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The traditional Chern-Simons (CS) terms in 3þ 1 dimensions that modify general relativity (GR),
quantum chromodynamics (QCD), and quantum electrodynamics (QED), typically lack scale invariance.
However, a locally scale invariant and geodesically complete framework for the Standard Model (SM)
coupled to GR was previously constructed by employing a tailored form of local scale (Weyl) symmetry.
This refined SMþ GR model closely resembles the conventional SM in subatomic realms where
gravitational effects are negligible. Nevertheless, it offers an intriguing prediction: the emergence of
new physics beyond the traditional SM and GR near spacetime singularities, characterized by intense
gravity and substantial deviations in the Higgs field. In this study, we expand upon the enhanced SMþ GR
by incorporating Weyl invariant CS terms for gravity, QCD, and QED in 3þ 1 dimensions, thereby
integrating CS contributions within the locally scale-invariant and geodesically complete paradigm.
Additionally, we establish a holographic correspondence between the new CS terms in 3þ 1 dimensions
and novel (4þ 2)-dimensional CS-type actions within 2T physics. We demonstrate that the Weyl
transformation in 3þ 1 dimensions arises from 4þ 2 general coordinate transformations, which unify the
hidden extra 1þ 1 large (not curled up) dimensions with the evident 3þ 1 dimensions. By leveraging the
newfound local conformal symmetry, the augmented and geodesically complete SMþ GRþ CS
introduces innovative tools and perspectives for exploring classical field theory aspects of black hole
and cosmological singularities in 3þ 1 dimensions, while the (4þ 2)-dimensional connection unveils
deeper facets of spacetime.

DOI: 10.1103/PhysRevD.110.045010

I. INTRODUCTION

Chern-Simons (CS) terms that modify general relativity
(GR) [1] find their theoretical underpinnings in both field
theory [2–4] and string theory [5]. In the realm of field
theory, the emergence of the gravitational CS term stems
from the stress tensor trace anomaly, while in particle
physics, it arises from the chiral anomaly involving axial
currents [3,4]. In string theory, the CS term serves to rectify
anomalous symmetries [5]. Thus, the prevalence of CS
terms in GR, QCD, and QED is well-founded from a
theoretical standpoint.

Initially conceived as a (2þ 1)-dimensional topological
theory [6], Chern-Simons gravity later found extension to
3þ 1 dimensions by embedding the three-dimensional
Chern-Simons topological current into a four-dimensional
spacetime manifold. The conventional CS term within the
(3þ 1)-dimensional gravity action as formulated by [1] is
represented by

S3þ1
CS−GR ¼

Z
d4xR̃R × ðscalar fieldÞ;

R̃R≡ 1

2
ϵμ1μ2μ3μ4Rλ

σμ1μ2R
σ
λμ3μ4 : ð1Þ

This term supplements the standard Einstein-Hilbert term,
kinetic terms for the scalar field, and other matter fields and
their interactions. Consequently, the introduction of the GR
field equations is accompanied by modifications through
the inclusion of an additional Cotton-like C-tensor, con-
structed from derivatives of the Ricci tensor and the dual
of the Riemann tensor. This C-tensor emerges when the
Chern-Simons action S3þ1

CS−GR is varied with respect to its

*Contact author: bars@usc.edu
†Contact author: sophia_singh@brown.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 110, 045010 (2024)

2470-0010=2024=110(4)=045010(22) 045010-1 Published by the American Physical Society

https://orcid.org/0000-0002-8739-9717
https://ror.org/03taz7m60
https://orcid.org/0000-0002-6371-3062
https://ror.org/05gq02987
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.110.045010&domain=pdf&date_stamp=2024-08-08
https://doi.org/10.1103/PhysRevD.110.045010
https://doi.org/10.1103/PhysRevD.110.045010
https://doi.org/10.1103/PhysRevD.110.045010
https://doi.org/10.1103/PhysRevD.110.045010
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


spacetime metric gμν. Similar modifications are evident in
QCD when the curvature tensor Rλ

σμν is replaced by the
Yang-Mills field strength tensor Fa

μν and similarly in QED
whenRλ

σμν is replaced by the electromagnetic field strength
tensor Fμν.
The CS corrections to GR, QCD, and QED yield signi-

ficant physical implications. For instance, CS-modified
gravity [7–11] has been instrumental in elucidating infla-
tionary leptogenesis and baryogenesis through the gravi-
tational anomaly. An intriguing aspect of this mechanism
is the prediction of amplitude birefringent gravitational
waves, potentially leaving a distinctive imprint on the
gravitational wave background and thus on the cosmic
microwave background. Investigating Chern-Simons grav-
ity could prove crucial in addressing inquiries regarding the
evolutionary trajectory of the Universe. Similarly, in QCD
the postulation of an axion field aims to circumvent the
breakdown of CP symmetry in strong interactions [12],
while in QED the decay of the pion into two photons,
among other phenomena, is encapsulated by a CS term
within an effective action. Some additional discussions of
the CS terms include [13–17].

A. Geodesically complete spacetime

This paper delves into how Chern-Simons (CS) terms
influence physics in regions of intense gravity. However,
before discussing this topic, it is essential to recognize
that our conventional tools in modern physics have been
insufficient in describing gravity near black hole (BH) and
cosmological singularities. Beyond the anticipated but not
fully comprehended quantum gravity effects, there lies the
issue of spacetime’s geodesic incompleteness, which arises
in the Standard Model coupled to general relativity. It
appears that this incompleteness has not garnered the
warranted attention, perhaps due to the anticipation that
quantum gravity would resolve singularity problems.
Nonetheless, the tools employed to explore potential
quantum gravity theories, such as string theory, also exhibit
geodesic incompleteness.1

This highlights that resolving geodesic incompleteness,
as outlined below, would inherently furnish new method-
ologies for investigating hitherto unknown physical phe-
nomena within black holes and in the vicinity of the early
universe, across both classical and quantum domains.
A geodesically complete framework for the Standard

Model coupled to general relativity (SMþ GR) in 3þ 1
dimensions naturally emerged from 2T physics in 4þ 2
dimensions [18–41]. The higher-dimensional theory,
denoted as ðSMþ GRÞ4þ2 (refer to Sec. III and Appendix),
has a high degree of gauge symmetry which, in a gauge-
fixed rendition, yields a holographic image in 3þ 1
dimensions that encapsulates all the gauge-invariant infor-
mation of the 4þ 2 formalism. Termed the “holographic
conformal shadow” (see Sec. III B), this image serves as the
foundation for the conformally improved Standard Model
coupled to gravity [33], denoted herein as iðSMþ GRÞ3þ1

(refer to Sec. II). Geodesic completion emerged as an
incidental property of the holographic conformal shadow,
albeit not the primary objective of the 2T physics
formalism. Even without delving into the details of 2T
physics, one can outline the critical attributes of the
enhanced iðSMþ GRÞ3þ1, leading to geodesic complete-
ness and foreseeing hitherto unimaginable physics in
regions of intense gravity, particularly in the proximity
of gravitational singularities [36,38,40].
There are two primary components for geodesic

completeness:
(i) The first involves a local scale (Weyl) symmetry

which is inherently mandated by any relativistic field
theory coupled to gravity in 3þ 1 dimensions,
provided it is derived from 2T physics. This local
scale symmetry arises from residual effects of
general coordinate transformations in 4þ 2 dimen-
sions that mix the hidden extra 1þ 1 dimensions
with the evident 3þ 1 dimensions (refer to
Sec. III C). Scale invariance prohibits dimensionful
parameters, implying that if 2T physics is the viable
approach, then all dimensionful parameters in nature
must originate from gauge fixing and/or spontane-
ous breaking of the emergent Weyl symmetry. In
iðSMþ GRÞ3þ1, a single real field ϕðxÞ serves as the
sole source, generating all dimensionful parameters,
including the gravitational Newton constant GN , the
cosmological constant Λ, the Higgs mass or equiv-
alently its vacuum value v (VEV), and the masses of
quarks, leptons, and gauge bosons that are related to
the Higgs field (refer to Sec. II C).

(ii) While the local scale invariance in iðSMþ GRÞ3þ1

has a distinct origin from Weyl’s original concept
(see Sec. III C), they may appear indistinguishable
from the perspective of 3þ 1 dimensions. However,
in the enhanced iðSMþ GRÞ3þ1, it manifests with a
uniquely specialized structure. This insight emerged
in 2008 with the introduction of gravity in 2T

1To illustrate, gravitational background fields in particle or
string theory exhibit geodesic incompleteness akin to their field
theory counterparts. The presence of a dilaton or other back-
ground fields fails to rectify this issue. Similar to particle
geodesics, strings propagating in such backgrounds encounter
singularities of the background gravitational metric within a finite
amount of proper time. What happens beyond this duration
remains elusive as the standard theory offers no insights. This
illustrates the problem of geodesic incompleteness in particle
theory, field theory, and string theory at the classical level. There
is a conspicuous absence of enlightening discussions on how
quantum string theory or other quantum gravity theories might
resolve this issue. However, refer to [18] for a proposed
modification of string theory which is linked to the geodesic
completion mechanism discussed here.
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physics [31,32] and was further elaborated upon
directly in 3þ 1 dimensions [33]. This structure
entails a coordinated interplay between the singlet
field ϕðxÞ and the Higgs doublet HðxÞ. Both
must serve as conformally coupled scalars to main-
tain local scale invariance. As a consequence,
instead of the traditional SMþ GR’s Einstein-
Hilbert term ð16πGNÞ−1RðgÞ, this must be
adjusted to 1

12
ðϕ2 − 2H†HÞRðgÞ in the enhanced

iðSMþ GRÞ3þ1. The scalars ϕ; H must possess
opposite signs in their nonminimal coupling to the
curvature R to establish the existence of a region of
spacetime where the resulting dynamical gravita-
tional strength GðxÞ is positive while requiring the
Higgs field to have the correct sign kinetic energy
term in the action. Then ϕ must have the wrong sign
kinetic term, but this ghostlike ϕ causes no issues
with unitarity thanks to the local gauge symmetry
that compensates for the ghost-like unphysical
gauge degree of freedom (refer to Sec. II). This
distinctive structure with a relative minus sign for
conformally coupled scalars could theoretically have
been recognized directly in 3þ 1 dimensions prior
to 2T physics, but it remained overlooked.

Together, these two components imply that the strength
of gravity, denoted as GðxÞ, is not uniform across the
Universe. Instead, the strength of gravity varies dynami-
cally with spacetime as determined by the scalar fields ϕ
and H and is given by

ð16πGðxÞÞ−1 ¼ 1

12

�
ϕ2ðxÞ − 2H†HðxÞ�: ð2Þ

In the context of iðSMþ GRÞ3þ1, the familiar low-
energy physics operates within a spacetime region where
the local scale-invariant ratio ð2H†HÞ=ϕ2 is negligible. In
this regime, ϕ is of the order of the Planck scale 1019 GeV,
and the Higgs field H is around 246 GeV, including its
vacuum expectation value (VEV). To study physics in this
low-energy regime, one can adopt a gauge where ϕðxÞ is
constant, ϕðxÞ ¼ ϕ0 ∼ 1019 GeV, treating the Higgs field
H ∼ 246 GeV as negligible at low energies in the expres-
sion for the almost constant gravitational strength GðxÞ ≃
GN in Eq. (2). In this gauge, only the Higgs field remains as
a physical spin-0 degree of freedom while all dimensional
physical constants emerge as proportional to ϕ0 (see
Sec. II C). This elucidates how and why iðSMþ GRÞ3þ1

closely resembles the traditional SMþ GR in all observed
low-energy physics aspects. Thus, iðSMþ GRÞ3þ1 stands
as a valid theory for all experimentally observed low-
energy physics to date, instilling confidence in its pre-
dictions outlined below in obscure or unknown spacetime
regions or energy scales.
It is of interest to contrast the physical predictions of

iðSMþ GRÞ3þ1 versus traditional SMþ GR in domains

beyond low energy physics where the theory is uncertain as
follows.

(i) The field equations derived from iðSMþ GRÞ3þ1

indicate that near gravitational singularities, the
Weyl gauge-invariant ratio ð2H†HÞ=ϕ2 approaches
1, suggesting that ðϕ2 − 2H†HÞ can vanish, result-
ing in a divergent effective gravitational strength
GðxÞ precisely at the singularity. On one side of the
singularity, where the gauge-invariant ratio is less
than one, ð2H†HÞ=ϕ2 < 1, gravity is attractive
GðxÞ > 0; on the other side, where the ratio exceeds
one, ð2H†HÞ=ϕ2 > 1, gravity is repulsiveGðxÞ < 0.
Consequently, iðSMþ GRÞ3þ1 predicts geodesi-
cally complete spacetime configurations where
gravitational singularities separate gravity regions
from antigravity regions. By contrast, traditional
SMþ GR only encompasses the gravity side of
the singularity, contributing to its geodesic incom-
pleteness.2

(ii) In iðSMþ GRÞ3þ1, it has been established that the
majority of generic classical cosmological field
solutions [34] describe fields propagating analyti-
cally through singularities from gravity regions to
antigravity regions and vice versa. These typical
solutions encompass the majority of phase space for
on shell cosmological field configurations [34]. The
divergence of GðxÞ at spacetime regions or points

2The geodesic incompleteness in SMþ GR becomes apparent
when considering its accommodation within ðSMþ GRÞ3þ1,
albeit with incomplete gauge choices. An example of a geodesi-
cally incomplete gauge is the E-gauge [33] where fields
ðϕE; HE; gEμνÞ are denoted by the letter “E” to differentiate
them from other gauges. In this gauge, the fields obey
1
12
ðϕ2

EðxÞ − 2H†
EðxÞHEðxÞÞ ¼ ð16πGNÞ−1 to reproduce the Ein-

stein frame featuring the standard Einstein-Hilbert term
ð16πGNÞ−1RðgEÞ, with a spacetime-independent positive Newton
constant GN . However, the E-gauge exhibits geodesic incom-
pleteness, since it is valid only in spacetime patches where the
gauge-invariant expression ð1 − 2H†H=ϕ2Þ is positive. Notably,
this expression’s sign cannot be altered by local scale trans-
formations, leading to regions where the Weyl invariant expres-
sion ð1 − 2H†H=ϕ2Þ is negative being omitted. Furthermore, the
E-gauge fails to describe events at spacetime singularities where
ð1 − 2H†H=ϕ2Þ ¼ 0. Conversely, it has been demonstrated [34]
that in other gauges, the generic solutions of the equations of
motion for ϕ and H continuously span all signs of the gauge
invariant ð1 − 2H†H=ϕ2Þ, encompassing both gravity and anti-
gravity patches. This underscores the evident geodesic incom-
pleteness of the traditional SMþ GR framework in the Einstein
frame. Similarly, any Jordan frame where the effective gravita-
tional strength GðxÞ is positive exhibits geodesic incompleteness.
This incompleteness extends to the string frame that emerges in
the low-energy limit of string theory, as it too constitutes a Jordan
frame with solely positive effective gravitational strength GðxÞ.
While such incomplete frames are attainable via Jordan-type
gauge fixing in iðSMþ GRÞ3þ1 [18,33], their incompleteness
issue is rectified by incorporating the antigravity regions beyond
singularities predicted in iðSMþ GRÞ3þ1 as outlined in Sec. II.
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where ð2H†HÞ=ϕ2 ¼ 1 does not hinder the continu-
ity of fields or information flow through gravitational
singularities. Similarly, geodesics connecting gravity
and antigravity regions remain continuous at the
singularity. Local scale invariance significantly con-
tributes to establishing the continuity of information
flow across the singularity [35–37].
Thus, the gravity and antigravity regions connected

at gravitational singularities represent geodesic com-
pletions of each other. These prevalent features in
classical field solutions of the geodesically complete
iðSMþ GRÞ3þ1 signify a paradigm shift in under-
standing physical phenomena and information flow at
singularities from one side to the other.
Conversely, the geodesic incompleteness of the

traditional SMþ GR framework in the Einstein or
Jordan frames, including the String frame, leads to the
inability to explore physics close to singularities at the
classical field theory level.

(iii) Assuming that the geodesically complete field sol-
utions in iðSMþ GRÞ3þ1 (similar to those discussed
in [34]) dominate the phase space, a semiclassical
path integral or WKB approach provides a fresh
perspective on the flow and conservation of quantum
probability across both gravity and antigravity sides
of gravitational singularities [35]. This necessitates
including observers on both sides of the singular-
ities. Consequently, the information loss problem in
black holes undergoes a radical transformation both
technically and conceptually. It becomes evident that
information lost by observers on one side of the
singularity is gained by observers on the opposite
side. By incorporating all observers, unitarity re-
mains continuously preserved as the black hole
evolves, whether it evaporates or not.

Some analysis of the features of iðSMþ GRÞ3þ1

described above is evident in applications to the big bang
[35–37], black holes [21], and the interpretation of the
antigravity regime [39]. Additionally, a recent discovery of
intriguing behavior of the Higgs field inside black holes
will be discussed in [40].3

As mentioned, iðSMþ GRÞ3þ1 represents the holo-
graphic conformal shadow of its 2T physics counterpart,
ðSMþ GRÞ4þ2. The latter incorporates gauge degrees of
freedom that reveal the underlying (4þ 2)-dimensional
spacetime, akin to revealing the SO(3,1) Lorentz symmetry
of electromagnetism and its underlying relativistic space-
time through the inclusion of gauge degrees of freedom in
the gauge potential Aμ. Similarly, the gauge degrees of
freedom in 2T physics unveil spacetime symmetries such as
SO(4,2) in the flat limit and its extension to coordinate
invariance in curved (4þ 2)-dimensional spacetime. These
spacetime symmetries remain gauge invariant under the
Spð2; RÞ gauge symmetry underlying 2T physics (See
Appendix). Therefore, even after gauge fixing to 3þ 1
dimensions, the 4þ 2 spacetime symmetries persist as
properties of the physical systems emerging in all shadows
of 2T physics. For instance, the familiar SO(4,2) conformal
symmetry in 3þ 1 dimensions and the hidden SO(4,2)
symmetry of planetary motion or the hydrogen atom,
among other cases, are elucidated by the evident
(4þ 2)-dimensional Lorentz symmetry in 2T physics.
Particularly, the Weyl symmetry in iðSMþ GRÞ3þ1 is a
remnant of general coordinate reparametrizations in 4þ 2
dimensions that has not yet been gauge-fixed in the
holographic conformal shadow (discussed in Sec. III C).
Since 2T physics underpins iðSMþ GRÞ3þ1, it is perti-

nent to briefly describe its origins and the theory’s relation-
ship with 1T physics. The following provides essential
insights into the concepts of 2T physics. Further details can
be found as a concise summary in Appendix.
At the core of 2T physics there is a gauge symmetry in

phase space ðXM;PMÞ, postulating that all fundamental
physical laws must treat position and momentum equally.
This generalization extends Einstein’s general coordinate
invariance to phase space rather than just position space.
This phase space gauge symmetry imposes constraints on
the phase space for particle motion (see Sec. III and
Appendix). Physical states that are invariant under this
gauge symmetry reside within the subset of phase space
that satisfy these constraints. Surprisingly, all solutions
of these constraints yield nontrivial physical systems
devoid of unitarity and causality issues, provided the full
phase space ðXM; PMÞ, including gauge degrees of free-
dom, possesses two timelike dimensions—no less and
no more.
Therefore, the appearance of an additional timelike and

spacelike dimension arises naturally from phase space
gauge symmetry, rather than being artificially imposed.
Meanwhile, a plethora of gauge-invariant physical states
consistent with these constraints exists in emergent gauge-
invariant effective phase spaces in 3þ 1 dimensions. These
are termed holographic shadows, possessing one less
timelike and one less spacelike dimension. Hence, 2T
physics in 4þ 2 dimensions (or more generally dþ 2)
exhibits a rich gauge-invariant physical sector mirroring the

3Similar effects can be anticipated within the conventional
framework of supergravity (SUGRA), as it presents the potential
for geodesic completeness—a feature previously overlooked
before the advent of 2T physics: the curvature term in SUGRA
is given by ½ð16πGNÞ−1 − 1

6
Kðφ; φ̄Þ�RðgÞ where Kðφ; φ̄Þ is the

Kähler potential. Hence, SUGRA exhibits a sign-changing gravi-
tational strength GðxÞ similar to Eq. (2) when ϕðxÞ → ϕ0.
Previous SUGRA literature [42] fixated solely on the positive
GðxÞ spacetime patch, and constrained it to remain positive
through a Weyl transformation to the Einstein frame, inadvertently
resulting in geodesic incompleteness. SUGRA was elevated to a
Weyl-symmetric version that incorporates a complex superfield
version of ϕðxÞ [33,43]. Hence, SUGRA is geodesically complete,
akin to iðSMþ GRÞ3þ1, provided the presence of the antigravity
regions that complete the spacetime are acknowledged.
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familiar one-time physics (1T physics) in 3þ 1 dimensions
[or more generally ðd − 1Þ þ 1].
The holographic conformal shadow is just one among

many shadows that are multidual to one another. There is a
hidden SO(4,2) symmetry (and their curved space gener-
alizations) which prevails in all shadows. The hidden
symmetry, that is connected to partly hidden 4þ 2 dimen-
sions, represents previously unexpected non-linear sym-
metry properties of actions for all shadows in 3þ 1
dimensions. This was discovered solely through 2T physics
methods. What sets apart the holographic conformal
shadow is its explicit display of the Poincare symmetry
linearly in flat 3þ 1 dimensions, along with the SO(4,2)
conformal symmetry of massless systems in a recognizable
nonlinear form.
2T physics remains consistent with all experimentally

tested aspects of 1T physics. However, it transcends 1T
physics by predicting hidden spacetime symmetries and
multi-duality relationships among a myriad of 1T systems.
These concealed properties permeate all facets of 1T
physics, yet 1T physics alone lacks the capability
to systematically predict them. This is where 2T physics
furnishes new insights into the underlying (4þ 2)-
dimensional system, testable with both 1T theory and
experiments. Indeed, some of the simpler predictions
have been theoretically verified in the early stages of 2T
physics [21–27].

B. Plan of this paper

The previous research outlined above provides the
foundational context for the development of Chern-
Simons (CS) terms for gravity, QCD, and QED, which
are both locally scale-invariant and geodesically complete
at singularities. This is crucial to integrate the physical
implications of these CS terms into the locally scale-
invariant theory in 3þ 1 dimensions. Furthermore, it is
reasonable to anticipate that such CS terms in 3þ 1
dimensions correspond to the holographic conformal
shadow of analogous CS-type terms in (4þ 2)-dimensional
2T physics.
In this paper, we leverage the robust methodologies

offered by 2T physics to investigate Chern-Simons theory.
We employ 2T methods to elevate Chern-Simons theories
into frameworks that exhibit local conformal scale invari-
ance. The primary objectives of this endeavor are (1) to
ascertain the necessary modifications for Chern-Simons
theory to achieve local Weyl symmetry in 3þ 1 dimen-
sions, and (2) to derive the Weyl symmetric 3þ 1 actions
from the higher-dimensional perspective of 2T physics in
4þ 2 dimensions.
To address these questions, we commence with the

conformally improved Standard Model coupled to general
relativity iðSMþ GRÞ3þ1 [33] as derived from 2T versions
of these theories in 4þ 2 dimensions [30,31]. A pivotal

prediction of 2T physics is that the SMþ GR, when
reconciled with the constraints of 2T physics, exhibits a
unique form of hidden local conformal scale (Weyl)
symmetry. Geodesic completeness follows from this con-
formally invariant structure.
Given that the entire action for iðSMþ GRÞ3þ1 is

inherently locally scale invariant (see Sec. II), our objective
is to determine the structural forms that the Chern-Simons
terms must adopt in 3þ 1 dimensions to uphold the local
scale symmetry of the complete iðSMþ GRÞ3þ1 model.
We extend the conformally improved iðSMþ GRÞ3þ1 with
Chern-Simons terms for gravity, QCD, and QED that
remain explicitly invariant under local Weyl transforma-
tions in 3þ 1 dimensions. We demonstrate that maintain-
ing the local scale symmetry of the iðSMþ GRÞ3þ1 model
necessitates the Pontryagin density R̃R in our modified
3þ 1 gravitational Chern-Simons term in (1) to linearly
couple to a function fGRðsi=ϕÞ of the ratio of spin-0 fields.
Analogous scenarios arise in QCD and QED when Rλ

σμν is
replaced by the Yang-Mills field strength Fa

μν (for QCD)
and the electromagnetic field strength Fμν (for QED).
Subsequently, we demonstrate that our conformally

improved Chern-Simons terms in 3þ 1 dimensions can
be derived as holographic images of Chern-Simons actions
in 4þ 2 dimensions for gravity, QCD, and QED. We
explain that the local scale transformation in 3þ 1 dimen-
sions is a remnant of 4þ 2 general coordinate trans-
formations that intertwine the extra 1þ 1 large
dimensions with the evident 3þ 1 dimensions, treated at
the same footing in 2T physics. With the newfound local
conformal symmetry, the enhanced, expanded, and geo-
desically complete SMþ GRþ CS can be utilized to
explore new physics beyond the traditional paradigm near
black hole and cosmological singularities in 3þ 1 dimen-
sions at the classical level, while the 4þ 2 connection
unveils deeper aspects of spacetime.
The structure of the rest of this paper is as follows: In

Sec. II, we elevate the gravitational Chern-Simons term to a
locally Weyl symmetric version directly in 3þ 1 dimen-
sions. Next, in Sec. III, we illustrate how this Weyl-
symmetric Chern-Simons term emerges as a holographic
image of a 2T Chern-Simons field theoretical term in 4þ 2
dimensions. We expound on the interpretation of the local
scale (Weyl) symmetry of the ðSMþ GRþ CSÞ3þ1 theory
as a vestige of general coordinate transformations that mix
the extra 1þ 1 dimensions with the 3þ 1 dimensions. We
also proceed with an examination of the QCD and QED
versions of Chern-Simons theory. In Sec. IV, we delve into
the role of parity and CP violation in the Chern-Simons
actions. Finally, in Sec. V, we conclude with final remarks
and discuss avenues for future research. In the Appendix A,
we summarize the structure, scope, and some of the
methodologies of 2T physics.
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II. LOCALLY SCALE INVARIANT SM, GR
AND CS ACTIONS IN 3 + 1

In this section, we will promote the standard formalism
of Chern-Simons gravity defined in Eq. (1) to a locally
scale invariant formalism directly in 3þ 1 dimensions. Our
strategy is to begin with the iðSMþ GRÞ3þ1 that is locally
Weyl symmetric [33] before incorporating the Chern-
Simons correction.

A. SM and GR actions

The existing (4þ 2)-dimensional model ðSMþ GRÞ4þ2

[30,31] successfully yields iðSMþ GRÞ3þ1 without the CS

terms as a (3þ 1)-dimensional holographic conformal
image. This theory is known to agree with the conven-
tional Standard Model in successfully fitting all known
aspects of particle physics down to 10−18 meters as
measured by the LHC at CERN [44]. Since the entire
action, including the CS terms, must preserve the local
Weyl symmetry, our task is to promote the CS term in (1),
and the similar QCD and QED terms, to locally scale
invariant versions.
In the absence of the Chern-Simons correction, the

action for iðSMþ GRÞ3þ1 is given by [33]

S3þ1
SMþGR ¼

Z
d4x

ffiffiffiffiffiffi
−g

p
 

LSM þ 1
12
ðϕ2 − 2H†HÞRðgÞ

þ 1
2
gμνð∂μϕ∂νϕ − 2∂μH†

∂νHÞ − Vðϕ; HÞ

!
: ð3Þ

The first term, LSMðAγ;W;Z;g
μ ;ψq;l; νR; χ; gμν; H;ϕÞ, encap-

sulates the familiar degrees of freedom within the Standard
Model, excluding the scalar field terms that are displayed
in (3). LSM encompasses the gauge fields Aγ;W;Z;g

μ corre-
sponding to the photon,W�, Z, and gluons g; the fermionic
fields representing quarks and leptons ψq;l; right-handed
neutrinos νR; and candidates for dark matter χ. These
entities interact through SUð3Þ × SUð2Þ × Uð1Þ gauge
symmetric Yukawa and gauge couplings with the doublet
H and singlet ϕ (that could possibly couple only to νR or χ),
and incorporating the difference between SUð2Þ × Uð1Þ
covariant versus ordinary derivatives in the Higgs fields’s
kinetic energy term ð−2DμH†DμH þ 2∂μH†

∂
μHÞ. More-

over, all fields in LSM are subject to minimal coupling with
the gravitational metric gμν. The term LSM is written
separately from the scalar sector displayed in the rest of
the action (3) because fermion, gauge boson, and Yukawa
terms in iðSMþ GRÞ3þ1 are already invariant under local
Weyl rescalings when minimally coupled to gravity. How-
ever for the gravitational sector and all spin 0 fields,
including the Higgs field, local scale symmetry requires
the special structures that are exhibited in the action (3) and
discussed below.
The full action S3þ1

SMþGR is invariant under local Weyl
rescalings of the form,

gμν → Ω2gμν; ϕ → Ω−1ϕ; H → Ω−1H;

ψq;l → Ω−3=2ψq;l; Aγ;W;Z;g
μ → Ω0Aγ;W;Z;g

μ ; ð4Þ

for an arbitrary local parameter ΩðxÞ.
The geodesic completeness and predictions of new

physics beyond the Standard Model emerge from the
Weyl invariant special structures in this action as discussed
in Sec. I A. These include the following features:

(i) Local scale invariance prohibits dimensionful
parameters such as the Higgs mass, cosmological
constant Λ, or the Newton constant GN . Conse-
quently, the Einstein-Hilbert term cannot appear
in the action (3). Instead, there is an effective,
spacetime dependent gravitational strength GðxÞ
that is determined by the scalar singlet ϕðxÞ and
the doublet Higgs boson HðxÞ, as in Eq. (2),
½16πGðxÞÞ−1 ¼ 1

12
ðϕ2ðxÞ − 2H†HðxÞ�.

(ii) In the curvature and kinetic energy terms of the
scalars ϕ andH, there is a relative minus sign. Hence
ϕ seems to be a ghostlike field, but there is no issue
with unitarity because the local scale symmetry
eliminates the ghost by either gauge fixing it to a
constant [the c-gauge, ϕðxÞ ¼ ϕ0] or by compensat-
ing for it in other Weyl gauges. Without the ghostlike
ϕðxÞ there would be no way to have an underlying
local scale symmetry as well as the presence of a
patch of spacetime where the gravitational strength
GðxÞ is positive as explained in [33] and in Sec. II C.
This relative minus sign structure between ϕ and H
first emerged in the context of 2T physics as outlined
in Sec. I A.

(iii) For the Standard Model, the potential Vðϕ; HÞ is
the most general renormalizable purely quartic
expression,

V0ðϕ; HÞ ¼ λ

4
ð2H†H − α2ϕ2Þ2 þ λ0

4
ϕ4; ð5Þ

where α; λ; λ0 are dimensionless couplings. How-
ever, due to renormalization effects and the coupling
to gravity, Vðϕ; HÞ may admit additional contribu-
tions beyond V0 that would vanish when GR is
decoupled from the SM and would be imperceptibly
tiny at low energies. Such modifications of Vðϕ; HÞ
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could become substantial in strong gravity regions
as discussed in [40]. To ensure the principle of
local scale invariance (required if derived from 2T
physics) the full potential must be homogeneous
of degree 4 under scale transformations of the
fields. Then the most general potential consistent
with Weyl symmetry is given by Vðϕ; HÞ ¼
ϕ4vð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2H†H=ϕ2

p
Þ where vðzÞ is any dimensionless

function of z, as long as the deviations from the
StandardModel potential V0 in (5) are imperceptibly
small at low energies as compared to the Planck
energy scale.

The local scale symmetry (4) can be used to remove 1
field degree of freedom, such as locally rescaling ϕðxÞ or
ðϕ2 − 2H†HÞ, or some other combination of fields, to be
spacetime independent constants in various patches of
spacetime. In choosing such gauges, one should be mindful
that certain gauge choices are valid only within geodesi-
cally incomplete patches of spacetime. Examples of geo-
desically incomplete gauges are those that lead to the
Einstein, Jordan, or String frames when they are limited to
only the gravity side of gravitational singularities (see
footnote 2).
In this paper we can replace the doublet H by its

SUð2Þ × Uð1Þ unitary gauge fixed version H†ðxÞ ¼
ð0; sðxÞ= ffiffiffi

2
p Þ, so we substitute everywhere 2H†H ¼ s2

and 2∂μH†
∂νH ¼ ∂μs∂νs. Moreover, we suppress the term

LSM because it plays no role in our discussion. Hence, our
starting point for new CS terms is the action in Eq. (3) that
consists of two conformally coupled scalars ðϕ; sÞ interact-
ing with gravity and each other, while obeying a local scale
symmetry.
In addition to the Higgs boson sðxÞ, that is the only

established physical spin 0 elementary field, there may be
additional spin 0 fields that may play a role in the
fundamental theory. The Weyl symmetry permits such
additional scalars or pseudoscalars that we denote by
si; i ¼ 1;…; N. We can allow only one ghostlike ϕ since
the Weyl symmetry is capable to ensure unitarity only
with 1 ghostlike degree of freedom. In addition to the
Higgs boson s (renamed s1), the si can include scalar or
pseudoscalar dark matter candidates (e.g., the axion) or
other spin 0 fields as motivated by string theory (e.g., the
dilaton or axion), supersymmetry, supergravity, or grand
unified theories (GUTs). In the simplest Weyl invariant

couplings, all spin 0 fields are treated as conformally
coupled scalars. However, there are more general Weyl
invariant couplings for multiple spin 0 fields when there are
additional scalars beyond ϕ and the Higgs boson H, as
discussed in [33]. Here we will deal with the case of
conformally coupled scalars for simplicity by replacing the
Higgs boson s in Eq. (3) with si and summing over i in the
kinetic and R terms in (3). Thus, we will at times use
the more general notation ðϕ; siÞ to include all possible
conformally coupled spin 0 fields si.
Likewise, the potential Vðϕ; siÞ can be modified to a

general function of the fields that is homogeneous of degree
4, which can be written as Vðϕ; siÞ ¼ ϕ4vðsi=ϕÞ where
vðziÞ is any dimensionless function of its Weyl invariant
arguments zi ≡ si=ϕ. Other Weyl invariant ratios, such
as si=sj, are not independent since they can be written in
terms of zi=zj.

B. CS action in GR

We are now ready for the new Chern-Simons terms. In
the gauge symmetric version of the physically correct
iðSMþ GRÞ3þ1, we consider consistently a Weyl invariant
version of S3þ1

CS−GR. We will argue that the Chern-Simons
term S3þ1

CS−GR in (1) for gravity is promoted to be scale
invariant under Weyl transformations if the Pontryagin
density R̃R linearly couples to a dimensionless function of
the ratios of the scalar fields, fGRðsi=ϕÞ as follows:

S3þ1
CS−GR ¼

Z
d4xR̃RfGRðsi=ϕÞ: ð6Þ

Below we will first argue that if fGRðsi=ϕÞ is a function of
only the ratios si=ϕ, or a constant, then S3þ1

CS−GR is invariant
under global scale transformations. We will then argue that
this is also sufficient for S3þ1

CS−GR to be invariant under local
scale transformations as well.
The same reasoning applies also in the cases of QCD and

QED by simply replacing R̃R by the QCD field strengths
F̃aFa or QED field strengths F̃F. Therefore, we will refrain
from repeating the arguments for QCD and QED until the
discussion in Sec. III D.
Under the local Weyl transformations (4), the determi-

nant of the metric and the curvatures transform as follows:

ffiffiffiffiffiffi
−g

p
→ Ω4ðxÞ ffiffiffiffiffiffi

−g
p

; RðgÞ → Ω−2ðxÞðRðgÞ þ derivatives of ΩÞ
RμνðgÞ → Ω0ðxÞðRμνðgÞ þ derivatives of ΩÞ
RμνλσðgÞ → Ω2ðxÞðRμνλσðgÞ þ derivatives of ΩÞ
Rμ

νλσðgÞ → Ω0ðxÞðRμ
νλσðgÞ þ derivatives of ΩÞ

hence∶ ðR̃RÞ → 1ðR̃Rþ derivatives of ΩÞ: ð7Þ
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However, the derivative terms in ðR̃RÞ → ðR̃Rþ
derivatives of ΩÞ do not seem to vanish unless ΩðxÞ is
independent of x. Hence, the Chern-Simons action S3þ1

CS−GR
in Eq. (6) seems to be at best invariant under global Weyl
transformations (i.e., transformations whereΩ ¼ constant),
provided the function fGR is invariant under global rescal-
ings. This is satisfied by requiring fGR to be any dimen-
sionless general function of only Weyl invariant ratios
zi ¼ si=ϕ as indicated in (6).
We will now consider whether S3þ1

CS−GR can be made
invariant under local Weyl transformations for any local

ΩðxÞ. This is necessary because in the absence of local
symmetry, the ghostlike field ϕðxÞ would remain as a
dynamical degree of freedom that would ruin the unitarity
of the theory since it would not be possible to remove the
ghost by mapping it to a constant ϕðxÞ → ϕ0 via a local
gauge transformation. Therefore, it is essential to determine
whether S3þ1

CS−GR can be made invariant beyond global scale
transformations, or whether it is necessary to introduce
additional terms to improve its symmetry properties.
For this purpose, we consider the Weyl tensor Cμ1μ2μ3μ4

defined by

Cμ1μ2μ3μ4 ¼
 

Rμ1μ2μ3μ4 þ 1
6
ðgμ1μ3gμ2μ4 − gμ1μ4gμ2μ3ÞR

− 1
2
ðRμ1μ3gμ2μ4 − Rμ1μ4gμ2μ3 þ Rμ2μ4gμ1μ3 − Rμ2μ3gμ1μ4Þ

!
; ð8Þ

where Rμν is the Ricci tensor and R is the curvature scalar. The Weyl tensor has the following properties under permutation
of indices and tracing:

ðaÞ Cμ1μ2μ3μ4 ¼ Cμ3μ4μ1μ2

ðbÞ Cμ1μ2μ3μ4 ¼ −Cμ2μ1μ3μ4 ¼ −Cμ1μ2μ4μ3

ðcÞ Cμ1μ2μ3μ4 þ Cμ1μ3μ4μ2 þ Cμ1μ4μ2μ3 ¼ 0;

hence for any μ and ν we have : Cμμ2μ3μ4ε
νμ2μ3μ4 ¼ 0:

ðdÞ Traceless for any pair of indices; example : Cμ1μ2μ3μ4g
μ2μ3 ¼ 0: ð9Þ

The Riemann tensor Rμ1μ2μ3μ4 shares the properties
ða; b; cÞ, but the last one (d) is valid only for Cμ1μ2μ3μ4.
Under the local Weyl rescaling of the metric given in (7),

Rμ1μ2μ3μ4 ; Rμν, and R not only rescale by an overall factor
but also have derivative terms ofΩðxÞ. The derivative terms
seem to prevent S3þ1

CS−GR from being locally Weyl invariant.
By contrast, all the derivative terms cancel in the combi-
nation Cμ1μ2μ3μ4 given in (8). Therefore, the Weyl tensor
only rescales by an overall factor under a local Weyl
transformation,

Cμ1μ2μ3μ4 → Ω2ðxÞCμ1μ2μ3μ4 : ð10Þ

Moreover, when one of the indices is raised
Cμ1

μ2μ3μ4 ¼ gμ1νCνμ2μ3μ4 , it remains fully invariant under
local Weyl transformations,

Cμ1
μ2μ3μ4 → Ω0ðxÞCμ1

μ2μ3μ4 : ð11Þ

It is now evident that a locally Weyl invariant version of
the CS term in gravity is given by replacing Rλ

σμν with
Cλ

σμν in Eq. (6),

S3þ1
CS−GR ¼

Z
d4xC̃CfGRðsi=ϕÞ;

C̃C ¼ 1

2
ϵμ1μ2μ3μ4Cλ

σμ1μ2C
σ
λμ3μ4 ; ð12Þ

where fGRðsi=ϕÞ is any general function of the ratio of the
fields, including a constant.
It seems that C̃C contains a few additional terms as

compared to R̃R, thus providing the desired local Weyl
invariance property of the action. However, using the
permutation and trace properties of the Weyl tensor listed
in (9), it can be shown that

C̃C ¼ R̃R: ð13Þ

Hence, the local Weyl invariance of R̃R can be made
manifest by rewriting it in terms of only the Weyl tensor.
Therefore, the action as written originally in Eq. (6) is
actually Weyl invariant under local transformations.
However, this is possible only if fGRðsi=ϕÞ is any dimen-
sionless function of the ratio of the conformal scalar or
pseudoscalar fields as indicated.
In conclusion, the full action for the conformally

invariant ðSMþ GRÞ4þ2 augmented with the gravitational
Chern-Simons correction is given by

ITZHAK BARS and SOPHIA D. SINGH PHYS. REV. D 110, 045010 (2024)

045010-8



S3þ1
SMþGRþCS ¼ S3þ1

SMþGR þ S3þ1
CS−GR: ð14Þ

A similar CS term S3þ1
CS−QCD associated with QCD and the

axion can be considered assuming the axion exists (see
Secs. III D and IV). Also in QED, the decay of the pion
into two photons, and other similar processes involving
hadrons, are captured by similar terms in an effective
Lagrangian approach.

C. Emergence of dimensionful parameters

One of the virtues of this formalism is its unified
approach to explain mass generation in the Standard
Model. In our theory, all dimensionful parameters of the
Standard Model and gravity are initially absent, including
the Newton constant, Higgs mass, cosmological constant,
and quark, lepton, and gauge boson masses. However—just
as in spontaneously broken gauge symmetries—all of the
dimensionful parameters in the SMþ GRþ CS are gen-
erated from the same single source: namely the field ϕ after
gauge fixing the local Weyl symmetry. This demonstrates
a higher degree of unification as to the source of all
dimensionful parameters.
The gauge in which we essentially recover the usual

renormalizable field theory for the Standard Model in flat
space is known as the c-gauge [33]. In the c-gauge, the
source of mass arises when the field ϕ is fixed to a constant
ϕðxÞ → ϕ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12=ð16πGÞp

such that ϕ0 is associated with
the emergence of the Planck scale, ϕ0 ∼ 1019 GeV.
Explicitly, for the gravitational constant GN , the cosmo-
logical constantΛ, and the Higgs vacuum expectation value
(VEV) hjHji ¼ v=

ffiffiffi
2

p
that minimizes the potential V0,

are obtained by replacing ϕðxÞ by the constant ϕ0 in the
action (3),

1

16πGN
¼ ϕ2

0

12
;

Λ
16πGN

¼ λ0

4
ϕ4
0; v2 ¼ α2ϕ2

0: ð15Þ

Then, the electroweak symmetry breaking that is mediated
by the VEV of the Higgs doublet becomes also driven by
the constant value ϕ0 of the gauge fixed ϕðxÞ, so the masses
of all quarks, leptons, and gauge bosons at low energies are
also driven by the same unique ϕ0 source.
In the c-gauge, we will use the letter “c” to label all fields

such as, sic, g
μν
c etc. and ϕcðxÞ≡ ϕ0, to emphasize that

these gauge fixed fields are different than the fields in other
gauges, such as the E-gauge, the string gauge, etc. In the
c-gauge, the action given in Eq. (14) reduces identically to
the usual Standard Model except for the curvature term
that deviates from the Einstein-Hilbert action and takes the
form 1

12
ðϕ2

0 − s2cðxÞÞRðgcÞ. This contains the spacetime
dependent effective gravitational strength ½16πGcðxÞÞ−1 ¼
1
12
ðϕ2

0 − s2cðxÞ�. At experiments conducted at accelerators,
since energies are relatively tiny as compared to Planck
energy, the dimensionless ratio s2cðxÞ=ϕ2

0 is of order 10
−34.

Accordingly, GcðxÞ is approximated by the constant GN
in (15) with great accuracy. Then, low energy physical
phenomena are not sensitive to the deviation from the
traditional SMþ GR that has a spacetime independent
gravitational constants GN . We see that, in the c-gauge, the
familiar Standard Model as tested and measured at low
energies emerges from Eq. (14) almost identically.
One can compute in any other gauge. Recalling that

Weyl gauge invariant quantities are physical, agreement
with the usual Standard Model conventions and interpre-
tations persists in regimes when the gauge invariant ratio
s2ðxÞ=ϕ2ðxÞ ¼ s2cðxÞ=ϕ2

0 ≪ 1 is tiny.
While at low energies the locally scale invariant theory

iðSMþ GRÞ3þ1 is practically identical to the usual SM
and GR, its physical aspects are quite different at the
neighborhood of singularities such as the big bang and
black holes. In such spacetime regions, the Weyl symmetry
repairs the geodesical incompleteness of spacetime and
introduces new physics and new perspectives of space-
time beyond the usual Standard Model and general rela-
tivity [33,35,38,40]. The emergence of novel features
becomes conspicuous in the vicinity, at, and beyond
singularities. The new aspects apply also with supersym-
metry [33,43] and in a formalism that repairs geodesic
incompleteness in string theory [18]. Our work in this paper
extends geodesic completeness to be valid in the presence
of the Chern-Simons correction to GR as well.

III. 2T PHYSICS APPROACH

The goal in this section is to construct a (4þ 2)-
dimensional version of Chern-Simons gravity S4þ2

CS−GR
[Eq. (6)] which reduces to the (3þ 1)-dimensional formu-
lation of Chern-Simons gravity S3þ1

CS−GR that has a local
conformal scale invariance. Since this process involves
tools and techniques from 2T physics, we include an
Appendix A that gives brief reviews of the main concepts,
features and tools of 2T physics. The interested reader may
consult the Appendix to better understand the contents of
this section.
In this section, wewill recall the 2T physics formulation of

ðSMþ GRÞ4þ2, construct the (4þ 2)-dimensional Chern-
Simons term S4þ2

CS−GR, and illustrate how, by gauge fixing and
solving constraints, to obtain the (3þ 1)-dimensional holo-
graphic shadow, S4þ2

SMþGRþCS → S3þ1
SMþGRþCS that was dis-

cussed in the previous sections.

A. SM, GR and CS actions in 4 + 2

We will use the same gauge choice (i.e., the conformal
shadow gauge) that was used to derive the 2T version of the
Standard Model coupled to general relativity in 3þ 1
dimensions from its (4þ 2)-dimensional counterpart,
S4þ2
SMþGR → S3þ1

SMþGR. The computations for the reduction
S4þ2
SMþGR → S3þ1

SMþGR for a (dþ 2)-dimensional metric were
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given in [30–32]. Here, we will apply similar techniques to the reduction S4þ2
CS−GR → S3þ1

CS−GR, specializing dþ 2 to 4þ 2

dimensions.
We start with the 4þ 2 action for 2T gravity coupled to Klein-GordonΦ; Si, Dirac ΨL;R

α , and Yang-Mills Aa
M type matter

fields in the absence of the Chern-Simons correction [31],

S4þ2
SMþGR ¼ γ

Z
d4þ2X

�
δðWÞL1ðΦ; Si;Ψ

q;l
α ; AaÞ þ δ0ðWÞL2ðW;Φ; SiÞ

�
;

L1 ≡
ffiffiffiffi
G

p �
1

12
ðΦ2 − S2i ÞRðGÞ þ

1

2
ð∇ΦÞ2G −

1

2
ð∇SiÞ2G − VðΦ; SiÞ þ � � �

�
;

L2 ≡ 1

12

ffiffiffiffi
G

p 	ðΦ2 − S2i Þð4 −∇2WÞ þGMN∇MW∇NðΦ2 − S2i Þ


: ð16Þ

Here XM are the 4þ 2 spacetime coordinates, GMNðXÞ
is the 4þ 2 gravitational metric, and RðGÞ is its
Riemann curvature scalar in 4þ 2 from which the
(3þ 1)-dimensional shadow metric gμνðxÞ and its curvature
scalar RðgÞ are derived. Similarly, ðΦ; SiÞ with their
potential VðΦ; SiÞ, are the (4þ 2)-dimensional fields
whose (3þ 1)-dimensional shadows ½ϕðxÞ; siðxÞ� and
Vðϕ; siÞ are derived. γ is an overall normalization constant
proportional to the inverse of Planck’s constant ℏ. The “� � �”
in L1 indicates additional fermions as SOð4; 2Þ ¼ SUð2; 2Þ
spinors Ψq;l

α ðXÞ and Yang-Mills gauge fields Aa
MðXÞ as

SO(4,2) vectors from which the (3þ 1)-dimensional
shadow fermions ψL;RðxÞ and shadow gauge fields
Aa
μðxÞ in the ðSMþ GRÞ3þ1 are derived.
Finally, WðXÞ is an auxiliary scalar field that appears in

LW;Φ;S and in the delta function δðWÞ and its derivative
δ0ðWÞ in Eq. (16). The origins of this W field as one of the
generators of Spð2; RÞ in phase space is explained in
Appendix A 3. The restriction to the Spð2; RÞ gauge
invariant sector by the vanishing of all three generators
of Spð2; RÞ is partially implemented by the delta function
and its derivatives. The vanishing of the other two Spð2; RÞ
generators in the local field theory context, including
interactions, is described in Appendix A 3.
We now introduce the (4þ 2)-dimensional Chern-

Simons term that can be added to the action (16) as an
effective term induced by anomalous quantum effects.
This is the starting term in 4þ 2 dimensions from which
S3þ1
CS−GR in Eq. (6) emerges as a (3þ 1)-dimensional

“shadow.” To accomplish this goal, it must have the
following form:

S4þ2
CS−GR ¼ γ

Z
d4þ2XδðWðXÞÞ ðR̃RAÞ

ðR̃RAÞ≡ 1

2
ϵM1M2M3M4M5M6RM

NM1M2
RN
MM3M4

AGR
M5M6

; ð17Þ

where ϵM1M2M3M4M5M6 is the 4þ 2 Levi-Civita tensor,
and RM

NM1M2
ðXÞ is the Riemann tensor derived from the

metric GMNðXÞ in 4þ 2 dimensions. The AGR
M5M6

ðXÞ is an
antisymmetric tensor constructed from the other (4þ 2)-
dimensional field degrees of freedom in the 2T theory.
One would like to choose some AGR

MN whose shadow
would reproduce the fGRðsi=ϕÞ in S3þ1

CS−GR. Moreover, the
(3þ 1)-dimensional curvature tensor Rμ

νμ1μ2ðgðxÞÞ con-
structed from the shadowmetric gμνðxÞ in 3þ 1 dimensions
must emerge as the shadow of its (4þ 2)-dimensional
parent RM

NM1M2
ðGðXÞÞ in 4þ 2 dimensions. We introduce

the following AGR
MN constructed from the derivatives of W

and Φ, where the field WðXÞ is the one that appears in the
delta function in the 2T action:

AGR
MN ¼ 1

4

�
∂W
∂XM

∂ðlnΦÞ
∂XN −

∂W
∂XN

∂ðlnΦÞ
∂XM

�
fGR

�
Si
Φ

�
: ð18Þ

The form in Eq. (18) is motivated on the basis of engineering
dimensions as follows. The 2T gauge symmetry [30–32]
of the (4þ 2)-dimensional action requires the following
engineering dimensions for the coordinates XM, the fields
W, Φ, and S, the metric GMN , the Yang-Mills gauge
field AM, the Christoffel connection Γα

βγ, and the Riemann
tensor RM

NM1M2
:

dimðXMÞ ¼ −1; dimðWÞ ¼ −2; dimðΦÞ ¼ þ1; dimðSiÞ ¼ þ1;

dimðGMNÞ ¼ 0; dimðAMÞ ¼ þ1; dimðΓα
βγÞ ¼ þ1; dimðRM

NM1M2
Þ ¼ þ2: ð19Þ

Given that the action must have dimension 0, AGR
M5M6

should have engineering dimension 0, after taking into account that
in the volume element, d4þ2XδðWðXÞÞ, the factor d4þ2X has dimension −6 while the delta function δðWðXÞ has dimen-
sion þ2. Accordingly, the dimðAGR

MNÞ ¼ 0 is consistent with the assigned dimensions since dimð∂W=∂XMÞ ¼ −1 and
dimð∂ðlnΦÞ=∂XMÞ ¼ þ1.
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B. Holographic conformal shadow

We will now outline the process by which the (4þ 2)-
dimensional metric, fields, Riemann tensors, and anti-
symmetric tensor [GMN;ΦðXÞ; SiðXÞ; RM

NM1M2
; AGR

MN] are
reduced to their (3þ 1)-dimensional shadow counterparts
[gμνðxÞ;ϕðxÞ; siðxÞ; Rλ

σμ1μ2ðgðxÞÞ; fGRðsi=ϕÞ�.
There are many ways to parametrize XM in 4þ 2

dimensions to reduce the 4þ 2 field theory to the emergent
3þ 1 Chern-Simons action. One approach is to make a
convenient choice of coordinate transformations XM →
ðw; u; xμÞ so that WðXÞ ¼ Wðw; u; xμÞ ¼ w is one of the
independent coordinates.4 The emergent 3þ 1 shadows
½gμνðxÞ;ϕðxÞ; sðxÞ� will be functions of only xμ and tensor
indices run only in 3þ 1 directions, μ, ν ¼ 0, 1, 2, 3. The
tangent basis for this curved space (w; u; xμ) is given by
∂M ¼ ð∂w; ∂u; ∂μÞ where (w, u) are the coordinates asso-
ciated with the extra 1þ 1 dimensions beyond the 3þ 1
coordinates xμ. The volume element becomes

d4þ2XδðWðXÞÞ ¼ dwdu d4x δðwÞ: ð20Þ

Our strategy is to use the fact that the 2T action is
manifestly invariant under general coordinate transforma-
tions in 4þ 2 dimensions to gauge fix components of the

metric as functions of (w; u; xμ) as shown below. In flat
spacetime, before gauge fixing, the 2T action in 4þ 2 has a
global SO(4,2) symmetry which is linearly realized on
4þ 2 coordinates XM and is manifest in the action. This is
the Lorentz symmetry in 4þ 2 dimensions which treats all
coordinates on an equal footing. In the field theoretic
formulation in the presence of gravity, the SO(4, 2)
symmetry is elevated to general coordinate invariance
and Yang-Mills type gauge symmetries in 4þ 2 dimen-
sions. After gauge fixing components of the metric GMN ,
there remains a general coordinate symmetry that allows us
to arbitrarily reparametrize the subspace (u; xμ) without
altering the gauge fixed metric GMN . With this freedom, we
can choose a parametrization which makes use of the fact
that w is an independent coordinate to ensure that the
conformal shadow will only depend on the shadow gμνðxÞ
degrees of freedom in the end.
As outlined in Appendix A 3, the equations of motion

derived from the 2T action imposes certain kinematic
constraints (called B and C) and a dynamical constraint
(called A), for the metric and scalar fields ðGMN;Φ; SiÞ.
The kinematic B and C constraints, combined with gauge
conditions for the metric GMNðXÞ and its inverse GMNðXÞ
are solved by the following tensor configuration as func-
tions of ðw; u; xμÞ [32]:

ð21Þ

where

GμνðXÞ ¼ e−4ug̃μνðx; we4uÞ; ΦðXÞ ¼ e2uϕ̃ðx; we4uÞ; SiðXÞ ¼ e2us̃iðx; we4uÞ: ð22Þ

Because of the delta function in the volume element in Eq. (20), we can consider a Kaluza-Klein type series expansion in
powers of w,

GμνðXÞ ¼ e−4u


gμνðxÞ þ we4ug1μνðxÞ þ

1

2
ðwe4uÞ2g2μνðxÞ þ � � �

�
ΦðXÞ ¼ e2u



ϕðxÞ þ we4uϕ1ðxÞ þ

1

2
ðwe4uÞ2ϕ2ðxÞ þ � � �

�
SiðXÞ ¼ e2u



siðxÞ þ we4us1iðxÞ þ

1

2
ðwe4uÞ2s2iðxÞ þ � � �

�
: ð23Þ

The lowest modes in this expansion are the (3þ 1)-
dimensional shadows of the (4þ 2)-dimensional fields,
½GMNðXÞ;ΦðXÞ; SiðXÞÞ → ðgμνðxÞ;ϕðxÞ; siðxÞÞ�. The addi-
tional fields in the w-expansion are called prolongations of
the shadow for each field.

4In flat space, we begin with Wflat ≡ ðX2Þflat ¼ XMXNηMN
where ηMN is a flat metric in 4þ 2 dimensions. We can always
parametrize the six coordinates XM in terms of another set of six
coordinates ðw; u; xμÞ such that XMXNηMN ¼ w. In curved space,
WðXÞ is a general scalar field that, by the 2T gauge trans-
formations [32], can be gauge fixed to WðXÞ ¼ w.
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It was established in [32] that the prolongations are not
independent but are all determined by the shadows
½gμνðxÞ;ϕðxÞ; siðxÞ� up to gauge freedom. The dynamics
of the shadows ½gμνðxÞ;ϕðxÞ; siðxÞ� (given by the A
equations in Appendix A 3) as derived from the parent
2T action ðSMþ GRþ CSÞ4þ2 are also reproduced by the
(3þ 1)-dimensional shadow action ðSMþ GRþ CSÞ3þ1.
The holographic conformal shadow action in 3þ 1 looks
like the familiar relativistic field theory with one additional
requirement: namely, that it is conformally scale invariant
in the special form exhibited in (3) and (6).
We now turn to the similar derivation of the conformal

shadow for the case of the CS action S4þ2
CS−GR → S3þ1

CS−GR.

Using the expansions in powers of w for ½GMNðXÞ;
ΦðXÞ; SiðXÞ� given above, we need to evaluate the deriv-
atives of these fields in order to compute RM

NM1M2
and

AGR
M5M6

. In particular, for AGR
M5M6

one must evaluate ∂MW and
∂MðlnΦÞ ¼ ∂M lnϕðx; we4uÞ by using the chain rule. Since
WðXÞ ¼ Wðw; u; xÞ ¼ w is a function of only the coor-
dinate w, the derivative ∂MW vanishes for directions M
except for M ¼ w,

∂MWðXÞ ¼ ∂w
∂XM

∂

∂w
Wðw; u; xÞ ¼ δwM: ð24Þ

Similarly,

∂N lnðΦÞ ¼
�

∂w
∂XN

∂

∂w
þ ∂u
∂XN

∂

∂u
þ ∂xμ

∂XN

∂

∂xμ

�
ln
�
e2uϕ̃ðx; we4uÞ�

¼
�
2δuN þ ϕ̃0ðx; we4uÞ

ϕ̃ðx; we4uÞ e
4uðδwN þ 4wδuNÞ þ δμN

∂μϕ̃ðx; we4uÞ
ϕ̃ðx; we4uÞ

�
; ð25Þ

where ϕ̃0ðx; we4uÞ is the derivative of ϕ̃ with respect to the argument we4u. The resulting expression for AGR
MN is

AGR
MN ¼ 1

4

�
δwM∂NðlnΦÞ − δwN∂MðlnΦÞ�fGR

�
Si
Φ

�
:

Components of the asymmetric tensor AGR
MN that do not containM ¼ w orN ¼ w vanish because of the factor δwM. Moreover,

the component Aww also vanishes because of the antisymmetry in M ↔ N,

AGR
ww ¼ 0; AGR

uu ¼ 0; AGR
uν ¼ −AGR

μu ¼ 0 and AGR
μν ¼ 0: ð26Þ

The vanishing condition WðXÞ ¼ w → 0 due to the delta function should be implemented only after evaluating all the
derivatives ∂w with respect to w, as done above. The remaining components of AGR

MN in the limit of w → 0 are

AGR
wu ¼ −ðAGR

uw Þ ¼
1

4

�
2þ 4we4u

ϕ̃0ðx; we4uÞ
ϕ̃ðx; we4uÞ

�
fGR

�
s̃iðx; we4uÞ
ϕ̃ðx; we4uÞ

�
⟶
w→0 1

2
fGR

�
siðxÞ
ϕðxÞ

�
;

AGR
wν ¼ −ðAGR

μw Þ ¼
1

4

∂μϕ̃ðx; we4uÞ
ϕ̃ðx; we4uÞ fGR

�
s̃iðx; we4uÞ
ϕ̃ðx; we4uÞ

�
⟶
w→0 1

4

∂μϕðxÞ
ϕðxÞ fGR

�
siðxÞ
ϕðxÞ

�
: ð27Þ

Inserting this form of AGR
M5M6

in the S4þ2
CS−GR action in Eq. (17), we obtain

ðR̃RAÞ ¼ 1

2
εM1M2M3M4M5M6RM

NM1M2
RN
MM3M4

AGR
M5M6

¼ 1

2
εM1M2M3M4wuRM

NM1M2
RN
MM3M4

2AGR
wu −

1

2
εM1M2M3M4μ5wRM

NM1M2
RN
MM3M4

2AGR
μ5w: ð28Þ

Because of antisymmetry properties of the Levi-Civita tensor, in the first term M1M2M3M4 must all point in the 3þ 1
directions μ1μ2μ3μ4, while in the second term at least one ofM1M2M3M4 must point in the u direction. Therefore, we can
simplify

ðR̃RAÞ ¼ 1

2
εμ1μ2μ3μ4



RM
Nμ1μ2

RN
Mμ3μ4

2Awu − RM
Nμ1μ2

RN
Mμ3u

8AGR
μ5w

�
: ð29Þ
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The next task is to compute the components of the
Riemann tensors RM

NM1M2
ðGÞ; RN

MM3M4
ðGÞ for the 4þ 2

metricGMN given in Eq. (21) and express the result in terms
of the shadow gμνðxÞ and the prolongations g1μνðxÞ; g2μνðxÞ,
etc. as fields in 3þ 1 dimensions. Borrowing from
Eqs. (6.10)–(6.11) in [32], we list the nonvanishing
components of RM

NM1M2
ðGÞ with one upper index in the

limit w → 0,

Ru
ρμ1wðGÞ ¼

e4u

4

�
gσ1μ1g1σρ − 2g2μ1ρ

�
;

Ru
ρμ1μ2ðGÞ ¼

1

2

�∇μ1g1μ2ρ −∇μ2g1μ1ρ
�
;

Rλ
wμ1wðGÞ ¼

e8u

4

�
gλσ1 g1σμ1 − 2gλ2μ1

�
;

Rλ
wμ1μ2ðGÞ ¼

e4u

2

�∇μ1g
λ
1μ2

−∇μ2g
λ
1μ1

�
;

Rλ
ρμ1wðGÞ ¼

e4u

2
gλσ
�∇σg1ρμ1 −∇ρg1σμ1

�
Rλ

ρμ1μ2ðGÞ ¼


Rλ

ρμ1μ2ðgÞ − gλ
1½μ1gμ2�ρ − δλ½μ1g1μ2�ρ

�
: ð30Þ

These expressions include the prolongations of the shadow
that survive the w → 0 limit after taking ∂w derivatives.
Here∇μ is the covariant derivative with respect to the 3þ 1

shadow metric gμνðxÞ and Rλ
ρμ1μ2ðgÞ is its Riemann tensor,

but the shadow Rλ
ρμ1μ2ðgÞ is only the first part of Rλ

ρμ1μ2ðGÞ
as seen in the last term of Eq. (30). Moreover, any upper

index on the prolongations, such as gλ1μ1 , g
λσ
1 or gλ2μ1, was

obtained by using the inverse shadow metric gλσ, such as
gλ1μ1 ≡ gλσg1σμ1 , etc.
Inserting these results in Eq. (29), we see that in the sums

over M and N, only the last curvature Rλ
ρμ1μ2ðGÞ contrib-

utes, so the second term in (29) drops out, and the first term
yields ðR̃RAÞ ¼ 1

2
εμ1μ2μ3μ4Rλ

ρμ1μ2ðGÞRρ
λμ3μ4ðGÞfGRðsi=ϕÞ.

In this expression, Rλ
ρμ1μ2ðGÞ given in (30) includes

contributions from the prolongation g1μν and g2μν in
Eq. (30). However, these pieces drop out in the sums
over μ1, μ2, μ3, μ4 due to the complete antisymmetric nature
of εμ1μ2μ3μ4 versus the symmetric nature of g1μν and g2μν.
In the shadow action S3þ1

CS−GR, only the shadow fields
½gμνðxÞ;ϕðxÞ; siðxÞ� survive while all prolongations drop
out. Thus, the final result contains only the shadow
Rλ

ρμ1μ2ðgÞ piece of Rλ
ρμ1μ2ðGÞ,

ðR̃RAÞ ¼ 1

2
εμ1μ2μ3μ4Rλ

ρμ1μ2ðgÞ Rρ
λμ3μ4ðgÞfGRðsi=ϕÞ:

ð31Þ

At this point, the density ðR̃RAÞ is independent of u as
well as w. Therefore, in the volume element in Eq. (20), the
u and w integrations are performed, and the resulting
constant coefficient is canceled against γ as done in every
term of the full action [31], to obtain the conformal shadow
action in 3þ 1 dimensions,

S4þ2
CS−GR ¼ γ

Z
d4þ2XδðWðXÞÞ 1

2
ϵM1M2M3M4M5M6RM

NM1M2
RN
MM3M4

AGR
M5M6

⇒
Shadow

S3þ1
CS−GR ¼

Z
d4x

1

2
εμ1μ2μ3μ4Rλ

ρμ1μ2ðgÞRρ
λμ3μ4ðgÞfGRðsi=ϕÞ: ð32Þ

This proves that the 3þ 1 Chern-Simons action term in
Eq. (6) indeed emerges as a holographic image of the 4þ 2
action term in Eq. (17).
It should be emphasized that the (3þ 1)-dimensional

shadow degrees of freedom are self-sufficient to describe
the gauge invariant physical phenomena in 3þ 1 dimen-
sions. However, as seen in Eq. (30) there are prolongations
of the shadow that describe nontrivial phenomena occur-
ring in the extra 1þ 1 dimensions. The prolongations of
the metric g1μνðxÞ and g2μνðxÞ are fully determined by the
shadow gμν as discussed in [31]. Therefore, the shadow
determines all the prolongations of the geometry shown
in (30) and similarly for the prolongations of all other field
degrees of freedom Φ; Si;Ψ; Aa

M.
The fact that there are (Kaluza-Klein type) prolongations

in the extra dimensions as seen in Eq. (30) is also noted for
all shadows (beyond the conformal shadow discussed in

this section). This is also a common feature in the classical
and quantum phase spaces in various shadows of a single
particle in 4þ 2 dimensions as displayed in [19,21,26]. All
of this, including the multidualities among the shadows, are
indirect indications of the existence of the extra dimen-
sions. All prolongations are determined by the shadows, so
unlike the usual Kaluza-Klein setting the prolongations are
not independent degrees of freedom. However, there may
be ways to analyze physical effects associated with the
prolongations, thus probing the extra dimensions directly.

C. The emergent Weyl symmetry in 3 + 1

We seize this moment to elucidate the 4þ 2 genesis of
local conformal scale (Weyl) symmetry within the con-
formal shadow. Recall that the 4þ 2 parent actions,
denoted as S4þ2

CS−GR and S4þ2
SMþGR, are invariant under general
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coordinate transformations in 4þ 2 dimensions, albeit
lacking Weyl symmetry. During the process of gauge
fixing and solving the kinematic constraints, a portion of
the general coordinate reparametrizations is also fixed.
Nevertheless, within the conformal shadow, alongside the
residual reparametrization symmetry, there persists an addi-
tional symmetry stemming from reparametrizations that
mix the extra 1þ 1 dimensions with the 3þ 1 dimensions.
This residual 4þ 2 symmetry manifests as the 3þ 1 Weyl
transformations delineated in Eq. (7).
To illustrate this, let us examine the solutions of the

kinematic B and C constraints forGMNðw; u; xÞ;Φðw; u; xÞ,

and Siðw; u; xÞ as provided in Eqs. (22) and (23). We apply
a specific general coordinate transformation that involves
mixing u with xμ as follows: u → ðu − λðxÞ=2Þ where λðxÞ
represents an arbitrary function of the 3þ 1 spacetime
coordinates xμ. Under this transformation, the fields trans-
form as follows: Φðw; u; xÞ → Φðw; ðu − 1

2
λðxÞÞ; xÞ, and

similarly for Siðw; u; xÞ. While GMNðw; u; xÞ typically
transforms as a tensor, under this particular transformation,
the gauge-fixed form in (21) remains unchanged. Instead,
only gμνðw; u; xÞ transforms into gμνðw; ðu − 1

2
λðxÞÞ; xÞ. By

substituting the w series expansion of Eq. (23), we obtain

Φðw; u; xÞ → Φ


w;


u −

1

2
λðxÞ

�
; x
�
¼ e2u−λðxÞ

�
ϕðxÞ þ we4u−2λðxÞϕ1ðxÞ þ

1

2
ðwe4u−2λðxÞÞ2ϕ2ðxÞ þ � � �

�
: ð33Þ

This is equivalent to transforming the shadow and prolongation fields ðϕðxÞ;ϕ1ðxÞ;ϕ2ðxÞ; � � �Þ including all higher modes
as follows:

ϕðxÞ → ϕðxÞe−λðxÞ; ϕ1ðxÞ → ϕ1ðxÞe−3λðxÞ; ϕ2ðxÞ → ϕ2ðxÞe−5λðxÞ; � � �
sðxÞ → sðxÞe−λðxÞ; s1ðxÞ → s1ðxÞe−3λðxÞ; s2ðxÞ → s2ðxÞe−5λðxÞ; � � �

gμνðxÞ → gμνðxÞe2λðxÞ; g1μνðxÞ → g1μνe0λðxÞ; g2μνðxÞ → g2μνe−2λðxÞ; � � � ð34Þ

These Weyl-type local scale transformations in 3þ 1
dimensions are assured to be symmetries of the parent
actions S4þ2

CS−GR and S4þ2
SMþGR as they correspond to specific

general coordinate transformations in 4þ 2 dimensions. It
becomes apparent that the first column in Eq. (34) repre-
sents the Weyl transformation of the shadow fields
ðϕ; s; gμνÞ, constituting the local scale symmetry of the
shadow actions S3þ1

CS−GR and S3þ1
SMþGR. This demonstrates that

the local Weyl symmetry in 3þ 1 relativistic field theory in
Eq. (4) is synonymous with a distinct general coordinate
transformation in 4þ 2 dimensions, ΩðxÞ ¼ eλðxÞ, entwin-
ing the extra 1þ 1 dimensions u, w with the 3þ 1
dimensions xμ while keeping w ¼ 0.

D. (4 + 2)-dimensional QCD and QED CS actions

In this section, we discuss the QCD and QED formalisms
of Chern-Simons theory. In [30], it was demonstrated that
Weyl symmetric QCD action emerges from the action
S4þ2
SMþGR given by Eq. (16) in the absence of the Chern-

Simons corrections. Therefore, constructing a locally scale
invariant formalism of Chern-Simons theory in QCD
amounts to determining the structural forms required for
the modified QCD Chern-Simons term to preserve the local
scale invariance of the full action.
It is known from 1T physics that the QCD formalism of

Chern-Simons theory is structurally similar to its gravita-
tional counterpart. We will exploit this correspondence to
construct the QCD Chern-Simons term. For QCD the

pseudoscalar axion field aðxÞ, which is one of the possible
fields in siðxÞ in the iðSMþ GRÞ3þ1, couples to the QCD
instanton density F̃F instead of the Pontryagin density R̃R.
By extension of the arguments presented in Sec. II, we
expect that a locally scale invariant QCD Chern-Simons
term in 3þ 1 dimensions will involve a function
fQCDða=ϕÞ linearly coupled to the instanton density F̃F,

S3þ1
CS−QCD ¼

Z
d4xfQCDða=ϕÞF̃F;

F̃F ¼ 1

2
ϵμ1μ2μ3μ4Fa

μ1μ2F
b
μ3μ4ηab; ð35Þ

where ηab is the Killing metric for the gauge group SU(3),
and Fa

μ1μ2 is the QCDYang-Mills field strength. To match to
previous work on this case [12], we should take a linear
function of the axion field a,

fQCDða=ϕÞ ¼
a
ϕ
c; ð36Þ

where c is a dimensionless constant. The field ϕðxÞ turns
into a constant ϕðxÞ → ϕ0 when the local Weyl symmetry
is gauge fixed to produce the familiar term [12] in the
previously Weyl noninvariant SMþ GR. This structure
shows the hidden conformal symmetry including the
Weyl symmetry and its relation to the underlying (4þ 2)-
dimensional spacetime.
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We now consider how this (3þ 1)-dimensional QCD
Chern-Simons term can be derived from a (4þ 2)-
dimensional parent term. By extension of the arguments
presented in Sec. III, the (4þ 2)-dimensional parent is
expected to take the form,

S4þ2
CS−QCD ¼

Z
d4þ2XδðWðXÞÞðF̃FAÞ;

ðF̃FAÞ≡ 1

2
ϵM1M2M3M4M5M6ηabFa

M1M2
Fb
M3M4

AQCD
M5M6

: ð37Þ

The Fa
M1M2

is given by

Fa
M1M2

¼ ∂Aa
M2

∂XM1
−
∂Aa

M1

∂XM2
þ gfabcAb

M1
Ac
M2
; ð38Þ

where Aa
MðXÞ is the 4þ 2 parent of the 3þ 1 Yang-Mills

gauge field Aa
μðxÞ. The AQCD

M5M6
in Eq. (37) is given by

AQCD
M5M6

¼ 1

2

�
∂W
∂XM5

∂ðlnΦÞ
∂XM6

−
∂W
∂XM6

∂ðlnΦÞ
∂XM5

�
fQCD

�
A
Φ

�
;

ð39Þ

where AðXÞ is the 4þ 2 parent of the 3þ 1 pseudoscalar
axion field aðxÞ that appears in S3þ1

QCD. We can follow a

similar procedure as outlined in Sec. III to reduce the
(4þ 2)-dimensional fields, field strength tensors, and anti-
symmetric tensor (Φ;A; Fa

M1;M2
; AQCD

MN ) to their (3þ 1)-
dimensional counterparts ½ϕ; a; Fa

μ1μ2 ; fQCDða=ϕÞ�. This
procedure yields the action in Eq. (35) as a holographic
image of Eq. (37).
Similar considerations apply to anomalous terms in QED

where instead of the axion a, we have the neutral pion
π0 (or similar relevant hadrons) and instead of the QCD
field strength Fa

M1M2
ðXÞ, we have the QED field

strength FM1M2
ðXÞ.

IV. P AND CP VIOLATION

We will now discuss the parity (P) and charge parity
(CP) conjugation properties of our locally scale invariant
Chern-Simons action. In 1T physics, the gravitational,
QCD and QED Chern-Simons actions terms are expected
to satisfy certain transformation properties under parity and
CP transformations. The goal of this section is to determine
how the functions fGR, fQCD and fQED need to be restricted
for consistency with the established 1T transformation
properties.
We previously obtained the following Weyl invariant

3þ 1 Chern-Simons action terms for gravity, QCD and
QED in Eqs. (6), (35):

S3þ1
CS−GR ¼

Z
d4xfGRðsi=ϕÞR̃R; R̃R ¼ 1

2
ϵμ1μ2μ3μ4Rλ

σμ1μ2R
σ
λμ3μ4 ;

S3þ1
CS−QCD ¼

Z
d4xfQCDða=ϕÞðF̃FÞQCD; ðF̃FÞQCD ¼ 1

2
ϵμ1μ2μ3μ4Fa

μ1μ2F
b
μ3μ4ηab;

S3þ1
CS−QED ¼

Z
d4xfQEDðπ0=ϕÞðF̃FÞQED; ðF̃FÞQED ¼ 1

2
ϵμ1μ2μ3μ4Fμ1μ2Fμ3μ4 : ð40Þ

In 3þ 1 dimensions, R̃R; ðF̃FÞQCD; ðF̃FÞQED flip signs
under parity (P) and charge plus parity (CP) transforma-
tions. Hence, the P and CP transformation characteristics
of the aforementioned CS action terms hinge crucially on
the nature of the functions fGRðsi=ϕÞ, fQCDða=ϕÞ, and
fQEDðπ0=ϕÞ. Notably, fQEDðπ0=ϕÞ is a recognized P and
CP-odd function, as detailed below, rendering S3þ1

CS−QED
invariant under P and CP transformations. Moreover, it is
contended that fQCDða=ϕÞ also exhibits P and CP odd
behavior, contingent upon the existence of the axion field
aðxÞ associated with the Peccei-Quinn symmetry in the
strong interactions [12]. In such an instance, S3þ1

CS−QCD

retains P and CP invariance, akin to S3þ1
CS−QED. How-

ever, in the event of the axion’s absence, theoretical
assumptions regarding the P and CP properties of fQCD
become uncertain. It could potentially function as a dimen-
sionless quantity dependent on all si=ϕ, notwithstanding

experimental observations indicating its nonexistence
or extreme rarity, leaving the underlying reasons for its
minute magnitude unresolved, akin to other unexplained
hierarchies. Lastly, the function fGRðsi=ϕÞ remains uncon-
strained by either theoretical postulations or experimental
evidence, rendering its P and CP properties undetermined.
In more detail, the action S3þ1

CS−QED is not part of the
fundamental renormalizable action, but it arises in quantum
loop corrections and is sometimes included in effective
actions involving certain hadrons that decay into two
photons. The coefficient fQED that arises from the chiral
triangle anomaly was computed reliably in perturbative
QCD, and the result agrees quantitatively with the meas-
urement of the decay of the neutral pion into two photons.
Therefore, we conclude that fQEDðπ0=ϕÞ in the Weyl
invariant iðSMþ GRÞ3þ1, when taken at low energies in
the c-gauge ϕðxÞ → ϕ0, is already known in the form
fQEDðπ0=ϕ0Þ ¼ ðc=ϕ0Þπ0ðxÞ where the dimensionful
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constant ðc=ϕ0Þ is given by α=ð16πfπÞ in terms of mea-
sured quantities: namely, the dimensionless α ¼ 1=137 is
the electromagnetic fine structure constant, and the dimen-
sionful fπ is the pion decay constant. This fixes the
unknown dimensionless coefficient c. Therefore, before
fixing the Weyl gauge we can write the fully determined
dimensionless and scale invariant fQED as

fQED

�
π0

ϕ

�
¼ α

ϕ0

16πfπ

π0ðxÞ
ϕðxÞ : ð41Þ

In the c-gauge, we observe that ϕ0=ϕcðxÞ ¼ 1, yielding
fQED ¼ α 1

16πfπ
π0cðxÞ wherein π0cðxÞ represents the mea-

sured and interpreted pion field at low energies. Signifi-
cantly, the gauge-invariant form outlined in (41) proves
instrumental in bridging the low-energy description within
the c-gauge to all regions encompassed by the geodesically
complete theory, facilitated by the Weyl gauge-invariant
ratios π0ðxÞ=ϕðxÞ ¼ π0cðxÞ=ϕ0. This correlation enables
computations of π0ðxÞ=ϕðxÞ in proximity to gravitational
singularities to be directly linked to the observed low-
energy behavior.
In QCD, S3þ1

CS−QCD is not part of the fundamental re-
normalizable action unless fQCD is a constant. However,
since it violates P and CP in the strong interactions it is not
introduced as a fundamental constant. Nevertheless, fQCD
arises in quantum loop corrections when the electroweak
interactions are coupled to quarks although the nonpertur-
bative nature of strong interactions renders the computation
of fQCD elusive, relegating it to an enigmatic effective term.
In iðSMþ GRÞ3þ1 fQCDðsi=ϕÞ must be a general dimen-
sionless function due to the Weyl symmetry. Given the
presence of P and CP violations in the weak interactions
that are part of the SM, it is hard to understand why such
fQCD must be unnaturally minute to reconcile the lack of P
and CP violation in experiments involving the neutron’s
electric dipole moment. This discrepancy raises the funda-
mental issue of elucidating why fQCD should be tuned to
such diminutive proportions while fQED in QED remains
non-negligible.
However, under the auspices of a Peccei-Quinn sym-

metry in the strong interactions [12], fQCD assumes
linearity with respect to the axion field aðxÞ. In the realm
of Weyl symmetric theory, it adopts the form fQCDða=ϕÞ ¼
c × ðaðxÞ=ϕðxÞÞ, where ϕ is symmetric under P and CP
while aðxÞ represents the pseudoscalar axion field, exhib-
iting oddness under both P and CP. This configuration
yields the density fQCD × ðF̃FÞQCD that conserves both P
and CP symmetries. This formulation resolves the strong
CP problem by leveraging the PQ symmetry to assert the
vanishing vacuum expectation value of the axion, thereby
ensuring conservation of P and CP in QCD, akin to QED’s
conservation involving the pion.

In the absence of PQ symmetry or its associated axion,
the negligible size of fQCD is possible, but it is unexplained
like a few other unnatural hierarchy problems in the
Standard Model.
In the case of gravity, a more general function fGRðsi=ϕÞ

that is not purely odd or purely even under P and CP is
permitted within existing experimental constraints. More-
over, since GR is already nonrenormalizable, the action
S3þ1
CS−GR is not prevented from appearing in the action like

Eq. (14) with its own independent parameters, rather than
being computed in quantum loops. If fGRðsi=ϕÞ is odd
under P and CP, then the fGRðsi=ϕÞR̃R CS density is
symmetric under P and CP. On the other hand, if there are
only two spin 0 fields ðϕ; sÞ, recalling that both ϕ and the
Higgs boson s are both P and CP even, then fGRðs=ϕÞ is
automatically even under both P and CP. In that case, the
CS term fGRðs=ϕÞR̃R violates both P and CP.
Future phenomenological studies are needed to constrain

the exact forms of the functions fGRðs=ϕÞ, fQCDða=ϕÞ.
More generally, fGRðsi=ϕÞ and fQCDðsi=ϕÞ may involve
several more fundamental spin-0 fields beyond the Higgs
boson (and the axion) if more fields are present in nature.

V. DISCUSSION AND OUTLOOK

We have successfully modified the Chern-Simons terms
in gravity, QCD, and QED to accommodate local con-
formal scale (Weyl) invariance. Commencing with the
conformally improved iðSMþ GRÞ3þ1 [33], we extended
this framework by formulating Weyl symmetric CS terms.
First, we devised a Weyl invariant formulation of the

Chern-Simons term in gravity directly in 3þ 1 dimensions.
We found that the local scale symmetry of the ðSMþ
GRÞ3þ1 model could be upheld by linearly coupling the
Pontryagin density R̃R in the Chern-Simons term to a
function of the ratio of conformally coupled scalar fields,
fGRðsi=ϕÞ, as in Eqs. (6) and (12). This form of fGRðsi=ϕÞ
proved indispensable in achieving local conformal scale
invariance. Similarly, we discerned that the Chern-Simons
terms in QCD and QED could attain local Weyl symmetry
if the density F̃F linearly couples to a function fQCDðsi=ϕÞ
or fQEDðsi=ϕÞ as in Eqs. (40).
The physical interpretation at low energies unfolds in the

c-gauge, where the iðSMþ GRÞ3þ1 model virtually coin-
cides with the customary SMþ GR as discussed in Sec. II C.
In the c-gauge of ðSMþ GRþ CSÞ3þ1, we denote all fields
with the letter “c” such as ½ϕcðxÞ; sciðxÞ; gcμν� to differ-
entiate them from other gauges. The c-gauge is delineated
by the gauge choice ϕcðxÞ ¼ ϕ0 where ϕ0 remains constant
across all xμ within our spacetime patch as observers
situated outside all gravitational singularities. Within this
spacetime patch, the c-gauge scalars sciðxÞ represent the
spin 0 fields (e.g., the Higgs boson, axion, etc.) as measured
from our cosmological and accelerator physics perspec-
tives, conforming to their formulation in the standard
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SMþ GR. The invariance of field ratios under Weyl gauge
transformations enables us to express siðxÞ=ϕðxÞ ¼
sciðxÞ=ϕ0. On the left-hand side the fields are in any gauge,
on the right-hand side, we can measure both sciðxÞ and ϕ0

as explained in Sec. II C. This relationship facilitates the
linkage of the low-energy interpretation of the scalars sciðxÞ
from the low-energy gravity patch to the geodesically
complete full spacetime in any gauge encompassing the
vicinity of every singularity and antigravity patches behind
each singularity.
Thus, computations can be executed in any convenient

gauge within the complete spacetime of ðSMþ GRþ
CSÞ3þ1, and the gauge-invariant information siðxÞ=ϕðxÞ
can be translated into the low-energy language of the
c-gauge [refer to the example in Eq. (41)]. Other gauge-
invariant ratios si=sj can be reexpressed in terms of si=ϕ.
It is evident that at this stage, only the Weyl invariant

Higgs field s=ϕ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2H†H=ϕ2

p
is confirmed to exist in

nature. Thus, we ascertain that at least two scalar fields
ðϕ; HÞ are constituents of the Weyl invariant theory
ðSMþ GRþ CSÞ3þ1. This theory adeptly encapsulates
all known facets of particle physics and gravity in any
gauge. This comprehensiveness stems from our under-
standing that in our low-energy spacetime patch, the gauge-
invariant sðxÞ=ϕðxÞ ∼ 10−17 is minuscule, and in this limit,
the Weyl invariant theory closely mirrors the remarkably
accurate conventional SMþ GR.
In Sec. III, we determined the (4þ 2)-dimensional

counterparts for the 3þ 1 CS terms. Recognizing that
the locally conformally invariant iðSMþ GRÞ3þ1 serves as
a holographic image of a (4þ 2)-dimensional field theo-
retical action, we delved into the (4þ 2)-dimensional
counterparts of the 3þ 1 CS terms within the 2T physics
formalism. Successfully formulating the actions S4þ2

CS−GR for
gravity, QCD, and QED, we demonstrated how the emer-
gent 3þ 1 actions S3þ1

CS−GR are derived as a holographic
shadow of 2T physics.
In the process, we clarified howWeyl symmetry in 3þ 1

dimensions in the complete action ðSMþ GRþ CSÞ3þ1

arises from a more fundamental general coordinate in-
variance in the (4þ 2)-dimensional parent theory ðSMþ
GRþ CSÞ4þ2. It is crucial to note that Weyl symmetry
was not among the gauge symmetries of the (4þ 2)-
dimensional S4þ2

SMþGRþCS actions; rather, it emerged in the
3þ 1 holographic conformal shadow from general coor-
dinate transformations in 4þ 2 dimensions that intertwine
the apparent 3þ 1 dimensions with the concealed 1þ 1

large (not curled up) dimensions.
Thus, the genesis of Weyl symmetry within our work

bears the hallmark of 2T physics. While reminiscent of the
original Weyl transformations, it diverges conceptually
since Weyl’s concepts bore no relation to the addi-
tional hidden dimensions pertinent to 4þ 2 spacetime.
Furthermore, Weyl’s geometry [45] included a physical

vector gauge field degree of freedom that is absent in our
scenario.
The incorporation of local scale symmetry renders our

improved ðSMþ GRþ CSÞ3þ1 action geodesically com-
plete by incorporating additional spacetime behind gravi-
tational singularities. This completeness is valid in the
presence of Chern-Simons corrections to GR, QCD, and
QED. The symmetric formalism furnishes analytical con-
trol through singularities and steers physical interpretation
by tethering it to the low-energy interpretation of the fields.
New physics manifests as the factor ½ϕ2ðxÞ − s2ðxÞ� multi-
plying curvature in the action (14) can vanish and change
sign in regions of spacetime where the gauge-invariant
Higgs field

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2H†H

p
=jϕj burgeons to approach the value 1.

By examining the equations of motion, it becomes
apparent that spacetime singularities manifest precisely
when

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2H†H

p
=jϕj ¼ 1. In regions of spacetime where

singularities may arise, strong gravity dominates, driven
by the remarkable behavior of the effective spacetime-
dependent gravitational strengthGðxÞ satisfying 16πGðxÞ ¼
12ðϕ2ðxÞ − s2ðxÞÞ−1 which diverges. It is noteworthy that
in proximity to such singularities, the magnitude offfiffiffiffiffiffiffiffiffiffiffiffiffi
2H†H

p
=jϕj can approach unity even if the gauge-

dependent fields ϕ and H are both either individually
small, individually large, or intermediate. In previous
studies in a cosmological setting, it was revealed that at
the singularity both ϕ andH remarkably vanished at the big
bang singularity where

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2H†H

p
=jϕj ¼ 1 [36], indicating

that the electroweak SUð2Þ × Uð1Þ symmetry is restored
at the singularity. This and similar manifestations of
new physics are completely unexpected in the conven-
tional SMþ GR.
Extending the leads of ðSMþ GRþ CSÞ3þ1 and ðSMþ

GRþ CSÞ4þ2 toward an enhanced version of string theory
that is capable of reproducing these Weyl symmetric and
geodesically complete field theories at their low-energy
limits stands as a promising avenue for future research. An
essential requirement for such an improved string theory is
the emergence of the dimensionful string tension from
a field, mirroring how all dimensionful parameters arise
from ϕ within the field theory framework. Progress in this
direction was initiated in [18]. Accomplishing this objec-
tive would lay the groundwork for establishing a coherent
quantum treatment of these innovative theories that ensures
geodesic completeness.
Another intriguing avenue for investigation involves

delving into the realms of field theory beyond the con-
formal shadows discussed in this study. This exploration
not only facilitates the development of duality relationships
among shadows but also offers avenues for crafting new
computational tools within 1T-physics at a fundamental
field theoretic level. It is conceivable that frameworks such
as the AdS=CFT duality could find elucidation through
this approach alongside the potential discovery of novel
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dualities. Numerous striking examples of multidualities
already exist in classical and quantum physics as exem-
plified by [19–21]. The objective here is to develop ana-
logous methodologies in the context of field theory for
shadows derived from ðSMþ GRþ CSÞ4þ2. Preliminary
explorations of such field theory dualities and hidden
symmetries related to the 4þ 2 dimensions are illustrated
with a few simple examples in [26]. These endeavors not
only shed light on the existence and nature of the additional
1þ 1 large dimensions but also underscore the significance
of constructing the parent theory in 4þ 2 dimensions as
demonstrated in this paper for ðSMþ GRþ CSÞ4þ2.
Future investigations in this domain are bound to unveil
deeper insights into the fabric of spacetime.

APPENDIX: AN OVERVIEW OF 2T PHYSICS

2T physics originated in 1998 from a fundamental gauge
symmetry, Sp(2; R), manifest in the phase space ðXM; PMÞ
within a (4þ 2)-dimensional framework (more generally,
dþ 2) [18–41]. The basic notion is the postulate that the
fundamental rules of physics should be invariant under
phase space transformations that generalize Einstein’s
general coordinate transformations. This was accomplished
with the Sp(2; R) gauge symmetry that encapsulates three
generators that are functions of phase space. These are
represented as symmetric tensorsQijðX;PÞ where i ¼ 1, 2,
and they conform to the closure condition under Poisson
brackets, forming the Sp(2; R) Lie algebra. A plethora of
such structures exists with an infinite variety of configu-
rations [28,29]. Among them, the simplest set, delineated
below, serves as a foundational example,

Q11 ¼
1

2
X · X; Q12 ¼

1

2
X · P ¼ Q21; Q22 ¼

1

2
P · P:

ðA1Þ

The dot product in these elemental expressions can possess
an arbitrary signature within any flat geometry, without
impacting the Lie algebra. However, for physical viability,
only the 4þ 2 signature (or more generally, dþ 2 with
d ≥ 2) remains physically pertinent, as elucidated below.

1. 2T physics in the phase space of a single particle

Consider the action governing the worldline dynamics of
a single spinless particle, imbued with Spð2; RÞ gauge
invariance in phase space,

L ¼ ẊðτÞ · PðτÞ − 1

2
AijðτÞQijðXðτÞ; PðτÞÞ; ðA2Þ

where AijðτÞ represents the 2 × 2 symmetric Yang-
Mills type Spð2; RÞ gauge fields on the worldline and
QijðX;PÞ denotes the 2 × 2 symmetric generators of

Spð2; RÞ transformations acting on the “matter” variables
ðXM; PMÞ [19–21].
Turning our attention to the gauge-invariant physical

sector of the theory, corresponding to Sp(2,R) singlets
invariant under Sp(2,R) transformations, we impose
the condition that all generators of Sp(2,R) vanish:
QijðX;PÞ ¼ 0. This requirement, enforced by the equation
of motion for Aij, necessitates specific conditions on the
phase space, exemplified by the simple form of Qij in
Eq. (A1), X2 ¼ P2 ¼ X · P ¼ 0. Importantly, for nontrivial
solutions to exist, the flat metric in these dot products, ηMN ,
must possess two or more timelike directions.5 However,
if timelike directions exceed two, the gauge sym-
metry becomes insufficient for eliminating negative prob-
ability ghosts. Thus, to ensure nontrivial and ghost-free
physical solutions that remain Sp(2,R) gauge-invariant,
while adhering to unitary and causal scenarios, the phase
space—including gauge degrees of freedom—must con-
tain precisely two timelike dimensions—no more and
no less [20].
Compared with 1T physics, which typically involves one

constraint (e.g., p2 þm2 ¼ 0 for a freely moving relativ-
istic particle, or generalizations), 2T physics imposes two
additional constraints. This augmented gauge symmetry
allows removal of one timelike and one spacelike dimen-
sion from the phase space via gauge fixing, and resolving
two out of the three constraints. Consequently, 2T physics
encompasses one extra timelike and one extra spatial
dimension compared to 1T physics. The gauge-invariant
physical sector in 4þ 2 dimensions (more generally dþ 2)
resembles 1T-physics in 3þ 1 dimensions [more gener-
ally ðd − 1Þ þ 1].
In this formalism of theoretical physics, intriguing

connections emerge between seemingly disparate phenom-
ena. Among these connections are the shadows—alternate
descriptions or formulations—of physical systems with
different Hamiltonians as described below.
The solutions satisfying the simplest constraints [such as

Eq. (A1)] are termed holographic shadows. These shadows
encapsulate all 1T physics systems describable by
Hamiltonians derived from a single particle’s phase space.
Thus, all 1T physics manifestations are unified into the trio
of 2T physics equations, X2 ¼ P2 ¼ X · P ¼ 0, highlight-
ing a profound unification of all 1T physics Hamiltonian
systems as emerging only from the Spð2; RÞ constraints.
Shadow actions, representing gauge-fixed solutions of

Eq. (A1), delineate 1T physics systems with varied
Hamiltonians within the 1T formalism. The profusion of
shadows arises from the myriad ways of embedding

5For 0 times, the solutions are XM ¼ PM ¼ 0. For 1 time, both
XM and PM must be lightlike and parallel to each other; hence,
there is no angular momentum. Therefore, both cases describe
trivial motions. With 2 or more times, there are an infinite number
of solutions.
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(3þ 1)-dimensional phase space ðxμ; pμÞ into (4þ 2)-
dimensional phase space ðXM; PMÞ, leading to diverse
gauge-fixing methods and resolutions of Spð2; RÞ con-
straints. Consequently, multiple manifestations of the
same 4þ 2 phenomena emerge as shadows in the parlance
of 1T physics. Remarkably, besides the three constraints
X2 ¼ P2 ¼ X · P ¼ 0, no additional equations are required
to capture and unify all single-particle 1T physics dynamics
for a single spinless particle. This encompasses all
Hamiltonians, incorporating any associated parameters
such as mass and interaction parameters, which emerge
as moduli within the diverse embeddings of (3þ 1)-
dimensional phase space into (4þ 2)-dimensional phase
space.
Evidently, due to the dot product’s SOðd; 2Þ invariance,

all shadows possess global SOðd; 2Þ spacetime symmetry,
with conserved generators represented by LMN ¼
ðXMPN − XNPMÞ. SOðd; 2Þ transformation rules for the
full, overt, or covert SOðd; 2Þ symmetry in each shadow
action are generated by the SOðd; 2Þ generators LMN where
ðXM; PNÞ are replaced by their gauge-fixed versions,
XMðxμ; pμÞ and PNðxμ; pμÞ, expressed in (3þ 1)-
dimensional phase space ðxμ; pμÞ of the given shadow.
The gauge group Spð2; RÞ is generalized into a super-

group with the inclusion of extensions to phase space
accommodating spin [24] and/or supersymmetry [25]. In
the realm of local field theory, local fields in 2T physics—
be they scalars, vectors, tensors, or spinors—extend not
only as functions of a larger spacetime XM but also
encompass tensor or spinor components along the addi-
tional 1þ 1 directions. The momentum PM transitions into
covariant derivatives acting upon such fields.
These shadows exhibit multidualities under Spð2; RÞ

gauge transformations, transitioning between fixed gauges.
For instance, a spinless particle that obeys the Spð2; RÞ
constraints in a flat (dþ 2)-dimensional spacetime, man-
ifests as various shadows in 3þ 1 dimensions, including
but not limited to those in the following list [19–27]: a free
massless relativistic particle, a free massive relativistic
particle, a free massive non-relativistic particle, a particle
in anti–de Sitter space AdSd, a particle in de Sitter space
dSd, a particle in any maximally symmetric space (e.g.,
AdSd−n × Sn), a particle in the Robertson-Walker space-
time (for both open and closed universes), BTZ black
holes (for d ¼ 3), the nonrelativistic Hydrogen atom, the
nonrelativistic harmonic oscillator, amongst others, and a
twistor reformulation of all of these systems.
Remarkably, each 3þ 1 shadow fully encapsulates

holographically the Spð2; RÞ gauge-invariant physical
essence of the parent (4þ 2)-dimensional theory. Conse-
quently, all shadows exhibit gauge equivalence under
Spð2; RÞ gauge transformations, taking the form of canoni-
cal transformations within 1T physics that include trans-
formations of time, Hamiltonian, and three positions
and momenta. These canonical transformations among

shadows are construed as multiduality transformations
within the framework of 1T physics [21]. Thus, 2T physics
not only unveils hidden extra 1þ 1 large dimensions,
treated equivalently to the overt 3þ 1 dimensions but also
unveils numerous unsuspected multidualities, serving as
novel tools for duality-based computations within 1T
physics while deepening understanding of spacetime’s
fundamental nature.
Despite their diverse expressions as Hamiltonians in

phase space in ðd − 1Þ þ 1 dimensions, all shadow actions
share a fundamental underlying hidden spacetime sym-
metry in dþ 2 dimensions, revealing the extra 1þ 1
dimensions. Specifically, shadows arising from (dþ 2)-
dimensional flat spacetime encompass a vast array of
½ðd − 1Þ þ 1]-dimensional spacetimes. At the quantum
level, all emerging 1T dynamical shadow systems represent
physically distinct 1T manifestations of the same unifying
mathematical unitary representation of SOðd; 2Þ common
to all shadows. This unique representation of SOðd; 2Þ,
known as the singleton representation, emerges directly
from the covariant quantization treatment of the 2T system
in dþ 2 dimensions, consisting of the vanishing of three
Hermitian generators of Spð2; RÞ, namely X2 ¼ P2 ¼
ðX · Pþ P · XÞ ¼ 0. This singleton representation is dis-
tinguished solely by its unique Casimir eigenvalues which
are determined exclusively by the number of dimensions d
[see Eq. (9) in [22] ]. In essence, the Hilbert spaces for the
½ðd − 1Þ þ 1�-dimensional shadows are expressed as uni-
tarily equivalent bases of the same singleton representation
of SOðd; 2Þ. Across various 1T shadows, their quantum
Hilbert bases differ only by the choice of a subset of
simultaneous observables, all of which are functions of the
generators of SOðd; 2Þ, namely LMN ¼ XMPN − XNPM,
while the Casimir eigenvalues remain unaltered for all
shadows. Remarkably, this prediction is corroborated by
computations directly in 1T physics, where the quantum
spectra of systems such as the hydrogen atom, harmonic
oscillator, and others confirm the presence of the hidden
SOðd; 2Þ symmetry, with the anticipated eigenvalues of the
Casimir operators [22,23].
Of particular importance is the “conformal shadow,”

where the embedding of 3þ 1 phase space into 4þ 2 phase
space aligns with the formalism of relativistic 3þ 1
spacetime, encompassing conformal symmetry SO(4,2).
In this shadow, the partially concealed nonlinear special
conformal transformations in 3þ 1 spacetime xμ emerge
from the explicit linear Lorentz transformations SO(4,2) in
4þ 2 spacetime XM, including the extra 1þ 1 spacetime
dimensions as gauge degrees of freedom [19–21]. The
significance of the conformal shadow lies in its direct
correlation with relativistic field theory in 1T physics.
Through this connection, 2T physics stands as a robust
descriptor of nature across all energy or distance scales
known to date, while predicting new hidden symmetries
and dualities discernible with tools of 1T physics.
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According to 2T physics, all 1T physics systems have
hidden symmetries that relate to the presence of extra 1þ 1
dimensions. The key to revealing the hidden spacetime
structure of a given 1T physics system lies in constructing
the (4þ 2)-dimensional parent that underlies its evident
3þ 1 spacetime structure (not necessarily expressed in
relativistically covariant notation). Viewing the latter as a
shadow of 2T physics opens up a pathway to unification.
The parent structure predicts multi-dual shadows, allowing
us to unify disparate 1T systems. In doing so, we expand
our understanding of spacetime and gain a powerful tool
for predicting dualities and hidden symmetries within
1T-physics.
This pursuit of unification and discovery lies at the heart

of 2T physics. In this spirit, we delved into the 3þ 1

Chern-Simons action, denoted as S3þ1
CS−GR, in Sec. II and

followed up by constructing the parent action S4þ2
CS−GR in

Sec. III. In turn, starting with the parent S4þ2
SMþGRþCS it is in

principle possible to derive various holographic shadows
in the context of field theory, beyond the conformal
shadow, study the multidualities among them for their
inherent intereting properties and hopefully develop useful
new tools for computations based on dualities.

2. Field theory in 2T physics

In the framework of 2T field theory formalism, the
architecture of the 2T action is designed to enforce the
vanishing of Spð2; RÞ generators (and their extensions)
through equations of motion derived from the 2T action
principle (refer to Sec. III and Appendix A 3). This 2T
physics field theory encompasses interactions ranging
from Yang-Mills gauge symmetry in dþ 2 dimensions
to general coordinate reparametrization symmetry and even
supergravity in dþ 2 dimensions.
When exploring classical or quantum mechanics within

the (4þ 2)-dimensional theory, as well as in the context of
field theory, a myriad of (3þ 1)-dimensional holographic
representations can be obtained, as discussed in the
previous section, by gauge fixing and solving two (out
of three) of the Spð2; RÞ constraint equations of motion.
In the field theory version, these are termed “kinematic
equations” as discussed in Appendix A 3. These kinematic
constraints are independent of field interactions, while the
remaining third “dynamical constraint” encompasses the
mentioned interactions. Essentially, the solution space of
the kinematic constraints suggests that for a given action in
2T physics field theory in 4þ 2 dimensions, numerous
emergent field theory actions (referred to as shadows) in
3þ 1 dimensions are in principle feasible.
Among these diverse shadows, particular attention is

drawn to the holographic conformal shadow in the current
discourse. This shadow conspicuously exhibits the attrib-
utes of special or general relativity, serving as the conduit
from 2T physics to relativistic field theory in 1T physics.

It is within this shadow that all relativistic field theories
manifest, including the empirically successful Standard
Model (SM) [30], general relativity (GR) [31,32], and their
supersymmetric extensions. The coupled system in 1T
physics iðSMþ GRÞ3þ1 [33] is deemed the conformal
shadow of the parent field theory ðSMþ GRÞ4þ2 as
elaborated in Sec. III. It is noteworthy that the parent
ðSMþ GRÞ4þ2 theoretically yields a multitude of shadows,
including the conformal shadow iðSMþ GRÞ3þ1, which
are multidual field theories to one another. Various simple
examples of such dual shadows within the realm of field
theory were expounded upon in [26,27]. This aspect of field
theoretic duality within 2T physics stands open to broader
exploration, offering avenues for the development of novel
duality-based computational methodologies.

3. Spð2;RÞ gauge invariant sector and holographic
reduction of 4 + 2 to 3 + 1

In this section, we elucidate the significance of the field
WðXÞ introduced in Sec. III in the delta function δðWðXÞÞ.
As discussed in [30–32], the presence of WðXÞ and its
inclusion in the delta function stem from the foundational
formulation of 2T physics, which hinges on a broader
gauge symmetry in phase space ðXM; PMÞ rather than
solely position space XM. In a flat space scenario, WðXÞ
is denoted by Wflat ≡ ðX2Þflat ¼ XMXNηMN where ηMN

represents a flat metric in 4þ 2 dimensions. This X2

stands as one of the generators of the fundamental
Spð2; RÞ gauge symmetry in flat phase space as displayed
in Eq. (A1). The other two generators, in the absence of
interactions in flat space and after quantum ordering, are
1
2
ðX · Pþ P · XÞflat and ðP2Þflat. These three quadratic

phase space quantities collectively form the Spð2; RÞ Lie
algebra, closing under both Poisson brackets and quantum
commutators.
In interacting field theory within curved space, ðX2Þflat is

elevated to the fieldWðXÞ, with momenta transformed into
derivatives PM → −i∂M, and interactions integrated across
all fields, incorporating a metric GMNðXÞ in curved space.
Within the gauge invariant sector of 2T physics, known as
the singlet sector of Spð2; RÞ and deemed physical, all three
generators of Spð2; RÞ must vanish. The delta function
δðWðXÞÞ imposes the vanishing of one of these three
Spð2; RÞ gauge symmetry generators, WðXÞ ¼ 0, thus
partially enforcing the underlying phase space Spð2; RÞ
gauge invariance and consequently eliminating part of the
gauge degrees of freedom. This process selectively empha-
sizes Spð2; RÞ gauge invariants while minimizing gauge
degrees of freedom. It is essential to note that the other two
generators of Spð2; RÞmust also vanish to fully concentrate
solely on the gauge invariant physical degrees of freedom.
We enforce the vanishing of these generators by solving

specific constraint equations of motion derived from vary-
ing the 2T field theory action which incorporates the delta
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function δðWðXÞÞ. For instance, upon varying the action in
Eq. (16) for each field (e.g., the Φ field), a linear
combination of the delta function and its derivatives is
obtained [31],

AΦδðWÞ þ BΦδ
0ðWÞ þ CΦδ

00ðWÞ ¼ 0: ðA3Þ

Given that δðWÞ; δ0ðWÞ, and δ00ðWÞ are linearly indepen-
dent, this yields three equations, AΦjW¼0 ¼ BΦjW¼0 ¼
CΦjW¼0 ¼ 0, and similarly for all fields Φ; Si;Ψα;
Aa
M;GMN in addition to those displayed for Φ. These three

differential equations (and associated equations for tensors
and spinors restricting their directions) enforce the vanish-
ing of all Spð2; RÞ generators when applied to the fields
GMN;Φ; Si;Ψα; Aa

M [30–32]. The solutions to these equa-
tions yield the physical Spð2; RÞ gauge invariant sector of
the theory. The B and C conditions (and their tensorial and
spinorial counterparts) are termed the “kinematic equa-
tions,” while the A condition is labeled the “dynamical
equation.” Notably, only the A equation depends on
interactions. The solutions of the kinematic equations,
independent of interactions, yield the (3þ 1)-dimensional
“shadows” for each field and their “prolongations” into
4þ 2 dimensions. The shadow represents the analog of the
bottom mode ðgμν;ϕ; si;ψ ; Aa

μÞ in a Kaluza-Klein type
expansion, whereas the prolongations are conceptually
akin to higher Kaluza-Klein type modes as illustrated in
the series expansions Eq. (23).
However, unlike the conventional Kaluza-Klein case,

within the framework of 2T physics, the A, B, C equations
restrict the prolongations, rendering them not independent
modes. Instead, the prolongations are entirely determined
by the shadows of each field ðgμν;ϕ; si;ψ ; Aa

μÞ in 3þ 1

dimensions—except for unphysical unfixed prolongation
gauge degrees of freedom independent of the shadow
fields. Thus, the Spð2; RÞ invariant physical sector emerges
as a (3þ 1)-dimensional field theory directly treatable
within 3þ 1 dimensions.
Applying this approach to the ðSMþ GRÞ4þ2 action

presented in Eq. (16) yields the conformal shadow

iðSMþ GRÞ3þ1 outlined in Eq. (3). This emergent
(3þ 1)-dimensional theory differs from the conventional
formulation of the Standard Modelþ general relativity
(SMþ GR) in several key aspects [30–32]. Notably, it
must adhere to local scale invariance, with a requisite
relative sign between the ϕ and si fields [33], as depicted
in Eq. (3). These additional properties are necessitated
by the underlying Spð2; RÞ gauge symmetry, including
the local scale (Weyl) symmetry emerging from general
coordinate reparametrization that amalgamates the extra
1þ 1 dimensions with the 3þ 1 dimensions [refer to
Eqs. (7) and (34)]. This necessitates that all scalar fields
in relativistic field theory, including the Higgs boson,
must adhere to the principles of conformal coupling.
If there exists more than one s-type scalar, the Weyl
symmetry can manifest in a broader and more nonlinear
fashion [33].
The mandated Weyl symmetry illustrates how 2T phys-

ics constrains the behavior of the Higgs boson in this new
emergent action, diverging in certain aspects from the
conventional Standard Model plus gravity paradigm.
Although imperceptible at low energies in particle accel-
erators, this deviation becomes significantly pronounced
in regions of spacetime characterized by strong gravity,
such as the interiors of black holes, where the physics of
iðSMþ GRÞ3þ1 diverges markedly from the predictions of
the standard theory [38,40].
While our discussion in this paper primarily revolves

around the conformal shadow, it is noteworthy that other
shadows stemming from the same 4þ 2 action, contingent
upon alternative 3þ 1 embeddings in 4þ 2 dimensions,
harbor distinct interpretations within 1T physics. For some
simple examples of other shadows in the realm of field
theory, refer to [26,27]. In essence, these shadows represent
specialized instances of potential (3þ 1)-dimensional field
theories that are mutually dual. The exploration and
development of such multidualities in field theory, along-
side their application in deriving novel computational
methodologies within 1T physics, remain vibrant areas
of investigation within the domain of 2T physics.
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