local, gauge-invariant stress-energy

tensor, the form of the trace of the stress-energy tensor and
its correlation functions can be used to understand the
presence of scale and/or conformal invariance. Here we
wish to study this symmetry enhancement in theories which
may not have such an operator. The prime example of such
a case is linearized gravity, the IR fixed point of quantum
gravity. To understand the presence of scale and conformal
invariance in these types of theories, we must look directly
at the scale and conformal transformations of the correla-
tion functions of the gauge-invariant operators present in
the theory.
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We recently studied linearized gravity on flat space from
this perspective [14], as an example of a unitary theory with
no stress tensor that is scale but not conformally invariant in
D > 4. We found that, analogous to Maxwell theory [7,8],
in D > 4 the theory can be embedded into a nonunitary
conformal field theory by adding specific gauge-fixing
terms to the action. We also confirmed that, although there
is no standard conformal invariance at the level of the
action for linearized gravity in D ¼ 4, the correlation
functions of gauge-invariant operators, in this case the
linearized Weyl tensor, do have the form dictated by
conformal invariance.
One of the aims in this paper is to extend the results

of [14] to the other maximally symmetric spacetime
backgrounds, namely de Sitter (dS) and anti–de Sitter
(AdS) spacetimes. Conformal correlators on maximally
symmetric backgrounds have previously been studied in
e.g. [15–18], and conformally invariant equations have
been classified [19,20]. We begin by showing how there is
no natural notion of a scale but not conformal theory on
(A)dS, because there is no subalgebra of the conformal
algebra of (A)dS that is strictly larger than the isometry
algebra but strictly smaller than the conformal algebra, so
there is no generator that one could call a scale transformation.
We then go on to study all the possible bosonic single-

field lower spin two-derivative free conformal theories on
(A)dS: scalar theories in Sec. III, vector theories in Sec. IV,
and spin-2 theories in Sec. V. For the scalar, it is well
known that there is a specific mass value at which it
becomes conformal. For the vector, the massless theory is
conformal forD ¼ 4, but we will see that forD > 4 there is
no mass value at which the Proca theory becomes con-
formal. There is, however, a two-derivative vector theory
with noncanonical kinetic terms which is conformal for
D > 4 (and reduces to the massless case when D ¼ 4). By
diagonalizing this theory, we will see that it propagates a
massive vector, with a particular mass analogous to the
scalar’s conformal mass, as well as a conformal scalar, and
that the conformal symmetry acts in a nontrivial way which
mixes the two fields while still acting linearly. For the
tensor, there is no massive Fierz-Pauli theory which is
conformal. The only conformal case is the massless tensor
inD ¼ 4, which is not conformal in the standard way at the
level of the action but whose correlators of gauge-invariant
operators are in fact conformal. For D ≥ 4, there is a two-
derivative action with noncanonical kinetic terms which
does have conformal symmetry. For D > 4, it diagonalizes
into standard massive fields of spin 2, 1, and 0, all with
particular conformal masses generalizing the scalar’s con-
formal mass. The conformal symmetry mixes these fields
into each other while still acting linearly. For D ¼ 4, this
conformal action gets an enhanced scalar gauge symmetry,
and the theory diagonalizes into a partially massless spin-2
field and a massless spin-1 field, again with conformal
symmetry mixing them. We will see that this conformal

partially massless theory shares many properties with
linearized conformal gravity.
Conventions. D is the spacetime dimension, we use the

mostly plus metric signature, and indices are (anti)sym-
metrized with weight one. We use the curvature conven-
tions of [21]. Formulas are written for dS space where the
radius is 1=H, so that Rμνρσ ¼ H2ðgμρgνσ − gμσgνρÞ. Results
for AdS space of radius L can be obtained via the
replacement H2 → −1=L2. Tensors are symmetrized and
antisymmetrized with unit weight [e.g. tðμνÞ ¼ 1

2
ðtμν þ tνμÞ]

and the notation ð� � �ÞT means we take the fully traceless
and fully symmetric part of the enclosed indices. Young
tableaux are in the antisymmetric convention.

II. CONFORMAL TRANSFORMATIONS, SCALE
TRANSFORMATIONS AND ISOMETRIES

The infinitesimal conformal symmetries of a metric gμν
are those generated by conformal Killing vectors (CKVs),
vector fields ξμ that satisfy the conformal Killing equation

∇μξν þ∇νξμ ¼ 2fgμν; ð2:1Þ

where fðxÞ is some scalar function. Taking the trace of this
equation implies f ¼ 1

D∇ · ξ, and (2.1) is equivalent to

∇μξν þ∇νξμ −
2

D
∇ · ξgμν ¼ 0: ð2:2Þ

The set of vector fields satisfying these equations form a
finite-dimensional Lie algebra under the Lie bracket, which
is the algebra of conformal symmetries of gμν. In spacetime
dimensions D > 2, the maximal dimension of this algebra
is ðDþ 1ÞðDþ 2Þ=2.
On the other hand, the isometries of a metric gμν are

generated by Killing vectors, which satisfy the Killing
equation ∇μξν þ∇νξμ ¼ 0. These are the subset of con-
formal Killing vectors for which f ¼ 1

D∇ · ξ ¼ 0, and they
form a subalgebra under the Lie bracket. The maximal
dimension of this algebra is DðDþ 1Þ=2.
We can define a scale transformation of a general

spacetime as one for which the function f on the right-
hand side of (2.1) is a nonzero constant, i.e. f ¼ 1

D∇ ·
ξ ¼ const ≠ 0, so that the metric is simply rescaled by the
transformation rather than distorted. Wewill call the Killing
vectors with this property scale Killing vectors, also called
homothetic Killing vectors in the literature; see e.g. [22].
These also form a subalgebra of the algebra of conformal
Killing vectors under the Lie bracket and contain as a
subalgebra the algebra of isometries. In summary, we have
the inclusions

isometries ⊆ scale transformations

⊆ conformal transformations: ð2:3Þ
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A. Flat space

On flat space, gμν ¼ ημν, a standard basis of conformal
Killing vectors is the following:

Pμ ¼ ∂
μ;

Jμν ¼ xν∂μ − xμ∂ν;

D ¼ xμ∂μ;

Kμ ¼ 2xμxν∂ν − x2∂μ; ð2:4Þ

where Pμ and Jμν generate translations and the Lorentz
transformations, respectively, which are the isometries of
flat spacetime. D and Kμ generate dilatations and the
special conformal transformations, respectively. A generic
conformal Killing vector field can be written as the linear
combination

ξ ¼ ξμ∂μ ¼ bμKμ þ λDþ 1

2
ωμνJμν þ aμPμ; ð2:5Þ

with

ξμ ¼ 2ðb · xÞxμ − bμx2 þ λxμ þ ωμ
νxν þ aμ: ð2:6Þ

Here we can see that for the isometries, parametrized by aμ

and ωμν, we indeed have ∂ · ξ ¼ 0, and for the additional
scale and special conformal transformations, parametrized
by λ and bμ, we have ∂ · ξ ≠ 0 with ∂ · f ¼ const for the
scale transformation.
The conformal Killing vectors satisfy the following

nonzero commutations relations under the Lie bracket:

½D;Pμ� ¼ −Pμ;

½D;Kμ� ¼ Kμ;

½Kμ; Pν� ¼ 2ð−ημνDþ JμνÞ;
½Jμν; Kρ� ¼ ηρμKν − ηρνKμ;

½Jμν; Pρ� ¼ ηρμPν − ηρνPμ;

½Jμν; Jσρ� ¼ ημσJνρ − ηνσJμρ þ ηνρJμσ − ημρJνσ: ð2:7Þ

This algebra is soð2; DÞ. This can be seen more clearly by
assembling the generators into a (Dþ 2)-dimensional
antisymmetric matrix JAB with A;B ¼ −1; 0; 1;…; D as
follows:

JAB ¼

0
B@

0 D 1
2
ð1mPν −mKνÞ

−D 0 1
2
ð1mPν þmKνÞ

− 1
2
ð1mPμ −mKμÞ − 1

2
ð1mPμ þmKμÞ Jμν

1
CA; ð2:8Þ

where m is an arbitrary mass scale, upon which the
commutation relations (2.7) become

½JAB; JCD� ¼ GACJBD − GBCJAD þ GBDJAC − GADJBC;

ð2:9Þ

with

GAB ¼

0
BB@

−1
1

ημν

1
CCA; ð2:10Þ

manifesting the structure of soð2; DÞ.
The subalgebra of isometries, the conformal Killing

vectors for which ∂ · ξ ¼ 0, are spanned by Jμν and Pμ,
forming the isometry algebra isoð1; D − 1Þ.
The subalgebra of scale transformations is spanned by

Jμν, Pμ, and D. It is the isometry algebra along with the
scale transformation D. This algebra lies strictly between
the isometries and the conformal symmetries; namely, it
is strictly smaller than the full conformal algebra and

strictly larger than the isometry subalgebra. On flat space,
it thus makes sense to ask if a theory can be scale but not
conformally invariant. Such a theory is invariant under all
the conformal transformations except for those spanned
by Kμ, the special conformal generators.

B. de Sitter space

Now consider de Sitter space in D dimensions, dSD.
The conformal Killing equations (2.2) are invariant under
Weyl transformations; i.e. if ξμ is a CKV for the metric
gμν, it is also a CKV for the Weyl transformed metric
e2σgμν, for any scalar function σðxÞ. dS space is con-
formally related to flat space, which can be made explicit
by using coordinates xμ obtained by a stereographic
projection of the dS hyperboloid, in which the metric
takes the form

gμν ¼
1

ð1þ H2

4
x2Þ2 ημν; ð2:11Þ

where x2 ≡ ημνxμxν. These coordinates are Riemann
normal about the origin xμ¼0, and the flat limit H→0
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is manifest. Since the metric in these coordinates is a
conformal factor times the flat metric, the expressions
for the CKVs are exactly the same as the flat space ones
in (2.4), and so their generators satisfy the same algebra
(2.7) or (2.9). Thus the conformal algebra of dSD is
soð2; DÞ, the same as that of flat space.
To find the isometries of dSD in these coordinates, we

need to find the subset of (2.4) that satisfies ∇μξ
μ ¼ 0,

with ∇μ now the covariant derivative with respect to the
metric (2.11). Clearly the Lorentz transformations Jμν
are among these, since these are manifestly isometries of
the metric (2.11). Using the Weyl transformation rule
∇μξ

μ ¼ ∂μξ
μ þ D

Ω ξ
μ
∂μΩ with Ω ¼ 1

1þH2

4
x2
, we can search

for any other isometries, with the result that the linear
combinations

P̃μ ≡ Pμ þH2

4
Kμ ð2:12Þ

are the only other Killing vectors besides Jμν. The
commutators among the Killing vectors form the isom-
etry algebra of dSD:

½Jμν; Jσρ� ¼ ημσJνρ − ηνσJμρ þ ηνρJμσ − ημρJνσ;

½Jμν; P̃ρ� ¼ ηρμP̃ν − ηρνP̃μ;

½P̃μ; P̃ν� ¼ H2Jμν: ð2:13Þ

In this form the flat limit H → 0 manifestly reproduces
the Poincaré algebra. We can arrange the isometries into
a (Dþ 1)-dimensional antisymmetric matrix J IJ with
I; J ¼ 0; 1;…; D as follows:

J IJ ¼
 

0 1
H P̃μ

− 1
H P̃μ Jμν

!
; ð2:14Þ

upon which the commutation relations (2.13) become

½J IJ;J KL� ¼ GIKJ JL − GJKJ IL þ GJLJ IK − GILJ JK;

ð2:15Þ

with

GIJ ¼
 
1

ημν

!
; ð2:16Þ

showing that the isometry algebra of dSD is soð1; DÞ. We
can also see that this is the subalgebra of the full
conformal algebra consisting of the lower two rows
and columns of (2.8), upon choosing m ¼ H=2.

We can add back the non-Killing combinations of
conformal generators by packaging them into a (Dþ 1)-
dimensional vector PI by defining1

P0 ¼ D; Pμ ¼ 1

H

�
Pμ −

H2

4
Kμ

�
: ð2:20Þ

These are now the components J−1;I of (2.8) and the full
conformal commutation relations (2.7) and (2.15) can be
written as

½J IJ;J KL� ¼ GIKJ JL − GJKJ IL þ GJLJ IK − GILJ JK;

½J IJ;PK� ¼ GKIPJ − GKJPI;

½PI;PJ� ¼ −J IJ: ð2:21Þ

This manifests the dS isometry subalgebra of the full
conformal algebra; the soð1; DÞ subalgebra is spanned
by J IJ, and the nonisometries PI transform in the vector
representation of this soð1; DÞ.
We can now address the question of whether there exists

a scale but not conformal algebra on dS, i.e. whether the
subalgebra of scale transformations is strictly smaller than
the conformal algebra soð2; DÞ but strictly larger than the
isometry subalgebra soð1; DÞ. The answer is no: soð1; DÞ
is a maximal subalgebra of soð2; DÞ, so there is in fact no
subalgebra which lies strictly between the isometries and
the conformal transformations. One way to see this is that
since the PI transform in the vector representation of
soð1; DÞ, and since this representation is irreducible, there
is no way to pick only some of the PI’s and add them to
soð1; DÞ without generating all the rest of them through
commutators with the soð1; DÞ transformations. It follows
that there are no conformal Killing vectors for which ∇ · ξ
is a nonzero constant. In this sense, it is impossible even at
the algebraic level to have a theory which is scale but not

1We can also express these in terms of embedding coordinates:
let XI , I ∈ ð0; μÞ, be coordinates for a flat embedding space with
metric ηAB ¼ diagð1; ημνÞ. Then the dSD hyperbola is the surface
ηABXAXB ¼ 1

H2, parametrized in the coordinates (2.11) by

X0 ¼ 1

H

−1þ H2

4
x2

1þ H2

4
x2

; Xμ ¼ xμ

1þ H2

4
x2

: ð2:17Þ

Thinking of the XI as scalars on dSD, the components of the
conformal Killing vectors (2.20) can be written as gradients of
these scalars:

ðPIÞμ ¼
1

H
∇μXI: ð2:18Þ

These scalars also satisfy the equation

∇μ∇νXI ¼ −H2gμνXI: ð2:19Þ

FARNSWORTH, HINTERBICHLER, and HULÍK PHYS. REV. D 110, 045011 (2024)

045011-4



conformally invariant on dS. An identical argument with
some signs changed shows that the same is true of AdS.

C. Transformations of fields

We next recall how a rank-r tensor field Tμ1…μr on a
manifold with a general metric gμν transforms under
conformal transformations. To do this, it is convenient to
first start with Weyl transformations, under which the
metric and tensor field transform as

gμν → e2σgμν; Tμ1…μr → e−ΔWσTμ1…μr ; ð2:22Þ

where σðxÞ is an arbitrary scalar function and ΔW is a
constant we call the Weyl weight of the tensor T.
Weyl transformations allow us to relate correlators of

CFTs on conformally related spacetimes. Given local
primary operators O1;O2;… (potentially with tensor

indices, which we suppress), with Weyl weights ΔðO1Þ
W ;

ΔðO2Þ
W ;…, the correlators on Weyl-related spacetimes are

related at separated points as2

hO1ðx1ÞO2ðx2Þ � � �iΩ2g ¼ Ωðx1Þ−Δ
ðO1Þ
W Ωðx2Þ−Δ

ðO2Þ
W

� � � hO1ðx1ÞO2ðx2Þ � � �ig; ð2:23Þ

with ΩðxÞ ¼ eσðxÞ.
Infinitesimally, the Weyl transformation (2.22) takes the

form

δWgμν ¼ 2σgμν; δTμ1…μr ¼ −ΔWσTμ1…μr : ð2:24Þ

Under diffeomorphisms generated by an arbitrary vector ξμ,
the metric and tensor field transform via the Lie derivative:

δgμν ¼ −Lξgμν ¼ −ð∇μξν þ∇νξμÞ;
δTμ1…μr ¼ −LξTμ1…μr : ð2:25Þ

The conformal transformations are precisely the combina-
tion of Weyl transformations and diffeomorphisms that
leave the metric invariant:

ðδW þ δDÞgμν ¼ 0; ð2:26Þ

which imposes ∇μξν þ∇νξμ ¼ 2σgμν, meaning that ξμ is a
conformal Killing vector and

σ ¼ 1

D
∇ · ξ: ð2:27Þ

The tensor field then transforms as

δTμ1…μr ¼ −
�
Lξ þ

ΔW

D
∇ · ξ

�
Tμ1…μr : ð2:28Þ

On flat space, plugging in the conformal Killing vectors
(2.4), we get the transformation laws

δPμ ¼ −∂μ;

δJμν ¼ xμ∂ν − xν∂μ þ J μν;

δD ¼ −ðxμ∂μ þ ΔÞ;
δKμ ¼ −2xμxν∂ν þ x2∂μ − 2xμΔ − 2xνJ μν; ð2:29Þ

where ðJ μνÞμ1…μr
ν1…νr ¼Pr

i¼1 δ
ν1
μ1…δνi−1μi−1ð2δ½μμiην�νiÞδνiþ1

μiþ1
…

δνrμr is the Lorentz generator on a rank-r tensor and

Δ ¼ ΔW þ r: ð2:30Þ

The transformation laws (2.29) are those of a spinning
conformal primary with conformal weight Δ.
For dS space, we can evaluate (2.28) using the metric

(2.11). The Lie derivative does not depend on the metric
and can be written using ordinary derivatives. Using the
Weyl transformation rule ∇μξ

μ ¼ ∂μξ
μ þ D

Ω ξ
μ
∂μΩ with

Ω ¼ 1

1þH2

4
x2
, we evaluate the rest in terms of ordinary

derivatives giving the rule

δTμ1…μr ¼ −
�
Lξ þ

Δ − r
D

�
∂ · ξ −

D
2

H2ξ · x

1þ H2

4
x2

��
Tμ1…μr ;

ð2:31Þ

where we have also used (2.30). When ξμ is one of the dS
isometries, this reduces to only the Lie derivative term.
When H → 0, it reduces to the flat space conformal
transformations.

III. SCALARS

The Lagrangian for a canonical free scalar ϕ of mass m
on dSD is

1ffiffiffiffiffiffi−gp L ¼ −
1

2
∇μϕ∇μϕ −

1

2
m2ϕ2: ð3:1Þ

A. Conformal symmetry

We know that the Lagrangian (3.1) should be confor-
mally invariant for a particular value of the mass where the
mass term corresponds to the conformal coupling to the
Ricci scalar, which is a constant for dS. The conformal
transformation of the scalar is (2.31) with r ¼ 0:

δϕ ¼ −
�
ξμ∂μ þ

Δ
D

�
∂ · ξ −

D
2

H2ξ · x

1þ H2

4
x2

��
ϕ: ð3:2Þ2There can also be a Weyl anomaly that invalidates this

formula, but it is local and so can only do so at coincident points.
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Demanding that (3.1) be invariant up to a total derivative
under (3.2) fixes3

m2 ¼ DðD − 2Þ
4

H2; Δ ¼ D
2
− 1; ð3:4Þ

which is the well-known conformal mass value and
canonical dimension for a free scalar. This also shows
that there are no other values of m2 and Δ for which the
action (3.1) is conformally invariant with ϕ transforming in
the standard way.
This conformal symmetry can be seen as a consequence

of the existence of the Weyl invariant Lagrangian where the
field has Weyl weight ΔW ¼ Δ ¼ D

2
− 1:

1ffiffiffiffiffiffi−gp LWeyl;ϕ ¼ −
1

2
∇μϕ∇μϕ −

ðD − 2Þ
8ðD − 1ÞRϕ

2; ð3:5Þ

which reduces to (3.1) on dS where the Ricci scalar
R ¼ DðD − 1ÞH2.

B. Correlator

The conformal mass value for (3.1) can also be seen
directly from correlation functions of ϕ. Consider for
simplicity the Euclidean dS correlator hϕðxÞϕðx0Þi (i.e.
the correlator on the sphere of radius 1=H). The field
satisfies the free Euclidean equation of motion

ð∇2 −m2Þϕ ¼ 0; ð3:6Þ

and so the correlator must satisfy this at separated points.
By dS symmetry, the correlator must be a function of the

geodesic distance μ between x and x0, which we express in
terms of the variable Z defined as Z ¼ cos ðHμÞ (see the
Appendix):

hϕðxÞϕðx0Þi ¼ GðZÞ: ð3:7Þ

On the sphere, Z∈ ½−1; 1� and μ∈ ½0; π=H�, with Z ¼ 1,
μ ¼ 0 the coincident point and Z ¼ −1, μ ¼ π=H the
antipodal point. In terms of the variable Z, the equation
of motion (3.6) at separated points becomes

ðZ2 − 1ÞG00ðZÞ þDZG0ðZÞ þ m2

H2
GðZÞ ¼ 0: ð3:8Þ

The two boundary conditions that fix the solution to this
second-order differential equation are (i) the solution
should be regular at the antipodal point, and (ii) the
coincident-point singularity should be the same as that
of the flat space correlator:

GðZðμÞÞ⇒
μ→0

ΓðD=2 − 1Þ
4πD=2

1

μD−2 : ð3:9Þ

Enforcing these boundary conditions, the solution
to (3.8) is

GðZÞ ¼HD−2ΓðδþÞΓðδ−Þ
2DπD=2ΓðD=2Þ 2F1

�
δ−;δþ;

D
2
;
Zþ 1

2

�
; ð3:10Þ

where δ� are the scalar “dual conformal dimensions”
corresponding to the mass obtained via the (A)dS/CFT
mass formula (6.2),

scalar∶ δ� ≡ d
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

4
−
m2

H2

r
; d≡D − 1: ð3:11Þ

As a function of m2, (3.10) is well defined except for
poles coming from Γðδ−Þ at the values

m2 ¼ −kðkþD − 1ÞH2; k ¼ 0; 1; 2;…; ð3:12Þ

for which δ− ¼ −k. These are the values at which the scalar
acquires enhanced Galileon-like shift symmetries [23,24],
the first case being the massless scalar k ¼ 0 which has the
simple shift symmetry ϕ → ϕþ const. At these values, the
shift symmetries should be gauged [25], and correlators of
the shift-invariant operators will be finite.
At the conformal value of the mass (3.4), we have

δ� ¼ d�1
2

and (3.10) simplifies to

GðZÞ ¼ HD−2ΓðD=2Þ
ðD − 2Þð2πÞD=2

1

ð1 − ZÞD=2−1 : ð3:13Þ

(WhenD ¼ 2 we see a pole because the conformal value in
this case,m2 ¼ 0, coincides with the k ¼ 0 shift symmetric
value.) In the coordinates xμ with the metric (2.11), the
geodesic distance between points xμ and x0μ is given by
(A9), and (3.13) becomes

Gðx; x0Þ ¼ ΩðxÞ−ΔΩðx0Þ−Δ
�
ΓðΔÞ
4πΔþ1

1

jx − x0j2Δ
�
; ð3:14Þ

with

ΩðxÞ ¼ 1

1þ H2

4
x2

; Δ ¼ D
2
− 1: ð3:15Þ

The factor in square brackets in (3.14) is the correlator of a
free massless scalar on flat space, which has the confor-
mally invariant structure ∼jx − x0j−2Δ. This demonstrates
the formulas (2.23) and (2.30).

3Note that in checking the conformal symmetry, it suffices to
check it for only one of the nonisometry conformal generators,
for example the generator D for which

ξμ ¼ λxμ; δϕ ¼ −λ
�
xμ∂μ þ Δ −

1

2

ΔH2x2

1þ H2

4
x2

�
ϕ: ð3:3Þ

The rest are then guaranteed to be symmetries because of the
irreducibility of PI as discussed at the end of Sec. II B.
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IV. VECTORS

A canonical free vector field Aμ of mass m on dSD is
described by the Proca Lagrangian

1ffiffiffiffiffiffi−gp L ¼ −
1

4
F2
μν −

1

2
m2A2; ð4:1Þ

where Fμν ≡∇μAν −∇νAμ.
For m ¼ 0 we have the usual electromagnetic gauge

symmetry

δAμ ¼ ∇μΛ; ð4:2Þ

with scalar gauge parameter Λ.
In what follows we will restrict to D > 2, ignoring some

possibly interesting subtleties that occur when D ¼ 2,
where the massive vector is dual to a scalar.

A. Conformal symmetry

In the coordinates (2.11), under a conformal transfor-
mation the vector should transform as (2.31) with r ¼ 1:

δAμ ¼ −
�
ξν∂νAμ þ ∂μξ

νAν

þ Δ − 1

D

�
∂ · ξ −

D
2

H2ξ · x

1þ H2

4
x2

�
Aμ

�
: ð4:3Þ

A brute force calculation demanding that the Lagrangian
in (4.1) be invariant up to a total derivative under (4.3)
with ξμ ¼ λxμ (see footnote 3) shows that the only case that
is conformally invariant is

m2 ¼ 0; Δ ¼ 1; D ¼ 4: ð4:4Þ

Thus only the massless vector has a conformally invariant
action, and only inD ¼ 4, where it has the scaling dimension
Δ ¼ 1. In flat space, themassless vector is scale invariant but
not conformally invariant inD ≠ 4 [7,8]; there is no analogof
this in (A)dS as per the discussion in Sec. II B.
There is a conformal theory away from D ¼ 4 if we

allow for the most general Lagrangian with up to two
derivatives. Consider the Lagrangian

1ffiffiffiffiffiffi−gp L ¼ −
1

4
F2
μν −

ξ

2
ð∇ · AÞ2 − 1

2
m2A2; ð4:5Þ

where ξ parametrizes the deviation from the Maxwell
kinetic structure. Demanding that this Lagrangian be
invariant up to a total derivative under (4.3) yields a unique
solution4

ξ ¼ D − 4

D
; m2 ¼ ðD − 4ÞðD − 2Þ

4
H2; Δ ¼ D

2
− 1;

ð4:6Þ

giving the Lagrangian

1ffiffiffiffiffiffi−gp LA ¼ −
1

4
F2
μν −

ðD − 4Þ
2D

ð∇ · AÞ2

−
ðD − 4ÞðD − 2Þ

8
H2A2: ð4:7Þ

This coincides with the massless vector solution (4.4) when
D ¼ 4. In D > 4, this is an (A)dS version of the κ ¼ 1,
s ¼ 1 “special” conformal field in the classification of [26].
It was found earlier in [27] and discussed further along with
higher spin generalizations in [28–32]. It also appears in
tractor constructions of conformal fields [33,34].
The theory (4.7) comes from the following Weyl

invariant Lagrangian, where Aμ transforms with Weyl
weight ΔW ¼ Δ − 1 ¼ D

2
− 2:

1ffiffiffiffiffiffi−gp LWeyl;A ¼ −
1

4
F2
μν −

ðD − 4Þ
2D

ð∇ · AÞ2

þ ðD − 4Þ
2ðD − 2ÞA

μAν

�
Rμν −

D
4ðD − 1ÞRgμν

�
:

ð4:8Þ

This reduces to (4.7) when restricted to dS space.
For D ≠ 4 the conformal model (4.7) is not purely a

massive vector because the altered kinetic term introduces
new degrees of freedom. (Nor can it be considered a gauge-
fixed massless vector: the mass term is nonvanishing and it
propagates massive modes.) One way to see this is to look
at the equations of motion from (4.7) which read

�
∇2 −

ðD2 − 2Dþ 4Þ
4

H2

�
Aμ −

4

D
∇μð∇ · AÞ ¼ 0: ð4:9Þ

Taking a divergence, we find

ðD − 4Þ
D

�
∇2 −

DðD − 2Þ
4

H2

�
∇ · A ¼ 0: ð4:10Þ

The analogous divergence on the equation of motion for a
massive vector would have yielded a constraint ∇ · A ¼ 0.
Here we instead find a wave equation for the scalar quantity
∇ · A. In fact, it is the wave equation for a conformal scalar
with the mass (3.4), so for D ≠ 4 we can expect a
propagating conformal scalar mode in addition to a vector
mode.
We can explicitly separate the extra physical mode at the

level of the Lagrangian as follows. Starting with (4.7), we
introduce an auxiliary scalar ϕ through

4In the ansatz (4.5) we have implicitly assumed that the leading
structure ð∇μAνÞ2 does not vanish. Relaxing this assumption does
not yield any other nontrivial solutions.
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1ffiffiffiffiffiffi−gp L ¼ −
1

4
F2
μν −

ðD − 4ÞðD − 2Þ
8

H2A2

þ ϕ∇ · Aþ D
2ðD − 4Þϕ

2: ð4:11Þ

The ϕ equations of motion give

ϕ ¼ −
ðD − 4Þ

D
∇ · A; ð4:12Þ

which upon plugging into (4.11) recovers (4.7). We can
then diagonalize (4.11) by the field redefinition

Aμ → Ãμ −
4

H2ðD − 4ÞðD − 2Þ∇μϕ; ð4:13Þ

after which we have

1ffiffiffiffiffiffi−gp L ¼ −
1

4
F̃2
μν −

1

2
m̃2

Ã
Ã2 −

1

m̃2
Ã

�
−
1

2
ð∇ϕÞ2 − 1

2
m2

ϕϕ
2

�
;

ð4:14Þ

where

m̃2
Ã
¼ ðD − 4ÞðD − 2Þ

4
H2; m2

ϕ ¼ DðD − 2Þ
4

H2: ð4:15Þ

We now see that the dynamical degrees of freedom are
those of a massive vector and a massive scalar, with masses
given by (4.15). The scalar mass is the conformal mass
(3.4). The vector mass can be considered a generalization of
the scalar’s conformal mass: note that Ã and ϕ both have
the same dual CFT dimension δ� ¼ d�1

2
, where d≡D − 1.

ForD > 4 the vector and scalar kinetic terms have opposite
signs on dS and the same signs on AdS. However, the sign
of the vector mass indicates that the vector field is
nonunitary on AdS and healthy on dS. For D ¼ 3, the
same statements are true with dS and AdS reversed. Thus
for D ≠ 4, the combined set of fields is always nonunitary
on both dS and AdS.
The Lagrangian in (4.14) is conformally invariant since it

was arrived at by field redefinitions from the conformally
invariant Lagrangian (4.7). However, because of the diag-
onalizing field redefinition (4.13), in terms of the fields Ãμ

and ϕ, the conformal symmetry acts in a complicated
way, mixing the two fields together (though it is still
linearly realized). The two fields Ãμ and ϕ, each a separate
irreducible representation from the point of view of the dS
algebra, join together into a larger irreducible representa-
tion of the larger conformal algebra (see [35] for more
on how conformal representations break up into dS
representations).

B. Correlator

We now turn to explicitly computing the correlators for
the conformal vector theories, in order to confirm that they
take the unique conformally invariant form. In D ≠ 4, the
theory (4.7) has no gauge invariance and is conformally
invariant at the level of the action, and thus we should
be able to see conformal invariance directly by studying the
correlators of the basic field Aμ. In order to deal with the
noncanonical structure of these cases, we will first compute
the correlators of the component massive fields in the
diagonalized Lagrangian (4.14) and then use these to
form the correlator of the original field through the field
redefinition (4.13). In D ¼ 4, conformal invariance
requires m2 ¼ 0 and the action (4.1) has the Maxwell
gauge symmetry δAμ ¼ ∇μΛ. In this case, we must look at
the two-point function of the basic gauge-invariant oper-
ator, namely the field strength Fμν ¼ ∇μAν −∇νAμ. This
serves as a warm up for the spin-2 case, where the link
between conformal invariance of the correlators and stan-
dard conformal invariance of the action is broken.
Consider first the generic massive Proca theory (4.1).

We will need the Euclidean dS two-point function
hAμðxÞAν0 ðx0Þi. Maximal symmetry implies that this corre-
lator has the following structure [36] (see also [37,38]):

hAμðxÞAν0 ðx0Þi ¼ f1ðZÞgμν0 þ f2ðZÞnμnν0 ; ð4:16Þ

where gμν0 ðx; x0Þ is the parallel propagator along the
geodesic between x and x0, and nμðx; x0Þ and nν0 ðx; x0Þ
are the unit tangent vectors to the geodesic at the points x
and x0 (this notation follows [36]; see the Appendix for a
review and definitions and expressions in our particular
coordinate system). Here f1ðZÞ and f2ðZÞ are arbitrary
functions of the geodesic distance μ expressed through the
variable Z≡ cosðHμÞ.
The equations of motion for the massive vector Aμ are

equivalent to

ð∇2 − ðD − 1ÞH2 −m2ÞAμ ¼ 0; ∇μAμ ¼ 0: ð4:17Þ

The two-point function (4.16) must obey these equations of
motion at separated points.
Plugging the structure (4.16) into the equations of

motion (4.17) gives

f1ðZÞ ¼
ðZ2 − 1Þ
ðD − 1Þ G

0ðZÞ þ ZGðZÞ;

f2ðZÞ ¼
ðZ2 − 1Þ
ðD − 1Þ G

0ðZÞ þ ðZ − 1ÞGðZÞ; ð4:18Þ

where GðZÞ satisfies the differential equation
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ðZ2 − 1ÞG00ðZÞ þ ðDþ 2ÞZG0ðZÞ

þ
�
2ðD − 1Þ þ m2

H2

�
GðZÞ ¼ 0: ð4:19Þ

The solution to (4.19), with the boundary conditions for
Euclidean dS (regularity at the antipode and matching to
flat space behavior at the coincident point), is

GðZÞ ¼ HD

m2

ð1 −DÞΓðδþ þ 1ÞΓðδ− þ 1Þ
2Dþ1πD=2ΓðD=2þ 1Þ 2F1

×

�
δ− þ 1; δþ þ 1;

Dþ 2

2
;
Z þ 1

2

�
; ð4:20Þ

with

vector∶ δ� ¼ d
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd − 2Þ2

4
−
m2

H2

r
; d≡D − 1:

ð4:21Þ
The expressions for f1ðZÞ and f2ðZÞ from (4.18) can then
be written as

f1ðZÞ ¼ ð1 − Z2ÞΓðδþ þ 2ÞΓðδ− þ 2Þ
2DπD=2ΓðD=2Þ

HD

m2 2F1

×

�
δ− þ 2; δþ þ 2;

Dþ 4

2
;
Z þ 1

2

�

þ Z
ð1 −DÞΓðδþ þ 1ÞΓðδ− þ 1Þ

2Dþ1πD=2ΓðD=2þ 1Þ
HD

m2 2F1

×

�
δ− þ 1; δþ þ 1;

Dþ 2

2
;
Z þ 1

2

�
;

f2ðZÞ ¼ ð1 − Z2ÞΓðδþ þ 2ÞΓðδ− þ 2Þ
2DπD=2ΓðD=2Þ

HD

m2 2F1

×

�
δ− þ 2; δþ þ 2;

Dþ 4

2
;
Z þ 1

2

�

þ ðZ − 1Þ ð1 −DÞΓðδþ þ 1ÞΓðδ− þ 1Þ
2Dþ1πD=2ΓðD=2þ 1Þ

HD

m2 2F1

×

�
δ− þ 1; δþ þ 1;

Dþ 2

2
;
Z þ 1

2

�
: ð4:22Þ

The correlator becomes singular at the massless value
m2 ¼ 0. This is where the theory becomes gauge invariant
under (4.2). As we will see shortly, this singularity in the
propagator will cancel in correlators of gauge-invariant
observables.
The correlator also becomes singular, via the poles of

Γðδ− þ 1Þ, at the mass values

m2 ¼ −ðkþ 2ÞðkþD − 1ÞH2; k ¼ 0; 1; 2;…; ð4:23Þ

for which δþ ¼ dþ kþ 1 and δ− ¼ −k − 1. These are the
values at which the massive vector acquires enhanced shift

symmetries [23,39]. At these values, the shift symmetries
should be gauged and correlators of the shift-invariant
operators will be finite.

1. Conformal theory in D ≠ 4

For D ≠ 4, we saw that the conformally invariant
noncanonical vector Lagrangian (4.7) for the field Aμ

can be rewritten as a massive vector Ãμ plus a massive
scalar ϕ as in (4.14), with masses (4.15). To find the
correlators of the original vector field A, we can therefore
compute the correlators of the Proca vector Ãμ and the
scalar ϕ and then combine them using (4.13).
The scalar part of the action (4.14) is proportional to

the action (3.1) for a massive scalar with the conformal
mass value in (3.4), so the two-point function in this case is
just the two-point function (3.13) with the appropriate
normalization:

hϕðxÞϕðx0Þi ¼−m̃2
Ã

HD−2ΓðD=2Þ
ðD− 2Þð2πÞD=2

1

ð1−ZÞD=2−1 : ð4:24Þ

The vector part of the action (4.14) is proportional to the
action (4.1) for a massive vector with the conformal mass
value m̃2

Ã
in (4.15), so the two-point function in this case is

just the massive vector two-point function (4.16) and (4.22)
with this mass value, which simplifies dramatically to

hÃμðxÞÃν0 ðx0Þi ¼
HD−2ΓðD=2Þ

ðD − 2ÞðD − 4Þð2πÞD=2

1

ð1 − ZÞD=2

×
�½D − ðD − 2ÞZ�gμν0

þ ½ð3D − 2Þ − ðD − 2ÞZ�nμnν0
�
: ð4:25Þ

Now, using the relation (4.13), which tells us

Aμ ¼ Ãμ −
1

m̃2
Ã

∇μϕ; ð4:26Þ

we can form the correlator of the original Aμ:

hAμðxÞAν0 ðx0Þi ¼ hÃμðxÞÃν0 ðx0Þi þ
1

m̃4
Ã

∇μ∇ν0 hϕðxÞϕðx0Þi:

ð4:27Þ

The derivatives acting on the scalar two-point function can
be computed using the formulas in the Appendix:

1

m̃4
Ã

∇μ∇ν0 hϕðxÞϕðx0Þi ¼ −
HD−2ΓðD=2Þ

ðD − 2ÞðD − 4Þð2πÞD=2

×
1

ð1 − ZÞD=2 ½2gμν0 þ ðDþ 2

þ ðD − 2ÞZÞnμnν0 �: ð4:28Þ
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Combining (4.25) and (4.28) as in (4.27), we arrive at a
simple form for the two-point function of our original
vector field Aμ:

hAμðxÞAν0 ðx0Þi ¼
HD−2ΓðD=2Þ
ðD − 4Þð2πÞD=2

1

ð1 − ZÞD=2−1

× ðgμν0 þ 2nμnν0 Þ: ð4:29Þ

Writing this in our conformally flat coordinate system
(2.11) using the expressions in the Appendix, we have

hAμðxÞAν0 ðx0Þi ¼ ΩðxÞ−Δþ1Ωðx0Þ−Δþ1

×
�

2Δ
ðD − 4Þ

ΓðΔÞ
4πΔþ1

1

jx − x0j2Δ Iμν0 ðx; x0Þ
�
;

ð4:30Þ

where

ΩðxÞ ¼ 1	
1þ H2

4
x2

 ; Δ ¼ D

2
− 1; ð4:31Þ

and

Iμν0 ðx; x0Þ≡ ημν0 − 2
ðx − x0Þμðx − x0Þν0

ðx − x0Þ2 ð4:32Þ

is the conformally invariant tensor structure of [40] in flat
space. The term in square brackets in (4.30) has the
structure of a two-point function of a conformal primary
of spin 1 and dimension Δ in flat space. Out front we see
the Weyl factors for the transformation of this two-point
function from flat space to dS, with Weyl weight ΔW ¼
Δ − 1 for the rank-1 field, confirming (2.23) and (2.30) and
demonstrating that this noncanonical vector theory is
conformal on dSD.

2. Maxwell theory in D= 4

The two-point function for the massless vector in
maximally symmetric spacetimes was calculated explicitly
in [36]. In this section we reproduce the calculation in a
different way, showing that the two-point function of the
field strength has the expected form of a conformal primary
in D ¼ 4. Unlike [36], we start from the massive vector in
general D and carefully take the massless limit, isolating
the singularity that appears due to the gauge symmetry
(4.2). Taking the appropriate gauge-invariant linear combi-
nation of derivatives for the two-point function, the
singularity cancels and we get a finite conformally invariant
correlator for the gauge-invariant field strength.
Starting with the expressions (4.22) for the coefficients

in the massive vector two-point function (4.16), setting
m2 ¼ ϵH2 and expanding in ϵ, we have5

f1ðZÞ ¼
H2

8π2ðZ − 1Þ2
�
2 − Z
ϵ

þ ðZ3 − 3Z þ 2Þ logð1−Z
2
Þ − Z2 þ 1

ðZ þ 1Þ2 þOðϵÞ
�
;

f2ðZÞ ¼
H2

8π2ðZ − 1Þ2
�
5 − Z
ϵ

þ ðZ − 1Þ3 logð1−Z
2
Þ þ 2ðZ2 − 1Þ

ðZ þ 1Þ2 þOðϵÞ
�
: ð4:33Þ

The divergence at m2 ¼ 0 now appears as a simple
pole in ϵ.
Taking derivatives and antisymmetrizing to form the

two-point function for the field strength Fμν ¼ ∇μAν −
∇νAμ gives

hFμνðxÞFμ0ν0 ðx0Þi ¼
H4

4π2ðZ − 1Þ2 ½ðgμμ0 þ 2nμnμ0 Þ

× ðgνν0 þ 2nνnν0 Þ − ðgνμ0 þ 2nνnμ0 Þ
× ðgμν0 þ 2nμnν0 Þ�: ð4:34Þ

The 1=ϵ pole has canceled and the result is finite and
unambiguous.
Finally, plugging in the expressions (A13) for these

bitensors in our conformally flat coordinate system (2.11),
we get

hFμνðxÞFμ0ν0 ðx0Þi ¼
ΓðΔÞ
πΔ

1

jx − x0j2Δ ðIμμ0Iνν0 − Iμν0Iνμ0 Þ;

ð4:35Þ

with Δ ¼ D=2 ¼ 2 in D ¼ 4 and Iμν0 ðx; x0Þ is the con-
formal structure (4.32). This expression is exactly the
conformally invariant two-point function of a rank-r ¼ 2
antisymmetric, dimension Δ ¼ 2 primary field in flat
space. By (2.30), the Weyl weight of such a field is
ΔW ¼ Δ − r ¼ 0, so this conforms with the general expres-
sion (2.23) and shows directly that the Maxwell theory is
conformal on dS4.
In flat space, it was shown in [8] that in D > 4 the scale

but not conformally invariant Maxwell theory can be
embedded into a larger nonunitary conformal theory.

5Here and below, we found the Mathematica package HypExp
[41] useful for expanding the hypergeometric functions.
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This was possible because the correlators of Fμν, though
not conformal in D > 4, take the form of a descendent of
a conformal primary of spin 1, and so by adding a
(necessarily nonunitary) spin-1 primary to the theory, one
obtains a nonunitary conformal theory with the Maxwell

theory as a unitary but nonconformal subsector. On (A)
dS space, we find that this construction does not work.
For example, in D ¼ 6, taking a descendent of the
conformal structure (4.29), we obtain a correlator of
the form

h∇½μAν�ðxÞ∇½μ0Aν0�ðx0Þi ∼
1

ðZ − 1Þ3
��

gμμ0 þ
Z þ 5

2
nμnμ0

��
gνν0 þ

Z þ 5

2
nνnν0

�
− ðμ ↔ νÞ

�
: ð4:36Þ

On the other hand, the massless vector correlator in D ¼ 6 gives

hFμνðxÞFμ0ν0 ðx0Þi ∼
Z − 3

ðZ − 1Þ3
��

gμμ0 þ
Z − 7

Z − 3
nμnμ0

��
gνν0 þ

Z − 7

Z − 3
nνnν0

�
− ðμ ↔ νÞ

�
: ð4:37Þ

These have different tensor structures. In the flat limit where Z → 1, both reduce to Eq. (3.2) of [8], but they differ away
from flat space.

V. TENSORS

A spin-2 field on dSD with mass m is described by the Fierz-Pauli Lagrangian [42] extended to curved space (see Sec. 5
of [43] for a review):

1ffiffiffiffiffiffi−gp LFP;m2ðhÞ ¼ −
1

2
∇ρhμν∇ρhμν þ∇ρhμν∇νhμρ −∇μh∇νhμν þ

1

2
∇μh∇μh

þ ðD − 1ÞH2

�
hμνhμν −

1

2
h2
�
−
1

2
m2ðhμνhμν − h2Þ: ð5:1Þ

For generic m2, this has no gauge symmetry and

describes a massive spin-2 particle with DðD−1Þ
2

− 1 propa-
gating degrees of freedom. When m2 ¼ 0 we have the
linear diffeomorphism gauge symmetry

δhμν ¼ ∇μξν þ∇νξμ; ð5:2Þ

with vector gauge parameter ξμðxÞ, and the theory describes
a massless spin-2 field with DðD−3Þ

2
propagating degrees of

freedom. When m2 ¼ ðD − 2ÞH2 we have the double-
derivative gauge symmetry

δhμν ¼ ∇μ∇νΛþH2gμνΛ; ð5:3Þ

with scalar gauge parameter ΛðxÞ, and the theory
describes a partially massless (PM) [27,44] spin-2 field

with DðD−1Þ
2

− 2 propagating degrees of freedom.
In what follows, we assume D ≥ 4, avoiding some

potentially interesting degenerate cases in lower dimensions.

A. Conformal symmetry

The conformal transformation (2.31) acting on hμν reads

δhμν ¼ −
�
ξρ∂ρhμν þ hμρ∂νξρ þ hρν∂μξρ

þ Δ − 2

D

�
∂ · ξ −

D
2

H2ξ · x

1þ H2

4
x2

�
hμν

�
: ð5:4Þ

The Fierz-Pauli theory (5.1) is not invariant under this
transformation for any value of m2 or Δ, so it is not
conformally invariant at the level of the action when hμν
transforms in the usual way. This includes the massless
graviton. It also includes the partially massless graviton,
consistent with the claims of [45] (note, however, that
the free PM graviton in D ¼ 4 is invariant under a
nonstandard version of conformal symmetry [46,47],
whose nature has yet to be fully elucidated). As we will
see later, the massless graviton is in fact conformal at the
level of correlation functions of gauge-invariant local
operators only when D ¼ 4, as happens in the flat space
case [14]. For the partially massless graviton, there is no
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conformal invariance in anyD even at the level of correlators
of gauge-invariant local operators, as argued in [45].
As in the vector case, there is a conformal theory with

action invariant under (5.4) if we allow for a noncanonical

kinetic term. Consider the general action for a symmetric
tensor hμν on dSD with up to two derivatives, which we can
write in the form

1ffiffiffiffiffiffi−gp Lh ¼
1ffiffiffiffiffiffi−gp LFP;m2ðhÞ þ ξ1∇νhμν∇ρhμρ þ ξ2∇μh∇νhμν þ ξ3∇μh∇μhþ aH2h2: ð5:5Þ

This is the Fierz-Pauli Lagrangian (5.1) along with terms parametrizing the possible deviations from the Fierz-Pauli
Lagrangian, with parameters ξ1, ξ2, ξ3, and a.
Demanding conformal invariance under (5.4), we find a one-parameter family of solutions6:

ξ1 ¼ −
ðD − 2Þ
ðDþ 2Þ ; ξ2 ¼

ðDþ 4ÞðD − 2Þ
DðDþ 2Þ ; ξ3 ¼ −

ðD − 2ÞðD2 þ 3Dþ 4Þ
2D2ðDþ 2Þ −

1

2
λ;

m2

H2
¼ DðD − 2Þ

4
; a ¼ −

ðD − 1ÞðD − 2ÞðD − 4Þ
8D

−
DðD − 2Þ

8
λ; Δ ¼ D

2
− 1; ð5:6Þ

where λ is a free parameter.7

We can make clear the reason for the free parameter λ by decomposing the field into a traceless part and a trace:

hμν ¼ h̄μν þ
1

D
φgμν; h̄μμ ¼ 0; φ ¼ h; ð5:8Þ

after which the conformal action decouples into two parts:

Lh ¼ Lφ þ Lh̄; ð5:9Þ

with

1ffiffiffiffiffiffi−gp Lh̄ ¼ −
1

2
∇ρh̄μν∇ρh̄μν þ 4

Dþ 2
∇ρh̄μν∇νh̄μρ −

D3 − 28Dþ 16

8ðDþ 2Þ H2h̄μνh̄μν; ð5:10Þ

1ffiffiffiffiffiffi−gp Lφ ¼ λ

�
−
1

2
ð∇φÞ2 −DðD − 2Þ

8
H2φ2

�
: ð5:11Þ

These are separately conformally invariant: Lφ is λ times
the conformal scalar Lagrangian [(3.1) with the mass value
in (3.4)] and Lh̄ is the unique conformal second-order
Lagrangian for a symmetric traceless tensor field. Only
the sign of λ is meaningful because there is the field
redefinition hμν → hμν þ chgμν with constant c which

preserves the ansatz (5.5) and can be used to scale the
value of λ by a positive number proportional to c2. A value
λ ≠ 0 indicates that the scalar mode is present, with the sign
of its kinetic term determined by the sign of λ. When λ ¼ 0,
the scalar is absent and the trace disappears from the
Lagrangian, indicating the presence of the linear Weyl
symmetry

δhμν ¼ Ω1gμν; ð5:12Þ

in Lh, with arbitrary scalar gauge parameter Ω1ðxÞ.
InD > 4, Lh̄ in (5.10) is a dS version of the κ ¼ 1, s ¼ 2

“special” conformal field in the classification of [26], also
discussed in [27–29,33,34,48–51]. It comes from the
following Weyl invariant Lagrangian [52], where h̄μν
transforms with Weyl weight ΔW ¼ D

2
− 3:

6In writing (5.5) we have implicitly assumed that the leading
structure ð∇ρhμνÞ2 is nonvanishing. Relaxing this assumption does
not yield any other nontrivial solutions.

7For λ ¼ − ðD−2ÞðD−4Þ
2D2 , the values of ξ1, ξ2 and ξ3 are such that

these three terms can be arranged into the form

−
ðD − 2Þ
ðDþ 2Þ

�
∇νhμν −

ðDþ 4Þ
2D

∇μh

�
2

; ð5:7Þ

which is precisely the gauge-fixing term needed in the flat space
case for the massless action to be conformal in D ≠ 4 [14].
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1ffiffiffiffiffiffi−gp LWeyl;h̄ ¼ −
1

2
∇λh̄μν∇λh̄μν þ 4

Dþ 2
∇λh̄μν∇νh̄μλ

þ 2

Dþ 2

�
Rμν −

D2 − 12

16ðD − 1ÞRgμν
�
h̄μρh̄νρ

þ bWμρνσh̄μνh̄ρσ; ð5:13Þ

which reduces to (5.10) when restricted to dS space. (Here
b is an arbitrary constant; it comes with a term that is
separately Weyl invariant, involving the Weyl tensorWμρνσ.
This term vanishes on conformally flat spaces such as dS.)
The equations of motion coming from (5.10) are

�
∇2 −

ðD − 2Þ2ðDþ 4Þ
4ðDþ 2Þ H2

�
h̄μν −

8

Dþ 2
∇ðμ∇ρh̄νÞTρ ¼ 0:

ð5:14Þ

Taking a divergence gives

D − 2

Dþ 2

��
∇2 −

D2 − 2Dþ 4

4
H2

�
∇νh̄μν −

4

D
∇μ∇ν∇ρh̄νρ

�
¼ 0: ð5:15Þ

This is the conformal vector equation (4.9) for the quantity
∇νh̄μν. It follows that the double divergence ∇μ∇νh̄μν
satisfies the scalar wave equation with the conformal mass
in (3.4). The analogous divergences on the equations for a
pure massive spin-2 would have yielded constraints, so we
expect to find an extra propagating vector and scalar mode
in the case here.
Returning to our original action (5.5) with (5.6), we

can explicitly isolate these extra scalar and vector modes
as follows. First introduce an auxiliary scalar ϕ and
auxiliary vector Aμ to the Fierz-Pauli theory (5.1) with
m2 ¼ DðD − 2Þ=4H2:

1ffiffiffiffiffiffi−gp L ¼ 1ffiffiffiffiffiffi−gp LFP;DðD−2Þ
4

H2ðhÞ þDðD − 1ÞðD − 2ÞðD − 4Þ
16

×H2

�
−hϕþDðD − 1Þ

4
ϕ2

�
þDðD − 2Þ

2
H2

×

�
−Aμ∇νhμν þ

Dþ 4

2D
Aμ∇μh

þDðDþ 2Þ
8

H2A2

�
: ð5:16Þ

The ϕ and Aμ equations of motion give

ϕ ¼ 2

DðD − 1Þ h;

Aμ ¼
4

DðDþ 2ÞH2

�
∇νhμν −

Dþ 4

2D
∇μh

�
; ð5:17Þ

which upon plugging back into (5.16) gives the solution

(5.6) with λ ¼ − ðD−2ÞðD−4Þ
2D2 (see footnote 7). We can now

diagonalize (5.16) by making the field redefinitions

hμν → h̃μν þ∇ðμAνÞ þ
1

H2

�
∇μ∇νϕ̃þD

4
H2ϕ̃gμν

�
;

ϕ → ϕ̃þ 2

DðD − 1Þ∇ · A; ð5:18Þ

after which we have

1ffiffiffiffiffiffi−gp L ¼ 1ffiffiffiffiffiffi−gp LFP;DðD−2Þ
4

H2ðh̃Þ −DðD − 2Þ
8

H2

×

�
−
1

4
F2
μν −

ðD − 4Þ
2D

ð∇ · AÞ2

−
ðD − 4ÞðD − 2Þ

8
H2A2

�

−
DðD − 1ÞðD − 2ÞðD − 4Þ

16

×

�
−
1

2
ð∇ϕ̃Þ2 −DðD − 2Þ

8
H2ϕ̃2

�
: ð5:19Þ

The Lagrangian for Aμ appearing here is proportional to
the conformal vector theory (4.7), which can itself be
diagonalized into a massive vector and a conformal scalar
ϕA as we did in Sec. IV. The Lagrangian for ϕ̃ is another
conformal scalar. In total we have a massive tensor, massive
vector and two conformal scalars. One of the conformal
scalars is the trace mode present when λ ≠ 0, so the case
λ ¼ 0, or equivalently the traceless Lagrangian (5.10),
therefore contains a massive tensor, massive vector, and
a single massive scalar, with masses

m2
h̃
¼ DðD − 2Þ

4
H2; m2

A ¼ ðD − 4ÞðD − 2Þ
4

H2;

m2
ϕA

¼ DðD − 2Þ
4

H2: ð5:20Þ

Note that these fields all have the same dual CFT dimension
δ� ¼ d�1

2
, where d≡D − 1, so they can be considered as

generalizations of the conformal mass of the scalar. As in
the vector case in Sec. IV, because of the diagonalization
(5.18), the conformal symmetry mixes the tensor, vector
and scalar modes but still acts linearly, so these fields form
an irreducible representation of the conformal algebra
which break up into three representations when restricted
to the isometry algebra.
On dS, the mass for h̃μν is above the Higuchi bound [53]

and the vector Aμ and scalar ϕA masses are positive, but the
signs of the kinetic terms for these three fields alternate. On
AdS, the relative signs of these three fields are all the same,
but all the fields have negative masses squared, and so the
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theory is nonunitary. Either way, the full theory is not
unitary on dS or AdS.

1. D= 4

An additional interesting symmetry appears in this
generalized conformal theory when D ¼ 4. In this case
the conformal mass for the tensor in (5.20) coincides with
the partially massless value m2 ¼ ðD − 2ÞH2, and the
vector becomes massless. The action (5.5) with parameters
(5.6) and λ ¼ 0 is invariant under the double-derivative
gauge transformation

δhμν ¼ ∇μ∇νΩ2; ð5:21Þ

for arbitrary scalar gauge parameter Ω2ðxÞ, in addition to
the Weyl symmetry (5.12). The Lagrangian in this case can
be written as8

1ffiffiffiffiffiffi−gp L ¼ −
1

4
CμνρCμνρ; ð5:24Þ

where

Cμνρ ≡∇μhνρ −∇νhμρ −
2

3
gρ½μð∇σhν�σ −∇ν�hÞ: ð5:25Þ

The tensor Cμνρ is invariant under (5.12) and (5.21). It is
fully traceless, antisymmetric in its first two indices, and
vanishes if antisymmetrized over all its indices; i.e. it has
the symmetries of a traceless hook tableau :

Cμνρ ¼ −Cνμρ; C½μνρ� ¼ 0; Cμν
ν ¼ 0: ð5:26Þ

This is the basic gauge-invariant local operator in the
theory, which we will compute correlators of in Sec. V B.
We can think of (5.24) as analogous to linearized conformal
gravity, with (5.25) analogous to the linearizedWeyl tensor.
Going to the traceless Lagrangian Lh̄ (5.10) by using the

Weyl symmetry to set the trace to zero, we are left with the
gauge symmetry

δh̄μν ¼ ∇ðμ∇νÞTΩ2; ð5:27Þ

inherited from (5.21). This case is the (A)dS version
of the s ¼ 2, κ ¼ 1 “type II partial-short” conformal
field in the classification of [26]. It appears in [56], and
is studied further, along with its curved space extensions,
in [50,57,58].
To diagonalize this theory, we can work with the Weyl

invariant theory because the value λ ¼ − ðD−2ÞðD−4Þ
2D2 that we

needed in order to facilitate the diagonalization coincides
with the value λ ¼ 0 where we also have invariance under
Weyl transformations (5.12). Furthermore, we do not need
to introduce the auxiliary scalar since the scalar terms
in (5.16) all vanish inD ¼ 4. We introduce the vector Aμ as
in (5.16) with D ¼ 4 and then diagonalize via the field
redefinition

hμν → h̃μν þ∇ðμAνÞ; ð5:28Þ

giving the Lagrangian

1ffiffiffiffiffiffi−gp L ¼ 1ffiffiffiffiffiffi−gp LFP;2H2ðh̃Þ −H2

�
−
1

4
F2
μν

�
: ð5:29Þ

The spin-2 field h̃μν now has the partially massless value
m2 ¼ 2H2, the vector Aμ is massless, and there is no scalar.
Thus in D ¼ 4 there is a conformal model consisting of a
PM spin-2 field and a massless spin-1 field which transform
into each other under conformal transformations.
In terms of the diagonalized fields, the two gauge

symmetries (5.12) and (5.21) become

δh̃μν ¼ ∇μ∇νΛ1 þH2gμνΛ1; δAμ ¼ ∇μΛ2; ð5:30Þ

where

Λ1 ¼
1

H2
Ω1; Λ2 ¼ −

1

2H2
Ω1 þ

1

2
Ω2: ð5:31Þ

These are precisely the PM gauge transformations (5.3) and
Uð1Þ gauge transformations (4.2) of the PM graviton and
massless vector, respectively.
On dS4, where the PM field is unitary, there is a wrong

relative sign between the PM tensor Lagrangian and the
massless vector Lagrangian. On AdS4, the relative sign is

8The standard PM action [the Fierz-Pauli theory (5.1) with
m2 ¼ ðD − 2ÞH2] can be written as

1ffiffiffiffiffiffi−gp LPM ¼ −
1

4
ðFμνρFμνρ − 2FμFμÞ; ð5:22Þ

where Fμνρ ≡∇μhνρ −∇νhμρ is the field strength invariant under
the PM symmetry (5.3) and Fμ ≡ Fμν

ν is its trace [54]. The
precise relative coefficient between the two structures in (5.22)
ensures that the divergence of the equations of motion yields the
constraint Fμ ¼ 0, which removes unwanted extra degrees of
freedom and allows only the PM spin-2 degrees of freedom to
propagate. The D-dimensional version of the Lagrangian (5.24),
using the D-dimensional expression Cμνρ ¼ Fμνρ − 2

D−1 gρ½μFν�,
instead has the structure

1ffiffiffiffiffiffi−gp L ¼ −
1

4
CμνρCμνρ ¼ −

1

4

�
FμνρFμνρ þ 2

D − 1
FμFμ

�
:

ð5:23Þ
This no longer has a divergence constraint but instead has the
Weyl symmetry (5.12) (as was noted in [55]), and as a result it
propagates an extra massless vector mode. And unlike the pure
PM theory, it is conformally invariant in D ¼ 4.
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correct, but the PM field itself is not unitary. Either way, the
model is not unitary (nonunitarity in the flat space case was
noted in [59]). Note that this is the same as the structure of
conformal gravity: conformal gravity expanded around (A)
dS propagates a partially massless graviton and a massless
graviton, and its unitarity properties are the same as was
just described with the photon replaced by the massless
graviton [60–63].
From the arguments of [45], a necessary condition for

gauge theories to be conformal is that the reducibility
parameters, i.e. the global part of the gauge symmetries,
should form representations of the conformal algebra
soð2; 4Þ. The reducibility parameters always form multip-
lets of the dS isometry algebra soð1; 4Þ, but it is a nontrivial
requirement that they combine into representations of the
larger conformal algebra. In the case at hand here, we can

see that this condition is met: the reducibility parameters of
the partially massless tensor field form a vector of the dS
isometry algebra soð1; 4Þ [64], whereas the reducibility
parameter of the massless vector field is a scalar. Together,
these join into a vector of the conformal algebra soð2; 4Þ.

B. Correlator

We will consider first the correlator of the Fierz-Pauli
theory (5.1), which we will then use to compute the
correlator of the conformal theories and the massless
graviton. The two-point function for a massive graviton
in dSD has been calculated in [65–70]. The two-point
function of a symmetric tensor hμν on Euclidean dS can be
decomposed into a linear combination of symmetric
bitensors as follows:

hhμνðxÞhμ0ν0 ðx0Þi ¼ f1ðZÞgμνgμ0ν0 þ f2ðZÞðgμμ0gνν0 þ gμν0gνμ0 Þ þ f3ðZÞnμnνnμ0nν0 þ f4ðZÞðgμνnμ0nν0 þ gμ0ν0nμnνÞ
þ f5ðZÞðgμμ0nνnν0 þ gμν0nνnμ0 þ gνν0nμnμ0 þ gνμ0nμnν0 Þ: ð5:32Þ

The equations of motion following from (5.1) are equivalent to

ð∇2 − 2H2 −m2Þhμν ¼ 0; ∇νhμν ¼ 0; hμμ ¼ 0: ð5:33Þ

Imposing these on (5.32) at separated points fixes

f1ðZÞ ¼ CD;m2

�
G00ðZÞ − m2

H2

2

ðD − 2ÞZG
0ðZÞ − m2

H2

�
1þ m2

ðD − 2ÞH2

�
GðZÞ

�
;

f2ðZÞ ¼ CD;m2

�
G00ðZÞ þ m2

H2

ðD − 1Þ
ðD − 2ÞZG

0ðZÞ þ m2

H2

ðD − 1Þ
2

�
1þ m2

ðD − 2ÞH2

�
GðZÞ

�
;

f3ðZÞ ¼ CD;m2

�
ð4ðDþ 1ÞZ þ ðD2 þ 2Dþ 4ÞÞG00ðZÞ þ 2

�
m2

H2
Z þ ðDþ 1Þ

�
Dþ m2

H2

��
G0ðZÞ

þ m2

H2
ðD − 2Þ

�
1þ m2

ðD − 2ÞH2

�
GðZÞ

�
;

f4ðZÞ ¼ CD;m2

�
−ðDþ 2ÞG00ðZÞ þ m2

H2

2

ðD − 2ÞZG
0ðZÞ þ m2

H2

�
1þ m2

ðD − 2ÞH2

�
GðZÞ

�
;

f5ðZÞ ¼ CD;m2

�
ððDþ 1ÞZ þ 1ÞG00ðZÞ þ

�
m2

H2

ðD − 1Þ
ðD − 2ÞZ þ ðDþ 1Þ

2

�
Dþ m2

H2

��
G0ðZÞ

þ m2

H2

ðD − 1Þ
2

�
1þ m2

ðD − 2ÞH2

�
GðZÞ

�
; ð5:34Þ

where

CD;m2 ≡ ðD − 2Þ
ðD − 1Þ

1
m2

H2 ðm2

H2 −Dþ 2Þ ; ð5:35Þ

and the function GðZÞ obeys the equation

ðZ2 − 1ÞG00ðZÞ þDZG0ðZÞ þ m2

H2
GðZÞ ¼ 0: ð5:36Þ
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Equation (5.36) is exactly Eq. (3.8) in the scalar case, so
the solution in Euclidean dS with appropriate boundary
conditions is the same as (3.10):

GðZÞ ¼HD−2ΓðδþÞΓðδ−Þ
2DπD=2ΓðD=2Þ 2F1

�
δ−;δþ;

D
2
;
Zþ 1

2

�
; ð5:37Þ

with

spin-2∶ δ� ≡ d
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

4
−
m2

H2

r
; d≡D − 1: ð5:38Þ

Here δ� are the dual CFT conformal dimensions for a
massive spin-2 field with the mass m.
As a function of the mass, the correlator becomes

singular at the massless value m2 ¼ 0, where the theory
becomes gauge invariant under (5.2), and the PM value
m2 ¼ ðD − 2ÞH2, where the theory becomes gauge invari-
ant under (5.3). These singularities in the propagator will
cancel in correlators of gauge-invariant observables.
The correlator also becomes singular at the mass values

m2 ¼ −ðkþ 2ÞðkþDþ 1ÞH2; k ¼ 0; 1; 2;…; ð5:39Þ

for which δþ ¼ dþ kþ 2 and δ− ¼ −k − 2. These singu-
larities come from the poles of Γðδ− þ 2Þ, which appear

in G00ðZÞ. These are the values at which the massive
graviton acquires enhanced shift symmetries [23]. At these
values, the shift symmetries should be gauged and corre-
lators of the shift-invariant operators will be finite.

1. Conformal theory in D > 4

In D > 4, the linearized spin-2 action around dSD with
noncanonical kinetic terms (5.5) is conformally invariant
with the choice (5.6). Here we will calculate its two-point
function and show directly that it is conformally invariant.
As shown in Sec. VA, this action is equivalent via the field
redefinitions (5.18) to (5.19) with the conformal masses
(5.20), which is a massive spin-2 Fierz-Pauli action, a
massive scalar, and a noncanonical conformal massive
vector of the type considered in Sec. IV. To calculate the
two-point function of (5.5) and (5.6), we only need the two-
point function for the massive spin-2 field and our previous
results for the two-point function of the conformal vector
and scalar. With these we can reconstruct the two-point
function of the original conformal tensor using the field
redefinitions (5.18).
For the particular conformal value of the mass

m2
h̃
¼ DðD−2Þ

4
H2, the massive graviton two-point function

from above simplifies dramatically, giving

hh̃μνðxÞh̃μ0ν0 ðx0Þi ¼
HD−2ΓðD=2− 1Þ

2ðD− 1ÞðD− 4Þð2πÞD=2

1

ð1−ZÞD=2þ1

�
ð4Z−Dð1−ZÞ2Þgμνgμ0ν0 þ

1

2
ð4ðDþ 1Þ− 4ðD− 1ÞZ

þDðD− 1Þð1−ZÞ2Þðgμμ0gνν0 þ gμν0gνμ0 Þþ ð8ðDþ 1ÞðDþ 2Þ− 4ðD2− 4ÞZ
þDðD− 2Þð1−ZÞ2Þnμnνnμ0nν0 − ð2ðDþ 2ÞþDð1−ZÞÞðZþ 1Þðgμνnμ0nν0 þ gμ0ν0nμnνÞ

þ 1

2
ð8ðDþ 2Þ− 2ðD2þD− 4ÞZþDðD− 1Þð1−ZÞ2Þðgμμ0nνnν0 þ gμν0nνnμ0 þ gνν0nμnμ0 þ gνμ0nμnν0 Þ

�
:

ð5:40Þ

To find the full two-point function for hμν, we use the first equation of (5.18) used to diagonalize the action:

hμν ¼ h̃μν þ∇ðμAνÞ þ
1

H2

�
∇μ∇νϕ̃þD

4
H2ϕ̃gμν

�
: ð5:41Þ

Since the actions for the scalar ϕ̃ and vector Aμ are exactly the conformal actions we saw in the previous sections, we can
use the two-point functions for these fields we computed there, modulo the appropriate normalizations. The scalar correlator
from (3.13) gives

hϕ̃ðxÞϕ̃ðx0Þi ¼ −
16

DðD − 4ÞðD − 2ÞðD − 1Þ
HD−2ΓðD=2Þ
ðD − 2Þð2πÞD=2

1

ð1 − ZÞD=2−1 ; ð5:42Þ

and the vector correlator from (4.29) gives

hAμðxÞAν0 ðx0Þi ¼ −
8

DðD − 2ÞH2

HD−2ΓðD=2Þ
ðD − 4Þð2πÞD=2

1

ð1 − ZÞD=2−1 ðgμν0 þ 2nμnν0 Þ: ð5:43Þ
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We can now assemble the correlation function of hμν from (5.41):

hhμνðxÞhμ0ν0 ðx0Þi ¼ hh̃μνðxÞh̃μ0ν0 ðx0Þi þ
1

4
ð∇μ∇μ0 hAνðxÞAν0 ðx0Þi þ∇μ∇ν0 hAνðxÞAμ0 ðx0Þi þ μ ↔ νÞ

þ 1

H4
∇μ∇ν∇μ0∇ν0 hϕ̃ðxÞϕ̃ðx0Þi þ

D
4

1

H2
ðgμ0ν0∇μ∇ν þ gμν∇μ0∇ν0 Þhϕ̃ðxÞϕ̃ðx0Þi þ

D2

16
gμνgμ0ν0 hϕ̃ðxÞϕ̃ðx0Þi:

ð5:44Þ

The derivatives can be computed using the expressions in the Appendix and we get

hhμνðxÞhμ0ν0 ðx0Þi ¼
D

ðD − 2ÞðD − 4Þ
HD−2ΓðD=2Þ

ð2πÞD=2

1

ð1 − ZÞD=2−1

×

�
1

2
ððgμμ0 þ 2nμnμ0 Þðgνν0 þ 2nνnν0 Þ þ ðgμν0 þ 2nμnν0 Þðgνμ0 þ 2nνnμ0 ÞÞ −

1

ðD − 2Þ gμνgμ0ν0
�
: ð5:45Þ

Separating this into the traceless part h̄μν and trace φ using hμν ¼ h̄μν þ 1
D gμνφ, we get for the traceless two-point function

hh̄μνðxÞh̄μ0ν0 ðx0Þi ¼
D

ðD − 2ÞðD − 4Þ
HD−2ΓðD=2Þ

ð2πÞD=2

1

ð1 − ZÞD=2−1

×

�
1

2
ððgμμ0 þ 2nμnμ0 Þðgνν0 þ 2nνnν0 Þ þ ðgμν0 þ 2nμnν0 Þðgνμ0 þ 2nνnμ0 ÞÞ −

1

D
gμνgμ0ν0

�
ð5:46Þ

and for the trace

hφðxÞφðx0Þi ¼ −
2D2

ðD − 2Þ2ðD − 4Þ
HD−2ΓðD=2Þ

ð2πÞD=2

1

ð1 − ZÞD=2−1 ; ð5:47Þ

with the cross-correlator vanishing:

hh̄μνðxÞφðx0Þi ¼ 0: ð5:48Þ

Finally, writing this in the conformally flat coordinates (2.11), we have

hh̄μνðxÞh̄μ0ν0 ðx0Þi ¼ ΩðxÞ−Δþ2Ωðx0Þ−Δþ2

�
DΓðΔÞ

4ðD − 4ÞðπÞD=2

�
1

jx − x0j2Δ
�
Iμν;μ0ν0

�
; ð5:49Þ

with

ΩðxÞ ¼ 1	
1þ H2

4
x2

 ; Δ ¼ D

2
− 1; ð5:50Þ

and

Iμν;μ0ν0 ¼
1

2
ðIμμ0Iνν0 þ Iμν0Iνμ0 Þ −

1

D
gμνgμ0ν0 ; ð5:51Þ

where Iμμ0 is defined in (4.32). The trace two-point function in these coordinates becomes

hφðxÞφðx0Þi ¼ ΩðxÞ−ΔΩðx0Þ−Δ
�

ΓðΔÞ
2ðD − 2ÞðD − 4ÞðπÞD=2

�
1

jx − x0j2Δ
��

ð5:52Þ
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with ΩðxÞ and Δ as defined in (5.50). The term in square
brackets in (5.49) has the structure of a two-point function
of a traceless spin-2 primary with dimension Δ in flat
space. It gets multiplied by Weyl factors with Weyl weight
ΔW ¼ Δ − 2 for the rank-2 field, confirming (2.23) and
(2.30) and demonstrating that the traceless noncanonical
tensor theory is conformal on dSD. The terms in square
brackets in (5.52) has the structure of a two-point function
of a scalar primary with dimension Δ in flat space, and it
gets multiplied by Weyl factors with Weyl weight ΔW ¼ Δ
appropriate for a scalar.
Note that both expressions (5.49) and (5.52) are singular

in the D → 4 limit, a sign of the gauge invariance that
develops in this case. Below wewill see that this singularity

cancels when we compute the appropriate gauge-invariant
combinations of these two-point functions.

2. Massless theory in D= 4

The Fierz-Pauli massive graviton propagator is singular in
any dimension as the mass goes to zero. In flat space,
although massless linearized gravity is not conformal at the
level of the action in D ¼ 4, the appropriate two-point
function of gauge-invariant operators does have the form
predicted by conformal symmetry. To see that this is also
true also in dS, we first make the substitution m2

h̃
¼ ϵH2

and then expand the massive graviton two-point
function around ϵ ¼ 0. The results for the functions in the
propagator (5.32) are

f1ðZÞ ¼
H2

24π2ðZ− 1Þ3
�
1

ϵ
Zð8− 9Zþ 3Z2Þ

þ−2ðZ− 1Þ3ð3Z2þ 9Zþ 8ÞZ logð1−Z
2
Þ− 2Z6 − 6Z5þ 5Z4þ 26Z3þ 30Z2þ 4Z− 9

6ðZþ 1Þ3
�
;

f2ðZÞ ¼
H2

48π2ðZ− 1Þ3
�
1

ϵ
ð−9Z3þ 27Z2 − 29Zþ 15Þ

þ ðZ− 1Þ3ð9Z3þ 27Z2þ 29Zþ 15Þ logð1−Z
2
Þþ 3Z6þ 9Z5− 10Z4− 34Z3þ 15Z2þ 49Zþ 16

3ðZþ 1Þ3
�
;

f3ðZÞ ¼
H2

12π2ðZ− 1Þ3
�
1

ϵ
ð−3Z3þ 19Z2 − 53Zþ 85Þ

þ ðZ− 1Þ5ð3Zþ 5Þ logð1−Z
2
Þþ ðZþ 1ÞðZ5þ 2Z4− 22Z3þ 44Z2þ 181Zþ 82Þ

3ðZþ 1Þ3
�
;

f4ðZÞ ¼
H2

8π2ðZ− 1Þ3
�
−
1

ϵ
ðZþ 1ÞðZ2− 4Zþ 5Þþ 3ðZ− 1Þ4ðZ2þ 4Zþ 5Þ logð1−Z

2
ÞþZ6þ 3Z5 − 18Z3− 75Z2 − 57Zþ 2

9ðZþ 1Þ3
�
;

f5ðZÞ ¼
H2

48π2ðZ− 1Þ3
�
1

ϵ
ð−9Z3þ 37Z2 − 59Zþ 55Þ

þ ðZ− 1Þ4ð9Z2þ 26Zþ 25Þ logð1−Z
2
Þþ ðZþ 1Þð3Z5þ 6Z4− 26Z3þ 12Z2þ 63Zþ 86Þ

3ðZþ 1Þ3
�
; ð5:53Þ

up to terms that vanish as ϵ → 0. The massless singularity now appears as a 1=ϵ simple pole.
From this, we now form the two-point function of the linearized Weyl tensor [71,72], which is the basic gauge-invariant

operator, by taking the appropriate derivative combinations:

Wμνρσ ¼ −4Pαβγδ
μνρσ∇α∇βhγδ; ð5:54Þ

where Pαβγδ
μνρσ is the projection operator onto a tensor with the symmetries of the Weyl tensor, i.e. a fully traceless window

tableau . Forming the two-point function of (5.54), the 1=ϵ poles in (5.53) cancel and we find9

hWμνρσðxÞWμ0ν0ρ0σ0 ðx0Þi ¼ ΩðxÞ−Δþ4Ωðx0Þ−Δþ4
96

π2jx − x0j2Δ Pαβγδ
μνρσP

α0β0γ0δ0
μ0ν0ρ0σ0Iαα0Iββ0Iγγ0Iδδ0 ; ð5:55Þ

9As was the case in flat space, getting the correlator into this form requires more than simple tensor manipulations; it requires using
dimensionally dependent identities in D ¼ 4. We accounted for this by evaluating the expressions explicitly in components.
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with

ΩðxÞ ¼ 1	
1þ H2

4
x2

 ; Δ ¼ D

2
þ 1 ¼ 3: ð5:56Þ

This now has the structure of Weyl factors times the flat
space result found in [14], exactly of the form (2.23) and
(2.30) with Δ ¼ 3, r ¼ 4 and ΔW ¼ −1. This means that
although massless gravity was not conformal in terms of
standard transformations of the Lagrangian (5.1), the two-
point function of the Weyl tensor (the appropriate gauge-
invariant operator for massless linearized gravity) does
have the correct conformally invariant structure, as was the
case in flat space. In this sense, massless gravity in D ¼ 4
on any maximally symmetric background is conformal.
The massless linear spin-2 theory in flat space in D > 4

is a unitary scale-invariant but not conformally invariant
theory. In [14] we saw, following the pattern of what
happens in the Maxwell spin-1 case [8], that the correlators
of the Weyl tensor have the form of a descendant operator,
and so the theory can be embedded into a larger nonunitary
conformal theory by including a spin-2 primary which
violates the unitarity bound. On (A)dS space, we find that
this construction does not work. For example, inD ¼ 6, we

checked that taking a descendent of the conformal structure
(5.46) does not yield the massless correlator, PPh∇ρ∇σ

h̄μνðxÞ∇ρ0∇σ0 h̄μ0ν0 ðx0Þi ≠ hWμνρσðxÞWμ0ν0ρ0σ0 ðx0Þi, though
they agree in the flat limit.

3. Conformal partially massless theory in D= 4

In D ¼ 4, the conformal correlators (5.49) and (5.52)
diverge due to the additional PM gauge symmetry in the
conformal theory. We will see in this section that this
divergence cancels when we compute the correlators of
gauge-invariant operators. The basic gauge-invariant oper-
ator in this case is the tensor Cμνρ defined in (5.25).
InD ¼ 4 the conformal action diagonalizes to (5.29). We

can study correlators ofCρμν by looking at the correlators of
h̃μν and Aμ of this diagonal action, then use the field
redefinition (5.28) to form the correlators of the original
PM field hμν:

hμν ¼ h̃μν þ∇ðμAνÞ; ð5:57Þ

and then form the combination (5.25). In terms of two-point
functions, we have

hhμνðxÞhμ0ν0 ðx0Þi ¼ hh̃μνðxÞh̃μ0ν0 ðx0Þi þ
1

4
ð∇μ∇μ0 hAνðxÞAν0 ðx0Þi þ∇μ∇ν0 hAνðxÞAμ0 ðx0Þi þ μ ↔ νÞ: ð5:58Þ

Here hh̃μνðxÞh̃μ0ν0 ðx0Þi is the graviton two-point function (5.32), and hAμðxÞAμ0 ðx0Þi is the vector two-point function (4.16).
These are both singular inD ¼ 4 in the limits of the masses we want,m2

h̃
¼ 2H2 and m2

A ¼ 0. We isolate these divergences
by setting m2

h̃
¼ ð2þ ϵÞH2 and m2

A ¼ ϵH2 and expanding in ϵ. The divergences then appear as 1=ϵ poles.
Forming the correlator of the gauge-invariant combination (5.25), the 1=ϵ poles cancel and we are left with the finite two-

point function

hCμνρðxÞCμ0ν0ρ0 ðx0Þi ¼
H4

4π2ð1 − ZÞ2 P
αβγ
μνρP

α0β0γ0
μ0ν0ρ0 ðgαα0 þ nαnα0 Þðgββ0 þ nβnβ0 Þðgγγ0 þ nγnγ0 Þ; ð5:59Þ

where Pαβγ
μνρ is the projector onto the traceless hook tableau . Writing this in our coordinates gives

hCμνρðxÞCμ0ν0ρ0 ðx0Þi ¼ ΩðxÞ−Δþ3Ωðx0Þ−Δþ3

�
1

π2jx − x0j2Δ Pαβγ
μνρP

α0β0γ0
μ0ν0ρ0 Iαα0Iββ0Iγγ0

�
ð5:60Þ

with

ΩðxÞ ¼ 1	
1þ H2

4
x2

 ; Δ ¼ D

2
¼ 2: ð5:61Þ

This is now manifestly conformal as in (2.23) and (2.30),
where here Δ ¼ 2, r ¼ 3 and ΔW ¼ −1.

VI. CONCLUSIONS

We have investigated the scale and conformal invariance
of free two-derivative scalar, vector and rank-2 symmetric

tensor fields on maximally symmetric backgrounds. In the
nonflat cases, there is no algebraic distinction between
scale and conformal invariance on these backgrounds; i.e.
there is no subalgebra of the conformal algebra that is
strictly larger than the isomorphism algebra but strictly
smaller than the full conformal algebra.
For the massive scalar ϕ inD ≥ 3, the action is conformal

in any dimension only for the particular value of the mass
m2

ϕ=H
2 ¼ DðD − 2Þ=4, and the correlator is conformal

here too.
For the massive vector in D ≥ 3, the action is conformal

only for the massless value where the field becomes gauge
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invariant and only inD ¼ 4. In theD ¼ 4massless case the
correlator of the vector field diverges. We showed that these
divergences cancel in the correlators of the gauge-invariant
field strength operators Fμν, which take the expected
conformally invariant form.
For D ≠ 4, there is a unique two-derivative non-gauge-

invariant vector theory with noncanonical kinetic terms
which is conformal. The conformal invariance of this
theory is also reflected in the two-point functions of the
vector. This theory can be diagonalized into a canonical
massive vector Ãμ and massive scalar ϕ, with the masses
m2

Ã
=H2 ¼ ðD − 4ÞðD − 2Þ=4 and m2

ϕ=H
2 ¼ DðD − 2Þ=4.

The kinetic terms of the vector and scalar have opposite
signs in dS and same signs in AdS, but the mass squared of
the vector is negative on AdS, so in either case the theory is
nonunitary. In this diagonalized form, conformal symmetry
acts in a way that mixes the two fields.
For a spin-2 field with the Fierz-Pauli action (5.1) in

D ≥ 3, the action never has standard conformal symmetry
for any mass. In the massless case, the correlators of the
graviton diverge, but those of the gauge-invariant linearized
Weyl tensor Wμνρσ are finite. The Weyl tensor correlators
become conformally invariant only for D ¼ 4, analogously
to what was demonstrated in flat space in [14] (see
Appendix C of [73] for the spin-3=2 case).
For a rank-2 symmetric tensor field, although there is no

conformal Lagrangian for the usual Fierz-Pauli action, there
is one if we allow for noncanonical two-derivative kinetic
terms. There is a trace part that decouples and is equivalent to
the conformal scalar, and once this is removed there is a
unique conformal Lagrangian for a traceless tensor. The
conformal invariance of this theory is also reflected in the
two-point functions of the traceless tensor. This theory can be
diagonalized into canonical massive actions for a massive
spin-2 field h̃μν, a massive spin-1 field Aμ, and a massive
scalar field ϕ, with the masses m2

h̃
=H2 ¼ DðD − 2Þ=4,

m2
A=H

2 ¼ ðD − 4ÞðD − 2Þ=4, and m2
ϕ=H

2 ¼ DðD − 2Þ=4.
The kinetic terms of the fields alternate signs in dS and have
the same signs inAdS, but themass squared of thevector and
tensor are negative on AdS, so in either case the theory is
nonunitary. In this diagonalized form, conformal symmetry
acts in a way that mixes the three fields.
When D ¼ 4, this conformal theory gets an enhanced

two-derivative scalar gauge symmetry. In this case the
tensor becomes partially massless, the vector becomes
massless, and the scalar disappears. This leaves a con-
formally invariant theory of a partially massless spin-2 and
a photon, where the conformal symmetry mixes the two.
This theory can be expressed in terms of a rank-3 mixed
symmetry Weyl-like tensor Cμνρ and is in many ways
analogous to linearized conformal gravity. The correlators
of the graviton diverge in this theory, but we showed that
correlators of Cμνρ are finite and conformally invariant.
This is in contrast to the correlators of the gauge-invariant

operators in the pure PM theory, which are finite but not
conformally invariant.
Finally, we saw that electromagnetism and linearized

gravity in D > 4 cannot generally be embedded into a
larger nonunitary conformal theory in the way that it was
done in [8,14] for flat space.
There is a natural conjecture that extends these results to

arbitrary spin. For every s ≥ 1, there is a two-derivative
conformal Lagrangian for a traceless field h̃μ1…μs , namely
the κ ¼ 1 spin s “special” conformal field in the classi-
fication of [26]. Its ðAÞdSD extension should factorize into
spins s0 ¼ s; s − 1;…; 0 with masses

m2
ðs0Þ ¼

8<
:

DðD−2Þ
4

H2; s0 ¼ 0;
ðDþ2s0−4ÞðDþ2s0−6Þ

4
H2; s0 ¼ 1; 2;…; s:

ð6:1Þ

These are the masses that correspond to the dual CFT
dimensions δ� ¼ d�1

2
through the (A)dS/CFT mass formula

δ� ¼

8>><
>>:

d
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
d2
4
− m2

H2

q
; s ¼ 0;

d
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdþ2ðs−2ÞÞ2

4
− m2

H2

q
; s ≥ 1;

ð6:2Þ

where d≡D − 1. The relative signs in front of the kinetic
terms in the factorized Lagrangian should alternate on dS
and be the same on AdS. Conformal symmetry should act
linearly but mix all the fields into each other. ForD ¼ 4, the
original conformal field acquires a PM-like gauge symmetry
δh̃μ1…μs ¼ ∇ðμ1…∇μsÞTΩ with a scalar gauge parameter Ω
(for s ≥ 2 these are the κ ¼ 1 case of “type II partial-short” in
[26], and for s ¼ 1 it is called “short”). This gauge symmetry
should act to remove the scalar longitudinal modes from all
the component fields: indeed when D ¼ 4 the component
fields s0 ≥ 1 all take themass values of themaximal depthPM
field (i.e. the onewith a scalar gauge parameter), and the scalar
mode s0 ¼ 0 should be absent. We can see that this multiplet
satisfies the condition of [45] for a gauge theory to be
conformal: the reducibility parameter for a spin s0 maximal
depth PM field forms a rank-s0 − 1 traceless symmetric tensor
of the isometry algebra soð1; 4Þ. Taken together, the reduc-
ibility parameters for all the s0 ¼ s; s − 1;…; 1 combine into
a rank-s − 1 symmetric traceless tensor of the conformal
algebra soð2; 4Þ. All of this should be reflected in the
correlators, in a manner analogous to what we have worked
out here for spins ≤ 2.
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APPENDIX: MAXIMALLY SYMMETRIC
BITENSORS

Here we review the bitensor formalism used
to construct correlators on maximally symmetric
spaces [36].
We are interested in the case of Euclidean dS, which is

the sphere of radius 1=H. The two-point correlators depend
on two generic points x and x0 on the sphere. Let μ be the
minimal geodesic distance between x and x0. It is conven-
ient to use the variable Z defined as

Z≡ cosðHμÞ; μ ¼ 1

H
cos−1 Z: ðA1Þ

Z∈ ½−1; 1� and μ∈ ½0; π=H�, with Z ¼ 1, μ ¼ 0 the coinci-
dent point configuration and Z ¼ −1, μ ¼ π=H the antipo-
dal configuration on the sphere.
Let gμνðxÞ be themetric at x and gμ0ν0 ðx0Þ be themetric at x0.

Let nμðx; x0Þ be the unit normal vector at x, pointing away
from x0 along the minimal geodesic connecting x to x0.
We have

nμ ¼ ∇μμ ¼ −
1

H
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − Z2
p ∇μZ; ∇μZ ¼ −H

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Z2

p
nμ; gμνnμnν ¼ 1: ðA2Þ

Let nμ0 ðx; x0Þ be the unit normal vector at x0, pointing away from x along the minimal geodesic connecting x to x0. We have

nμ0 ¼ ∇μ0μ ¼ −
1

H
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − Z2
p ∇μ0Z; ∇μ0Z ¼ −H

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Z2

p
nμ0 ; gμ0ν0nμ

0
nν

0 ¼ 1: ðA3Þ

Let gμμ0 ðx; x0Þ be the operator that parallel transports indices between x0 and x. We have

nμ ¼ −gμμ0nμ
0
; nμ0 ¼ −nμgμμ0 : ðA4Þ

We can compute the covariant derivatives of these functions following [36] and we get

∇μnν ¼ H
Zffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − Z2
p ðgμν − nμnνÞ; ∇μ0nν0 ¼ H

Zffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Z2

p ðgμ0ν0 − nμ0nν0 Þ;

∇μnν0 ¼ −H
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − Z2
p ðgμν0 þ nμnν0 Þ; ∇μ0nν ¼ −H

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Z2

p ðgνμ0 þ nμ0nνÞ;

∇μgνρ0 ¼ H
1 − Zffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Z2

p ðgμνnρ0 þ gμρ0nνÞ; ∇μ0gρν0 ¼ H
1 − Zffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Z2

p ðgμ0ν0nρ þ gρμ0nν0 Þ: ðA5Þ

The objects nμ, nμ0 , and gμμ0 are parallel transported along the geodesic and thus

nμ∇μnν ¼ nμ∇μnν0 ¼ nμ∇μgνν0 ¼ 0; ðA6Þ

nμ
0∇μ0nν ¼ nμ

0∇μ0nν0 ¼ nμ
0∇μ0gνν0 ¼ 0; ðA7Þ

as can be verified from (A5).
We will often use conformally flat coordinates on the sphere:

gμνðxÞ ¼ Ω2ðxÞημν; ΩðxÞ ¼ 1

1þ H2

4
x2

; ðA8Þ

in which we have

Z ¼ 1 −
H2

2
ΩðxÞΩðx0Þðx − x0Þ2: ðA9Þ

In these coordinates, the geometric quantities above all manifestly reproduce the flat space limit as H → 0:

nμðx; x0Þ ¼
HΩðxÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Z2

p ð2Ωðx0Þðx − x0Þμ − ð1 − ZÞxμÞ ¼
ðx − x0Þμ
jx − x0j þOðH2Þ; ðA10Þ
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nμ0 ðx; x0Þ ¼ −
HΩðx0Þ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Z2

p ð2ΩðxÞðx − x0Þμ0 þ ð1 − ZÞxμ0 Þ ¼ −
ðx − x0Þμ0
jx − x0j þOðH2Þ; ðA11Þ

gμμ0 ðx; x0Þ ¼ ΩðxÞΩðx0Þημμ0 − 2nμnμ0 −H2Ω2ðxÞΩ2ðx0Þ ðx − x0Þμðx − x0Þμ0
ð1 − ZÞ

¼ ημμ0 þOðH2Þ: ðA12Þ

In these coordinates, the standard conformal tensor structure that appears in two-point correlators also takes a simple
form:

gμμ0 þ 2nμnμ0 ¼ ΩðxÞΩðx0Þ
�
ημμ0 − 2

ðx − x0Þμðx − x0Þμ0
ðx − x0Þ2

�
¼ ΩðxÞΩðx0ÞIμμ0 ; ðA13Þ

where Iμμ0 ≡ ημμ0 − 2
ðx−x0Þμðx−x0Þμ0

ðx−x0Þ2 is the flat space conformal tensor structure.
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