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In this paper we discuss a generalization of the Adler zero to loop integrands in the planar limit of the
SUðNÞ nonlinear sigma model (NLSM). The Adler zero for integrands is violated starting at the two-loop
order and is only recovered after integration. Here we propose a soft theorem satisfied by loop integrands
with any number of loops and legs. This requires a generalization of NLSM integrands to an off shell
framework with certain deformed kinematics. Defining an algebraic soft limit, we identify a simple
nonvanishing soft behavior of integrands, which we call the algebraic soft theorem. We find that the
proposed soft theorem is satisfied by the “surface” integrand of Arkani-Hamed and Figueiredo
[arXiv:2403.04826], which is obtained from the shifted Trφ3 surfacehedron integrand. Finally, we derive
an on shell version of the algebraic soft theorem that takes an interesting form in terms of self-energy
factors and lower-loop integrands in a mixed theory of pions and scalars.
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I. INTRODUCTION

The Adler zero is a fundamental property of scattering
amplitudes of pions.1 Their dynamics in the chiral limit is
captured by the UðNÞ nonlinear sigma model (NLSM).
The latter is defined as the effective field theory of
the Goldstone bosons which appear as a consequence
of the spontaneous chiral symmetry breaking according
to the pattern UðNÞ ×UðNÞ → UðNÞ. In what follows, we
restrict ourselves to the NLSM Lagrangian corresponding
to the leading order within the derivative expansion, i.e. to
the order Oð∂2Þ. Let us note, that NLSM is a universal
effective field theory describing the low-energy limit of all
the theories with the same symmetry breaking pattern.2 The
most prominent examples of such theories are quantum
chromodynamics (QCD) in the chiral and large Nc limits,
where it describes the dynamics of pseudoscalar nonet3 (for
N ¼ 3), or e.g. the UðNÞ linear sigma model.

The shift symmetry of NLSM ensures that both tree- and
loop-level amplitudes vanish when any momentum is taken
soft. At n points, NLSM tree-level amplitudes can be then
written as a sum of flavor-ordered amplitudes [1,2],

Atree
n ¼

X
σ

TrðTa1Tσða2Þ…TσðanÞÞAnð1σð23…nÞÞ; ð1Þ

where σ runs over all permutations of labels f2;…; ng. Not
only does the full amplitude An enjoy the Adler zero but
also the ordered amplitudes satisfy

lim
pi→0

An ¼ 0: ð2Þ

This soft theorem and consistent factorization fix tree-level
NLSM amplitudes uniquely and lead to the formulation of
on shell recursion relations and many other important
insights [3–17]. NLSM amplitudes also appear in other
contexts; they satisfy Bern-Carrasco-Johansson relations
[18], can be calculated in the Cachazo-He-Yuan (CHY)
formalism [19] or ambitwistor strings [20], and satisfy
various uniqueness conditions [21–23]. Recently exciting
progress has been made on obtaining NLSM amplitudes
from the surfacehedron picture [24–28].
In parallel, some work has gone into extending these

efforts to loop integrands. These are rational functions of
the external kinematics fpig and off shell loop momenta
flig. They can be obtained as sums of Feynman diagrams
prior to integration or using generalized unitarity. Unlike on
shell amplitudes, integrands are a priori not unique objects.
To define global loop variables and meaningfully talk about
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1Here and in what follows we use the term “pions” in a more
abstract sense for the Goldstone bosons of UðNÞ NLSM, as is the
common lore in the amplitude community.

2The individual theories differ only by the values and inter-
pretations of the low-energy constants of the correspondingNLSM.

3Beyond the chiral limit, the pseudoscalars become pseudo-
Goldstone bosons and the corresponding low-energy effective
theory is known as the chiral perturbation theory.
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a single rational function, we need to work in the planar
limit N → ∞. This allows us to define a planar integrand
IL−loopn as the kinematic coefficient of the single-trace
structure analogous to (1).
Integrands are not invariant under field redefinitions.

When calculating from Feynman diagrams using flavor-
ordered Feynman rules [2] we get different integrands
for different parametrizations. However, upon integration
over loop momenta, all these integrands yield the same
amplitude,

AL−loop
n ¼

Z
d4l1d4l2…d4lLI

L−loop
n : ð3Þ

This ambiguity of the loop integrand is not new; the same
situation arises in planar N ¼ 4 super Yang-Mills. There a
preferred integrand could be found [29–32]which is invariant
under a hidden dual conformal symmetry [33,34]. This
symmetry is also built into its construction using on shell
diagrams and the positive Grassmannian [35] which provide
triangulations of an underlying amplituhedron geometry
[36–44]. By analogy, a natural question to ask is if there
exists a consistent soft theorem for NLSM integrands that
would allow to distinguish a preferred object that satisfies it.
In this article we provide a candidate for one such soft

theorem, valid to all loops and multiplicities, which we call
the algebraic soft theorem. Correspondingly, we identify a
new recursive decomposition of NLSM tree-level off shell
correlators that manifests the new soft theorem, which itself
is a natural generalization of the Adler zero to off shell
momenta. We further provide evidence that this construc-
tion can be extended to the loop level, giving a number of
explicit examples. Following the statement of the algebraic
soft theorem for all loops and multiplicities, we identify one
solution; the (off shell) NLSM surface integrand obtained
from a certain shift of the Trφ3 surfacehedron [24–28].
Finally we derive an on shell version of the algebraic soft
theorem, revealing a rich soft structure of NLSM on shell
integrands.

II. FAILURE OF ADLER ZERO
FOR THE LOOP INTEGRAND

At one loop the structure of integrands is simple enough
to analyze the whole space of rational functions. The
general decomposition gives us the sum of boxes, triangles,
bubbles, tadpoles and polynomials in loop momentum. All
integrands are fixed from cuts via generalized unitarity (cut
constructible part, CC), except for tadpoles and polyno-
mials in loop momenta which do not have any physical cut,

I1−loopn ¼ ðCCÞ þ ðtadp:Þ þ ðpoly: in lkÞ:

In [45] we gave a prescription to fix tadpoles and poly-
nomials by demanding that the planar integrand vanishes in
the soft limit, i.e. we upgraded the Adler zero to an

integrand-level statement. When extending this analysis
to two loops, we realize that there exists no integrand
which satisfies all cuts and exhibits the Adler zero. This is
already true at four points. We conclude that the Adler zero
is not a property of planar NLSM integrands beyond
one loop.

III. A HIDDEN SOFT THEOREM AT TREE LEVEL

We return back to tree-level amplitudes where we want
to analyze the structure of the Adler zero in more detail.
The two lowest-order NLSM amplitudes are

A4 ¼ X13 þX24;

A6 ¼ −
1

2

ðX13 þX24ÞðX46 þX15Þ
X14

þX13 þ cyc:; ð4Þ

where we introduced planar variables [46]

Xij ≡ ðpi þ piþ1 þ � � � þ pj−1Þ2: ð5Þ

Note that Xiiþ1 ¼ p2
i ¼ 0 in the massless case while

Xii ¼ 0 identically. It will be important to highlight a
particular fact about the soft behavior of NLSM amplitudes
that was first appreciated from the CHY perspective [47];
the coefficient of the leading term in the Adler zero is
controlled by amplitudes in an extended theory coupling
biadjoint scalars φ to NLSM pions π. Some simple
examples are

M3ð1φ;2φ;3φÞ ¼ 1;

M5ð1φ;2π;3π;4φ;5φÞ ¼ 1−
X13 þX24

X14

þX24 þX35

X25

: ð6Þ

Our ultimate goal is to formulate a consistent soft theorem
for NLSM loop integrands. The first step we take in this
direction is to promote amplitudes An, Mn to off shell
correlators An, Mn. To do this, we implement a minimal
prescription; we require the algebraic form of the off shell
correlators in terms of Xij to be the same as that of the on
shell amplitudes, i.e.

An ≡ An; Mn ≡Mn; ð7Þ

as functions of the planar variables. Notably, the correlators
could in principle explicitly depend on variables Xiiþ1 ¼
p2
i ≠ 0 but in the minimal prescription they do not. Thus

An, Mn can be interpreted as amputated Green’s functions
and the on shell amplitudes can be obtained by a simple
limit

An ⟶
Xiiþ1¼0

An; Mn ⟶
Xiiþ1¼0

Mn: ð8Þ
From the on shell perspective, this might look like taking a
step in the wrong direction. We traded unique on shell
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amplitudes for some a priori ambiguous correlators.
Indeed, these objects are generally not invariant under
field redefinitions. Different parametrizations of the
Lagrangian would produce different functions, all of which
would agree only once the on shell limit is taken. However,
in this sense correlators are already more analogous to loop
integrands which are the objects we are interested in.
We now come to one of the central observations of this

letter. To any number of points, the minimal prescription
correlators (7) can be recursively decomposed as [48]

An ¼ X1n−1Ma
n−1 þ X2nMb

n−1 þ Rn: ð9Þ

This representation breaks manifest cyclicity by making the
nth leg special. We will show that this way of writing the
correlator manifests an off shell generalization of the Adler
zero for pn → 0 and naturally implies the latter in the on
shell limit. The correlators Ma;b

n−1 appearing in (9) always
involve three adjacent biadjoint scalars (dashed lines),
whereas the remaining legs are associated with pions (solid
lines),

ð10Þ

The suppressed external lines correspond to pions and the
labeling indicates that the middle scalar has off shellness
ðpn−1 þ pnÞ2 ¼ X1n−1 for Ma and ðpn þ p1Þ2 ¼ X2n for
Mb, respectively. The remainder Rn in (9) can itself be
decomposed further in terms of lower-point correlators in
the extended theory,

Rn ¼
Xn=2−1
j¼2

SðX1;2j; X2j;nÞAc
2jM

c
n−2jþ1

þ
Xn=2−2
j¼1

SðX2jþ1;n; X1;2jþ1ÞMd
2jþ1A

d
n−2j: ð11Þ

Here we have introduced the soft factor,

SðXA; XBÞ ¼
XA − XB

XA
; ð12Þ

with the crucial property that S ¼ 0 for XA ¼ XB ≠ 0. The
distribution of external φ and π particles for the correlators
in (11) is

ð13Þ

where again only mixed correlators with three adjacent
biadjoint scalars appear. Note that for general off shell
momenta

Xin − Xi1 ¼ pn · ðp1 þ � � � þ pi−1 − ðpi þ � � � þ pn−1ÞÞ:
ð14Þ

Thus, in terms of the variables Xij, the limit pn → 0 can be
reformulated by defining an algebraic soft limit,

Algebraic soft limit∶ replace label n by label 1 in Xij.

Since the soft factors in the remainder (11) are of the
form (14), they ensure that it vanishes in the algebraic soft
limit,

Rn ↦
n↦1

0: ð15Þ

With this in mind, we can also take the algebraic soft limit
of the NLSM correlator (9) to obtain

An ↦
n↦1

X1n−1Ma
n−1 þ X12Mb

n−1; ð16Þ

where Ma;b are now evaluated on soft kinematics pn ¼ 0.
On-shell, when X1n−1 ¼ X12 ¼ 0, the above establishes the
Adler zero. Off shell X1n−1, X12 are nonzero and (16)
quantifies exactly how the Adler zero fails. More specifi-
cally it tells us that the leading coefficient of the (non-
vanishing) soft theorem for the off shell minimal
prescription NLSM correlators An is once again controlled
by the mixed correlators Ma;b. The algebraic soft theorem
(16) serves as a criterion to select a preferred form of the
correlators An andMn, ones which satisfy (9) and (11). The
minimal prescription correlators An agree with the results
obtained from the minimal parametrization Lagrangian [2].
They are also identical to the objects obtained from shifting
Trφ3 surfacehedron amplitudes [28].
With an eye on later extensions to loop-level we propose

a useful interpretation of the algebraic soft theorem (16).
Defining the NLSM two-point correlator,
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ð17Þ

we can identify the prefactors of Ma;b in (16),

X1n−1 ¼ A2ðn − 1; 1Þ; X12 ¼ A2ð1; 2Þ:

Thus the soft theorem (16) can be graphically represented
as

ð18Þ

where, since we are on soft kinematics pn ¼ 0, the index i
is cyclic mod n − 1.
Thus the NLSM correlator factorizes in the soft limit into

a self-energy and an extended theory correlator. There are
two such contributions from legs i ¼ n − 1, 1 adjacent to
the momentum pn that was taken soft, a characteristic
shared with the soft gluon theorem for Yang-Mills ampli-
tudes [50]. We will see that these soft properties also apply
to loop-level correlators.
To conclude, we give two simple examples. The four-

point NLSM correlator reads

A4 ¼ X13Ma
3 þ X24Mb

3; ð19Þ

where Ma;b
3 ¼ 1 and we see that trivially R4 ¼ 0 at four

points. At six points we have

A6 ¼ X15Ma
5 þ X26Mb

5 þ R6; ð20Þ

with Ma;b
5 formally as in (6), and remainder

R6 ¼
X14 − X46

X14

ðX13 þ X24Þ þ
X36 − X13

X36

ðX35 þ X46Þ:

Both (19) and (20) can be seen to satisfy the algebraic soft
theorem (16). Taking the on shell limit (8) they reproduce
the known NLSM amplitudes (4).

IV. THE ALGEBRAIC SOFT THEOREM FOR
LOOP INTEGRANDS

We now wish to define a preferred off shell integrand, or
amputated loop-level correlator In. Following the tree-level
philosophy we want to look for an off shell soft theorem,
possibly a generalization of (16), that would be satisfied by
In. At the tree level, a crucial ingredient to ensuring the
validity of the algebraic soft theorem was the rigid recursive
structure of the correlator following from (9) and (11). A
generalization of this structure remains valid to all
loop orders [51] provided we add one more layer of

generalization; we allow our integrand to depend on the
planar variables Xii ≠ 0. Following (5) these parameters are
identically zero even for off shell kinematics, so we have to
consider them as formal deformations. We refer to this
integrand with explicit dependence on Xii as a surface
integrand and denote it I n. We can then define an on shell
integrand In as a sequence of limits,

I n⟶
Xii¼0

In ⟶
Xiiþ1¼0

In: ð21Þ

The first step in this sequence, i.e. going from I n to In, is
more subtle than indicated as it will involve amputation of
external legs, a procedure we will touch upon shortly. We
formulate now the main statement of this section. To any
number of loops and legs there exist surface functions Ua;b

n−1
such that the NLSM surface integrand I n satisfies the
algebraic soft theorem

I n ↦
n↦1

X1n−1U
a
n−1 þ X12U

b
n−1: ð22Þ

While a fully satisfactory interpretation of the odd-point
functions Ua;b is currently lacking, their analytic form
suggests (see example) that they are appropriate general-
izations of the mixed theory correlators Ma;b to loop level.
We leave a detailed investigation for future work. When
searching for the integrand that satisfies (22) we find a
solution: the NLSM surface integrand obtained from
shifting the Trφ3 surfacehedron integrand [27,28].
Whether the shifted surfacehedron integrand is the unique
solution to the soft theorem constraint (22) remains an open
question, but some other natural candidates do fail that
condition. For example, the minimal parametrization inte-
grand violates (22) as it does not make use of the Xii
variables.
It is instructive to show why turning on Xii is required to

satisfy the soft theorem (22). Let us consider the following
soft factor

SðX1n; X11Þ ¼
X1n − X11

X1n
:

For the on shell integrand In this quantity is not well-defined
asX1n ¼ 0. For the off shell integrand In we haveX11 ¼ 0 so
the factor becomes X1n=X1n ¼ 1 and remains unchanged
when taking the algebraic soft limit. Finally, for the surface
integrand I n, taking the limit n ↦ 1, we map X1n ↦ X11 in
the numerator and the soft factor vanishes as it did in the tree-
level case. Exactly these types of cancellations are needed for
the surface integrand In to satisfy (22).

V. TWO- AND FOUR-POINT EXAMPLES

Here we present results for the simplest two- and four-
point one-loop surface integrands. At loop level, integrands
depend on the planar loop variables,
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Xiz ¼ ðlþ p1 þ � � � þ pi−1Þ2; ð23Þ

where l and z denote the loop momentum and its
associated label. We start with the two-point surface
integrand which can be decomposed similarly to (9),

I 2ð1; 2Þ ¼ X11U1ð1Þ þ X22U1ð2Þ þR2; ð24Þ

with the one-loop tadpole and remainder

U1ð1Þ¼−
1

X1z
; R2¼SðX2z;X1zÞþSðX1z;X2zÞ: ð25Þ

Since R2 is again composed of soft factors it vanishes in
the algebraic soft limit, i.e.R2 ↦ 0 for 2 ↦ 1. This ensures
that I 2 satisfies the algebraic soft theorem (22). At four
points we observe that the integrand still follows the
expected structure,

I 4 ¼ X13U
a
3 þ X24U

b
3 þR4; ð26Þ

where now

Ua
3 ¼ U3ð1; 2; 3Þ ¼

X13 þ X2z

X1zX3z
−

1

X1z
−

1

X2z
−

1

X3z

−
1

X12

I 2ð1; 2Þ −
1

X23

I 2ð2; 3Þ;

and Ub
3 ¼ U3ð2; 3; 1Þ. The remainder R4 is given by

R4 ¼ SðX4z; X1zÞ
�
1 −

X13 þ X24

X14

−
X24 þ X3z

X2z

�

þ SðX12; X24ÞI 2ð1; 2ÞM3 þ SðX14; X11ÞA4U1ð1Þ
þ ð1 ↔ 4; 2 ↔ 3Þ;

with surface three- and four-point functions M3 ¼ 1,
A4 ¼ X13 þ X24 identical to their correlator counterparts.
The notation ði ↔ j;…Þ indicates the same set of terms
with labels permuted accordingly.
Again, the soft factor structure ofR4 ensures the validity

of the algebraic soft theorem (22) for I 4. The above
examples of I 2 and I 4 clearly reveal a recursive structure
of the surface integrands, closely following the tree-level
pattern of (9) and (11), which will be the subject of future
work [51].
Two remarks about the general structure of the surface

correlators I n are in order. Firstly, although not at all
manifest, the correlators are cyclic in the external labels
f1;…; ng. Secondly, the correlators include contributions
from self-energy corrections on external legs. For example,
in our four-point example, the integrand contains a structure

ð27Þ

The surface integrands I n therefore correspond to defor-
mations (recall Xii ≠ 0) of partially amputated (i.e. without
free propagators on external legs) NLSMGreen’s functions.
A fact that will be of prime importance as we want to
transition to the on shell limit next.

VI. BACK TO ON SHELL INTEGRANDS

We will now extract an on shell integrand In from the
surface object I n. The latter includes self-energy correc-
tions on external legs, since their inclusion was necessary to
ensure the validity of the algebraic soft theorem (22). We
will amputate these contributions, effectively just dropping
them from In, to make the on shell limit well-defined. In
the same step we turn off the deformation parameters
Xii ≡ 0 to obtain the amputated off shell correlator In.
Taking the on shell limit Xiiþ1 → 0 we arrive at the on shell
integrand In.
Let us consider the simplest example of the one-loop

two-point function (24). In this case there is nothing to
amputate and we can immediately take Xii; Xiiþ1 → 0.
Thus we obtain the on shell self-energy

I2ð1; 2Þ ¼ SðX2z; X1zÞ þ SðX1z; X2zÞ: ð28Þ

At four-points, the one-loop on shell integrand I4
extracted from the surface function I 4 in (26) reads

I4 ¼ X13Ua
3 þ X24Ub

3 þ R4

þ I2ð1; 2ÞM3 þ I2ð3; 4ÞM3 þ A4U1ð1Þ þ A4U1ð4Þ:
ð29Þ

The process of amputation and going on shell has left us
with the lower-point on shell objects

Ua
3 ¼ U3ð1; 2; 3Þ ¼

X13 þ X2z

X1zX3z
−

1

X1z
−

1

X2z
−

1

X3z
;

as well asUb
3 ¼ U3ð2; 3; 1Þ andU1ð1Þ ¼ U1ð1Þ. In (29) we

have separated the self-energy and tadpole contributions
from the on shell remainder R4. This was done because, in
going on shell, the soft factors corresponding to these terms
in (27) get partially amputated and thus their soft properties
are spoiled. For example, in the on shell limit,

R4 ⊃ SðX12; X24ÞI 2ð1; 2ÞM3 ↦ I2ð1; 2ÞM3: ð30Þ

Excluding these terms from the definition of the on shell
remainder R4 leaves us with
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R4 ¼ SðX4z; X1zÞ
�
1 −

X24 þ X3z

X2z

�
þ ð1 ↔ 4; 2 ↔ 3Þ:

This ensures that it still satisfies the soft limit R4⟶
p4→0

0 in
close analogy with (15). However, the integrand (29) does
not exhibit the Adler zero, precisely as a consequence of the
partial amputation (30). Instead,

lim
p4→0

I4 ¼ I2ð1; 2ÞM3 þ I2ð3; 1ÞM3; ð31Þ

as all other terms in (29) manifestly vanish. Just as for the
tree-level correlator (16) the result splits into the self-energy
I2 and mixed amplitudes M3. This generalizes to the one-
loop n-point case where the on shell soft theorem takes the
form

ð32Þ

with the kinematic configuration of self-energies I2 and
amplitudes Mn−1 as previously in (18).

VII. ALL-LOOP ON SHELL SOFT THEOREM

At higher loops (L ≥ 2) the full all-loop, all-point
structure of the on shell soft theorem emerges. The soft
theorem takes the form of a sum over contributions, each
factorizing into three parts: a tadpole factor T1, a self-
energy I2 and a (n − 1)-point integrand Un−1. The higher-
loop integrands I2 and Un−1 are analogs of the on shell
objects derived from surface functions as shown previously.
The tadpole factor T1 is constructed from tadpole functions
U1 as we will discuss shortly. More precisely,

lim
pn→0

IðLÞn ¼
X

kTþkIþkU¼L

TðkT Þ
1 ×

X
i¼n−1;1

IðkIÞ2 × UðkUÞ
n−1 ; ð33Þ

where we sum over all triplets of integers ðkT; kI; kUÞ ≥ 0
such that kT þ kI þ kU ¼ L. Also included is the usual sum
over adjacent legs pi, with i ¼ n − 1, 1. We note that the
tadpole factors T1 are identical for both of these contribu-
tions. The kinematic dependence of I2 and Un−1 in (33) is
exactly as in the previously established soft theorems (18)
and (32) and we have T1 ¼ T1ð1Þ. Let us first comment on
the cases where any of the kj ¼ 0. We define

Tð0Þ
1 ≡ 1; Ið0Þ2 ≡ A2 ¼ 0; Uð0Þ

n−1 ≡Mn−1: ð34Þ

This ensures that (33) correctly reproduces the already
established results for the cases L ¼ 0, 1. Indeed, at tree

level (L ¼ 0) only one triplet ðkT; kI; kUÞ ¼ ð0; 0; 0Þ con-
tributes. In particular, due to (34), the result will be
proportional to A2 ¼ 0. In this way we recover the
Adler zero for tree amplitudes. At one loop (L ¼ 1) there
is only one nontrivial contribution from the triplet
ðkT; kI; kUÞ ¼ ð0; 1; 0Þ which gives the soft theorem (32).
Finally, let us state the definition of the tadpole factor.

For L ≥ 1 it is given by

TðLÞ
1 ¼

XL
K¼1

2K
X

k1þ���þkK¼L

Uðk1Þ
1 Uðk2Þ

1 …UðkKÞ
1 : ð35Þ

Similarly to the sum in the soft theorem (33), here we sum
over all possible ways to distribute the L loops among theK

factors of U
ðkjÞ
1 in (35). For the cases where any of the

kj ¼ 0 we define Uð0Þ
1 ≡ 0.

VIII. CONCLUSION AND OUTLOOK

In this letter we proposed a consistent soft theorem for
planar NLSM loop integrands with any number of loops
and legs, called the algebraic soft theorem. While tree-level
amplitudes enjoy the Adler zero, this property is generi-
cally violated for loop integrands and only restored after
integration. To find a simple nonvanishing soft theorem for
integrands we generalized to off shell surface correlators.
Correspondingly, we identified a new recursive structure of
tree-level correlators and defined a simple kinematical
operation, an algebraic soft limit. In this setup, both tree-
and loop-level surface correlators satisfy the surprisingly
simple algebraic soft theorem. They also agree with the
functions obtained from the surfacehedron picture [27,28].
We then derived the on shell version of the algebraic soft
theorem, which is nonzero (due to the violation of the Adler
zero by amputation) but nicely factorizes into three parts;
tadpole functions, self-energies and lower-point integrands
in the mixed scalar-pion theory.
NLSM amplitudes belong to a larger family of mixed

scalar-pion amplitudes which are hidden in their soft
structure. This connection was first established for tree-
level amplitudes using the CHY formalism [19]. Similarly,
the algebraic soft theorem is governed by the same mixed
amplitudes and their loop-level analogs, whose precise
interpretation we leave for future work [49].
Let us briefly mention an apparently natural generali-

zation, namely introducing the masses for the pions. This
might be achieved by means of adding a mass term to the
Lagrangian in the same way as within the chiral perturba-
tion theory. Also in this case some sort of the soft theorems
can be obtained, however, since a general mass term of this
type breaks the UðNÞ symmetry explicitly, the notion of
stripped amplitudes used in this paper cannot be used,
and all the formalism should be formulated completely
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differently. This modification is beyond the scope of the
present paper and will be published elsewhere.
Further questions involve adding higher-derivative oper-

ators and a more general understanding of the surface
integrands in other theories. It would also be interesting to
explore integrands for theories without ordering. Natural
starting points are loop amplitudes for theories with
extended soft limits such as Dirac-Born-Infeld theory or
the special Galileon [3,5,19,20,51–60].
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