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Alternative to the embedding formalism, we provide a group theoretic approach to the conformal
primary basis for the massless field with arbitrary helicity. To this end, we first point out that s/(2, C)
isometry gets enhanced to s/(2, C) x D symmetry for the solution space of the massless field with D the
bulk dilatation. Then, associated with s/(2, C) x D symmetry, we introduce the novel quadratic Casimirs
and relevant tensor/spinor fields to derive two explicit constraints on the bulk dilatation and s/(2,C)
Casimirs. With this, we further argue that the candidate conformal primary basis can be constructed out of
the infinite tower of the descendants of the left and right highest (lowest) conformal primary wave function
of s/(2,C) Lie algebra, and the corresponding celestial conformal weights are determined by the bulk
scaling dimension through solving out the exact on-shell conformal primary wave functions, where on top
of the two kinds of familiar-looking on-shell conformal primary wave functions, we also obtain another set
of independent on-shell conformal primary wave functions for the massless field with helicity |s| > 1. In
passing, we also develop the relationship between the four-dimensional Lorentz Lie algebra and two-
dimensional conformal Lie algebra from scratch, and present an explicit derivation for the two important
properties associated with the conformal primary wave functions.
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I. INTRODUCTION

Over the past few decades, the holographic principle has
been standing out as a guiding principle for us to formulate
the quantum theory of gravity. AdS/CFT correspondence,
as one explicit implementation of such a principle, states
that the quantum gravity in an asymptotically anti—de Sitter
spacetime is encoded fully by the boundary conformal
field theory (CFT). On the other hand, by holography, the
only observable in an asymptotically flat spacetime is the
scattering amplitude. However, the scattering amplitude is
expressed conventionally in the momentum representation,
which manifests the translation symmetry but obscures the
holographic nature. Given this, a new representation in
terms of the so-called conformal primary basis has been
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constructed via the embedding formalism in CFT,
whereby the scattering amplitude in the d-dimensional
flat spacetime admits a natural holographic interpretation
of the conformal correlator in the (d — 2)-dimensional
celestial sphere [1-10]. Such a holographic reformulation
of the scattering process in terms of the so-called celestial
amplitude further motivates a recently conjectured dual-
ity, called celestial holography, which proposes that the
bulk scattering in the flat spacetime can be dual to a CFT
on the celestial sphere [11-15].

No matter whether celestial holography turns out to be
valid or not, such an alternative formulation of the scatter-
ing process has already shed new light on our under-
standing of scattering amplitude, where the conformal
primary basis, as the building block of the whole reformu-
lation, plays a vital role as it should be the case. In
particular, for the case of massless particles, the conformal
primary basis in the new representation turns out to be
related to the familiar plane wave basis in the momentum
representation by a Mellin transformation or further fol-
lowed by a shadow transformation. The main purpose of
this paper is to offer a group theoretic understanding of the
conformal primary basis for the massless particles in the
four-dimensional (4D) Minkowski spacetime, which is
supposed to serve as an alternative perspective to the
aforementioned embedding formalism. To this end, we
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shall first develop the relationship between 4D Lorentz
Lie algebra and two-dimensional (2D) conformal Lie
algebra from scratch and derive the two important
properties associated with the conformal primary wave
functions in the subsequent section. Then in Sec. III, with
the observation of the bulk dilatation D as an emergent
symmetry for massless particles, we will argue that the
51(2,C) x D symmetry dictated the conformal primary
basis can serve as a candidate basis for the massless
particle representation of the Poincaré Lie algebra, which
is further substantiated by an explicit derivation. In
Sec. IV, we build the specific correspondence between
the 4D bulk scaling dimension and 2D celestial conformal
weights for all the on-shell conformal primary wave
functions. We shall conclude our paper with some
discussions in the final section.

Notation and conventions follow Chapter 13 of [16],
where lower and upper Latin indices denote Penrose’s
abstract notations for tensors and spinors, respectively,
while lower and upper Greek indices represent the corre-
sponding components. In addition, where no confusion
arises, lower Greek indices also denote the concrete
indices, running from O to d — 1 while the intermediate
lower Latin letters (i, j, k) denote the spatial components or
concrete indices, running from 1 to d — 1. In particular, the

signature is (+,—,—,—), and €gyo3 = 1. Furthermore, a
spinor is raised and lowered as ¢* = e*B¢pg, pp = €4pd*
with €Ac€BC = €AB = —€BA = 5AB.

II. 4D LORENTZ GROUP, 2D CONFORMAL
GROUP, AND CONFORMAL PRIMARY
WAVE FUNCTIONS

In what follows, we shall focus exclusively on the four-
dimensional Minkowski spacetime, where we can take
advantage of the spinor machinery to develop the relation-
ship between the 4D Lorentz group and the 2D con-
formal group.

To proceed, we take the canonical choice of spinor
basis 0, 1* such that 0,1* = 1, with the dual basis given
by —1,4, 04. Furthermore, we have e*8 = 04# — 140 and
€4p = 0xlp — 140p, Which means

(50 (50

The identification between spinors in the above basis and

tensors in the Lorentz coordinates is specified by the
soldering form o#sp = \/Lz(ﬂ,a") with ¢ the standard

Pauli matrices

(2 (D) ()

/A
whence one also has o,”

our Minkowski metric is related to its spinor representation
as follows:

r :%(ﬂ,o"). In particular,

— 3T . QE
Ny = 0~ 0, "€y qy€rE, (3)

where the complex conjugation is indicated implicitly by
the primed indices. With this, the identification SO(1, 3) ~
SL(2,C)/Z, can be expressed as follows:

A”yxygﬂyr = X”Z‘ZIQ’GﬂQ/ELFEv (4)
where A€SO(1,3) and LeSL(2,C), satisfying

L¥*rL%zeso = erg. Accordingly, the corresponding Lie
algebras can be related to each other as

ST _ o u(7E . QT Y0
» e~ = x (1" g0, + 0,751 g). (5)
Note that the Pauli matrices serve naturally as the gen-

erators for s1(2, C). A straightforward manipulation of the
Pauli matrices leads to the following realization of s/(2, C):

61 i —2K1,

iGl d —2J1,

0'2 i 2K2,

iGz i 2J2,

o’ - —2Kj,

ic® > —2J;, (6)

with the Lorentz boosts and rotations defined as

1 .
Ji =z eqipM’k. (7)

Ki = MiO’ 2

However, one can also reach the following two commu-
tative realizations of s/(2, C) by the complexified Lorentz
generators

02 g K2 - iJz,
ic! — i(-K, +iJ,),
i63 g i(—K3 + lJ3) (8)

0] i —K1 + l.le
o - -Kj5 +iJs,
ic? — (K, —i),),

from
»,x00, N = xto FE g 9)
and
ol > K, —-iJ,, o> —>K,+il,,
;—)—K:;—l-.]:;, F—)—l(—Kl —iJ]),

ic> > —i(Ky +iJy).  io® » —i(-K3 —iJ;) (10

lKindly please refer to Appendix A for all the generators of the
conformal algebra in the d-dimensional Minkowski spacetime.

045008-2



51(2,C) x D SYMMETRY AND CONFORMAL ...

PHYS. REV. D 110, 045008 (2024)

from
! = v/ /-
Moxto, = Xt IF o, O, (11)

where the overline indicates that the corresponding reali-
zation is a complex realization.

On the other hand, SL(2,C) can also be understood as
the global conformal group on the celestial sphere. To this
end, let ¥ = (w, 1), and then its corresponding null vector
AEIF is given by g* = (ww + 1w + W, i(Ww — w), ww — 1),
whose spatial component can be geometrized as a point on
a unit celestial sphere as ¢ = (ww + 1)q by performing the
stereographic projection from the north pole of the sphere
to the complex plane with w = cotg e'?. Similarly, with the
choice of A* = (1,w), the corresponding null vector is
given by ¢* = (1 +ww,w+w,i(w —w), 1 —ww), which
can be visualized as a point on the unit celestial sphere as
q = (1 +ww)q instead by performing the stereographic
projection from the south pole to the complex plane with
w = tangei‘/’. In what follows, we prefer to work exclu-
sively with the first parametrization of our spinor as well as
its corresponding null vector.” Accordingly, SL(2,C) act-
ing on our spinor A* will induce a global conformal
transformation on the celestial sphere as follows:

2 B\ awid
W:<a ‘)wzaw+-’ (12)

with ad — bc =1, where w and w are assumed to be
independent of each other. Then, it is not hard to show that
s1(2,C) can be realized, respectively, on w and w space
as follows:

_1—<g (1)>— (6! +ic?) - T_,,
(5, )t
71—(_01 8)——%(61—162)—>T1,
1) 8)<tom

0 e o

*As to the second parametrization with w replaced by w, kindly
please refer to Appendix B for the relevant results.

where the overline also indicates that the corresponding
realization is a complex one, with T, = w"*!9, and
T, =w""10; the vector fields on the celestial sphere,
satisfying the following commutation relations:

[T,.T,] = 0. (14)

By inspection of Egs. (8), (10), and (13), one can obtain
the identification between the 4D Lorentz generators and
2D conformal generators

T_l_L_l—%( K, +J, +i(Ky,+ Jy)),
TomLoy =3 (K, + T = i(Ky + 1),

T, ~ %(K1+J2+i(K2—J1)),

ToaLy =3 (K + 5 - i(Ky = 3))

ly~Ly= %( -K; + iJ3).

7oﬁ[:o_%( K5 —iJ3). (15)

Accordingly, we have the following commutation relations:

(Lo L] = (m
Ly L] = (m
Ly L] =0
with n, m = 0, £1. For later convenience, we would like to
denote the Lie algebras out of L, and L, as s/(2,C), and
s1(2, C)g, respectively.

A wave function on our Minkowski spacetime and
the celestial sphere is called the conformal primary wave

function with the SL(2,C) conformal dimension A and
spin J if

O(x/ﬂ — AMZ,XD;W/ _ aw—+b W= C_lW‘i’?)

) m+n»

) m-+n»

(16)

cw+d’ cw—+d

A+J

_A-J
)

I DA O w, ), (17)

oW

6w

ow

where the representation of Lorentz group D(A) is deter-
mined by the spinor and tensor indices of O as usual with

|2 | = CH ey and |92 | = m Then, we have
D(AN)TO(Ax; W/, W) — O(x; W', )
aw’ ~h| ow'|~h
=5 av:_; O(x;w,w) — O(x;w',w'),  (18)
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where the SL(2,C) conformal weights are given by
(h,h) =1(A+J,A—J). This implies

Ly, O=—Ly O=—w9, +h(n+1)w")O,
L; O=—L; O=—(W"""0; +h(n+1)w")O  (19)

for n =0,£1, which amounts to saying that the Lie
derivative of the Lorentz generators acting on the con-
formal primary wave function can be understood as the Lie
derivative of the corresponding SL(2, C) generators acting
on it with an additional minus sign. This is essentially the
underlying reason for the definition of the conformal
primary wave function through Eq. (17). For our purpose,
we list the celestial conformal weights and the bulk scaling
dimension for a few important conformal primary wave
functions in Table I. Furthermore, if a conformal primary
wave function is on-shell, namely satisfies the equation of
motion dictated by the unitary representation of the
Poincaré group, one can define an operator on the celestial
sphere associated with it as follows:

A

ow,w) = (dA)(x’), oW, W), (20)

where ®(x’) is the corresponding bulk quantum field and
the Klein-Gordon inner product (, )y evaluated on a
Cauchy surface ¥’ is nevertheless independent of the choice
of X/. The Lorentz covariance of the Klein-Gordon inner
product implies

A

O(w, )
= (D(A)T'®(X). D(A)T' O W W)y
- (U(A)é)(x)U(A)—l, %W/ - Z_”;fv/ _BO(x; W, v‘v))Z
_ aa—”:v - %VV L A O ) U(A) (21)
TABLE I. The celestial conformal weights (conformal dimen-

sion and spin) and the bulk scaling dimension for some conformal
primary wave functions.

h h A J D
p 1 1 1 1
A
> 01 =z -3 2 -3
¢ 1 -1 - 0 -1
DH 0 0 0 0 0
€yr 0 0 0 0 1
N 0 0 0 0 2
# % % 1 0 -1
b 1 1 1
4= -1 i 0 -3 -1
T

where U(A) corresponds to the unitary representation of
the Lorentz group in the Fock space. It is noteworthy that
due to its presence, the celestial operator O does not
transform under the global conformal transformation as the
ordinary conformal primary operators. But nevertheless,
because of the Lorentz invariance of both the vacuum and
the S-matrix, i.e., U(A)|0) = |0) and U(A)~'SU(A) = S,
we have

(010 (w}. w)) SO, (w}. ;)|0)

ow'|=hi| oW} |=hi| W' |=hi | oW/ | =h;

which tells us that the celestial amplitude behaves like the
conformal correlator on the celestial sphere.

IIL. s1(2,C) x D SYMMETRY AND THE CANDIDATE
BASIS FOR THE MASSLESS PARTICLE
REPRESENTATION OF THE POINCARE GROUP

The unitary representation of the Poincaré group for
massless particles is usually expressed in terms of the
simultaneous eigenvectors of the commuting spatial three-
momentum or the commuting four-momentum with one
on-shell condition P,,P/‘ = 0. But note that L2, Ly and

L?, L, commute with one another, where

E2 :L(z)__(l_‘—ll_‘l +I:11:_1) (23)

are the corresponding Casimir operators for si(2,C),
and sl(2,C)g Lie algebras, respectively. So it is reason-
able to expect the simultaneous eigenvectors of the above
four operators could constitute the candidate basis as
well for the massless particle representation of the
Poincaré group. But as alluded above, the number of
degrees of freedom for the four-momentum is not 4 but 3
due to the on-shell condition. So there may exist one
similar constraint on L?, Ly, L?, L. As we shall show in
this section, this is the case, indeed, where it turns out that
the bulk dilatation operator comes to play a crucial role.
To be more specific, first we note that not only does the
bulk dilatation vector field D together with the Killing
vector fields form a closed Lie algebra but also it
commutes with the two Poincaré Casimir operators
P> =P,P* and W? = W,W¥ with the Pauli-Lubanski
spin operator defined as W, = —%eMDMP”M/’" for the
massless particle representation of the Poincaré Lie
algebra, where W, =isP, with s the helicity of the
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massless particle.3 This amounts to saying that the bulk
dilatation emerges as an additional symmetry of the
solution space of the equations of motion dictated by
the massless particle representation of the Poincaré
group. In addition, D commutes with the Lorentz boosts
and rotations, and thus also commutes with L2, Ly, L?, L.
As a result, associated with s/(2,C) x D symmetry, the
candidate basis is formed virtually by the simultaneous
eigenvectors of five operators D, L?, Ly, L?, L, with two
constraints on them. In what follows, we shall present an
explicit derivation for this.

A. Novel quadratic Casimirs and relevant
tensor/spinor fields

Partially inspired by [17-19] and based on our experi-
ence acquired from [20,21], we would like to define a novel
quadratic Casimir operator

_ 1

C*=1%- ZD2 (24)
associated with s/(2,C), x D Lie algebra. Then, we
further introduce the following two auxiliary tensor fields :|

_ T 1
H® =LgLb —E(LZILII’ + LYLY,) —ZD“D”,

_ _ _ 1 = _ _ _
Zape = LosVpLo — 5 (L_1,VpLye + L1,V,L_y,)
1
- ZDGV,,DC. (25)

Similarly, one can introduce the corresponding
Casimir operator and associated auxiliary fields for the
s1(2,C); x D Lie algebra, which are obviously related to
the right ones by the complex conjugation. A straightfor-
ward calculation gives

_ 1
Hab — _ ZxZ,,,ab

_ 1 .
Zape = Z (nahDe =MDy = NaeDp — leabcdDd)' (26)
Then, we further have
=4 1
zZ ac — EDC’
_ 1 .
vdZabc = Z (”abrlcd ~NvocMad — Nacllba — leabcd)’ (27)

where we have used the fact V, D, = #,,. For the convenience of the later spinor analysis, we also introduce some spinor

fields associated with our novel Casimirs as follows:

_ - 1 - - - _ 1
apug€(R) = Loaa T (Lo) — 2 (L_jaaTC(Ly) + LiaaTC(Ly)) - ZDAA’FBC(D)
1= | 1 1
= EZAA’BB’CB +§DAA’5BC = _ZDAA’5BC + §DAA’5BC = _gDAA’aBC’
1 1
apuS(L) = LoaaTpC(Lo) — 2 (L_jaaTC(Ly) + LiaaTC(Ly)) - ZDAA’FBC(D)
|
= EZAA’BB’CB + gDAA’éBC
1 1
1 (eapD€y + €4 Dy + Dyy55°) + gDAA’5BC
1 1
=~ (eapD 4 + €4, Dpy) — gDAA’(SBC’ (28)
and
_ - 1
7ap®C(R) =T, B(Lo)TpC(Ly) — 5 (FA (L_)Tp ( 1)+ LB (L)TpC(Loy)) - ZFAB(D)FDC(D)
1 =D 3 1
—_ - VDDIZC + SABéDC —(SABéDC + —5A36DC — ——5A36DC,
4 4 16
1
7ap®C(L) =T, B(Lo)pC(Ly) - ( BL_)TpC(Ly) + T, B(L)THC(Loy)) — ZFAB(D)FDC(D)
1 CD’BB’3BC1CB cB Bs C s Bs C
=2 Vo ZY 45 +Z5A Op =1 07" 6p” + €ap€™" —6,"6p +15A op
S B
:Z(SA 5D +4€AD€ 165‘4 5D N (29)
3For the massless particle representation of the Poincaré group, we have [D, P?] = —2P? = 0. In addition, [D, P,] = =P, together
with [D, W,] = =W, implies that D commutes with the helicity s.

045008-5



CHEN, LI, SHI, ZHANG, and ZHANG

PHYS. REV. D 110, 045008 (2024)

where we have used the following identities:

NAA'BB = €ABEA'B'»
€AABB'CC'DD — l<€AB€CD€A’C’€B’D’ - €A’B’€C’D’€AC€BD)
(30)

with I" defined later on in Eq. (39). Then, we further have

1
_ A
16°¢™

P (L) = repP (L) = 15" G1)

ﬂcA(R) = ?’CDDA(R) =

B. Two constraints on s/(2,C) Casimirs and dilatation

As a warm-up, let us start with the massless scalar field
¢, whose equation of motion is given by

V., Vip =0. (32)
The Lie derivative acting on the scalar field yields

LxLyp = XV, (Y'V,)
= (XY, Y")V,p + XYV, V. (33)

whereby we obtain
_ _ _ 1 1
Cp=2°Vyp+H?V Vb :ED“VH(;& =§D¢ (34)
with D = L. Thus, we have
s 1, 1
L= |-D"+=D|¢. (35)
4 2
It is easy to see that we also have
2 [P
Lp=|-D"+=D|¢. (36)
4 2
Now let us move onto the massless spinor field with
the helicity s = —%, whose dynamics is governed by the
Weyl equation4
Vaad* =0. (37)
Not only is this equation equivalent to V ,A¢8 = V4¢P,
but also it implies V,V“¢p* = 0. To proceed, let us first

recall the definition of the Lie derivative of the spinor field
¢* 5 with respect to a conformal Killing vector field &% [22]

4andly please refer to Appendix C for the relation between
the helicity and the spinor index.

Loty = ENV P — pCT A (E) + ¢ cTpC(E)  (38)

with
A 1 AB' 1 cs A
I'p (f) = 5 <VBB’%t —Zvcf Op ) (39)

The generalization of this definition to other types of spinor
fields is obvious. It is noteworthy that V,I'z4 (&) = 0 when
restricted to the dilatation and Killing vector fields in our
Minkowski spacetime. Thus, with X and Y such vector
fields, we have

£X£Y¢A = Xava(£Y¢A) - EY¢BFBA(X)
= XV, (Y'V,* = ¢°T5(Y))
— (Y'V, = ¢T P (Y))Tp4(X)
= (XV, Y*)V,p* + XYV V"
= VP (XTpA(Y) + YT (X))
+ TP (V) (X). (40)

Then, we have

62¢A _ Z“abquﬁA + Habvavb¢A

—2a““ A (R)V o d® + ¢“Bc*(R)

1 1 1

=-D'V,¢p" + - DV " — —

3 5
=Dt +—¢* 41
2 DI+ e (41)
where we have used Dp* = DV, ¢* —1¢* in the last
step. Similarly, we also have

1 1 11
204 _ L b 4A L Doy pA A
C*¢ _2D V., +4D V. +16¢

1 ) /
+ 5 (e€pDAC + €“ADRC W i p?

3 1. 11

— 2DVt + =DV AP + —

1 b +2 g Vo' +16¢

:§va ¢A+1va ¢A+E¢A

47 b 27 b 16

5 21

=ZDp* + = A, 42
A DV e (42)

Thus, we end up with the following result:

ZZ¢A _ <1D2+§D+i>¢A,

4 4 16
1 5 21
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Next, let us consider the Maxwell equation
Vit =0 (44)

for the electromagnetic field with s = —1, where ¢*5 is

symmetric with respect to A and B. The Lie derivative

acting on ¢*2 gives rise to

=XV, (Ly*?) = 2Ly BTN (X)

=XV, (Y'V,¢*P =2¢PT A (1))
=2Y"V,p T (X) + 24P (V)M (X)
+20PTp (V) (X)

=(X9V,Y")V,p*B + XYV V"B
=2V, B (XTN (V) + YT (X))
+20PET AT (X)
+2¢PTpE(Y)EM (X), (45)

LxLy¢"?

whereby we have

(_‘/12¢AB — %D“VaqﬁAB + lD“VaqﬁAB _ %(ﬁAB _ %(IﬁAB

rD¢AB += ¢AB

vu¢AB +— Dava¢AB + Davu¢AB

_ Dava¢AB ¢AB

C2¢AB _ lD
+ ¢AB + = ¢AB 2Dav ¢AB + - ¢AB

= 2Dp*8 + Zqz&AB. (46)

Thus, we wind up with
£2¢AB ( D2+D+ >¢AB
L2 = (4 D>+ 2D + )¢AB (47)

The above spinor analysis has already involved all the
necessary ingredients for one to obtain the corresponding
result for the massless spinor field with other helicities. To
be more specific, one can find

- 1 n+2 n®> +4n
244 _ [ Ly2
L¢ <4D + 1 D+ 16 >¢A

D s D s

(2 2+ ><2 2>¢ ’

1 3n+2 9n® + 12n
244 _ [ 12 A
£ _(4D 4 p 16 >¢

for the massless spinor field with helicity s = — 7, which is
totally symmetric with respect to n indices and satisfies the
equation of motion

VA,A¢A'-- == O (49)

Note that the massless spinor field ¢*#' ¢ with helicity

s =7 is simply the complex conjugation of the massless

spinor field with helicity s = —7, so we have
Pt = <‘1‘D2+3n+2p+9n 1+12n>¢A,”
D 3s D 3s\ .
()G
L = <£1‘D2+n+2p+n +4n>¢A,,,

GG

for the massless spinor field with helicity s = 2.
On the other hand, by Eq. (19) for a conformal primary
wave function, we have

L£*=h(h-1), L*=h(h-1). (51)

So it is reasonable to expect that the candidate basis out of
the simultaneous eigenvectors of D, L?, Ly, L?, L, can be
constructed in terms of the infinite tower of descendants of
the left and right highest (lowest) weight conformal primary
wave function of s/(2,C) Lie algebra, where the celestial
conformal weights are determined by its bulk scaling
dimension.’ Actually, it has been shown in [23] that this
is the case for the massless scalar field. Equations (48)
and (50) obtained here provide us with an important
foundation to generalize [23] to the massless field with
arbitrary helicity. In the subsequent section, we shall specify
the explicit correspondence between the 2D celestial con-
formal weights and the 4D bulk scaling dimension for all the
on-shell conformal primary wave functions.

IV. CORRESPONDENCE BETWEEN THE 4D BULK
SCALING DIMENSION AND 2D CELESTIAL
CONFORMAL WEIGHTS

By Egs. (51) and (48), we have the following relation-
ship between the celestial conformal weight and bulk
scaling dimension:

D 3s D 3s
R —————|—1 R:h=—-——+— 2
T h 5 or R_:h > t3 (52)

>The basis constructed in this way is discrete, compared to the
frequently considered one from the unitary principal series.
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and

_ _ D s
R :h=——+-
_ 2—1—2 (53)

R,: h= +1 or

S1Rv)
NS R]

for the on-shell conformal primary wave functions
with negative helicity s. However, this relationship dem-
onstrates a certain ambiguity. To fix it, we find the explicit
expression for the on-shell conformal primary wave
functions. As such, we follow [24,25] to choose

ot = \/;rx’lA’ 1* = D0 ,.. Accordingly, we have
B 1 B B B 1 B
vA/AO :—EOA/OAO s vA!Al :5A OA!—EOA/OAZ s
(54)
which implies
3
VA/AOA = 0, vA/AlA = EOA/. (55)
Then, we further have
VA/AO(AB".ZCDM)
m n
_ V. . (0AoBCD) V., 0(CD Al B)
i wal0?oP +m—|—n AIA0 14l
mn mn—=3n—n(n—1)
_ o(BC D)y o(CD= 1B,
m+n 2(m+n)
nn+m+2)
_ (BC-+ D) 56
2(m+n) oo (56)
where 02~ denotes the spinor field produced by the

product of m os and 1“P* denotes the spinor field produced
by the product of n 1s. With this, we can construct the
following linearly independent on-shell conformal primary
wave functions for the massless spinor field with negative
helicity s:

¢AB--- _ ¢A (X)OAB”',

gAbABM _ qﬁ_‘H](x)O(A"'le),
%AB--- — (x2)A+s—l¢A(x)lABm’ (57)

TABLE II. The 2D celestial conformal weights (conformal
dimension and spin) and 4D bulk scaling dimension for the on-
shell conformal primary wave functions with negative helicity s,

where o denotes the number of o? in ¢

h h A J D
¢AB~-~ A2+.r % A s —A+2s
(Z)ABN. _s_%+% 12_>_|_% —-s+1 —-s-o0 s—o—1
P % % A —s A+25s—-2

TABLE III. The 2D celestial conformal weights (conformal
dimension and spin) and 4D bulk scaling dimension for the on-
shell conformal primary wave functions with positive helicity s,
obtained by taking the complex conjugation of those with

negative helicity —s, where o denotes the number of 0# in &AIB/'".

h h A J D
¢A’B’--- A;—s % A Ky —A—2s
B %—i—% s—%—i—% s+1 —=s+o0 —s-o0-1
&A’B'm % Azrs A —s A—-25s—-2

/ ! .
where we have used Dy D% = 1x%5,% with the scalar

function defined as ¢*(x) = W' It is noteworthy that

besides the first and third kinds of on-shell conformal
primary wave functions, which are familiar to the com-
munity and related to each other by the so-called shadow
transformation, we also find the second kind of on-shell
conformal primary wave functions for s < —1. According
to Table I, we further list the celestial conformal weights
and bulk scaling dimension for the above explicit on-shell
conformal primary wave functions in Table 11.° Then, we
obtain a definite relationship between the celestial con-
formal weights and bulk scaling dimension for each on-
shell conformal primary wave function, i.e.,

R_ and R_ for ¢*B,
R, and R_ for (%AB"',
R, and R, for "5 (58)

As pointed out before, the on-shell massless spinor field
with positive helicity is simply the complex conjugation of
that with negative helicity. So it is not hard to obtain the
parallel results for the massless spinor field with positive
helicity, which we shall present below for completeness.
Namely, Eq. (51) together with Eq. (50) gives rise to

D s D s
R+h—z+§+1 or R_.h——i—i (59)
and
_ - D 3s - D 3s
R :h=—+—+1 R :h=————.
L h 2+2+ or R_:h ) (60)

Such an ambiguity in the correspondence between the
celestial conformal weights and bulk scaling dimension can
be resolved by examining the explicit quantities for each

Ot is noteworthy that the second kind of on-shell conformal
primary wave functions displays a different correspondence
between the celestial spin and bulk helicity from the first and
third ones, whose celestial spin is related to the bulk helicity
simply by J = +s.

045008-8



51(2,C) x D SYMMETRY AND CONFORMAL ...

PHYS. REV. D 110, 045008 (2024)

kind of on-shell conformal primary wave functions in
Table III. As a result, we have

R_ and R_ for gbA’B"“,
R_ and R, for ¢"F,
R, and R, for ¢"%". (61)

V. DISCUSSION

Although the bulk dilatation does not belong to the
isometry Poincaré group of our Minkowski spacetime, it
can be regarded as an emergent symmetry of the solution
space of equations of motion for the massless field dictated
by the unitary representation of the Poincaré group,
reminiscent of the hidden conformal symmetry of the
Kerr black hole discovered in [26]. With this in mind,
we have shown that the s/(2,C) x D symmetry dictated
candidate basis for the massless particle representation of
the Poincaré group can be constructed out of the infinite
tower of the descendants of the left and right highest
(lowest) weight conformal primary wave function of
s1(2, C) Lie algebra, where the celestial conformal weights
are further determined in an explicit manner by the bulk
scaling dimension through solving out the exact on-shell
conformal primary wave functions for the massless field
with arbitrary helicity. In particular, on top of the two kinds
of familiar-looking on-shell conformal primary wave func-
tions, which are related to each other by the shadow
transformation, we also find another set of independent
on-shell conformal primary wave functions for the massless
field with helicity |s| > 1. In addition, for the massless field
with helicity |s| > 1, one is also required to introduce
the gauge potential to define the Klein-Gordon inner
product [27]. So we present the exact on-shell conformal
primary wave functions as well as the corresponding
celestial conformal weights and bulk scaling dimension
in Appendix D for the electromagnetic potential, which is
supposed to be generalized readily to the massless field
with larger helicity.

However, to show that our candidate basis is really
the basis for the massless particle representation of the
Poincaré group, one is required to show that it is complete
as a basis, which has already been analyzed in [23,28,29],
where different strategies are developed. It is interesting to
ask whether one can achieve its completeness in another
manner, where the aforementioned new set of independent
on-shell conformal primary wave functions may be an
indispensable part. We hope to address this important issue
elsewhere in the future.
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APPENDIX A: CONFORMAL ALGEBRA IN THE
d-DIMENSIONAL MINKOWSKI SPACETIME

For d-dimensional Minkowski spacetime with x* the
Lorentz coordinates, the global conformal Killing vector
fields can be written as

P, =0,, D = x"o,,
M,, = x,0, — x,0,,
K, =2x,x°0, — x*0, (A1)

with the nonvanishing commutation relations given by
[D’Pﬂ] = _Pw [Pp’M;w] - npyPu _npup;v
[M/lb’ Mpb‘] = _(nulem - nuvMup - nupM;m + nqu;tp)’

[D’ K}l] KM’ [Kw Pu] = _2(’7/41/1) + M;w)' (A2)

APPENDIX B: THE FORMULA FOR THE
COMPLEX COORDINATE WITH w=0
AS THE NORTH POLE

Note that the north pole itself corresponds to w = oo
in the complex coordinate w given by the north pole
based stereographic projection, so to circumvent the
potential subtleties associated with the north pole, we
prefer to choose A* = (1,w). Accordingly, ¢* = (1 + ww,
w+w,i(w—w), 1 —ww) with the north pole located at
w = 0. As a result, Egs. (12) and (13) will be modified as
follows:

W,:c+dw’ ,:€‘+%'v_1/, (B1)
a-+ bw a+bw
and
I, - -T,, I, = -T,,
L, - -T_, I, »-T_,
lg = =Ty, Iy —» =T, (B2)

Similarly, Egs. (17) and (19) will also get modified in the
following way:

O X" = A+ x”'w’:c+dw W’:EJFC:N}
v a+bw’ a+bw
ow' |- ow/ |5 _
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with |22 | :m and
L, O=Ly O= w0, +h(l-n)w")O,

L;O=L; O= (@3 +h(1-n)~)O.  (B4)

APPENDIX C: s= - 57 FOR UNPRIMED SPINOR
FIELDS AND s =5 FOR PRIMED SPINOR FIELDS

Obviously, the massless scalar field has zero helicity. On
the other hand, as stated in the main body of our paper,
unprimed and primed massless spinor fields have negative
and positive helicities, respectively. Here we take the
massless spinor field with one index as an example to
show that with our convention this is the case, i.e.,

1
WM¢E —— 5 €”D/)”£P,, [’M ¢E

po

1 HUPC F d EF
256 a4 VFF’xp ox°

i Fald Y R/ 'y
— EG”AAf(é‘ABGCDé‘A C€BD _ E‘ABGCD €AC€BD)

/a
X VBB’¢F€CF€C’F’5DE5D’F

i .
= GMAA/ (E €AB€A’BIVBB/¢E — l€A,B,€EBvB/B¢A>

i i
= _Enﬂyau¢E = _EﬁP"q&E’ (Cl)

which tells us that the unprimed ¢ and the primed ¢
have helicity —1 and 1, respectively.

APPENDIX D: ON-SHELL CONFORMAL
PRIMARY WAVE FUNCTIONS OF
ELECTROMAGNETIC POTENTIAL

For the Killing vector fields or the dilatation field X and
Y in Minkowski spacetime, we have

LyLyA, =XV, (Y’V,A. +A, V. Y")
+(YPV,A, + AV, YP)V X4
=XV, Y*V, A, + XYV, V,A, + XV YV A,
+YPV XV, A, +V,(YPV XA, (D1)

for our electromagnetic potential A,., where we have used
the fact that the second derivative of X and Y vanishes. With
the gauge condition V.A° = DA, = 0, we further have

C’A, = 7%’V A, + H*V,V, A,
+ 2ZacbvaAb + va (Zbca)Ab
1

1 1
=_D'V,A, ——x’0A. —=~DA
2 ble 4)6 c 2 c

i 1
+ EvaAbEabcdDd + EAC
1o,
::F _FCdD - ﬂ:EDAL

. (02)

for the helicities s = £1, which correspond to

1 cd .
_€abch = :tlFab

. (D3)

through the relations FAABE = pABA'B for s = —1 and
FANBE — pA'B'AB for ¢ — 1. Likewise, we have

1
C*A, =F = DA,

. (D4)

for s = 1. Thus, we end up with

D (D - D (D
2 2
L ——2<—2—S>, L —2<2—|—s>, (DS)

which implies the relationship between the bulk scaling
dimension and celestial conformal weights with a certain
ambiguity is as follows:

R+:h 2—54—5 or R_.:h=——+4—+—,

- - D s 1 - D
R.:h=—4—+— R :h=————1_ D6
+ 2+2+2 or R_ > + (D6)

for the on-shell conformal primary wave functions of
the electromagnetic potential. Furthermore, with the afore-
mentioned gauge condition as well as the choice of the
null tetrad

Laar = 1147, Npg = 070y,

Mppr = 14047, Mpp = 04l (D7)
the on-shell conformal primary wave functions of the
electromagnetic potential can be constructed as follows:

A, = ma¢A (X), Aa = ma('xz)A—l¢A(x)’ (DS)
which correspond to
P = (1 - B)p2 (x)o o,
¢ =2(1 = A)(x*)472¢ (x)1he” (D9)
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TABLE IV. The 2D celestial conformal weights (conformal dimension and spin) and 4D bulk scaling dimension
for the on-shell conformal primary wave functions of the electromagnetic potential with negative helicity —1. For the
on-shell celestial conformal primary wave functions with positive helicity 1, which is the complex conjugation of
those with negative helicity —1, the corresponding result can be obtained by simply taking & <> h and J — —J.

h A J D
" (x)(A = 1, gauge mode ) a1 At A -1 -A+1
mg (x*)A719A (x)(A = 1, gauge mode) atl 4t A 1 A-1
M (x) ln% 0 1 1 -1 O(up to a gauge)
mq!(x) ln(%xz) 1 0 1 1 O(up to a gauge)
(=% 14+ 1,)¢*(x) (gauge mode) 1 1 2 0 0
(—%na +1,)¢*(x) In x>+ 0
¢ (x)(m, Zlfg =g 3L 1 1 2 0 (up to a gauge)

through the relation ¢,p = Vr(4AC gy = Vy A 5. Here
we have used

2

—n, + 1,

. (D10)

Xg =

and

Van_1b = —ﬁ’lal’lb, Vanb = —n,ny, (Dll)
which implies V,m“* =0 and Om, = 0. Obviously, the
above on-shell conformal wave functions with A =1
correspond to the pure gauge modes. For A =1, one
can instead construct the nongauge modes for the electro-
magnetic potential as follows:

nd* A, = mu'(x) ln<wx2>

q- X q-x
(D12)

with x, = (1,0,0, 1) the reference point in our Minkowski
spacetime, which give rise to

PP =P (x)ohof, P =-2(2) ¢! (x)ME. (DI3)
respectively. Last, by
Valb = nalb - maﬁ’lb - ﬁ’lamb, (D14)

one can show that

m- X

a
" Xo q - Xo

) (D15)

are also the on-shell conformal primary wave functions of
the electromagnetic potential, corresponding to a pure
gauge and

P8 = 42 (x)o AP, (D16)
respectively.

So we have already succeeded in obtaining the on-shell
conformal primary wave functions of the electromagnetic
potential and its field strength for the negative helicity. The
corresponding celestial conformal weights and bulk scaling
dimension are listed in Table IV. The result for the positive
helicity can readily be obtained by noting that the on-shell
conformal primary wave functions for the positive helicity
is related to those for the negative helicity by the complex
conjugation. Then, the correspondence between the
celestial conformal weights and bulk scaling dimension
can be specified as follows:

R_ and R_ for A,(A,),

R, and R_ for A,

R_  and I_Lr for Za,

R, and R, forA,(A,). (D17)
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