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Alternative to the embedding formalism, we provide a group theoretic approach to the conformal
primary basis for the massless field with arbitrary helicity. To this end, we first point out that slð2;CÞ
isometry gets enhanced to slð2;CÞ ×D symmetry for the solution space of the massless field with D the
bulk dilatation. Then, associated with slð2;CÞ ×D symmetry, we introduce the novel quadratic Casimirs
and relevant tensor/spinor fields to derive two explicit constraints on the bulk dilatation and slð2;CÞ
Casimirs. With this, we further argue that the candidate conformal primary basis can be constructed out of
the infinite tower of the descendants of the left and right highest (lowest) conformal primary wave function
of slð2;CÞ Lie algebra, and the corresponding celestial conformal weights are determined by the bulk
scaling dimension through solving out the exact on-shell conformal primary wave functions, where on top
of the two kinds of familiar-looking on-shell conformal primary wave functions, we also obtain another set
of independent on-shell conformal primary wave functions for the massless field with helicity jsj ≥ 1. In
passing, we also develop the relationship between the four-dimensional Lorentz Lie algebra and two-
dimensional conformal Lie algebra from scratch, and present an explicit derivation for the two important
properties associated with the conformal primary wave functions.
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I. INTRODUCTION

Over the past few decades, the holographic principle has
been standing out as a guiding principle for us to formulate
the quantum theory of gravity. AdS/CFT correspondence,
as one explicit implementation of such a principle, states
that the quantum gravity in an asymptotically anti–de Sitter
spacetime is encoded fully by the boundary conformal
field theory (CFT). On the other hand, by holography, the
only observable in an asymptotically flat spacetime is the
scattering amplitude. However, the scattering amplitude is
expressed conventionally in the momentum representation,
which manifests the translation symmetry but obscures the
holographic nature. Given this, a new representation in
terms of the so-called conformal primary basis has been

constructed via the embedding formalism in CFT,
whereby the scattering amplitude in the d-dimensional
flat spacetime admits a natural holographic interpretation
of the conformal correlator in the (d − 2)-dimensional
celestial sphere [1–10]. Such a holographic reformulation
of the scattering process in terms of the so-called celestial
amplitude further motivates a recently conjectured dual-
ity, called celestial holography, which proposes that the
bulk scattering in the flat spacetime can be dual to a CFT
on the celestial sphere [11–15].
No matter whether celestial holography turns out to be

valid or not, such an alternative formulation of the scatter-
ing process has already shed new light on our under-
standing of scattering amplitude, where the conformal
primary basis, as the building block of the whole reformu-
lation, plays a vital role as it should be the case. In
particular, for the case of massless particles, the conformal
primary basis in the new representation turns out to be
related to the familiar plane wave basis in the momentum
representation by a Mellin transformation or further fol-
lowed by a shadow transformation. The main purpose of
this paper is to offer a group theoretic understanding of the
conformal primary basis for the massless particles in the
four-dimensional (4D) Minkowski spacetime, which is
supposed to serve as an alternative perspective to the
aforementioned embedding formalism. To this end, we
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shall first develop the relationship between 4D Lorentz
Lie algebra and two-dimensional (2D) conformal Lie
algebra from scratch and derive the two important
properties associated with the conformal primary wave
functions in the subsequent section. Then in Sec. III, with
the observation of the bulk dilatation D as an emergent
symmetry for massless particles, we will argue that the
slð2;CÞ ×D symmetry dictated the conformal primary
basis can serve as a candidate basis for the massless
particle representation of the Poincaré Lie algebra, which
is further substantiated by an explicit derivation. In
Sec. IV, we build the specific correspondence between
the 4D bulk scaling dimension and 2D celestial conformal
weights for all the on-shell conformal primary wave
functions. We shall conclude our paper with some
discussions in the final section.
Notation and conventions follow Chapter 13 of [16],

where lower and upper Latin indices denote Penrose’s
abstract notations for tensors and spinors, respectively,
while lower and upper Greek indices represent the corre-
sponding components. In addition, where no confusion
arises, lower Greek indices also denote the concrete
indices, running from 0 to d − 1 while the intermediate
lower Latin letters ði; j; kÞ denote the spatial components or
concrete indices, running from 1 to d − 1. In particular, the
signature is ðþ;−;−;−Þ, and ϵ0123 ¼ 1. Furthermore, a
spinor is raised and lowered as ϕA ¼ ϵABϕB;ϕB ¼ ϵABϕ

A

with ϵACϵ
BC ¼ ϵA

B ¼ −ϵBA ¼ δA
B.

II. 4D LORENTZ GROUP, 2D CONFORMAL
GROUP, AND CONFORMAL PRIMARY

WAVE FUNCTIONS

In what follows, we shall focus exclusively on the four-
dimensional Minkowski spacetime, where we can take
advantage of the spinor machinery to develop the relation-
ship between the 4D Lorentz group and the 2D con-
formal group.
To proceed, we take the canonical choice of spinor

basis oA, ιA such that oAιA ¼ 1, with the dual basis given
by −ιA; oA. Furthermore, we have ϵAB ¼ oAιB − ιAoB and
ϵAB ¼ oAιB − ιAoB, which means

ϵΣΓ ¼
�

0 1

−1 0

�
; ϵΣΓ ¼

�
0 1

−1 0

�
: ð1Þ

The identification between spinors in the above basis and
tensors in the Lorentz coordinates is specified by the
soldering form σμΣΓ0 ¼ 1ffiffi

2
p ð1; σiÞ with σ the standard

Pauli matrices

σ1¼
�
0 1

1 0

�
; σ2¼

�
0 −i
i 0

�
; σ3¼

�
1 0

0 −1

�
; ð2Þ

whence one also has σμ
Σ0Γ ¼ 1ffiffi

2
p ð1; σiÞ. In particular,

our Minkowski metric is related to its spinor representation
as follows:

ημν ¼ σμ
Σ0Γσν

Ω0ΞϵΣ0Ω0ϵΓΞ; ð3Þ

where the complex conjugation is indicated implicitly by
the primed indices. With this, the identification SOð1; 3Þ ≃
SLð2;CÞ=Z2 can be expressed as follows:

Λμ
νxνσμΣ

0Γ ¼ xμL̄Σ0
Ω0σμ

Ω0ΞLΓ
Ξ; ð4Þ

where Λ∈ SOð1; 3Þ and L∈ SLð2;CÞ, satisfying
LΣ

ΓLΩ
ΞϵΣΩ ¼ ϵΓΞ. Accordingly, the corresponding Lie

algebras can be related to each other as

λμνxνσμΣ
0Γ ¼ xμðl̄Σ0

Ω0σμ
Ω0Γ þ σμ

Σ0ΞlΓΞÞ: ð5Þ

Note that the Pauli matrices serve naturally as the gen-
erators for slð2;CÞ. A straightforward manipulation of the
Pauli matrices leads to the following realization of slð2;CÞ:

σ1 → −2K1; σ2 → 2K2; σ3 → −2K3;

iσ1 → −2J1; iσ2 → 2J2; iσ3 → −2J3; ð6Þ

with the Lorentz boosts and rotations defined as1

Ki ¼ Mi0; Ji ¼
1

2
ϵ0ijkMjk: ð7Þ

However, one can also reach the following two commu-
tative realizations of slð2;CÞ by the complexified Lorentz
generators

σ1 → −K1 þ iJ1; σ2 → K2 − iJ2;

σ3 → −K3 þ iJ3; iσ1 → ið−K1 þ iJ1Þ;
iσ2 → iðK2 − iJ2Þ; iσ3 → ið−K3 þ iJ3Þ ð8Þ

from

λμνxνσμΣ
0Γ ¼ xμσμΣ

0ΞlΓΞ ð9Þ

and

σ1 → −K1 − iJ1; σ2 → K2 þ iJ2;

σ3 → −K3 − iJ3; iσ1 → −ið−K1 − iJ1Þ;
iσ2 → −iðK2 þ iJ2Þ; iσ3 → −ið−K3 − iJ3Þ ð10Þ

1Kindly please refer to Appendix A for all the generators of the
conformal algebra in the d-dimensional Minkowski spacetime.
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from

λμνxνσμΣ
0Γ ¼ xμ l̄Σ

0
Ω0σμ

Ω0Γ; ð11Þ

where the overline indicates that the corresponding reali-
zation is a complex realization.
On the other hand, SLð2;CÞ can also be understood as

the global conformal group on the celestial sphere. To this
end, let λΣ ¼ ðw; 1Þ, and then its corresponding null vector
λΣλΣ

0
is given by qμ ¼ ðww̄þ 1; wþ w̄; iðw̄ − wÞ; ww̄ − 1Þ,

whose spatial component can be geometrized as a point on
a unit celestial sphere as q ¼ ðww̄þ 1Þq̂ by performing the
stereographic projection from the north pole of the sphere
to the complex plane with w ¼ cot θ

2
eiφ. Similarly, with the

choice of λΣ ¼ ð1; w̄Þ, the corresponding null vector is
given by qμ ¼ ð1þ ww̄; wþ w̄; iðw̄ − wÞ; 1 − ww̄Þ, which
can be visualized as a point on the unit celestial sphere as
q ¼ ð1þ ww̄Þq̂ instead by performing the stereographic
projection from the south pole to the complex plane with
w ¼ tan θ

2
eiφ. In what follows, we prefer to work exclu-

sively with the first parametrization of our spinor as well as
its corresponding null vector.2 Accordingly, SLð2;CÞ act-
ing on our spinor λΣ will induce a global conformal
transformation on the celestial sphere as follows:

w0 ¼
�
a b

c d

�
w ¼ awþ b

cwþ d
;

w̄0 ¼
�
ā b̄

c̄ d̄

�
w̄ ¼ ā w̄þb̄

c̄ w̄þd̄
; ð12Þ

with ad − bc ¼ 1, where w and w̄ are assumed to be
independent of each other. Then, it is not hard to show that
slð2;CÞ can be realized, respectively, on w and w̄ space
as follows:

l−1 ¼
�
0 1

0 0

�
¼ 1

2
ðσ1 þ iσ2Þ → T−1;

l̄−1 ¼
�
0 1

0 0

�
¼ 1

2
ðσ1 þ iσ2Þ → T−1;

l1 ¼
�

0 0

−1 0

�
¼ −

1

2
ðσ1 − iσ2Þ → T1;

l̄1 ¼
�

0 0

−1 0

�
¼ −

1

2
ðσ1 − iσ2Þ → T1;

l0 ¼
1

2

�
1 0

0 −1

�
¼ 1

2
σ3 → T0;

l̄0 ¼
1

2

�
1 0

0 −1

�
¼ 1

2
σ3 → T̄0; ð13Þ

where the overline also indicates that the corresponding
realization is a complex one, with Tn ¼ wnþ1

∂w and
T̄n ¼ w̄nþ1

∂w̄ the vector fields on the celestial sphere,
satisfying the following commutation relations:

½Tn; Tm� ¼ ðm − nÞTnþm;

½T̄n; T̄m� ¼ ðm − nÞT̄nþm;

½Tn; T̄m� ¼ 0: ð14Þ
By inspection of Eqs. (8), (10), and (13), one can obtain

the identification between the 4D Lorentz generators and
2D conformal generators

T−1 ≃ L−1 ¼
1

2
ð−K1 þ J2 þ iðK2 þ J1ÞÞ;

T̄−1 ≃ L̄−1 ¼
1

2
ð−K1 þ J2 − iðK2 þ J1ÞÞ;

T1 ≃ L1 ¼
1

2
ðK1 þ J2 þ iðK2 − J1ÞÞ;

T̄1 ≃ L̄1 ¼
1

2
ðK1 þ J2 − iðK2 − J1ÞÞ;

l0 ≃ L0 ¼
1

2
ð−K3 þ iJ3Þ;

l̄0 ≃ L̄0 ¼
1

2
ð−K3 − iJ3Þ: ð15Þ

Accordingly, we have the following commutation relations:

½Ln; Lm� ¼ ðm − nÞLmþn;

½L̄n; L̄m� ¼ ðm − nÞL̄mþn;

½Ln; L̄m� ¼ 0 ð16Þ
with n;m ¼ 0;�1. For later convenience, we would like to
denote the Lie algebras out of Ln and L̄n as slð2;CÞL and
slð2;CÞR, respectively.
A wave function on our Minkowski spacetime and

the celestial sphere is called the conformal primary wave
function with the SLð2;CÞ conformal dimension Δ and
spin J if

O

 
x0μ ¼ Λμ

νxν;w0 ¼ awþ b
cwþ d

; w̄0 ¼ ā w̄þb̄

c̄ w̄þd̄

!

¼
���� ∂w0

∂w

����−
ΔþJ
2

���� ∂w̄0

∂w̄

����−
Δ−J
2

DðΛÞOðx;w; w̄Þ; ð17Þ

where the representation of Lorentz group DðΛÞ is deter-
mined by the spinor and tensor indices of O as usual with
j ∂w0
∂w j ¼ 1

ðcwþdÞ2 and j ∂w̄0
∂w̄ j ¼ 1

ðc̄ w̄þd̄Þ2. Then, we have

DðΛÞ−1OðΛx;w0; w̄0Þ −Oðx;w0; w̄0Þ

¼
���� ∂w0

∂w

����−h
���� ∂w̄0

∂w̄

����−h̄Oðx;w; w̄Þ −Oðx;w0; w̄0Þ; ð18Þ2As to the second parametrization with w̄ replaced by w, kindly
please refer to Appendix B for the relevant results.
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where the SLð2;CÞ conformal weights are given by
ðh; h̄Þ ¼ 1

2
ðΔþ J;Δ − JÞ. This implies

LLn
O ¼ −LTn

O ¼ −ðwnþ1
∂w þ hðnþ 1ÞwnÞO;

LL̄n
O ¼ −LT̄n

O ¼ −ðw̄nþ1
∂w̄ þ h̄ðnþ 1Þw̄nÞO ð19Þ

for n ¼ 0;�1, which amounts to saying that the Lie
derivative of the Lorentz generators acting on the con-
formal primary wave function can be understood as the Lie
derivative of the corresponding SLð2;CÞ generators acting
on it with an additional minus sign. This is essentially the
underlying reason for the definition of the conformal
primary wave function through Eq. (17). For our purpose,
we list the celestial conformal weights and the bulk scaling
dimension for a few important conformal primary wave
functions in Table I. Furthermore, if a conformal primary
wave function is on-shell, namely satisfies the equation of
motion dictated by the unitary representation of the
Poincaré group, one can define an operator on the celestial
sphere associated with it as follows:

Ôðw0; w̄0Þ ¼ ðΦ̂ðx0Þ;Oðx0;w0; w̄0ÞÞΣ0 ; ð20Þ

where Φ̂ðx0Þ is the corresponding bulk quantum field and
the Klein-Gordon inner product ð; ÞΣ0 evaluated on a
Cauchy surface Σ0 is nevertheless independent of the choice
of Σ0. The Lorentz covariance of the Klein-Gordon inner
product implies

Ôðw0; w̄0Þ
¼ ðDðΛÞ−1Φ̂ðx0Þ; DðΛÞ−1Oðx0;w0; w̄0ÞÞΣ
¼
�
UðΛÞΦ̂ðxÞUðΛÞ−1;

���� ∂w0

∂w

����−h
���� ∂w̄0

∂w̄

����−h̄Oðx;w; w̄Þ
�

Σ

¼
���� ∂w0

∂w

����−h
���� ∂w̄0

∂w̄

����−h̄UðΛÞÔðw; w̄ÞUðΛÞ−1; ð21Þ

where UðΛÞ corresponds to the unitary representation of
the Lorentz group in the Fock space. It is noteworthy that
due to its presence, the celestial operator Ô does not
transform under the global conformal transformation as the
ordinary conformal primary operators. But nevertheless,
because of the Lorentz invariance of both the vacuum and
the S-matrix, i.e., UðΛÞj0i ¼ j0i and UðΛÞ−1SUðΛÞ ¼ S,
we have

h0jÔiðw0
i; w̄

0
iÞSÔjðw0

j; w̄
0
jÞj0i

¼
���� ∂w0

i

∂wi

����−hi
���� ∂w̄0

i

∂w̄i

����−h̄i
���� ∂w0

j

∂wj

����−hj
���� ∂w̄0

j

∂w̄j

����−h̄j
× h0jÔiðwi; w̄iÞSÔjðwj; w̄jÞj0i; ð22Þ

which tells us that the celestial amplitude behaves like the
conformal correlator on the celestial sphere.

III. slð2;CÞ × D SYMMETRY AND THE CANDIDATE
BASIS FOR THE MASSLESS PARTICLE

REPRESENTATION OF THE POINCARÉ GROUP

The unitary representation of the Poincaré group for
massless particles is usually expressed in terms of the
simultaneous eigenvectors of the commuting spatial three-
momentum or the commuting four-momentum with one
on-shell condition PμPμ ¼ 0. But note that L2, L0 and
L̄2; L̄0 commute with one another, where

L2 ¼ L2
0 −

1

2
ðL−1L1 þ L1L−1Þ;

L̄2 ¼ L̄2
0 −

1

2
ðL̄−1L̄1 þ L̄1L̄−1Þ ð23Þ

are the corresponding Casimir operators for slð2;CÞL
and slð2;CÞR Lie algebras, respectively. So it is reason-
able to expect the simultaneous eigenvectors of the above
four operators could constitute the candidate basis as
well for the massless particle representation of the
Poincaré group. But as alluded above, the number of
degrees of freedom for the four-momentum is not 4 but 3
due to the on-shell condition. So there may exist one
similar constraint on L2; L0; L̄2; L̄0. As we shall show in
this section, this is the case, indeed, where it turns out that
the bulk dilatation operator comes to play a crucial role.
To be more specific, first we note that not only does the
bulk dilatation vector field D together with the Killing
vector fields form a closed Lie algebra but also it
commutes with the two Poincaré Casimir operators
P2 ¼ PμPμ and W2 ¼ WμWμ with the Pauli-Lubanski
spin operator defined as Wμ ¼ − 1

2
ϵμνρσPνMρσ for the

massless particle representation of the Poincaré Lie
algebra, where Wμ ¼ isPμ with s the helicity of the

TABLE I. The celestial conformal weights (conformal dimen-
sion and spin) and the bulk scaling dimension for some conformal
primary wave functions.

h h̄ Δ J D

λΣ − 1
2

0 − 1
2

− 1
2

− 1
2

λ̄Σ
0 0 − 1

2
− 1

2
1
2

− 1
2

qμ − 1
2

− 1
2

−1 0 −1
Dμ 0 0 0 0 0
ϵΣΓ 0 0 0 0 1
ημν 0 0 0 0 2
1
q·x

1
2

1
2

1 0 −1
λΣffiffiffiffiffi
q·x

p − 1
4

1
4

0 − 1
2

−1
DΣΣ0 λ̄Σ0ffiffiffiffiffi

q·x
p

1
4

− 1
4

0 1
2

0
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massless particle.3 This amounts to saying that the bulk
dilatation emerges as an additional symmetry of the
solution space of the equations of motion dictated by
the massless particle representation of the Poincaré
group. In addition, D commutes with the Lorentz boosts
and rotations, and thus also commutes with L2; L0; L̄2; L̄0.
As a result, associated with slð2;CÞ ×D symmetry, the
candidate basis is formed virtually by the simultaneous
eigenvectors of five operators D;L2; L0; L̄2; L̄0 with two
constraints on them. In what follows, we shall present an
explicit derivation for this.

A. Novel quadratic Casimirs and relevant
tensor/spinor fields

Partially inspired by [17–19] and based on our experi-
ence acquired from [20,21], we would like to define a novel
quadratic Casimir operator

C̄2 ¼ L̄2 −
1

4
D2 ð24Þ

associated with slð2;CÞR ×D Lie algebra. Then, we
further introduce the following two auxiliary tensor fields:

H̄ab ¼ L̄a
0L̄

b
0 −

1

2
ðL̄a

−1L̄
b
1 þ L̄a

1L̄
b
−1Þ −

1

4
DaDb;

Z̄abc ¼ L̄0a∇bL̄0c −
1

2
ðL̄−1a∇bL̄1c þ L̄1a∇bL̄−1cÞ

−
1

4
Da∇bDc: ð25Þ

Similarly, one can introduce the corresponding
Casimir operator and associated auxiliary fields for the
slð2;CÞL ×D Lie algebra, which are obviously related to
the right ones by the complex conjugation. A straightfor-
ward calculation gives

H̄ab ¼ −
1

4
x2ηab;

Z̄abc ¼
1

4
ðηabDc − ηbcDa − ηacDb − iϵabcdDdÞ: ð26Þ

Then, we further have

Z̄a
ac ¼

1

2
Dc;

∇dZ̄abc ¼
1

4
ðηabηcd − ηbcηad − ηacηbd − iϵabcdÞ; ð27Þ

where we have used the fact ∇aDb ¼ ηab. For the convenience of the later spinor analysis, we also introduce some spinor
fields associated with our novel Casimirs as follows:

αAA0B
CðRÞ ¼ L̄0AA0ΓB

CðL̄0Þ −
1

2
ðL̄−1AA0ΓB

CðL̄1Þ þ L̄1AA0ΓB
CðL̄−1ÞÞ −

1

4
DAA0ΓB

CðDÞ

¼ 1

2
Z̄AA0BB0CB

0 þ 1

8
DAA0δB

C ¼ −
1

4
DAA0δB

C þ 1

8
DAA0δB

C ¼ −
1

8
DAA0δB

C;

αAA0B
CðLÞ ¼ L0AA0ΓB

CðL0Þ −
1

2
ðL−1AA0ΓB

CðL1Þ þ L1AA0ΓB
CðL−1ÞÞ −

1

4
DAA0ΓB

CðDÞ

¼ 1

2
ZAA0BB0CB

0 þ 1

8
DAA0δB

C

¼ −
1

4
ðϵABDC

A0 þ ϵA
CDBA0 þDAA0δB

CÞ þ 1

8
DAA0δB

C

¼ −
1

4
ðϵABDC

A0 þ ϵA
CDBA0 Þ − 1

8
DAA0δB

C; ð28Þ
and

γAD
BCðRÞ ¼ ΓA

BðL̄0ÞΓD
CðL̄0Þ −

1

2
ðΓA

BðL̄−1ÞΓD
CðL̄1Þ þ ΓA

BðL̄1ÞΓD
CðL̄−1ÞÞ −

1

4
ΓA

BðDÞΓD
CðDÞ

¼ 1

4

�
∇DD0Z̄CD0

AB0BB
0 þ 3

4
δA

BδD
C

�
¼ 1

4

�
−δABδDC þ 3

4
δA

BδD
C

�
¼ −

1

16
δA

BδD
C;

γAD
BCðLÞ ¼ ΓA

BðL0ÞΓD
CðL0Þ −

1

2
ðΓA

BðL−1ÞΓD
CðL1Þ þ ΓA

BðL1ÞΓD
CðL−1ÞÞ −

1

4
ΓA

BðDÞΓD
CðDÞ

¼ 1

4

�
∇DD0ZCD0

AB0BB
0 þ 3

4
δA

BδD
C

�
¼ 1

4

�
δA

CδD
B þ ϵADϵ

CB − δA
BδD

C þ 3

4
δA

BδD
C

�

¼ 1

4
δA

CδD
B þ 1

4
ϵADϵ

CB −
1

16
δA

BδD
C; ð29Þ

3For the massless particle representation of the Poincaré group, we have ½D;P2� ¼ −2P2 ¼ 0. In addition, ½D;Pμ� ¼ −Pμ together
with ½D;Wμ� ¼ −Wμ implies that D commutes with the helicity s.
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where we have used the following identities:

ηAA0BB0 ¼ ϵABϵA0B0 ;

ϵAA0BB0CC0DD0 ¼ iðϵABϵCDϵA0C0ϵB0D0 − ϵA0B0ϵC0D0ϵACϵBDÞ
ð30Þ

with Γ defined later on in Eq. (39). Then, we further have

βC
AðRÞ≡ γCD

DAðRÞ ¼ −
1

16
δC

A;

βC
AðLÞ≡ γCD

DAðLÞ ¼ 11

16
δC

A: ð31Þ

B. Two constraints on slð2;CÞ Casimirs and dilatation

As a warm-up, let us start with the massless scalar field
ϕ, whose equation of motion is given by

∇a∇aϕ ¼ 0: ð32Þ

The Lie derivative acting on the scalar field yields

LXLYϕ ¼ Xa∇aðYb∇bϕÞ
¼ ðXa∇aYbÞ∇bϕþ XaYb∇a∇bϕ; ð33Þ

whereby we obtain

C̄2ϕ¼ Z̄a
a
b∇bϕþH̄ab∇a∇bϕ¼1

2
Da∇aϕ¼1

2
Dϕ ð34Þ

with D≡ LD. Thus, we have

L̄2ϕ ¼
�
1

4
D2 þ 1

2
D
�
ϕ: ð35Þ

It is easy to see that we also have

L2ϕ ¼
�
1

4
D2 þ 1

2
D
�
ϕ: ð36Þ

Now let us move onto the massless spinor field with
the helicity s ¼ − 1

2
, whose dynamics is governed by the

Weyl equation4

∇A0Aϕ
A ¼ 0: ð37Þ

Not only is this equation equivalent to∇A0AϕB ¼ ∇A0 ðAϕBÞ,
but also it implies ∇a∇aϕA ¼ 0. To proceed, let us first
recall the definition of the Lie derivative of the spinor field
ϕA

B with respect to a conformal Killing vector field ξa [22]

Lξϕ
A
B ¼ ξa∇aϕ

A
B − ϕC

BΓC
AðξÞ þ ϕA

CΓB
CðξÞ ð38Þ

with

ΓB
AðξÞ ¼ 1

2

�
∇BB0ξAB

0 −
1

4
∇cξ

cδB
A

�
: ð39Þ

The generalization of this definition to other types of spinor
fields is obvious. It is noteworthy that ∇aΓB

AðξÞ ¼ 0 when
restricted to the dilatation and Killing vector fields in our
Minkowski spacetime. Thus, with X and Y such vector
fields, we have

LXLYϕ
A ¼ Xa∇aðLYϕ

AÞ − LYϕ
BΓB

AðXÞ
¼ Xa∇aðYb∇bϕ

A − ϕBΓB
AðYÞÞ

− ðYb∇bϕ
B − ϕCΓC

BðYÞÞΓB
AðXÞ

¼ ðXa∇aYbÞ∇bϕ
A þ XaYb∇a∇bϕ

A

−∇aϕ
BðXaΓB

AðYÞ þ YaΓB
AðXÞÞ

þ ϕCΓC
BðYÞΓB

AðXÞ: ð40Þ

Then, we have

C̄2ϕA ¼ Z̄a
a
b∇bϕ

A þ H̄ab∇a∇bϕ
A

− 2αCC
0
B
AðRÞ∇CC0ϕB þ ϕCβC

AðRÞ

¼ 1

2
Db∇bϕ

A þ 1

4
Dc∇cϕ

A −
1

16
ϕA

¼ 3

4
DϕA þ 5

16
ϕA; ð41Þ

where we have used DϕA ¼ Da∇aϕ
A − 1

2
ϕA in the last

step. Similarly, we also have

C2ϕA ¼ 1

2
Db∇bϕ

A þ 1

4
Dc∇cϕ

A þ 11

16
ϕA

þ 1

2
ðϵCBDAC0 þ ϵCADB

C0 Þ∇CC0ϕB

¼ 3

4
Db∇bϕ

A þ 1

2
DB

C0∇C0AϕB þ 11

16
ϕA

¼ 3

4
Db∇bϕ

A þ 1

2
Db∇bϕ

A þ 11

16
ϕA

¼ 5

4
DϕA þ 21

16
ϕA: ð42Þ

Thus, we end up with the following result:

L̄2ϕA ¼
�
1

4
D2 þ 3

4
Dþ 5

16

�
ϕA;

L2ϕA ¼
�
1

4
D2 þ 5

4
Dþ 21

16

�
ϕA: ð43Þ4Kindly please refer to Appendix C for the relation between

the helicity and the spinor index.
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Next, let us consider the Maxwell equation

∇A0Aϕ
AB ¼ 0 ð44Þ

for the electromagnetic field with s ¼ −1, where ϕAB is
symmetric with respect to A and B. The Lie derivative
acting on ϕAB gives rise to

LXLYϕ
AB¼Xa∇aðLYϕ

ABÞ−2LYϕ
CðBΓC

AÞðXÞ
¼Xa∇aðYb∇bϕ

AB−2ϕCðBΓC
AÞðYÞÞ

−2Yb∇bϕ
CðBΓC

AÞðXÞþ2ϕDðBΓD
jCjðYÞΓC

AÞðXÞ
þ2ϕCDΓD

ðBðYÞΓC
AÞðXÞ

¼ðXa∇aYbÞ∇bϕ
ABþXaYb∇a∇bϕ

AB

−2∇aϕ
CðBðXaΓC

AÞðYÞþYaΓC
AÞðXÞÞ

þ2ϕDðBΓD
jCjðYÞΓC

AÞðXÞ
þ2ϕCDΓD

ðBðYÞΓC
AÞðXÞ; ð45Þ

whereby we have

C̄2ϕAB ¼ 1

2
Da∇aϕ

AB þ 1

2
Da∇aϕ

AB −
1

8
ϕAB −

1

8
ϕAB

¼ Da∇aϕ
AB −

1

4
ϕAB ¼ DϕAB þ 3

4
ϕAB;

C2ϕAB ¼ 1

2
Da∇aϕ

AB þ 1

2
Da∇aϕ

AB þDa∇aϕ
AB

þ 11

8
ϕAB þ 3

8
ϕAB ¼ 2Da∇aϕ

AB þ 7

4
ϕAB

¼ 2DϕAB þ 15

4
ϕAB: ð46Þ

Thus, we wind up with

L̄2ϕAB ¼
�
1

4
D2 þDþ 3

4

�
ϕAB;

L2ϕAB ¼
�
1

4
D2 þ 2Dþ 15

4

�
ϕAB: ð47Þ

The above spinor analysis has already involved all the
necessary ingredients for one to obtain the corresponding
result for the massless spinor field with other helicities. To
be more specific, one can find

L̄2ϕA��� ¼
�
1

4
D2 þ nþ 2

4
Dþ n2 þ 4n

16

�
ϕA���

¼
�
D
2
−
s
2
þ 1

��
D
2
−
s
2

�
ϕA���;

L2ϕA��� ¼
�
1

4
D2 þ 3nþ 2

4
Dþ 9n2 þ 12n

16

�
ϕA���

¼
�
D
2
−
3s
2
þ 1

��
D
2
−
3s
2

�
ϕA��� ð48Þ

for the massless spinor field with helicity s ¼ − n
2
, which is

totally symmetric with respect to n indices and satisfies the
equation of motion

∇A0Aϕ
A��� ¼ 0: ð49Þ

Note that the massless spinor field ϕA0B0C0��� with helicity
s ¼ n

2
is simply the complex conjugation of the massless

spinor field with helicity s ¼ − n
2
, so we have

L̄2ϕA0��� ¼
�
1

4
D2 þ 3nþ 2

4
Dþ 9n2 þ 12n

16

�
ϕA0���

¼
�
D
2
þ 3s

2
þ 1

��
D
2
þ 3s

2

�
ϕA0���;

L2ϕA0��� ¼
�
1

4
D2 þ nþ 2

4
Dþ n2 þ 4n

16

�
ϕA0���

¼
�
D
2
þ s
2
þ 1

��
D
2
þ s
2

�
ϕA0��� ð50Þ

for the massless spinor field with helicity s ¼ n
2
.

On the other hand, by Eq. (19) for a conformal primary
wave function, we have

L2 ¼ hðh − 1Þ; L̄2 ¼ h̄ðh̄ − 1Þ: ð51Þ

So it is reasonable to expect that the candidate basis out of
the simultaneous eigenvectors of D;L2; L0; L̄2; L̄0 can be
constructed in terms of the infinite tower of descendants of
the left and right highest (lowest) weight conformal primary
wave function of slð2;CÞ Lie algebra, where the celestial
conformal weights are determined by its bulk scaling
dimension.5 Actually, it has been shown in [23] that this
is the case for the massless scalar field. Equations (48)
and (50) obtained here provide us with an important
foundation to generalize [23] to the massless field with
arbitrary helicity. In the subsequent section, we shall specify
the explicit correspondence between the 2D celestial con-
formal weights and the 4D bulk scaling dimension for all the
on-shell conformal primary wave functions.

IV. CORRESPONDENCE BETWEEN THE 4D BULK
SCALING DIMENSION AND 2D CELESTIAL

CONFORMAL WEIGHTS

By Eqs. (51) and (48), we have the following relation-
ship between the celestial conformal weight and bulk
scaling dimension:

Rþ∶ h ¼ D
2
−
3s
2
þ 1 or R−∶ h ¼ −

D
2
þ 3s

2
ð52Þ

5The basis constructed in this way is discrete, compared to the
frequently considered one from the unitary principal series.
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and

R̄þ∶ h̄ ¼ D
2
−
s
2
þ 1 or R̄−∶ h̄ ¼ −

D
2
þ s
2

ð53Þ

for the on-shell conformal primary wave functions
with negative helicity s. However, this relationship dem-
onstrates a certain ambiguity. To fix it, we find the explicit
expression for the on-shell conformal primary wave
functions. As such, we follow [24,25] to choose
oA ¼ 1ffiffiffiffiffi

q·x
p λA; ιA ¼ DAA0

oA0 . Accordingly, we have

∇A0AoB ¼ −
1

2
oA0oAoB; ∇A0Aι

B ¼ δA
BoA0 −

1

2
oA0oAιB;

ð54Þ

which implies

∇A0AoA ¼ 0; ∇A0Aι
A ¼ 3

2
oA0 : ð55Þ

Then, we further have

∇A0AoðAB���ιCD���Þ

¼ m
mþn

∇A0AðoAoðB���ιCD���Þ þ n
mþn

∇A0AoðCD���ιjAjιB���Þ

¼ mn
mþn

oðBC���ιD���ÞoA0 −
mn−3n−nðn−1Þ

2ðmþnÞ oðCD���ιB���ÞoA0

¼ nðnþmþ2Þ
2ðmþnÞ oðBC���ιD���ÞoA0 ; ð56Þ

where oAB��� denotes the spinor field produced by the
product ofm os and ιCD��� denotes the spinor field produced
by the product of n {s. With this, we can construct the
following linearly independent on-shell conformal primary
wave functions for the massless spinor field with negative
helicity s:

ϕAB��� ¼ ϕΔðxÞoAB���;
ϕ̂AB��� ¼ ϕ−sþ1ðxÞoðA���ιB���Þ;
ϕ̃AB��� ¼ ðx2ÞΔþs−1ϕΔðxÞιAB���; ð57Þ

where we have used DAA0DAB0 ¼ 1
2
x2δA0B

0
with the scalar

function defined as ϕΔðxÞ ¼ 1
ðq·xÞΔ. It is noteworthy that

besides the first and third kinds of on-shell conformal
primary wave functions, which are familiar to the com-
munity and related to each other by the so-called shadow
transformation, we also find the second kind of on-shell
conformal primary wave functions for s ≤ −1. According
to Table I, we further list the celestial conformal weights
and bulk scaling dimension for the above explicit on-shell
conformal primary wave functions in Table II.6 Then, we
obtain a definite relationship between the celestial con-
formal weights and bulk scaling dimension for each on-
shell conformal primary wave function, i.e.,

R− and R̄− for ϕAB���;

Rþ and R̄− for ϕ̂AB���;

Rþ and R̄þ for ϕ̃AB���: ð58Þ

As pointed out before, the on-shell massless spinor field
with positive helicity is simply the complex conjugation of
that with negative helicity. So it is not hard to obtain the
parallel results for the massless spinor field with positive
helicity, which we shall present below for completeness.
Namely, Eq. (51) together with Eq. (50) gives rise to

Rþ∶ h ¼ D
2
þ s
2
þ 1 or R−∶ h ¼ −

D
2
−
s
2

ð59Þ

and

R̄þ∶ h̄ ¼ D
2
þ 3s

2
þ 1 or R̄−∶ h̄ ¼ −

D
2
−
3s
2
: ð60Þ

Such an ambiguity in the correspondence between the
celestial conformal weights and bulk scaling dimension can
be resolved by examining the explicit quantities for each

TABLE II. The 2D celestial conformal weights (conformal
dimension and spin) and 4D bulk scaling dimension for the on-
shell conformal primary wave functions with negative helicity s,
where o denotes the number of oA in ϕ̂AB���.

h h̄ Δ J D

ϕAB��� Δþs
2

Δ−s
2

Δ s −Δþ 2s

ϕ̂AB��� −s − o
2
þ 1

2
o
2
þ 1

2
−sþ 1 −s − o s − o − 1

ϕ̃AB��� Δ−s
2

Δþs
2

Δ −s Δþ 2s − 2

TABLE III. The 2D celestial conformal weights (conformal
dimension and spin) and 4D bulk scaling dimension for the on-
shell conformal primary wave functions with positive helicity s,
obtained by taking the complex conjugation of those with
negative helicity −s, where o denotes the number of oA

0
in ϕ̂A0B0 ���.

h h̄ Δ J D

ϕA0B0 ��� Δþs
2

Δ−s
2

Δ s −Δ − 2s

ϕ̂A0B0 ��� o
2
þ 1

2
s − o

2
þ 1

2
sþ 1 −sþ o −s − o − 1

ϕ̃A0B0 ��� Δ−s
2

Δþs
2

Δ −s Δ − 2s − 2

6It is noteworthy that the second kind of on-shell conformal
primary wave functions displays a different correspondence
between the celestial spin and bulk helicity from the first and
third ones, whose celestial spin is related to the bulk helicity
simply by J ¼ �s.
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kind of on-shell conformal primary wave functions in
Table III. As a result, we have

R− and R̄− for ϕA0B0���;

R− and R̄þ for ϕ̂A0B0���;

Rþ and R̄þ for ϕ̃A0B0���: ð61Þ

V. DISCUSSION

Although the bulk dilatation does not belong to the
isometry Poincaré group of our Minkowski spacetime, it
can be regarded as an emergent symmetry of the solution
space of equations of motion for the massless field dictated
by the unitary representation of the Poincaré group,
reminiscent of the hidden conformal symmetry of the
Kerr black hole discovered in [26]. With this in mind,
we have shown that the slð2;CÞ ×D symmetry dictated
candidate basis for the massless particle representation of
the Poincaré group can be constructed out of the infinite
tower of the descendants of the left and right highest
(lowest) weight conformal primary wave function of
slð2;CÞ Lie algebra, where the celestial conformal weights
are further determined in an explicit manner by the bulk
scaling dimension through solving out the exact on-shell
conformal primary wave functions for the massless field
with arbitrary helicity. In particular, on top of the two kinds
of familiar-looking on-shell conformal primary wave func-
tions, which are related to each other by the shadow
transformation, we also find another set of independent
on-shell conformal primary wave functions for the massless
field with helicity jsj ≥ 1. In addition, for the massless field
with helicity jsj ≥ 1, one is also required to introduce
the gauge potential to define the Klein-Gordon inner
product [27]. So we present the exact on-shell conformal
primary wave functions as well as the corresponding
celestial conformal weights and bulk scaling dimension
in Appendix D for the electromagnetic potential, which is
supposed to be generalized readily to the massless field
with larger helicity.
However, to show that our candidate basis is really

the basis for the massless particle representation of the
Poincaré group, one is required to show that it is complete
as a basis, which has already been analyzed in [23,28,29],
where different strategies are developed. It is interesting to
ask whether one can achieve its completeness in another
manner, where the aforementioned new set of independent
on-shell conformal primary wave functions may be an
indispensable part. We hope to address this important issue
elsewhere in the future.
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APPENDIX A: CONFORMAL ALGEBRA IN THE
d-DIMENSIONAL MINKOWSKI SPACETIME

For d-dimensional Minkowski spacetime with xμ the
Lorentz coordinates, the global conformal Killing vector
fields can be written as

Pμ ¼ ∂μ; D ¼ xμ∂μ;

Mμν ¼ xμ∂ν − xν∂μ;

Kμ ¼ 2xμxν∂ν − x2∂μ ðA1Þ
with the nonvanishing commutation relations given by

½D;Pμ� ¼ −Pμ; ½Pρ;Mμν� ¼ ηρμPν − ηρνPμ;

½Mμν;Mρσ� ¼ −ðημρMνσ − ημσMνρ − ηνρMμσ þ ηνσMμρÞ;
½D;Kμ� ¼ Kμ; ½Kμ; Pν� ¼ −2ðημνDþMμνÞ: ðA2Þ

APPENDIX B: THE FORMULA FOR THE
COMPLEX COORDINATE WITH w= 0

AS THE NORTH POLE

Note that the north pole itself corresponds to w ¼ ∞
in the complex coordinate w given by the north pole
based stereographic projection, so to circumvent the
potential subtleties associated with the north pole, we
prefer to choose λΣ ¼ ð1; wÞ. Accordingly, qμ ¼ ð1þ ww̄;
wþ w̄; iðw − w̄Þ; 1 − ww̄Þ with the north pole located at
w ¼ 0. As a result, Eqs. (12) and (13) will be modified as
follows:

w0 ¼ cþ dw
aþ bw

; w̄0 ¼ c̄þ d̄ w̄

āþ b̄ w̄
; ðB1Þ

and

l−1 → −T1; l̄−1 → −T̄1;

l1 → −T−1; l̄1 → −T̄−1;

l0 → −T0; l̄0 → −T̄0: ðB2Þ
Similarly, Eqs. (17) and (19) will also get modified in the
following way:

O
�
x0μ ¼ Λμ

νxν;w0 ¼ cþ dw
aþ bw

; w̄0 ¼ c̄þ d̄ w̄

āþ b̄ w̄

�

¼
���� ∂w0

∂w

����−
ΔþJ
2

���� ∂w̄0

∂w̄

����−
Δ−J
2

DðΛÞOðx;w; w̄Þ ðB3Þ
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with j ∂w0
∂w j ¼ 1

ðaþbwÞ2 and

LLn
O ¼ LT−n

O ¼ ðw1−n
∂w þ hð1 − nÞw−nÞO;

LL̄n
O ¼ LT̄−n

O ¼ ðw̄1−n
∂w̄ þ h̄ð1 − nÞw̄−nÞO: ðB4Þ

APPENDIX C: s= − n
2 FOR UNPRIMED SPINOR

FIELDS AND s= n
2 FOR PRIMED SPINOR FIELDS

Obviously, the massless scalar field has zero helicity. On
the other hand, as stated in the main body of our paper,
unprimed and primed massless spinor fields have negative
and positive helicities, respectively. Here we take the
massless spinor field with one index as an example to
show that with our convention this is the case, i.e.,

WμϕE ¼ −
1

2
ϵμνρσLPν

LMρσ
ϕE

¼ 1

2
ϵμνρσ∂νϕ

F∇FF0xρ

�
∂

∂xσ

�
EF0

¼ i
2
σμAA0 ðϵABϵCDϵA0C0

ϵB
0D0 − ϵA

0B0
ϵC

0D0
ϵACϵBDÞ

×∇BB0ϕFϵCFϵC0F0δD
EδD0F

0

¼ σμAA0

�
i
2
ϵABϵA

0B0∇BB0ϕE − iϵA
0B0
ϵEB∇B0Bϕ

A

�

¼ −
i
2
ημν∂νϕ

E ¼ −
i
2
LPμϕE; ðC1Þ

which tells us that the unprimed ϕE and the primed ϕE0

have helicity − 1
2
and 1

2
, respectively.

APPENDIX D: ON-SHELL CONFORMAL
PRIMARY WAVE FUNCTIONS OF
ELECTROMAGNETIC POTENTIAL

For the Killing vector fields or the dilatation field X and
Y in Minkowski spacetime, we have

LXLYAc ¼ Xa∇aðYb∇bAc þAb∇cYbÞ
þ ðYb∇bAa þAb∇aYbÞ∇cXa

¼ Xa∇aYb∇bAc þXaYb∇a∇bAc þXa∇cYb∇aAb

þ Yb∇cXa∇bAa þ∇aðYb∇cXaÞAb ðD1Þ

for our electromagnetic potential Ac, where we have used
the fact that the second derivative of X and Y vanishes. With
the gauge condition ∇cAc ¼ DcAc ¼ 0, we further have

C̄2Ac ¼ Z̄a
a
b∇bAc þ H̄ab∇a∇bAc

þ 2Z̄a
c
b∇aAb þ∇aðZ̄b

c
aÞAb

¼ 1

2
Db∇bAc −

1

4
x2□Ac −

1

2
DAc

þ i
2
∇aAbϵ

ab
cdDd þ 1

2
Ac

¼∓ 1

2
FcdDd ¼ � 1

2
DAc ðD2Þ

for the helicities s ¼ �1, which correspond to

1

2
ϵabcdFcd ¼ �iFab ðD3Þ

through the relations FAA0BB0 ¼ ϕABϵA
0B0

for s ¼ −1 and
FAA0BB0 ¼ ϕA0B0

ϵAB for s ¼ 1. Likewise, we have

C2Ac ¼∓ 1

2
DAc ðD4Þ

for s ¼ �1. Thus, we end up with

L2 ¼ D
2

�
D
2
− s

�
; L̄2 ¼ D

2

�
D
2
þ s

�
; ðD5Þ

which implies the relationship between the bulk scaling
dimension and celestial conformal weights with a certain
ambiguity is as follows:

Rþ∶ h¼
D
2
−
s
2
þ1

2
or R−∶ h¼−

D
2
þ s
2
þ1

2
;

R̄þ∶ h̄¼
D
2
þ s
2
þ1

2
or R̄−∶ h̄¼−

D
2
−
s
2
þ1

2
ðD6Þ

for the on-shell conformal primary wave functions of
the electromagnetic potential. Furthermore, with the afore-
mentioned gauge condition as well as the choice of the
null tetrad

lAA0 ¼ ιAιA0 ; nAA0 ¼ oAoA0 ;

mAA0 ¼ ιAoA0 ; m̄AA0 ¼ oAιA0 ; ðD7Þ

the on-shell conformal primary wave functions of the
electromagnetic potential can be constructed as follows:

Aa ¼ m̄aϕ
ΔðxÞ; Ãa ¼ maðx2ÞΔ−1ϕΔðxÞ; ðD8Þ

which correspond to

ϕAB ¼ ð1 − ΔÞϕΔðxÞoAoB;
ϕ̃AB ¼ 2ð1 − ΔÞðx2ÞΔ−2ϕΔðxÞιAιB ðD9Þ
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through the relation ϕAB ¼ ∇C0ðAAC0
BÞ ¼ ∇C0AAC0

B. Here
we have used

xa ¼
x2

2
na þ la; ðD10Þ

and

∇am̄b ¼ −m̄anb; ∇anb ¼ −nanb; ðD11Þ

which implies ∇am̄a ¼ 0 and □ma ¼ 0. Obviously, the
above on-shell conformal wave functions with Δ ¼ 1
correspond to the pure gauge modes. For Δ ¼ 1, one
can instead construct the nongauge modes for the electro-
magnetic potential as follows:

Aa ¼ m̄aϕ
1ðxÞ ln q · x

q · x0
; Ãa ¼ maϕ

1ðxÞ ln
�
q · x0
q · x

x2
�

ðD12Þ

with x0 ¼ ð1; 0; 0; 1Þ the reference point in our Minkowski
spacetime, which give rise to

ϕAB¼ϕ1ðxÞoAoB; ϕ̃AB¼−2ðx2Þ−1ϕ1ðxÞιAιB; ðD13Þ

respectively. Last, by

∇alb ¼ nalb −mam̄b − m̄amb; ðD14Þ

one can show that

Âa ¼
�
−
x2

2
na þ la

�
ϕ2ðxÞ;

Âa ¼
�
−
x2

2
na þ la

�
ϕ2ðxÞ ln x2

þ ϕ1ðxÞ
�
ma

m̄ · x0
q · x0

− m̄a
m · x0
q · x0

�
ðD15Þ

are also the on-shell conformal primary wave functions of
the electromagnetic potential, corresponding to a pure
gauge and

ϕ̂AB ¼ 4ϕ2ðxÞoðAιBÞ; ðD16Þ

respectively.
So we have already succeeded in obtaining the on-shell

conformal primary wave functions of the electromagnetic
potential and its field strength for the negative helicity. The
corresponding celestial conformal weights and bulk scaling
dimension are listed in Table IV. The result for the positive
helicity can readily be obtained by noting that the on-shell
conformal primary wave functions for the positive helicity
is related to those for the negative helicity by the complex
conjugation. Then, the correspondence between the
celestial conformal weights and bulk scaling dimension
can be specified as follows:

R− and R̄− for AaðĀaÞ;
Rþ and R̄− for Âa;

R− and R̄þ for ¯̂Aa;

Rþ and R̄þ for Ãað ¯̃AaÞ: ðD17Þ

TABLE IV. The 2D celestial conformal weights (conformal dimension and spin) and 4D bulk scaling dimension
for the on-shell conformal primary wave functions of the electromagnetic potential with negative helicity−1. For the
on-shell celestial conformal primary wave functions with positive helicity 1, which is the complex conjugation of
those with negative helicity −1, the corresponding result can be obtained by simply taking h ↔ h̄ and J → −J.

h h̄ Δ J D

m̄aϕ
ΔðxÞðΔ ¼ 1;gauge mode Þ Δ−1

2
Δþ1
2

Δ −1 −Δþ 1

maðx2ÞΔ−1ϕΔðxÞðΔ ¼ 1;gauge modeÞ Δþ1
2

Δ−1
2

Δ 1 Δ − 1

m̄aϕ
1ðxÞ ln q·x

q·x0
0 1 1 −1 0(up to a gauge)

maϕ
1ðxÞ lnðq·x0q·x x

2Þ 1 0 1 1 0(up to a gauge)

ð− x2
2
na þ laÞϕ2ðxÞ (gauge mode) 1 1 2 0 0

ð− x2
2
na þ laÞϕ2ðxÞ ln x2þ 0

ϕ1ðxÞðma
m̄·x0
q·x0

− m̄a
m·x0
q·x0

Þ 1 1 2 0 (up to a gauge)
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