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We analyze the proposal of defining the Weyl anomaly for classically nonconformal theories as
gmnhTmni − hgmnTmni, originally put forward by Duff, in the case of a scalar field with quartic self-
interaction in 4d. We work in the context of dimensional regularization in curved background to two loops
(first order in the coupling). We review the original regularized but not renormalized prescription and its
ambiguities; we argue that it cannot be extended to the interacting theory as it fails to provide a finite result.
We then propose an alternative prescription via renormalized expectation values. At one loop, our candidate
reproduces the local heat kernel result, while its extension to interacting theories contains nonlocal
contributions.
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I. INTRODUCTION

Since their discovery by Capper and Duff in [1–3], Weyl
anomalies have been a central topic in quantum field theory;
see [4–7] for a number of references and general reviews.
These anomalies parametrize the trace of the energy
momentum tensor induced by quantum corrections for
classically Weyl invariant theories, and provide strong
constraints as well as powerful ordering principles in the
space of quantum field theories, such as the celebrated c
theorem in two dimensions [8] and the a theorem in four [9].
TheWeyl anomaly sharesmany similaritieswith the chiral

anomaly, but also important differences. The latter manifests
itself in a nonzero divergence for the axial current (thereby
spoiling its conservation), it is topological and one-loop
exact. Importantly for the scope of the present paper, when
the axial symmetry is explicitly broken by the addition of a
mass term, the divergence of the current is simply the sum of
an explicit breaking contribution (proportional to the mass)
and of the anomalous term. TheWeyl anomaly comes in two
types [10]: one topological and one built from the Weyl

tensor. This second type of contributions is in general
coupling dependent, although explicitly studying this effect
is difficult, since in perturbation theory the underlying Weyl
symmetry is generically broken by beta functions.1

Furthermore, the quantum trace of the stress tensor for a
generic quantum field theory (QFT), when the Weyl
symmetry is explicitly broken is much less understood
than the conformal field theory case. A better understanding
of quantum contributions to the stress tensor has potential
applications to QFT in the presence of gravity and in the
context of cosmology. The anomalous trace of the stress
tensor is also important in the study of the renormalization
group (RG), since conformal symmetry is broken along the
flow. Ambitiously, an interpolating function for the anomaly
coefficients can be found and provide insights for the strong
a theorem in four dimensions or its attempted generalization
in six [12]. Furthermore, a cancellation of some would-be
anomaly coefficients has been observed in [13,14] in the
case of certain Poincaré supergravities. This cancellation
has not yet been explained, and is somewhat mysterious
since the graviton and the gravitino do not possess two-
derivative classically Weyl invariant actions.2
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1An explicit example, albeit somewhat exotic, of a Lagrangian
model with type-B anomaly coefficients with explicit coupling
dependence is given by the 6d four-derivative vector discussed
in [11].

2Classically Weyl invariant theories of gravity and super-
gravity typically involve higher derivative fields. For those, Weyl
anomalies are well defined, at least at one loop; see [15–18] and
references therein.
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In [5,7] Duff proposed, following the structure of chiral
anomalies, to identify the quantum breaking of the Weyl
symmetry as

A ¼ gð4ÞmnhTmnireg − hgmnTmnireg; ð1Þ

where the expectation values are taken in the regularized
but not renormalized theory. The reason behind this
definition [5,7] is that the anomaly should be a physical
(measurable) quantity and therefore independent of the
renormalization prescription. It should capture the purely
quantum contribution to the stress tensor trace, and for this
reason (1) is usually referred to as Weyl anomaly, although
its interpretation is less clear. Notice that for standard
classically Weyl-invariant theories the second term in (1)
vanishes and the definition reduces to the one used in the
original works [1–3] in the context of dimensional regu-
larization. In this work, we will refer toA and its alternative
prescriptions as anomalies, even when it is understood that
the Weyl symmetry is already broken at the classical level.
An efficient way of computing the anomaly proper is via

the heat kernel (HK) expansion, which retains manifest
covariance with respect to the geometry. In this case the
anomaly is identified with the HK coefficient of the kinetic
operator Δ, so that for a conformal scalar3

gmnhTmni ¼ a4ðΔÞ: ð2Þ

The identification of (1) with the heat kernel coefficient is
often assumed also to the case in which there is explicit
breaking of Weyl symmetry, see, e.g., [5,6,13,14],

Ahk ¼ a4ðΔÞ: ð3Þ

It is, however, a priori not clear which diagrammatic
expression it corresponds to and how it extends beyond
the quadratic (free) level. For a free scalar with generic
(non-Weyl invariant) curvature coupling Δ ¼ −□þ ξR,
the heat kernel prescription gives [6,19]

Ahk ¼ a4ð−□þ ξRÞ

¼ 1

180ð4πÞ2
�
−
1

2
E4 þ 6ð1 − 5ξÞ□Rþ 3

2
Weyl2

þ 5

2
ð6ξ − 1Þ2R2

�
; ð4Þ

which features the appearance of an R2 term, absent in the
anomaly proper and showing that this quantity cannot be
obtained from functional differentiation.
The definition (1) was studied in dimensional regulari-

zation in [20]. It was explicitly discussed that the definition
is finite and local but presents an ambiguity on the nature of

the subtraction term that can be represented by writing
explicitly

AðDÞ
reg ¼ gð4ÞmnhTmniε − hgðDÞmnTmniε ðε → 0Þ: ð5Þ

Indeed, one can subtract the trace in D ¼ 4 or D ¼ 4 − 2ε
dimensions. In particular, [20] focused on analyzing the
case of a free scalar field with generic curvature coupling.
We added the subscript “reg” to emphasize that it is built of
regularized quantities. After that, [21] proposed an all-loop
modification of A based on dimensional regularization,
which effectively extends the prescription Að4−2εÞ to the
interacting case.4

In this paper, we focus on the prototypical example of a
QFT that breaks Weyl symmetry explicitly, namely a scalar
in four dimensions with quartic self-interaction. The break-
ing of Weyl symmetry is achieved via the nonconformal
quadratic coupling with the curvature as well as by nonzero
beta functions. We argue that Areg as in (1) [or rather the

concrete prescriptions AðDÞ
reg (5)] does not extend beyond

free level. We thus modify the prescription (1) by promot-
ing the expectation values to renormalized (finite) ones, and
consider

Aren ¼ gmnh½Tmn�i − h½Θ�i; Θ ¼ gmnTmn; ð6Þ

where Θ is the four-dimensional trace of the classical
energy-momentum tensor and the square brackets in the
expectation values denote the renormalized composite
operators. We construct these renormalized operators in
dimensional regularization following the well-established
tradition of [23–26] and references therein. In particular, we
work in perturbation theory to first order in the coupling
with a formal expansion around a flat background gmn ¼
δmn þ hmn and focus on the contributions to Aren of first
and second order in h. We evaluate the former fully, while
the latter suffer from the complication of three-propagator
subdiagrams which need to be expanded to a nontrivial
order in ε. We show that, at free (one-loop) level, (6)
provides a local result that reproduces the heat kernel
prescription (4). To circumvent the technical difficulties in
evaluating (6) to the first order in the coupling at order h2,
we consider the spacetime integral of Aren. This is the
generally covariantized analog of setting the momentum of
the stress tensor to zero, thereby reducing the integrals to
two-propagator diagrams. At two loops we obtain a result
that is nonlocal, and we argue that this is indeed expected in
the general case.
In our calculations all of the nonlocalities and departures

from the anomaly proper disappear at the conformal value
of the curvature coupling ξ ¼ 1

6
, thus the construction might

look in this case artificial. However, this value is not stable

3The generalization to the case of multiple fields or different
spin is immediate; see, e.g., [6].

4Another perspective on Weyl anomalies for nonconformal
theories is given in [22].
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under quantum corrections, which induce an RG flow for
this parameter away from the conformal point [27,28].
Despite these effects being relevant at a higher order than
the ones considered in this paper, our setting is therefore
generic.
The paper is organized as follows. In Sec. II we give a

general review of the formal setting: action, regularization,
and renormalization in curved background in perturbation
theory. In Sec. III we review the regularized calculations
of [20]. In Sec. IV we construct the renormalized
anomaly (6), commenting on its nonlocal structure and
the two-loop result to first order in the interaction.
Section V concludes with a summary, a comparison with
recent literature, and outlook. Appendix A summarizes
notation and conventions; Appendix B reports lengthy
formulas for Feynman vertices; Appendix C discusses
some aspects of the renormalization of the action in curved
spacetime that are relevant for our discussion.

II. SETTING AND NOTATIONAL REMARKS

We consider the scalar action in D dimensions5 with a
quartic self-interaction and to a geometrical background
given by

Sφ ¼
Z

dDx
ffiffiffi
g

p �
1

2

�
∇mφ∇mφþ ξRφ2

�
þ λ

4!
φ4

�
; ð7Þ

where ξ is the dimensionless curvature coupling and λ is
classically dimensionless only in D ¼ 4. Weyl invariance
of the kinetic term is achieved for ξ ¼ ξD ≔ 1

4
D−2
D−1.

We note the equation-of-motion operator,

Eφ ¼ φ
δ

δφ
S ¼ φð−□þ ξRÞφþ λ

3!
φ4; ð8Þ

and the stress tensor and its D-dimensional trace are

Tφ
mn¼∇mφ∇nφ−

1

2
gmn∇aφ∇aφ−gmn

λ

4!
φ4

þξφ2
�
Rmn−

1

2
gmnR

�
−ξð∇m∇nφ

2−gmn□φ2Þ;
ΘðDÞ ¼gðDÞmnTφ

mn

¼ðD−1Þðξ−ξDÞ□φ2−
D−2

2
E½φ�þðD−4Þ

4!
λφ4: ð9Þ

The latter indeed shows that the stress tensor is classically
traceless on shell for ξ ¼ ξD at D ¼ 4 or when λ ¼ 0.

In particular, we note the value of the classical trace in
D ¼ 4 dimensions,

Θ≡ Θð4Þ ¼ 3

�
ξ −

1

6

�
□φ2 − Eφ: ð10Þ

As we are going to review in the next subsection, the
equation of motion operator has vanishing expectation
value in dimensional regularization, both in the bare and
in the renormalized theory. Since we will be only consid-
ering such one-point functions, we will often drop it.

A. Regularization

We adopt the framework of dimensional regularization
with d ¼ 4 − 2ε, which is standard in both flat and curved
spacetime [6,23–26,29]. For simplicity and ease of expo-
sition we understand the energy scale μ and reinstate it only
in final expressions.
We are interested in regularized and then renormalized

expectation values of Tφ
mn and ΘðDÞ which we compute via

the path integral,

hTφ
mniε ¼

Z
Dφe−STφ

mn;

hΘðDÞiε ¼
Z

Dφe−SΘðDÞ;Z
Dφe−S ¼ 1; ð11Þ

where the subscript ε indicates the use of bare dimension-
ally regularized correlators. Fundamental in our discussion
is the observation that

hΘðdÞiε ¼ hgðdÞmnTφ
mniε ¼ gðdÞmnhTφ

mniε; ð12Þ
namely when considering the expectation value of the D ¼
d dimensional trace ΘðD¼dÞ, the contraction with the metric
can be equivalently taken before or after path integration (or
equivalently before and after expanding in ε). This is
possible because for regularized correlators the rule

gðdÞmngðdÞmn ¼ d ¼ 4 − 2ε is valid inside and outside the
path integral symbol. We stress that this holds true only
for hΘðD¼dÞiε. For hΘðD¼4Þiε it is not the case.
Another important feature of dimensional regularization

is that hE½φ�i ¼ 0, since

hE½φ�i ¼
Z

Dφ e−SφðxÞ δ

δφðxÞ S

¼ −
Z

Dφ
δ

δφðxÞ
	
φðxÞe−S
 ¼ 0; ð13Þ

which vanishes as a functional boundary term.6
5We use lowercase d to denote the dimensionally regularized

value d ¼ 4 − 2ε. We introduce an auxiliary dimension D to be
able to distinguish the two different casesD ¼ 4 andD ¼ dmore
explicitly.

6In (13) we used the standard value δ
δφðxÞφðxÞ ¼ δ½x − x� ¼ 0

of dimensional regularization [24–26,29].
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We wish to evaluate the correlators in (11) in perturba-
tion theory in λ. To be able to use the well-developed
diagrammatic technology, we perform a formal expansion
on a flat background gmn ¼ δmn þ hmn and work order by
order in hmn. In particular, we will need

Sφ ¼ Sð0Þ
φ2 þ Sð1Þ

φ2 þ Sð2Þ
φ2 þ � � � þ Sð0Þ

φ4 þ Sð1Þ
φ4 þ � � � ;

Tφ
mn ¼ Tφ2ð0Þ

mn þ Tφ2ð1Þ
mn þ � � � þ Tφ4ð0Þ

mn þ Tφ4ð1Þ
mn þ � � � ;

Θ ¼ Θφ2ð0Þ þ Θφ2ð1Þ þ � � � ; ð14Þ

where the superscript (n) indicates the power of h, and
φ2;φ4 distinguish the free vs interaction contributions. In

particular, Sð0Þ
φ2 þ Sð0Þ

φ4 is the flat-space scalar action,7

Sð0Þ
φ2 ¼ 1

2

Z
ddx∂mφ∂mφ; Sð0Þ

φ4 ¼ λ

4!

Z
ddxφ4 ð15Þ

and we adopt the following notation for the interactions
with the background metric:

Sð1Þ
φ2 ¼

Z
đp đq đlð2πÞdδ½pþ qþ l�φðpÞ

× φðqÞhmnðlÞVφ2ð1Þ
mn ðp; q;lÞ;

Sð2Þ
φ2 ¼

Z
đp đq đk đlð2πÞdδ½pþ qþ kþ l�φðpÞφðqÞ

× hmnðlÞhrsðkÞVφ2ð2Þ
mnrs ðp; q;l; kÞ; ð16Þ

and so on analogously for all terms SðnÞφm . Similarly, for the
stress tensor we write8

Tφ2ð0Þ
mn ¼

Z
đp đq eiðpþqÞxφðpÞφðqÞWφ2ð0Þ

mn ðp; qÞ;

Tφ2ð1Þ
mn ¼

Z
đp đq đl eiðpþqþlÞxφðpÞφðqÞhacðlÞ

×Wφ2ð1Þ
mnacðp; q;lÞ; ð17Þ

and so on.9 Explicit expressions for the relevant vertices are
reported in Appendix B.

B. Renormalization

Renormalizing the theory on curved geometry requires
the familiar infinite rescaling of the parameters in the

action (7) as well as additional terms to cancel purely
gravitational infinities. One therefore considers the total
action

S ¼ Sφ þ Sgrav;

Sgrav ¼
Z

ddx
ffiffiffi
g

p ½−αE4 þ γWeyl2 þ ρR2�: ð18Þ

The gravitational contribution is quadratic in the curvature
and contains the Euler density, the square of the Weyl
tensor, and the square of the Ricci scalar (explicit expres-
sions in Appendix A). We have an expansion in hmn
analogous to (14),

Sgrav ¼ Sð2Þ þ Sð3Þ þ � � � ;

Sð2Þ ¼
Z

đphmnðpÞhrsð−pÞVð2Þ
mn;rsðpÞ;

Sð3Þ ¼
Z

đp đq đkð2πÞdδ½pþ qþ k�hmnðpÞhrsðqÞhacðkÞ

× Vð3Þ
mnrsacðp; q; kÞ: ð19Þ

A finite theory is then obtained by setting

λ→ λþ
X
i≥1

λðiÞ

εi
; ξ→ ξþ

X
i≥1

ξðiÞ

εi
; φ→

�
1þ

X
i≥1

zðiÞ

εi

�
φ;

α→
X
i≥1

αðiÞ

εi
; γ→

X
i≥1

γðiÞ

εi
; ρ→

X
i≥1

ρðiÞ

εi
: ð20Þ

We work in minimal subtraction scheme so that the Weyl
tensor is intended as the four-dimensional one and α, γ, ρ
are only poles. The values of the counterterms in (20) have
been computed in the literature long ago and we will quote
the relevant ones momentarily. In Appendix C we comment
on some aspects of their calculation in the spirit of the
present work.
Wewill need the renormalized stress tensor ½Tmn� and the

renormalized stress tensor trace [Θ]. The square brackets
denote renormalized composite operators. Constructing
renormalized composite operators in dimensional regulari-
zation is standard also in the curved background context,
see [23–26,29]. Here we summarize the relevant results.
A finite (renormalized) stress-tensor operator is obtained

by differentiation of the renormalized full action (18) with
the renormalized values (20), so that107We write all indices lowered to emphasize the contraction

with the flat metric.
8The vertex functions for Tmn and ΘðDÞ do not involve a

momentum-conserving delta function, as they are external
vertices injecting momentum in the graph.

9In general, one needs to introduce Feynman rules also for Θ,
but in this particular example it is not necessary.

10An operator is renormalized by requiring that its insertion
produces finite correlators. Given any finite correlator, an addi-
tional stress-tensor insertion is realized by differentiation with
respect to the metric thus without introducing any additional
divergence.
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½Tmn� ¼ −
2ffiffiffi
g

p δ

δgmn ½S� ¼ −
2ffiffiffi
g

p δ

δgmn ½Sφ þ Sgrav�

¼ ½Tφ
mn þ Tgrav

mn �; Tgrav
mn ¼ −

2ffiffiffi
g

p δ

δgmn Sgrav: ð21Þ

The expansion (14) is therefore complemented by

Tgrav
mn ¼ T0ð1Þ

mn þ T0ð2Þ
mn þ � � � ;

T0ð1Þ
mn ¼

Z
đl eilxhacðlÞW0ð1Þ

mnacðlÞ;

T0ð2Þ
mn ¼

Z
đl đk eiðlþkÞxhacðlÞhrsðkÞW0ð1Þ

mnacrsðl; kÞ: ð22Þ

Following (18) and (20), these terms are pure poles and are
responsible for the anomaly proper.
To construct11 a finite operator associated with the four-

dimensional stress-tensor trace Θ, we start with the renor-
malized operator ½φ2ðxÞ�, which is given by

½φ2� ¼ Z2φ
2
0þZgR; Z2 ¼ 1þ

X
i≥1

zðiÞ2
εi

; Zg ¼
X
i≥1

zðiÞg
εi

:

ð23Þ

We then define the renormalized operator associated
with (10) as12

½Θ� ¼ 3

�
ξ −

1

6

�
□½φ2� − Eφ; ð24Þ

where ξ is the renormalized (finite) value.
The counterterms (20) have been computed in the

literature with a combination of diagrammatic and heat
kernel methods. To the relevant order, the counterterms
are [23,24,28]

ξð1Þ ¼ 6ξ−1

12ð4πÞ2 λ; ξð2Þ ¼ 0; αð1Þ ¼ 1

720ð4πÞ2 ; αð2Þ ¼0;

γð1Þ ¼ 1

240ð4πÞ2 ; γð2Þ ¼ 0; ρð1Þ ¼ ð6ξ−1Þ2
144ð4πÞ4 ;

ρð2Þ ¼−
ð6ξ−1Þ2
288ð4πÞ2 λ; λð1Þ ¼ 0; zð1Þ ¼ 0;

zð1Þ2 ¼ λ

2ð4πÞ2 ; zð1Þg ¼ 6ξ−1

6ð4πÞ2 : ð25Þ

In particular, at the order in which we are working there is
no renormalization of the coupling λ nor is there wave
function renormalization.

III. THE REGULARIZED EXPRESSION

A. Ambiguity and one-loop (free theory) results

In this subsection we review the one-loop calculation
of [20] (cf. also [30]) and we extend some of the results and
discussions.
In the context of dimensional regularization we can

interpret (1) in different ways, i.e., there is an intrinsic
ambiguity.

AðDÞ
reg ¼ gð4ÞmnhTmniε − hΘðDÞiε ðε → 0Þ; ð26Þ

with D ¼ 4 or D ¼ d ¼ 4 − 2ε. The origin of this ambi-
guity can be appreciated by looking at the explicit expres-
sion (9): the difference between Θð4Þ and Θ4−2ε is of order ε
and thus they produce different terms when combined with
the poles of loop integrals.
The case D ¼ d has a computational advantage: one can

compute AðdÞ
reg with the knowledge of the divergent part of

hTmni only, without the need to consider the more com-
plicated finite pieces. Indeed, as a consequence of (12) we
can write (26) for D ¼ d as

AðdÞ
reg ¼ ðgð4Þmn − gðdÞmnÞhTmniε ðε → 0Þ: ð27Þ

This expression shows two important features. First,
only terms in hTmniε proportional to the metric gmn
contribute: everything else cancels in the difference, as,
e.g., gðDÞmnRmn ¼ R for any D. Second, only the pole of
hTmniε contributes, as can be seen by writing

hTmniε ¼
1

ε
ðPmn þ gmnQmnÞ þ Fmn þOðεÞ; ð28Þ

where Pmn denotes tensor structures that are not propor-
tional to gmn. From (27), we thus have

AðdÞ
reg ¼ lim

ε→0

�
4

ε
Qm

m −
4 − 2ε

ε
Qm

m

�
¼ 2Qm

m; ð29Þ

where Pmn and Fmn have dropped since gð4ÞmnPmn ¼
gðdÞmnPmn and gð4ÞmnFmn ¼ gðdÞmnFmn þOðεÞ. We notice
that this argument does not rely on perturbative expansion
in h: if the full covariant expression for the (local) pole of
hTmniε is known (as is, e.g., using the heat kernel
expansion), this immediately gives the covariant result.

11Insertions of ΘðdÞ in arbitrary correlators are produced by
differentiation with respect to the conformal factor of the metric,
so ΘðdÞ does not require additional subtractions, consistently with
(12). In contract, no shortcut is available for Θð4Þ.

12The equation of motion operator does not require any
additional subtraction [23,24,26] and it has vanishing expectation
value.
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To perform this calculation diagrammatically, we expand
in gmn ¼ δmn þ hmn. Using the definitions of Sec. II B we
have to consider the following terms13:

hTmnðxÞiε¼−⟪Tð0Þ
mnS

ð1Þ
φ2 ⟫ε−⟪Tð0Þ

mnS
ð2Þ
φ2 ⟫εþ

1
2
⟪Tð0Þ

mnS
ð1Þ
φ2 S

ð1Þ
φ2 ⟫ε

−⟪Tð1Þ
mnS

ð1Þ
φ2 ⟫εþOðh3Þ; ð30Þ

whose diagrammatic representation is pictured in Fig. 1.
The associated integrals are listed in Appendix B. They can
be expanded in ε and the anomaly can be obtained AðdÞ by
direct application of (27) [i.e. (29)]. Owing to locality, the
full g dependence can be reconstructed by demanding
general covariance. We refer to [20,30] for details and we
simply state the result,

AðdÞ
reg ¼ 1

180ð4πÞ2
�
−
1

2
E4 þ 6

�
1 − 10ð6ξ − 1Þ2

�
□R

þ 3

2
Weyl2 þ 5

2
ð6ξ − 1Þ2R2

�
: ð31Þ

The prescription Að4Þ
reg was only briefly described

in [20,30] and here we provide some more details. At first
sight, this case seems to require the full evaluation of the
finite parts of the correlators. However, we notice the
seemingly trivial rewriting

Að4Þ
reg ¼ gð4ÞmnhTmniε − hΘðdÞiε þ hΘðdÞiε − hΘð4Þiε ðε→ 0Þ

¼AðdÞ
reg þ hΔi; ð32Þ

where we defined

hΔi ≔ hΘðdÞiε − hΘð4Þiε ðε → 0Þ: ð33Þ
It is clear that the splitting in the second line (32) is

meaningful, namely that the two terms AðdÞ
reg and hΔi are

separately finite: the former is discussed above, the latter
follows from

Δ ≔ ΘðdÞ − Θð4Þ ¼ ε ·
4ξ − 1

2
□φ2 þ εEφ: ð34Þ

Thus, computing hΔεi, the second term vanishes [cf. (10)]
and the first one gives a finite and local result, which is
proportional to □R on dimensional and covariance

grounds. Indeed we find hΔi ¼ −15ð4ξ − 1Þð6ξ − 1Þ□R
and as a result

Að4Þ
reg ¼ 1

180ð4πÞ2
�
−
1

2
E4 þ 6ð1 − 5ξÞ□Rþ 3

2
Weyl2

þ 5

2
ð6ξ − 1Þ2R2

�
: ð35Þ

Wecan see that a generic value of ξ features the appearance
ofR2 in the anomalywith either prescription. Since this is not
compatible with theWess-Zumino consistency conditions, it

follows that the quantityAðDÞ
reg is not a functional derivative of

an effective action as alreadynoticed in the original paper [5].
This observation was anticipated in the free-scalar calcu-
lation of [20,30] and is also discussed in [21], where the
authors introduce an all-loop definition for the conformal
anomaly in dimensional regularization which effectively

extends the prescription AðdÞ
reg . As a consequence, all four

coefficients in (35) are physical and the difference between

the two possible choices, Að4Þ
reg and AðdÞ

reg , cannot be reab-
sorbed by the introduction of counterterms in the action.14 In
fact, finite counterterms cancel between the two terms in

(26). The ambiguityD ¼ 4 vsD ¼ d in the subtractionAðDÞ
reg

is not discussed in [5] where the quantity Areg was first
introduced, and to our knowledge it is not discussed any-
where else besides the references above. Finally, we observe
that the heat kernel identification (4) coincides with the

prescription Að4Þ
reg. This is a nontrivial result that, to our

knowledge, was so far discussed only in [20,30].
This concludes our review of the calculation of [20],

which hopefully clarifies some incorrect comments
reported elsewhere.15 In the next section we verify our

FIG. 1. Diagrammatic representation of ⟪TmnðxÞ⟫εOðh1Þ þ ⟪TmnðxÞ⟫εOðh2Þ in (30). Black dots denote interaction vertices V, white
dots denote stress-energy tensor vertices W. Solid lines represent scalar propagators and wavy lines the metric perturbation h.

13We denote by ⟪� � �⟫ε the expectation value taken with
respect to the flat-space free theory.

14This point is overlooked in [20] and corrected in [30].
15In the conclusions of both arXiv v1, v2, and of the journal

version, Ref. [22] comments that AðdÞ
reg as in (31) is “obtained using

dimensional regularization and a perturbative expansion around
flat space, together with a dose of intuition to use the right amount
of onshellness” to simplify the stress-tensor trace. Similar state-
ments appear in the Introduction. It should be clear from the
discussion above that this remark is incorrect in two ways:
(i) operatively the result (31) does not directly depend on ΘðdÞ but
relies on the epsilon expansion of the hTmniε only; (ii) computing
hΘðdÞiε directly neglecting the equation of motion (e.o.m.)
operator E, as done for hΘiε in Að4Þ

reg, is not a problem because
hEi ¼ 0 in dimensional regularization as in (13). Unfortunately,
the authors of [22] did not share their impression with those
of [20] prior to publication. For completeness, we note thatAð4Þ

reg is
not discussed in [22].
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claim that AðDÞ
reg is divergent in the limit where the regulator

is removed in an interacting theory.

B. Failure at two loops (first order in the coupling)

We will now argue that the definition (26) does not
provide a finite quantity at higher loop order by showing

an explicit two-loop divergence proportional to □R.
As discussed at the end of the previous subsection, it is
an unambiguous quantity, in contrast to the anomaly
proper.
It is enough to consider the term of order Oðh1Þ. The

relevant contribution is

hTmnðxÞiεjOðh1;λ1Þ ¼ ⟪Tð0Þ
mnðxÞSð1Þφ2 S

ð0Þ
φ4 ⟫ε

¼ λ

Z
ddx

Z
đq eiqxhrsðxÞ

Z
đp

1

p2ðq − pÞ2W
φ2ð1Þ
mn ðp; q − p;−qÞVφ2ð1Þ

rs ð−p; p − q; qÞ

¼ −λ
ð6ξ − 1Þ2
ð4πÞ4ε2

Z
ddx

Z
đq eiqxhrsðxÞ

ðδmnq2 − qmqnÞðδrsq2 − qrqsÞ
72

þOðε−1Þ: ð36Þ

A direct calculation on the lines of (29) immediately shows
that the presence of a double pole proportional to the

metric renders the anomaly AðdÞ
reg divergent, hence the defi-

nition (27) is insufficient to accommodate for interactions.
For ease of exposition we do not discuss the analogous

calculation for Að4Þ
reg, as the idea is essentially the same and

its divergent nature is implicit in the results of the next
sections.

IV. RENORMALIZED CONSTRUCTION

Having established the insufficiency of the regularized
prescription, we turn to the definition (6) based on
renormalized correlators,

Aren ¼ gmnh½Tmn�i − h½Θ�i; ð37Þ
which by construction works to arbitrary loop order and
does not have any ambiguity once a renormalization
scheme is chosen. We work in minimal subtraction.
Let us see the consequences of this definition in practice.

Here we focus on theOðh1; λ0Þ þOðh1; λ1Þ contribution to
parallel the discussion of the previous section. As we shall
see, we do not need the more complex Oðh2; λ0Þ term to

fully obtain Aren in the free case. The contribution
Oðh2; λ1Þ is even more complicated and will be considered
in a simplified setting in a later section.
The first term of (37) can be computed from the

renormalized effective action on a curved background.
Here we work in series of h, so

Γ½g� ¼
Z

đ4p đ4q hmnðpÞhrsðqÞð2πÞ4δ½pþ q�Γmnrsðp; qÞ

þ � � � ; ð38Þ

hTmnðxÞi ¼ −
2ffiffiffiffiffiffiffiffiffi
gðxÞp δ

δgmnðxÞ
Γ½g�

¼
Z

đk eikx½−4hrsðkÞΓmnrsð−k; kÞ þ � � ��; ð39Þ

fromwhich the trace can be readily computed and expanded
inh, gmnhTmni¼gmnhTmni¼ðδmnþhmnÞhTmni. The second
term of (37) is essentially given by the diagrammatic
evaluation of h½φ2�i following the definition (34).
In particular, to the lowest order in the metric perturba-

tion, we obtain

gmnh½Tmn�iOðh1Þ ¼
Z

đpeipxhmnðpÞ · ðpmpn − δmnp2Þp2 ·

"
11 − 60ξþ 15ð6ξ − 1Þ2 log p2

μ̄2

180ð4πÞ2 − λ
½3ð6ξ − 1Þ log p2

μ̄2
− 1�2

216ð4πÞ4
#

þOðλ2Þ; ð40Þ

h½Θ�iOðh1Þ ¼
Z

đpeipxhmnðpÞ · ðpmpn − δmnp2Þp2 · ð6ξ − 1Þ
h
2ð4πÞ2 þ λ log p2

μ̄2

ih
3ð6ξ − 1Þ log p2

μ̄2
− 1

i
72ð4πÞ4 þOðλ2Þ; ð41Þ

where μ̄2 ≔ μ2eγE=4π . As a result we can recognize the covariant structure

Aren ¼
5ξ − 1

30ð4πÞ2 □Rþ λ

h
3ð6ξ − 1Þ log □

μ̄2
− 1

ih
6ð6ξ − 1Þ log □

μ̄2
− 1

i
216ð4πÞ4 □RþOðh2; λ2Þ: ð42Þ
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In (40) and (41) there are nonlocal terms both in the free
and in the interacting contributions. We notice that when
λ ¼ 0 these exactly cancel, while they survive in the
interacting case. The free contribution agrees with the

regularized valueAð4Þ
reg in (35) (and thus with the heat kernel

prescription Ahk). In fact, as we shall see in the next
section, this agreement can be argued on general grounds at
least in the massless case and we do not need an explicit
calculation to obtain in general result

Aren ¼ Að4Þ
reg ðfree theoriesÞ: ð43Þ

Effectively, this means that the renormalized definition
extends the HK prescription to arbitrary loop number.

A. Some properties of the renormalized anomaly

In this section we make some general consideration on
the renormalized Aren, comparing it between free and
interacting theory. We focus on massless theories for
simplicity.
We begin with the renormalized anomaly of the free

theory. Interestingly, it reproduces the result of the regu-
larized prescription Að4Þ

reg. In particular, it is local: the
nonlocal contributions cancel in the difference. We can
indeed see this result on general grounds. Denoting by (0)
bare quantities, there are only one-loop simple-pole geo-
metrical counterterms and

S ¼ Sð0Þ þ Sct1; ½Tmn� ¼ Tð0Þ
mn −

2ffiffiffi
g

p δSct1
δgmn ;

Tð0Þ
mn ¼ −

2ffiffiffi
g

p δSð0Þ

δgmn ; Θ ¼ gð4ÞmnTð0Þ
mn;

½Θ� ¼ fgð4ÞmnTð0Þ
mng þ θctg;

θctg ¼ Z□R□Rþ ZR2R2 þ ZW2Weyl2 þ ZE4
E4: ð44Þ

The brackets f� � �g denote the renormalized composite
operator without the contribution proportional to the
identity operator, which is θctg and contains only poles.
We dropped irrelevant e.o.m. terms. In the case of the
massless scalar, only Z□R ≠ 0 in minimal subtraction,
cf. (24). The crucial point, as we are going to see, is that

fgð4ÞmnTð0Þ
mng ¼ gð4ÞmnTð0Þ

mn for free theories, but typically
not when interactions are present [cf. (24) and (25)].
We now consider

Aren ¼ gð4Þmnh½Tmn�i − h½Θ�i: ð45Þ

The indication of the dimension gð4Þmn in Aren is naturally
redundant, as the expressions in the right-hand side are
finite and renormalized, so they are in four dimensions, but
we keep it for clarity. Explicitly, Aren becomes

Aren ¼ gð4ÞmnhTð0Þ
mniε − hgð4ÞmnTð0Þ

mniε −
2ffiffiffi
g

p gð4Þmn δSct1
δgmn

− θctg ðε → 0Þ

¼ Að4Þ
reg − lim

ε→0

�
2ffiffiffi
g

p gð4Þmn δSct1
δgmn þ θctg

�
: ð46Þ

We have used that the difference of the first two terms in the
first line is of order ε, therefore it produces a finite and local

result in the ε → 0 limit which is exactlyAð4Þ
reg. The fact that

we are still taking the trace in four dimensions16 implies
that, from the counterterms in Sct1, we only have a
divergent contribution proportional to

gð4Þmn δSct1
δgmn ∼

1

ε
gð4Þmn δ

δgmn

Z ffiffiffi
g

p
R2 ∝

1

ε
□R: ð47Þ

The other contributions vanish when taking the four-
dimensional trace. By definition, θctg contains only poles.
By construction Aren is finite, so the divergent pieces must
cancel.
This argument relies on the fact that fgð4ÞmnTð0Þ

mng ¼
gð4ÞmnTð0Þ

mn, which is true at free level. Including interactions
produces additional “wave function” renormalization fac-
tors that induce new terms in perturbation theory [cf. (23)
and (24)]. In contrast, ½Tmn� does not require additional
subtractions beyond the standard action renormalization of
the action (which involves only noncomposite operators),
so that a cancellation of the nonlocalities in Aren seems
unlikely on general grounds. Our calculation in the scalar
model supports this; cf. (42) and the following section.

B. Integrated anomaly

Computing Aren to two loops and third order in the
metric perturbation h requires considering the ε expansion
to high order of integrals of formidable complexity. To
simplify the problem, we consider the integrated quantity

A ¼
Z

d4x
ffiffiffiffiffiffiffiffiffi
gðxÞ

p
ArenðxÞ

¼
Z

d4x
ffiffiffiffiffiffiffiffiffi
gðxÞ

p
gð4ÞmnðxÞh½Tmn�ðxÞi; ð48Þ

which remarkably, in the present example, does not depend
on h½Θ�i since that is a total derivative. The correlator is the
finite, renormalized one, and we emphasized that the trace
is taken in D ¼ 4 for additional clarity.

16We could have extended the trace to d ¼ 4 − 2ε dimensions.
In this case gð4ÞmnhTð0Þ

mni is replaced by gðdÞmnhTð0Þ
mni ¼

hgðdÞmnTð0Þ
mni ¼ hΘðdÞi and gðdÞmn δSct1

δgmn contains in addition to
(47) a finite piece, which gives rise to the anomaly. The
conclusion is the same.
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We focus here on the Oðh2Þ contribution to (48)

ðAÞOðh2Þ ¼ δmn

Z
d4xh½Tmn�iOðh2Þ

þ
�
1

2
δrsδmn − δrðmδnÞs

�Z
d4xhrsh½Tmn�iOðh1Þ:

ð49Þ

As the expectation values are computed in dimensional
regularization, they have the structure

hTmniOðhnÞ ¼ lim
ε→0

h
hTð0Þ

mniOðhnÞ þ hTct
mniOðhnÞ

i
; ð50Þ

where the second term indicates counterterm contributions.
We find it convenient to extend the dimensionality of the
integrals and of all the delta symbols in (49) from 4 to
d ¼ 4 − 2ε dimensions. This is consistent because the
correlators are already finite, so this choice does not
influence the limit ε → 0. We can thus rewrite (49) as

ðAÞOðh2Þ ¼ lim
ε→0

Z
ddx δmn

h
hTð0Þ

mniOðh2Þ þ hTct
mniOðh2Þ

i
þ lim

ε→0

Z
ddxhrsðxÞ

�
1

2
δrsδmn − δrðmδnÞs

�h
hTð0Þ

mniOðh1Þ þ hTct
mniOðh1Þ

i
;

¼ lim
ε→0

δmn

Z
đkhrsðkÞhacð−kÞT i

mnrsacðkÞ þ lim
ε→0

�
1

2
δrsδmn − δrðmδnÞs

�Z
đkhrsðkÞhacð−kÞT ii

mnacðkÞ: ð51Þ

Proceeding in this way has the advantage of setting to zero
external momenta before expanding in ε, thus reducing the
diagrams to manageable two-propagator integrals and
avoiding IR divergent logs. In the second step, we wrote
the integrands in momentum space and indeed imple-
mented the momentum conservation arising from the

integration over x. The diagrammatic representation is in
Fig. 2 and we refer to Appendix B for the expressions of the
corresponding integrals.
The values in (25) of the counterterms make these

expressions finite, providing a consistency check. As a
result, we obtain the integrated anomaly A:

ðAÞOðh2Þ ¼
1

180ð4πÞ2
Z

d4k
ð2πÞ4 hrsðkÞhacð−kÞ ×

�
3

4
δarδcsk4 −

3

2
δark2kskc

þ
�
90ξ2 − 30ξþ 9

4
−
5

6

λ

ð4πÞ2 ð6ξ − 1Þ
�
1 − 3ð6ξ − 1Þ log k

2

μ

��
ðδrsδack4 − 2δrskakck2Þ

þ
�
90ξ2 − 30ξþ 3 −

5

6

λ

ð4πÞ2 ð6ξ − 1Þ
�
1 − 3ð6ξ − 1Þ log k

2

μ

��
kakckrks

�
: ð52Þ

We recognize the covariant structure

A ¼ 1

180ð4πÞ2
Z

d4x
ffiffiffi
g

p �
3

2
Weyl2 þ ð6ξ − 1Þ

�
5

2
ð6ξ − 1Þ − 5λ

6ð4πÞ2
�
R2 þ 5λð1 − 6ξÞ2

2ð4πÞ2 R log
□

μ̄2
R

�
þOðh3; λ2Þ: ð53Þ

The Euler term E4 is a total derivative in four dimensions; hence it disappears after integration, as well as the manifest total
derivative □R. Interestingly, the c coefficient is in any case undeformed by λ at first order.17

FIG. 2. Diagrammatic representation of the bare Feynman integrals in (51). Black dots are vertices V from the action; the white dot is a
vertexW from the stress tensor. Wavy lines are metric perturbations h. Metric perturbations with a dashed line represent the external hrs
that does not come from the correlator.

17This carries resemblance with the analysis of [31,32] based on the analysis of stress-tensor correlators.

CONFORMAL ANOMALIES AND RENORMALIZED STRESS … PHYS. REV. D 110, 045007 (2024)

045007-9



We see from (52) and (53) that the departure from
conformality brings nonlocalities in Aren together with
an explicit dependence on the energy scale μ besides the
implicit one inducedby the renormalizationof theparameters.

V. CONCLUDING REMARKS

In this paper we have explored the characterization of the
quantum contributions to nonconformal theories A (1)
proposed by Duff in [5,7]. We studied in dimensional
regularization the explicit example of a scalar field with a
generic curvature coupling and a quartic self-interaction.
The free casewas studied in [20,30] using regularized but

not renormalized correlators. In particular, an ambiguity in
the definition ofAðDÞ

reg in (26)was pointed out, corresponding
to the dimensionality of the subtraction term, D ¼ 4 vs
D ¼ 4 − 2ε. We have reviewed and completed the calcu-
lation, spelling out some aspects that were misunderstood in
the previous literature [20,22].We explicitly showed that the

prescription Að4Þ
reg reproduces the result of the heat kernel

identification Ahk ¼ a4, which is advocated in [5,7] to be
preferred. On the other hand, the prescription Að4−2εÞ is
singled out in the analysis of [21]. There, in the context of
dimensional regularization, a different notion of A valid to
all-loop order is introduced, which is by construction finite
local and reduces toAð4−2εÞ for free theories. It is naturally of
interest to understand which prescription is more appropri-
ate to capture the sought effects.
In either case, A of the form (1) produces a quantity that

contains R2, thus violating the Wess-Zumino (WZ) con-
sistency conditions. This implies that it cannot be obtained
as a functional derivative of an effective action and it is not
subject to the same counterterm ambiguity of the anomaly
proper: a finite counterterm would cancel in the difference
between the two terms inA. As an additional consequence,
also the coefficient of □R is physical.18 Similar comments
appear also in [21,30].
We have then extended the analysis of [20,30] to

include interaction at lowest order in the coupling. We
have shown that the regularized prescription is insuffi-
cient, as it gives a divergent result once the regulator is
removed. We thus considered the definition Aren built of
renormalized correlators. We have argued that it is a good
candidate to extend the identification of A with the heat
kernel coefficient in the presence of interactions, at least
for generic massless theories. This identification is non-
trivial, in that it suggests a firmer diagrammatic under-
standing of the HK prescription (6) in a way that can be
extended to higher loops, and deserves to be investigated
in greater generality.
This definition, however, displays nonlocalities at

higher loops.We have shown this explicitly in (42) and (53).

We explained the appearance of the nonlocalities as
a consequence of the fact that, in constructing finite
composite operators, the stress tensor does not require
any additional renormalization, while the operator associ-
ated to its trace does. It is this imbalance that produces
uncanceled nonlocal terms from two loops on.
Given this discussion, it seems that the situation regard-

ing the characterization of quantum violation of Weyl
invariance, when the classical symmetry is absent, is far
from clear. As Weyl (conformal) invariance is absent along
the RG flow, this has the potential application of shedding
light on the space of QFTs and providing insights in the
local version of the a theorem. Similarly, Einstein gravity
and supersymmetric generalization thereof lack classical
Weyl invariance, therefore the significance of the cancel-
lation of the c anomalies in the total heat kernel coefficients
in N > 4 supergravities is unclear [13,14].
On a practical level, it would be interesting to extend our

calculation to higher loop to see the appearance of the beta
functions as well as includingmass terms. Other field theory
models would provide additional concrete examples and
would, e.g., allow one to test the identification ofAwith the
heat kernel coefficient more thoroughly. To make a clearer
connection with the a theorem [9], it would be interesting to
compute Aren without the spacetime integration considered
in Sec. IV B that hides the contribution from E4; more
advanced diagrammatic techniques are needed in order to
overcome the computational complexity. With this in mind,
it would also be of interest understanding how to connect the
notions of anomaly discussed above with [34–36].
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APPENDIX A: NOTATION AND CONVENTIONS

We work in Euclidean signature. Dimensional regulari-
zation is considered in d ¼ 4 − 2ε dimensions. The metric
is expanded in a perturbation around a flat background
as gmnðxÞ ¼ δmn þ hmnðxÞ.
Flat-space Fourier transforms and integrals follow the

convention

fðxÞ¼
Z

đpeipxfðpÞ;
Z

đpeipx¼δðxÞ; đp¼ ddp
ð2πÞd :

ðA1Þ

The four-dimensional Euler density and Weyl curvature
tensor are given, respectively, by

E4¼Riem2−4Ric2þR2; Weyl2¼Riem2−2Ric2þ1

3
R2:

ðA2Þ
18Aspects of physicality of the coefficient of □R, in particular

in relation to the RG flow, are also discussed in [33].
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Quantum expectation values are denoted as follows:
h…i: renormalized (finite) expectation values;
h…iOðhnÞ: renormalized (finite) expectation values of
order n in the metric perturbation;

h…ireg: regularized but not renormalized correlators
(only used in general discussion);

h…iε: regularized correlators in dimensional regulari-
zation;

⟪…⟫ε: bare correlators taken in the free theory, in flat
space, in dimensional regularization.

APPENDIX B: FEYNMAN RULES
AND DIAGRAM INTEGRALS

The propagator for the field φ in momentum space
reads

Gðp; qÞ ¼ ⟪φðpÞφðqÞ⟫ε ¼
ð2πÞdδðdÞ½pþ q�

p2 : ðB1Þ

The action vertices as defined in (14) and following, are

Vð2Þ
mn;rsðpÞ ¼ γ

2
p4δmðrδsÞn − γp2pðmδnÞðrpsÞ þ pmpnprps

�
ρþ γ

3

�

þ
�
p2prpsδmn þ p2pmpnδrs

��γ

6
− ρ

�
− p4δmnδrs

�
γ

6
− ρ

�

Vφ2ð1Þ
mn ðp; q;lÞ ¼ 1

2
pðmqnÞ −

1

4
δmnpqþ ξ

2

�
δmnl2 − lmln

�
Vφ2ð2Þ
mn;rsðp; q;l; kÞ ¼ −

1

16
δmnδrspqþ 1

8
pqδmðrδsÞn −

1

4
pðmδnÞðrqsÞ −

1

4
qðmδnÞðrpsÞ þ

1

8
δmnqðrpsÞ þ

1

8
δrsqðmpnÞ

þ ξ

�
1

8
δmnδrsðk2 þ klþ l2Þ − 1

8
δmðrδsÞnð2k2 − 3klþ 2l2Þ − 1

8
δrsðlmln þ 2kmknÞ

−
1

8
δmnðkrks þ 2lrlsÞ −

1

4
δmnkðrlsÞ −

1

4
δrskðmlnÞ þ

1

2
kðmδnÞðrksÞ þ

1

2
lðmδnÞðrlsÞ

þ 1

2
lðmδnÞðrksÞ þ

1

4
kðmδnÞðrlsÞ

�

Vφ4ð1Þ
mn ¼ λ

2 · 4!
δmn:

We also use Vð3Þ
mnrsac, but its expression is lengthy and uninformative so we do not report it.

The stress tensor vertices as defined in (17) and following are

Wφ2ð1Þ
mn ðp; qÞ ¼ −2Vφ2ð1Þ

mn ðp; q;−p − qÞ; Wφ4ð0Þ
mn ¼ −

λ

4!
δmn; Wφ4ð1Þ

mnac −
λ

4!
δaðmδnÞc: ðB2Þ

The integrals corresponding to the diagrams of Fig. 1 referring to Eq. (30) are

−⟪Tφ2ð0Þ
mn Sð1Þ

φ2 ⟫ε ¼ −2
Z

đqeiqxhrsðqÞ
Z

đp
1

p2ðp− qÞ2W
φ2ð0Þ
mn ðp;q−pÞVφð1Þ

rs ð−p;p− q;qÞ
1

2
⟪Tφ2ð0Þ

mn Sð1Þ
φ2 S

ð1Þ
φ2 ⟫ε ¼ 4

Z
đkđleiðkþlÞxhacðlÞhrsðkÞ

Z
đp

1

p2ðp− lÞ2ðpþ kÞ2

·Wφ2ð0Þ
mn ðl−p;pþ kÞVφð1Þ

rs ðp;−p− k; kÞVφð1Þ
ac ðp− l;−p;lÞ

−⟪Tφ2ð0Þ
mn Sð2Þ

φ2 ⟫ε ¼ −2
Z

đkđleiðkþlÞxhacðlÞhrsðkÞ
Z

đp
1

p2ðp− k− lÞ2

·Wφ2ð0Þ
mn ðp;kþ l−pÞVφ2ð2Þ

acrs ð−p;p− k− l;l; kÞ

−⟪Tφ2ð1Þ
mn Sð1Þ

φ2 ⟫ε ¼ −2
Z

đkđleiðkþlÞxhacðlÞhrsðkÞ
Z

đp
1

p2ðp− kÞ2 ·W
φ2ð1Þ
mnacðp;k−p;lÞVφ2ð1Þ

rs ð−p;p− k; kÞ: ðB3Þ
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The bare integrals corresponding to the diagrams of Fig. 2 referring to Eq. (51) are

T i bare
mnrsacðkÞ ¼ −2

Z
đp

Wφ2ð1Þ
mnrs ð−p;−kþ p; kÞVφ2ð1Þ

ac ðp; k − p;−kÞ
p2ðp − kÞ2

− 8

Z
đp

Wφ2ð1Þ
mn ð−p; p; 0ÞVφ2ð1Þ

rs ð−p; p − k; kÞVφ2ð1Þ
ac ðp; k − p;−kÞ

p4ðp − kÞ2

þ 12

Z
đp

Vφ2ð1Þ
rs ð−p; p − k; kÞ

p2ðp − kÞ2
Z

đq
Vφ2ð1Þ
ac ðq;−qþ k; kÞ

q2ðq − kÞ2 Wmnðp;−q;−pþ k;−kþ qÞ

þ λ

Z
đp

Wφ2ð1Þ
mnrs ð−p; p − k; kÞ

p2ðp − kÞ2
Z

đq
Vφ2ð1Þ
ac ðq;−qþ k;−kÞ

q2ðq − kÞ2

− 2λ

Z
đp

Vφ2ð1Þ
rs ð−p; p − k; kÞ

p2ðp − kÞ2
Z

đq
Vφ2ð1Þ
ac ðq;−qþ k;−kÞWφ2ð0Þ

mn ð−q; qÞ
q4ðq − kÞ2 ðB4Þ

T ii bare
mnac ðkÞ ¼ 4

Z
đp

Vφ2ð1Þ
mn ð−p; p − k; kÞVφ2ð1Þ

mn ðp; k − p;−kÞ
p2ðp − kÞ2

− 2λ

Z
đp

Vφ2ð1Þ
mn ð−p;−kþ p; kÞ

p2ðp − kÞ2
Z

đq
Vφ2ð1Þ
ac ðk − q; q;−kÞ

q2ðq − kÞ2 ; ðB5Þ

where we have only given the bare integrals corresponding to the diagrams displayed; the counterterm contributions can be
easily derived.

APPENDIX C: REMARKS ON ACTION RENORMALIZATION ON CURVED BACKGROUND

In the notation explained in Sec. III, the bare theory induces purely gravitational infinities that need to be canceled by
counterterms in Sgrav as in (18) with (20) and (25). To determine the counterterms, it is enough to compute the effective
action to second and third order in the h expansion.
For the two-point function we have

ΓOðh2Þ ¼
Z

đq hmnð−qÞhrsðqÞ
�Z

đp
1

p2ðq − pÞ2 V
φ2ð1Þ
mn ðp; q − p;−qÞVφ2ð1Þ

rs ð−p; p − q; qÞ

−
λ

2

Z
đp

1

p2ðq − pÞ2 V
φ2ð1Þ
mn ðp; q − p;−qÞ

Z
đk

1

k2ðk − pÞ2 V
φ2ð1Þ
rs ð−k; k − q; qÞ

�
: ðC1Þ

Performing the calculation to two loop (first order in λ) fixes ξð1Þ; ξð2Þ through subdiagrams, and the resulting divergences
give the counterterms γð1Þ, γð2Þ, ρð1Þ, and ρð2Þ. In contrast, α is not captured because E4 does not have a quadratic term in the
expansion on a flat background in the general dimension.
The bare three-point function is

ΓOðh3Þ ¼
Z

đp đq hmnð−pÞhrsðqÞhacðp − qÞ
�
4

3

Z
đl

1

l2ðl − pÞ2ðl − qÞ2

× Vφ2ð1Þ
mn ðl; p − l; pÞVφ2ð1Þ

rs ð−l;l − q; qÞVφ2ð1Þ
ac ðl − p; q − l; p − qÞ

− 2

Z
đl

1

l2ðl − pÞ2 V
φ2ð1Þ
mn ðl; p − l;−pÞVφ2ð2Þ

rsac ð−l;l − p; q; p − qÞ
�
: ðC2Þ

As observed in [37], the three-point function does capture the coefficient of E4. Despite the fact that it is a total derivative in
D ¼ 4 and vanishes in D < 4, in the spirit of analytically continuing for generic (complex) D, it is indeed relevant in the ε
expansion. In fact, the contribution disappears only by using identities that are not valid for D > 4.
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