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This work investigates the thermal Casimir effect associated with a massive spinor field defined on a
four-dimensional flat space with a circularly compactified spatial dimension whose periodicity is oriented
along a vector in the xy plane. We employ the generalized zeta function method to establish a finite
definition for the vacuum free energy density. This definition conveniently separates into the zero-
temperature Casimir energy density and additional terms accounting for temperature corrections. The
structure of existing divergences is analyzed from the asymptotic behavior of the spinor heat kernel
function and removed in the renormalization by subtracting scheme. The only non-null heat coefficient is
the one associated with the Euclidean divergence. We also address the need for a finite renormalization to
treat the ambiguity in the zeta function regularization prescription associated with this Euclidean heat
kernel coefficient and ensure that the renormalization procedure is unique. The high- and low-temperature
asymptotic limits are also explored. In particular, we explicitly show that free energy density lacks a
classical limit at high temperatures, and the entropy density agrees with the Nernst heat theorem at low
temperatures.
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I. INTRODUCTION

The Casimir effect is a fascinating quantum phenomenon
initially proposed by H. Casimir in 1948 [1]. In its standard
form, such an effect establishes that two parallel, electri-
cally neutral conducting plates in close proximity experi-
ence an attractive force inversely proportional to the fourth
power of the distance between them. This attraction arises
from alterations in vacuum fluctuations of the electromag-
netic field. Since this force between the plates is extremely
weak, the Casimir effect was initially perceived as a
theoretical curiosity. M. Sparnaay conducted the pioneering
experimental attempt, however with low precision, to detect
this effect in 1958 [2]. It was only confirmed decades after
by several high-accuracy experiments [3–6]. Since then,
spurred by the progress in theories of particles and fields,
the Casimir effect has been investigated in increasingly
complicated configurations, not only due to its theoretical

and mathematical aspects but also due to the countless
technological applications arising from the macroscopic
manifestation of a fully quantum effect [7–23]. A thorough
review concerning the Casimir effect is presented in
Refs. [24,25].
Although originally associated with the electromagnetic

field, the Casimir effect is not an exclusive feature of this
particular field. Other fields, for instance, scalar and spinor
fields, and gauge fields (Abelian and non-Abelian), can
exhibit analogous phenomena under nontrivial boundary
conditions [26–35]. However, among the vast literature
concerning the Casimir effect, the majority of the inves-
tigations have been focused on scalar fields. The reason for
this is not conceptual but, most likely, the more significant
technical complexity involved in the formalism needed to
treat spinor fields, for instance.
Spinor fields play an important role in many branches of

physics since they represent fermion fields. Additionally,
they carry the fundamental representation of the orthogonal
group, making spinors the building block of all other
representations of this group. In this sense, spinors are
the most fundamental entities of a space endowed with a
metric [36–38]. In particular, studying vacuum energy
associated with the quantized version of these fields sets
a scenario for which the physics involved is quite rich.
The presence of divergencies is an inherent feature of

vacuum energy when calculated with the quantum field
theory (QFT) techniques. Knowing how to deal with them
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is challenging in general. This special concern has resulted
in the development of regularization and renormalization
techniques in mathematical physics, which can be applied
to remove the divergences associated with the calculations
involved in the Casimir effect [39–42]. This study con-
centrates explicitly on a robust and elegant regularization
method employing the generalized zeta function. This
function is constructed from the eigenvalues of a differ-
ential operator, which governs the quantum field
dynamics [43–45]. The divergencies are typically intro-
duced in the partition function in QFT by the determinant
of the operator, which is an infinite product over all
eigenvalues, and encoded into the generalized zeta
function [46]. Once we obtain the partition function, the
canonical ensemble establishes the formal connection with
thermodynamics. It facilitates the calculation of free
energy, which allows for considering temperature correc-
tions to the vacuum energy [47–50]. The structure of the
existing divergences in these calculations typically involves
examining the asymptotic behavior of the two-point heat
kernel function associated with the relevant operator, as
considered in M. Kac’s seminal paper [51] and further
explored in [46,52–54]. This zeta function investigation
predominantly focuses on Laplace-type operators associ-
ated with scalar fields, with comparatively less emphasis on
Dirac-type operators associated with spinor fields [55,56].
One potential explanation for this disparity is the require-

ment for the considered operator, which governs the propa-
gation of the quantum field under specified boundary
conditions, to be self-adjoint. The self-adjointness is neces-
sary for the construction of zeta and heat kernel functions.
The most common boundary conditions, widely used in the
Casimir effect for the scalar field, are Dirichlet andNeumann
ones. However, these conditions do not directly extend to
spinor fields due to the first-order nature of Dirac operators.
Instead, the bagmodel boundary conditions first presented in
Refs. [57,58] make the Dirac operator formally self-adjoint.
This was also investigated in Ref. [59] recently. In particular,
the Casimir effect for spinor fields under bag model
boundary conditions has been addressed in Ref. [60] and
for Majorana spinor fields with temperature corrections in
Refs. [39,40,61,62]. Alternative methods to maintain the
self-adjoint nature of the Dirac operator have also been
explored. For example, the Casimir effect involving spinor
fields confined by a spherical boundary has been examined in
Refs. [63,64] using the zeta function method. This approach
was recently extended to include a spherically symmetric δ-
function potential in Ref. [65]. Furthermore, Elko fields,
which are spinor fields satisfying a Klein-Gordon-like
equation, allow for the imposition of boundary conditions
similar to those used for scalar fields. The finite temperature
Casimir effect for Elko spinor fields in a field theory at a
Lifshitz fixed point is discussed in Refs. [31,50,66].
Boundary conditions play a pivotal role in the explora-

tion of the Casimir effect. Interestingly, it is possible to

induce boundary conditions through identification condi-
tions in spaces with nontrivial topology, thereby eliminat-
ing the need for material boundaries. Such topologies
induce boundary conditions on the quantum fields that
distort the corresponding vacuum fluctuations, such as
a material boundary does, producing a Casimir-like
effect [22,24]. The Casimir effect for different types of
fields and boundary conditions in spaces with nontrivial
topology has been addressed in Refs. [67–76].
Before proceeding, a relevant point needs to be clarified.

In the standard QFT approach, the Casimir effect is closely
associated with the vacuum energy of fluctuating quantum
fields. However, this association is not universally accepted
as concrete evidence for the physical origin of the Casimir
effect, at least not in the initially proposed case with
metallic plates. In Ref. [77], the author demonstrated that,
in a realistic scenario, the Casimir effect can be obtained
without any reference to the quantum vacuum. Specifically,
he has shown that such an effect is a function of the fine
structure constant α and disappears when α goes to zero.
The standard Casimir result is the limiting case when α
goes to infinity, where the dependence on the coupling
constant is lost via idealizing the interaction effect as a
boundary condition. With this idealization, the most natural
way to calculate the Casimir energy, for instance, would be
to take the fluctuation in the zero-point energy due to the
presence of the boundaries. Thus, the terminology Casimir
effect, or Casimir energy employed in the present study,
takes the same approach where the physical effect can be
idealized to the interaction of the quantum field with a
nontrivial boundary condition.
In the present work, we have delved into the thermal

Casimir effect using the generalized zeta function approach
for a massive spinor field defined on a four-dimensional flat
space with a circularly compactified spatial dimension,
whose periodicity is oriented not along a coordinate axis as
usual, but along a vector in the xy plane, dubbed compact
vector. This space introduces a topological constraint that
imposes a spatial antiperiodic boundary condition along the
compact vector on the spinor field. Up to a coordinate
origin redefinition, this condition is referred to as the
antihelix condition in Ref. [78], where the authors inves-
tigated the zero-temperature Casimir effect for spinor fields
induced by the helix topology. However, to our knowledge,
a study that adds thermal effects induced by this topology
in the spinor field context has not appeared in the literature.
The calculations conducted in this study not only extend
the findings from Ref. [78] to finite temperature but also
revisit the results from Ref. [79] in a limiting case.
Additionally, our study serves as a spinor extension of
the thermal Casimir effect studied in Ref. [80], which
focused on scalar fields subjected to a helix boundary
condition.
The structure of this paper is organized as follows.

Section II provides a general expression for the partition
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function associated with a massive Dirac field defined on a
space endowed with a flat Euclidean metric, in the path
integral representation. In Sec. III, we outline the math-
ematical framework employed to compute the vacuum-free
energy using the generalized zeta function method. This
method involves imposing an antiperiodic condition on the
Dirac field in imaginary time t and analyzing existing
divergences based on the asymptotic behavior of the spinor
heat kernel. In particular, we discuss the presence of
ambiguities in the zeta function regularization due to
nonzero heat kernel coefficients and the necessity of
requiring vacuum energy to renormalize to zero for large
masses. In Sec. IV, we derive the spinor heat kernel two-
point function and the Casimir energy density, incorporat-
ing temperature corrections induced by the antiperiodic
boundary condition along the compact vector. We also
analyze the low- and high-temperature asymptotic limits.
Finally, Sec. V provides a summary of the paper, high-
lighting the distinctions between the spinor and scalar
cases. Throughout this paper, we adopt the natural units
where c ¼ ℏ ¼ kB ¼ 1.

II. PATH INTEGRALS

To illustrate the use of the generalized zeta function
method in QFT, we revisit some known underlying facts. In
the path integral formulation, the one-loop partition func-
tion associated with a complex matter field Ψ (and its
conjugate Ψ̄) can be obtained from the following source-
free generating functional

Z ¼
Z

DΨ̄DΨeiSðΨ;Ψ̄Þ; ð1Þ

where DΨ̄DΨ stands for the integration measure over the
field space, whose dynamics is described by the action
SðΨ; Ψ̄Þ. Such representation provides a straightforward
method for introducing temperature into QFT. This can be
achieved by defining a Euclidean action SEðΨ; Ψ̄Þ through
a rotation in the complex plane, known as Wick rotation,
with the fields satisfying periodic (for scalar fields) or
antiperiodic (for spinor fields) conditions in imaginary time
with period β. In this Euclidean approach to QFT, Z is the
one-loop partition function for a canonical ensemble at the
temperature T ¼ β−1.

A. Spinor fields

We can start with the path integral for spinor fields. Let
feag (a ¼ 1; 2; 3;…; N) be an orthonormal frame field that
spans M ¼ ðRN; gÞ, a N-dimensional space endowed with
a flat Euclidean metric g whose components with respect to
basis feag are

gðea; ebÞ ¼ δab; ð2Þ

where δab is the Kronecker delta. That is, the space can be
covered by Cartesian coordinates fxag ¼ ft; x; y;…; zg
such that the line element on M is given by

ds2 ¼ dt2 þ dx2 þ dy2 þ � � � þ dz2: ð3Þ

The imaginary time coordinate t is compactified into a
finite length equal to the inverse of temperature β, so thatM
is closed in the t direction. This is equivalent to consider
spinor fields on M ¼ S1 ×RN−1 satisfying antiperiodic
boundary conditions. The associated action has the form

SEðΨ; Ψ̄Þ ¼
Z

β

0

dt
Z

dN−1x
ffiffiffi
g

p
Ψ̄ðxÞDðmÞΨðxÞ; ð4Þ

where g is the metric determinant and DðmÞ is the standard
skew-adjoint Dirac operator,D ¼ γa∂a, in the presence of a
mass term

DðmÞ ¼ γa∂a þm; a ¼ 1; 2; 3;…; N: ð5Þ

The frame feag can be faithfully represented by the Dirac
matrices fγag that generate the Clifford algebra over M

γaγb þ γbγa ¼ 2gðea; ebÞ1: ð6Þ

In Euclidean signature, the Dirac matrices defined above
are Hermitian, denoted by γ†a ¼ γa, and the conjugate
spinor Ψ̄ is simply the Hermitian conjugate of Ψ, written
as Ψ̄ ¼ Ψ†. Since the dimension of the spinor space in N
dimensions is ½N=2� (the floor of the number N=2), fγag
and 1 stand for 2½D=2� × 2½D=2� matrices. In four dimensions
(N ¼ 4), for instance, they are 4 × 4 matrices. The spectral
theory of general first-order differential operator of Dirac
type can be found in Refs. [55,56].
Our goal is to solve the integral (1). To accomplish this,

we can expand the spinor fields Ψ and Ψ̄ in terms of four-
component complete orthonormal sets of Dirac spinors ψ j:

ΨðxÞ ¼
X
j

Ψjψ jðxÞ; ð7Þ

Ψ̄ðxÞ ¼
X
j

Ψ̄jψ
†
jðxÞ: ð8Þ

The coefficients Ψj and Ψ̄j are independent Grassmannian
variables, and the index j labels the field modes. The
spinors ψ j are eigenfunctions of D with eigenvalues
determined by the equation

Dψ j ¼ iλjψ j; ∀ λj ∈R; ð9Þ

and satisfy the following orthonormality and completeness
relations

THERMAL CASIMIR EFFECT FOR A DIRAC FIELD ON FLAT … PHYS. REV. D 110, 045006 (2024)

045006-3



Z
dNx

ffiffiffi
g

p
ψ†
jðxÞψkðxÞ ¼ δjk; ð10Þ

X
j

ψ jðxÞψ†
jðx0Þ ¼ δðx − x0Þ1; ð11Þ

where δðx − x0Þ is the Dirac delta function in the Euclidean
coordinates fx; x0g. Taking into account the orthonormality
property (10) and the field expansions (7) and (8), the
action (4) can be put into the diagonal form

SEðΨ; Ψ̄Þ ¼
X
j

λjðmÞΨ̄jΨj; ð12Þ

where λðmÞ is given by

λjðmÞ ¼ iλj þm: ð13Þ

Now, under the decompositions (7) and (8), the anti-
periodic functional integral over the fields can be written in
terms of Ψj and Ψ̄j asZ

antiperiodic
DΨ̄DΨ ¼

Z Y
j

1

μ
dΨ̄jdΨj; ð14Þ

in which an arbitrary scale parameter μ has been intro-
duced. An interesting discussion on the meaning of μ can
be consulted in [81]. By using the fact that the integration
rules for Grassmannian degrees of freedom areZ

dΨj ¼ 0 and
Z

ΨjdΨj ¼ 0; ð15Þ

which must be equally satisfied by Ψ̄j, we are eventually
led to the following resultZ

dΨ̄jdΨje−λjðmÞΨ̄jΨj

¼
Z

dΨ̄jdΨj½1 − λjðmÞ�Ψ̄jΨj ¼ λjðmÞ: ð16Þ

The exponential series’ quadratic and higher-order powers
vanish identically due to Grassmannian anticommutative
properties. Assuming that Eqs. (7)–(16) hold, the path
integral (1) over the Grassmann-valued Dirac spinorsΨ and
Ψ̄ gives the one-loop functional determinant of the operator
DðmÞ with a positive exponent, as follows:

Z ¼
Z Y

j

1

μ
dΨ̄jdΨje

−
P

j
λjðmÞΨ̄jΨj ;

¼
Y
j

λjðmÞ
μ

¼ det

�
DðmÞ
μ

�
: ð17Þ

Note that the above functional determinant is divergent
because of infinite product over the eigenvalues. This

divergence indicates a need for some regularization pro-
cedure. In this paper, we will adopt a powerful and elegant
regularization technique that utilizes the so-called gener-
alized zeta function, the zeta function of an operator.

III. GENERALIZED ZETA FUNCTION

Let L be a positive-definite self-adjoint second-order
elliptic differential operator, i.e., the eigenvalues λj of L are
real and non-negative. The zeta function associated with the
operator L is defined as

ζLðzÞ ¼
X
j

λ−zj ; ð18Þ

where the sum over j means the sum over the spectrum of
L. In N dimensions, the series (18) will converge for
ReðzÞ > N=2 and can be analytically continued for the
other values of z [82]. In particular, it is regular at z ¼ 0.
Now, we can use the zeta function above to provide a

regularized version of the ill-defined product of all eigen-
values. Taking the exponential of the derivative of the zeta
function with respect to z, evaluated at z ¼ 0, the zeta-
function regularized determinant can be defined by the
relation

ln detL ¼
X
j

ln λj ≔ −ζ0Lð0Þ; ð19Þ

where ζ0LðzÞ stands for the derivative of ζLðzÞ with respect
to z. The definition (19) is well defined because the zeta
function is regular at z ¼ 0, and encodes all divergences
present in the sum

P
j ln λj.

Defined previously as a series over the eigenvalues of an
operator, the zeta function admits also an integral repre-
sentation by making a Mellin transform, that is

ζLðzÞ ¼
1

ΓðzÞ
Z

∞

0

dτ τz−1KLðτÞ; ð20Þ

whereKLðτÞ is a spectral function called global heat kernel,
defined as

KLðτÞ ¼ Trðe−τLÞ; ð21Þ

with Tr standing for the trace operation. In the case of the
operator D2ðmÞ which is a 2½N=2� × 2½N=2� matrix in the
spinor indices, Tr should be understood with an extra factor
2½N=2� included. Besides that, being λj the eigenvalues of the
operator L, we can rewrite Eq. (21) as

KLðτÞ ¼
X
j

e−τλj ; ð22Þ

which diverges for τ → 0. In general, the structure of the
divergences present in the zeta function can be accessed
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from the asymptotic behavior of the heat kernel for small τ.
For τ → 0, the heat kernel admits the following expansion

KLðτÞ∼
1

ð4πτÞN=2

X
p

cpðLÞτp; p¼ 0;
1

2
;1;

3

2
;…; ð23Þ

where cp ≔ cpðLÞ are the heat kernel coefficients. To
review many of the basic properties of the heat kernel
method in QFT, including some historical remarks, we refer
to [53,83,84].
It is now possible to obtain a link between the one-loop

partition function and the generalized zeta function. Using
the cyclic property of the trace and the fact that the
Hermitian chiral matrix γ5 (denoted this way independently
of the dimension) anticommutes with all Dirac matrices γa,
we can show the important property

Tr ln ½DðmÞ� ¼ Tr ln ½γ5DðmÞγ5� ¼ Tr ln ½D†ðmÞ�;

¼ 1

2

n
Tr ln ½DðmÞ� þ Tr ln ½D†ðmÞ�

o
;

¼ 1

2
Tr ln ½D2ðmÞ�; ð24Þ

where D2ðmÞ is the negative of the spinor Laplacian on M,
D2 ¼ γaγb∂a∂b, in the presence of the mass

D2ðmÞ ¼ −D2 þm2: ð25Þ

Note in particular that the spinors ψ j are eigenfunctions of
D2ðmÞ with non-negative eigenvalues

D2ðmÞψ j ¼ ðλ2j þm2Þψ j: ð26Þ

Employing the identity

detL ¼ eTr lnL; ð27Þ

one can derive from Eq. (24) the important relation

ln det ½DðmÞ� ¼ 1

2
ln det ½D2ðmÞ�; ð28Þ

establishing the massive extension of the relation between
the determinant of the Dirac operator and the square root of
the determinant of its associated Laplace-type operator.
From Eqs. (18), (19), and (28), the zeta-function regulari-
zation allows us to write the one-loop partition function as
follows [85]:

lnZ ¼ −
1

2

h
ζ0=D2ðmÞð0Þ þ lnðμ2Þζ=D2ðmÞð0Þ

i
; ð29Þ

which has the same structure as the scalar case, up to a
global sign [44,80]. This is expected since we are working

with the zeta function associated with operator D2ðmÞ,
which is of Laplace type, instead of DðmÞ.
With the expression (29), one can obtain the free energy

F, defined as [86]

F ¼ −
1

β
lnZ; ð30Þ

which is needed for the derivation of the Casimir energy at
finite temperature. A thermodynamics quantities closely
related to the free energy is the entropy, defined as

S ¼ −
∂F
∂T

; ð31Þ

which, as we will see later, satisfies the third law of
thermodynamics (the Nernst heat theorem).
Although the zeta-function method encodes all diver-

gences present in the functional determinant, the structure
of these divergences, however, plays a central role in the
renormalization procedure. Let us now utilize this math-
ematical machinery to discuss a generic case of the Casimir
energy associated with the spinor field in four dimensions.
To achieve our purpose, it is convenient to decompose the
time dependence of the spinor field in the Fourier basis,
namely

ψ jðxÞ ¼ e−iωntχlðrÞ; ð32Þ

stemming from the fact that ∂t is an obvious Killing vector
field of our metric, where l is a generic index denoting the
spatial quantum modes of the field. Imposing the antiperi-
odic condition in the imaginary time t on the spinor field,

ψ jðt; rÞ ¼ −ψ jðtþ β; rÞ; ð33Þ

one can prove that the allowed frequencies must have the
form

ωn ¼
2π

β

�
nþ 1

2

�
; ∀ n∈Z: ð34Þ

The condition (33) corresponds to compacting the imagi-
nary-time dimension t into a circumference of length β.
This amounts to considering spinor fields defined over a
four-dimensional space with topology of the type S1 ×R3,
where periodicity represented by S1 is oriented at the
t direction. In Refs. [87–89], spinor fields are worked out in
several spaces whose topology is formed from the direct
products.
Because of the time decomposition (32), it is particularly

useful to write the operator D2ðmÞ as

D2ðmÞ ¼ L1 þ∇2ðmÞ; ð35Þ
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where L1 and ∇2ðmÞ are defined as follows:

L1 ¼ −∂2t and ∇2ðmÞ ¼ −∂i∂i þm2: ð36Þ

∇2ðmÞ is an elliptic, self-adjoint, second-order differential
spinor operator defined on the spatial part of M. The
generalized zeta function method associated with the scalar
operators defined on spaces with different conditions can
be found in Refs. [44,80]. The trace of the operator D2ðmÞ
can also be split into temporal and spatial parts through the
trace property

Tr½e−τ=D2ðmÞ� ¼ 4Trðe−τL1ÞTr½e−τ∇2ðmÞ�; ð37Þ
where the multiplicative factor 4 is due to the spinor nature
of D2ðmÞ. The eigenvalues of L1 ¼ −∂2t can be obtained
from Eq. (34), so we have that

Trðe−τL1Þ ¼
X∞
n¼−∞

e
−τ4π2

β2
ðnþ1

2
Þ2
: ð38Þ

Defining the constant parameters a ¼ 4π2τ=β2; b ¼ n and
c ¼ 1=2, and using the Jacobi inversion identity [54],

X∞
n¼−∞

e−aðbþcÞ2 ¼
ffiffiffi
π

a

r X∞
n¼−∞

e−
π2

a b
2−2πibc; ð39Þ

we can rewrite Eq. (38) as follows:

Trðe−τL1Þ ¼ βffiffiffiffiffiffiffiffi
4πτ

p
�
1þ 2

X∞
n¼1

cosðπnÞe−β2

4τn
2

�
; ð40Þ

in which the first term inside the brackets represents the
n ¼ 0 term in the series. Summing up these results, one
eventually obtains the integral representation of the zeta
function ζ=D2ðmÞ associated with D2ðmÞ, which is a Laplace
type operator defined in a flat space with a metric of
Euclidean signature and acts on a spinor field in thermal
equilibrium at finite temperature T ¼ β−1, satisfying anti-
periodicity conditions. It follows from (37), (40), and (20)
that the zeta function ζ=D2ðmÞ can be put in the form

ζ=D2ðmÞðzÞ ¼
βffiffiffiffiffiffi
4π

p
�
Z1ðzÞ
ΓðzÞ þ Z2ðz; βÞ

�
; ð41Þ

with

Z1ðzÞ ¼ Γðz − 1=2Þζ∇2ðmÞðz − 1=2Þ; ð42Þ

Z2ðz; βÞ ¼
2

ΓðzÞ
X∞
n¼1

cosðπnÞ

×
Z

∞

0

dτ τz−
3
2e−

β2

4τn
2

K∇2ðmÞðτÞ; ð43Þ

where ζ∇2ðmÞ and K∇2ðmÞ are the zeta function and the

global heat kernel associated with the spinor opera-
tor ∇2ðmÞ.
Once the zeta function is obtained, we should compute

the vacuum-free energy, Eq. (30), which may have diver-
gent parts. In order to analyze such divergences, it is
convenient to perform the small-τ asymptotics expansion of
the heat kernel [52]:

K∇2ðmÞðτÞ ∼
e−τm

2

ð4πτÞ3=2
X

p¼0;1=2;1;…

cpτp; ð44Þ

where cp ¼ cpð∇2Þ are the heat kernel coefficients asso-
ciated with the massless operator ∇2. Now, using the
integral representation of ζ∇2ðmÞ, Eq. (20), we can use

this asymptotic behavior of K∇2ðmÞ to write the function

Z1ðzÞ as

Z1ðzÞ ¼
Z

∞

0

dτ τz−3=2K∇2ðmÞðτÞ;

¼ 1

ð4πÞ3=2
X

p¼0;1=2;1;…

cpΓðzþ p − 2Þ
ðm2Þzþp−2 ; ð45Þ

which has simple poles located at

zþ p − 2 ¼ −κ; ∀ κ∈N; ð46Þ

since the gamma function diverges only at nonpositive
integers, with the corresponding residues containing non-
negative mass exponents

ResðZ1ðzÞ;−κÞ ¼
ð−1Þκc2−κ−zm2κ

ð4πÞ3=2κ! : ð47Þ

As we are only interested in the limit z → 0, the constraint
(46) translates into considering the series (45) up to order
p ≤ 2, to be consistent with the poles at κ ¼ 0, 1, 2. In
particular, this means that the terms in the series with semi-
integer p have no poles, the divergent contributions come
from the dominant coefficients c0, c1, and c2, with c0 and
c1 multiplied by non-negative mass exponents. However,
these divergent contributions are canceled out by the pole in
ΓðzÞ in the denominator of ζ=D2ðmÞðzÞ. Indeed, near z ¼ 0

1

ΓðzÞ ¼ zþ γEz2 þOðz3Þ; ð48Þ

where γE is the Euler constant. In particular, this implies
that Z2ð0; βÞ ¼ 0, since the remaining integral in Eq. (43) is
finite at z ¼ 0. Thus,

ζ=D2ðmÞð0Þ ¼
β

16π2
c2ðmÞ; ð49Þ
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where

c2ðmÞ ¼
X2
κ¼0

ð−1Þκ
κ!

c2−κm2κ ¼ m4c0
2

−m2c1 þ c2: ð50Þ

In order to obtain the expression for ζ0=D2ðmÞð0Þ, we should
note that while Z2ðz; βÞ and its first derivative with respect
to z are finite at z ¼ 0, Z1ðzÞ has a pole at z ¼ 0 coming
from the pole of ζ∇2ðmÞðz − 1=2Þ at this point, with residue

Resðζ∇2ðmÞðz − 1=2Þ; z ¼ 0Þ ¼ −
c2ðmÞ
16π2

: ð51Þ

So, separating off this pole contribution and taking the
derivative of ζ=D2ðmÞðzÞ with respect to z, after some algebra,
leads to the relation for the regularized free energy for the
Dirac field as follows

Fðβ;m;μÞ¼−
1

2
FP½ζ∇2ðmÞð−1=2Þ�

þc2ðmÞ
16π2

flnðμ2Þþ2½1− lnð2Þ�g

þ 1ffiffiffiffiffiffi
4π

p
X∞
n¼1

cosðπnÞ
Z

∞

0

dττ−3=2e−
β2

4τn
2

K∇2ðmÞðτÞ;

ð52Þ

where FP½ζ∇2ðmÞð−1=2Þ� stands for the finite part of

ζ∇2ðmÞð−1=2Þ. This result corresponds to the massive

spinor counterpart of the one obtained by Kirstein in
Ref. [54] for the massless scalar field, in which the only
nonvanishing heat kernel coefficient is c2. Finally, taking
the limit β → ∞, we obtain the following expression for
zero-temperature free energy associated with the massive
spinor field

Eðm; μÞ ¼ lim
β→∞

Fðβ; m; μÞ;

¼ −
1

2
FP½ζ∇2ðmÞð−1=2Þ� þ

c2ðmÞ
16π2

lnðμ̃2Þ; ð53Þ

where the rescaled parameter μ̃ ¼ μe=2 has been
employed. The β-dependent remaining term in Eq. (52)
is the temperature correction to the free energy given by

ΔFðβ; mÞ ¼ 1ffiffiffiffiffiffi
4π

p
X∞
n¼1

cosðπnÞ

×
Z

∞

0

dτ τ−3=2e−
β2

4τn
2

K∇2ðmÞðτÞ: ð54Þ

At this stage, it is worth noting that there remains no
singularity when z → 0. So, the spinor free energy is finite.
However, when the heat kernel coefficient c2ðmÞ is

nonvanishing, the zeta function regularization prescription
becomes ambiguous due to its natural dependence on the
arbitrary parameter μ, which has been rescaled without loss
of generality. This scale freedom when c2ðmÞ ≠ 0 is also
responsible for the so-called conformal anomaly [53,83]. It
is worth mentioning that in the massless case (m ¼ 0), all
information concerning free energy ambiguity is contained
in the c2 coefficient so that such ambiguity is present only
if c2 ≠ 0.
To ensure the uniqueness of the renormalization process,

such ambiguity can be removed by the subtraction of the
contribution arising from the heat kernel coefficients cp
with p ≤ 2. After performing this finite renormalization,
the remaining part can be expressed as the sum of the zero-
temperature Casimir energy EcasðmÞ plus the temperature
correction ΔFðβ; mÞ

Fðβ; mÞ ¼ EcasðmÞ þ ΔFðβ; mÞ; ð55Þ

where the Casimir energy at zero temperature EcasðmÞ is as
follows

EcasðmÞ ¼ −
1

2
FP½ζ∇2ðmÞð−1=2Þ�: ð56Þ

Note that as the Casimir energy exhibits a mass dependence
of the type e−τm

2

, serving as a convergence factor in the
integral representation of ζ∇2ðmÞð−1=2Þ, it must vanish

when the mass tends to infinity. This is due to the fact that
there can be no quantum fluctuations at this limit.
In the same fashion, one can use the small-τ heat kernel

expansion, which can also be seen as a large-m expansion,
to fix the ambiguity problem uniquely. Since the heat kernel
coefficient c2ðmÞ increases with non-negative powers of
the mass, one must require that Eðm; μÞ should be renor-
malized to zero for large m [52]

lim
m→∞

Eðm; μÞ → 0; ð57Þ

removing all the dependence on the scale factor μ of the
Casimir energy. It is worth pointing out that when c2ðmÞ is
identically null, i.e., when the FP prescription is redundant,
the finite renormalization is unnecessary because the
ambiguity is naturally removed, and hence the scale free-
dom is broken.
So far, the zeta function method has been utilized to

obtain a generic expression for the vacuum free energy
associated with a massive spinor field defined on a four-
dimensional flat space endowed with a Euclidean metric. In
particular, given the antiperiodic condition of spinor fields
in imaginary time, we have been able to find a constraint on
the eigenvalues of L1. From now on, we shall consider a
space with a circularly compactified dimension that
imposes an antiperiodic boundary condition along a vector
on the spinor field. By imposing this spatial condition, we
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will explicitly obtain the restrictions that the eigenvalues of
∇2ðmÞ must obey, hence evaluating the spinor vacuum free
energy.

IV. SPINOR FIELD IN A NONTRIVIAL
COMPACTIFIED SPACE

This section aims to find an analytical expression for the
zero-temperature Casimir energy and its corresponding
temperature corrections induced by a topological constraint
simulating a boundary condition imposed on the spinor field
along a vector in plane. To accomplish this, wewill adopt the
heat kernel approach to zeta-function regularization.
Consider the space M ¼ ðR4; gÞ, where g is a positive-

definite symmetric metric whose components are given by
Eq. (2), namely δab, so that the line element onM takes the
form

ds2 ¼ dt2 þ dx2 þ dy2 þ dz2; ð58Þ

where fxag ¼ ft; x; y; zg are Cartesian coordinates. We
recall that the coordinate t is compactified into a circum-
ference length β as discussed in Sec. II, equivalent to
equipping M with the topology S1ðtimeÞ ×R3.
Here we consider the space R3 with a circularly

compactified dimension, where the periodicity represented
by the circle S1 is oriented in the direction of a vector
L∈R2 given by

L ¼ a ex − b ey; a; b∈R; ð59Þ

referred to here as compact vector. ex and ey denote the unit
vectors along the directions x and y, respectively, and the
parameters a and b constant displacements. In particular,
the compact dimension size is determined by the vector
length

Lða; bÞ ¼ jLj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
: ð60Þ

Although not along a coordinate axis as usual, the compac-
tification in aS1 topology alongL is quite natural sinceL is a
homogeneous function of degree 1, that is Lðna; nbÞ ¼
nLða; bÞ for all non-null integern. Choosing a suitable frame
field can recover the usual S1 topology, as we will see later.
Along the compact vector, the spinor field is assumed to

satisfy the following boundary condition

ψ jðt; rÞ ¼ −ψ jðt; rþ LÞ; ð61Þ

similar to the temporal antiperiodicity condition, Eq. (33).
In fact, when b ¼ 0 and a ≠ 0, the spinor field satis-
fies a spatial antiperiodicity condition, ψ jðt; x; y; zÞ ¼
−ψ jðt; xþ a; y; zÞ, induced by the compact subspace of
the coordinate x. The condition (61) means that the spinor
field undergoes a sign change after traveling a distance a in

the x direction and b in the y direction and returns to its
initial value after traveling distances 2a and 2b, namely
ψ jðt; rÞ ¼ ψ jðt; rþ 2LÞ. In particular, through a coordinate
origin redefinition, without changing the orientation of
the axes, one can equally write the condition (61) as
ψ jðt; xþ a; y; zÞ ¼ −ψ jðt; x; yþ b; zÞ. In Ref. [78], this
latter condition was investigated in the helixlike topology
context and called the antihelix condition, with a and b
labeling the circumference length and pitch of the helix,
respectively.
An ansatz for the massive spinor field in the geometry

of the space M was given in Eq. (32), namely ψ jðt; rÞ ¼
e−iωntχlðrÞ, with the spatial part χlðrÞ satisfying the
eigenvalue equation

∇2ðmÞχlðrÞ ¼ ðλ2l þm2ÞχlðrÞ: ð62Þ

The eigenfunctions χl of the above equation have the form

χlðrÞ ¼ N eik·rusðkÞ; ð63Þ

with N being a normalization constant and usðkÞ being
four-component spinors whose explicit form is unnecessary
for our purposes. There are four spinors for each choice of
momentum k, two of which have positive energy and two
with negative energy [78].
We are interested in obtaining the finite temperature

Casimir energy under the influence of the boundary
condition (61), which imposes the following nontrivial
relation for the momentum along the compact vector

k · L ¼ kxa − kyb ¼ 2π

�
nþ 1

2

�
; ∀ n∈Z: ð64Þ

This means that the label l in the spinor field (63) should
be understood as the set of quantum numbers flg ¼
fn; ky; kz; sg, since kx can be eliminated employing
Eq. (64). In particular, the sum over l becomes

X
l

→
X
n

Z
dky

Z
dkz
X
s

: ð65Þ

Thus, utilizing the identification mentioned above in the
completeness relation (11) for the spinor field χl obeying
the boundary condition (61), we are left with the normali-
zation constant

N ¼ 1

2π
ffiffiffi
a

p : ð66Þ

Given the spinor fields (63), one can determine the
eigenvalues in Eq. (62), allowing for the construction of the
spinor heat kernel. Assuming that the requirement (64)
holds, the corresponding eigenvalues are found to be
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λ2l ¼ k2x þ k2y þ k2z ;

¼
�
2π

a

�
nþ 1

2

�
þ b
a
ky

�
2

þ k2y þ k2z : ð67Þ

It is worth mentioning that with an appropriate choice of
frame field, it is possible to align the compactification on
S1 along one of the coordinate axes. In the momentum
space, this can be achieved by defining for instance

ky ¼
a
L

�
kY þ 2πb

aL

�
nþ 1

2

��
: ð68Þ

This transformation leads to the eigenvalues (67) to be
written as

λ2l ¼
�
2π

L

�
nþ 1

2

��
2

þ k2Y þ k2z : ð69Þ

These eigenvalues stem in particular from the spatial anti-
periodic boundary condition ψ jðt; X; Y; zÞ ¼ −ψ jðt; X þ
L; Y; zÞ induced by the usual topology S1ðspaceÞ ×R2,
whereby the coordinate X is compactified into a circum-
ference length L. In fact, along this compact dimension,
the latter condition produces the discrete momentum
kX ¼ 2πðnþ 1=2Þ=L. In particular, this means that in the
limiting case b ¼ 0, our results recover the ones presented in
Ref. [79] for a specific case and include temperature
corrections. In this study, the authors investigated the
Casimir effect for spinor fields in toroidally compactified
spaces, including general phases in the boundary condition
along the compact dimensions.
Building upon the previous results, we can introduce the

heat kernel approach to obtain a zeta-function analytical
expression for a spinor field defined on M with the
eigenvalues (67). Instead of the global heat kernel, it is
more appropriate to utilize the local heat kernel. The reason
is that the heat kernel carries information concerning the
space where the field is defined, making it particularly
valuable when focusing on the influence of topological
constraint imposed by the boundary conditions on the
thermal vacuum fluctuations.

A. Spinor heat kernel and Casimir energy density

The spinor heat kernel K∇2ðmÞðr; r0; τÞ is a two-point

function locally defined as solutions of the heat conduction
equation�

∂

∂τ
þ∇2ðmÞ

�
K∇2ðmÞðr; r0; τÞ ¼ 0 for τ > 0; ð70Þ

supplemented with the initial condition

lim
τ→0

K∇2ðmÞðr; r0; τÞ ¼ δðr − r0Þ1: ð71Þ

The operator ∇2ðmÞ is taken to act on the first argument of
K∇2ðmÞ. Similar to ∇2ðmÞ, K∇2ðmÞ is represented by a 4 × 4

matrix.
Taking into account Eq. (26), the solutions of Eq. (70)

can be expressed in terms of the eigenvalues and eigen-
functions of ∇2ðmÞ

K∇2ðmÞðr; r0; τÞ ¼ e−τm
2
X
l

e−λ
2
lτχlðrÞχ†lðr0Þ: ð72Þ

One can verify that the above expression provides a
solution to Eq. (70), as well as satisfying the initial
condition (71) since the spinor field obeys Eq. (11).
Inserting the spinor solution (63) along with the nor-

malization constant (66) and eigenvalues (67) into spinor
heat kernel (72), it follows the expression

K∇2ðmÞðr; r0; τÞ ¼
e−τm

2

4π2a

X
n

e−
4π2τ
a2

ðnþ1
2
Þ2þ2πi

a ðnþ1
2
ÞΔx

×
Z

dkye
−τL2

a2
k2yþ½iΔv−4πbτ

a2
ðnþ1

2
Þ�ky

×
Z

dkze−τk
2
zþikzΔz1; ð73Þ

where

Δv ¼ b
a
Δxþ Δy: ð74Þ

We can write Eq. (73) in a more compact form. To perform
this, let us define the complex parameters w and q as
follows

w ¼ bΔv
L2

−
Δx
a

−
q
2

and q ¼ 4πiτ
L2

; ð75Þ

and introduce the following Jacobi function defined in
terms of the parameters w and q as [46]

θ3ðw; qÞ ¼
X∞
n¼−∞

eiπqn
2−2πiwn: ð76Þ

Evaluating the integrals over the independent momenta ky
and kz in Eq. (73), we end up with the following relation
between the spinor heat kernel and the Jacobi function

K∇2ðmÞðr; r0; τÞ ¼
e−

jr−r0 j2
4τ −τm2

ð4πτÞ3=2
ffiffiffiffiffiffiffiffi
−iq

p

e−iπ
ω2

q

θ3ðw; pÞ1: ð77Þ

Since we are interested in the contributions coming from
the topology for the thermal vacuum fluctuations, it is
convenient to separate the Euclidean part of the heat kernel,
which should not depend on the topology parameters.
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This can be done by rewriting the θ3 Jacobi function
utilizing the following identity

θ3ðw; qÞ ¼
1ffiffiffiffiffiffiffiffi
−iq

p e−iπ
ω2

q θ3

�
w
p
;−

1

q

�
: ð78Þ

Employing this identity, leads to the following expression

K∇2ðmÞðr; r0; τÞ ¼ KEðr; r0; τÞ
X∞
n¼−∞

e−
L2
4τn

2þiπn; ð79Þ

with

KEðr; r0; τÞ ¼
1

ð4πτÞ3=2 e
−jr−r0 j2

4τ −τm2

1; ð80Þ

whereKE is the spinor version of the well-known Euclidean
heat kernel associated with the massive scalar Laplacian
operator defined on the flat space R3 [53]. Note that KE is
identified with the term n ¼ 0 in the series.
Let us now explore the heat kernel properties at the

coincidence limit r0 → r in Eq. (79), which results in

K∇2ðmÞðr; r; τÞ ¼ KEðr; r; τÞ

þ e−τm
2

ð4πτÞ3=2
X∞
n¼1

2 cosðπnÞe−L2
4τn

2

1: ð81Þ

The first term on the right-hand side corresponds to the
Euclidean heat kernel, while the second term encodes
information about the space topology, as can be seen from
its dependence on parameter L. For small τ, the heat kernel
admits an expansion in powers of τ, with coefficients
reflecting the space configuration. In our case, by evalu-
ating the above series at small τ, one can see that all terms
are exponentially small except for the one associated with
the Euclidean heat kernel contribution (n ¼ 0). Thus, the
spinor heat kernel K∇2ðmÞðrÞ on Euclidean geometry with a

circular compactification along L exhibits an asymptotic
behavior similar to the one considered in Eq. (44) with only
one nonvanishing heat kernel coefficient

K∇2ðmÞðr; r; τÞ ∼
e−τm

2

ð4πτÞ3=2
X
p

cpðrÞτp þOðe−1=τÞ; ð82Þ

where the local heat kernel coefficients cpðrÞ are given by

cpðrÞ ¼ δ0p1 ∀p: ð83Þ

Oðe−1=τÞ stands for those terms going to zero faster than
any positive power of τ and, therefore, can be neglected. In
contrast with the global case, the local heat kernel coef-
ficients carry spinor indices, hence 4 × 4 matrices. Note
that K∇2ðmÞðτÞ can be obtained from K∇2ðmÞðr; r0; τÞ per-

forming an integral in the whole space

K∇2ðmÞðτÞ ¼
Z

d3r
ffiffiffiffiffiffiffi
gð3Þ

q
tr
h
K∇2ðmÞðr; r; τÞ

i
; ð84Þ

where gð3Þ is the spatial part of the metric determinant,
and the trace operation tr is taken over the spinor indices
only. Thus, the global heat kernel coefficient c0 is found
to be

c0 ¼ 4V3; ð85Þ

where V3 is the volume of the three-dimensional base space
ofM. As discussed in Sec. III, for nonvanishing heat kernel
coefficients cpðp ≤ 2Þ, the zeta function is not finite, and
the renormalization procedure is not unique. In fact,
although the vacuum energy is finite due to the FP
prescription introduced in the Casimir energy, the coef-
ficient c0 gives origin to the terms in the vacuum energy,
which increase with non-negative powers of the mass,
besides the logarithmic dependence on the scale factor μ.
To ensure a unique renormalization procedure and obtain
an unambiguous spinor vacuum free energy, all contribu-
tions associated with c0 should be disregarded, thereby
renormalizing the energy to zero for large masses.
After performing the finite renormalization, we can

proceed with the analytical calculation of the spinor
vacuum free energy. First, we should note that even though
we are working in the local regime, the two-point function
K∇2ðmÞðr; r; τÞ is coordinate independent. Therefore, con-

sidering that global quantities can be derived from local
ones by integrating over the space coordinates, the local
version of the spinor vacuum free energy differs from the
global version by a volume element and retains the same
form as Eq. (55), namely

F ðβ; mÞ ¼ EcasðmÞ þ ΔF ðβ; mÞ; ð86Þ

where EcasðmÞ is then the Casimir energy density at zero
temperature

EcasðmÞ ¼ −
1

2
FP½ζ∇2ðmÞðr;−1=2Þ�; ð87Þ

and ΔF ðβ; mÞ is the temperature correction with the form

ΔF ðβ; mÞ ¼ 1ffiffiffiffiffiffi
4π

p
X∞
n¼1

cosðπnÞ

×
Z

∞

0

dτ τ−3=2e−
β2

4τn
2

tr
�
K∇2ðmÞðr; r; τÞ

�
: ð88Þ

Here, the trace operation tr is taken over the spinor indices
only and the local zeta function is defined in terms of
K∇2ðmÞðr; r; τÞ giving rise to
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ζ∇2ðmÞðr;z−1=2Þ¼ 1

Γðz−1=2Þ
×
Z

∞

0

dττz−3=2tr
�
K∇2ðmÞðr;r;τÞ

�
: ð89Þ

Then, inserting the spinor heat kernel (81) into Eq. (89), we
conclude from Eq. (87) that the renormalized expression for
the zero temperature Casimir energy density associated
with a spinor field of mass m depends on the topology
parameter L according to the relation

Ecasðm;LÞ ¼ 2

π2L4

X∞
n¼1

cosðπnÞ
n2

ðmLÞ2K2ðnmLÞ; ð90Þ

where K2ðzÞ is the MacDonald function [90]. Note that the
FP prescription removed the divergent contribution pro-
vided by the Euclidean heat kernel. The above result is
exactly the one shown in Ref. [78] obtained in a different
approach than the one presented here for both massive and
massless spinors. In particular, the massless one can be
obtained by making use of the following limit

lim
z→0

z2K2ðnzÞ ¼
2

n2
: ð91Þ

In fact, by separating the even and odd terms in the series
(90), and using the above equation, one can promptly verify
that the following massless limit holds

EcasðLÞ ¼ lim
m→0

Ecasðm;LÞ;

¼ 1

4π2L4

�
ζð4Þ − ζ

�
4;
1

2

��
; ð92Þ

where ζðzÞ is the standard Riemann zeta function and
ζðz; wÞ is the Hurwitz zeta function defined for ReðzÞ > 1
and w ≠ 0;−1;−2;…, in the form [46]

ζðz; wÞ ¼
X∞
n¼0

ðnþ wÞ−z: ð93Þ

Using the relation

ζ

�
z;
1

2

�
¼ ð2z − 1ÞζðzÞ; ð94Þ

along with the fact that ζð4Þ ¼ π4=90, we are left with the
expression for the Casimir energy density, at zero temper-
ature, associated with a massless spinor field

EcasðLÞ ¼ −
7

2

π2

90L4
: ð95Þ

It depends only on topology parameter, in complete agree-
ment with the massless case obtained in Ref. [78].

In particular, its value is also 7=2 times the result found
in the massless scalar case under periodic boundary
conditions along the compact vector L [70,80]. It is worth
mentioning that this case is unambiguous since the heat
kernel coefficient c2 is identically zero, so the renormal-
ization procedure is unnecessary.
If one is interested in the limit mL ≫ 1, then it is

legitimate to consider McDonald’s function behavior at
large z

K2ðzÞ ≃
�
π

2z

�
1=2

e−z for j argðzÞj < π=2: ð96Þ

In this limiting case, one can see that the Casimir energy
density decays exponentially with the mass of the field

Ecas

�
m ≫

1

L

�
¼ −

2m2

π2L2

ffiffiffiffiffiffiffiffiffiffi
π

2mL

r
e−mL; ð97Þ

as expected, since an infinitely heavy field should not
present quantum fluctuations and hence should not produce
Casimir energy [52]. In Ref. [50], a similar analysis is
carried out for the Casimir energy for a real scalar field and
the Elko neutral spinor field in a field theory at a Lifshitz
fixed point.

B. Finite-temperature corrections

Let us now investigate the temperature correction,
ΔF ðβ; mÞ, to the vacuum energy densities. Inserting the
heat kernel (81) into ΔF ðβ; mÞ defined in Eq. (88) leads to
the following analytical expression for the temperature
correction associated with the massive spinor field, in terms
of a double sum

ΔF ðβ;m;LÞ ¼ ΔFEðβ;mÞ þ 4m4

π2
X∞
n¼1

X∞
p¼1

cosðπnÞ cosðπpÞ

× f2

 
mβ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þL2

β2
n2

s !
: ð98Þ

For notational simplicity, we introduced the function fνðzÞ
related to the McDonald function KνðzÞ as follows

fνðzÞ ¼
KνðzÞ
zν

: ð99Þ

The term ΔFEðβ; mÞ is the contribution coming from the
Euclidean heat kernel and thus does not depend on the
parameter L. It has the following form

ΔFEðβ; mÞ ¼ 2m4

π2
X∞
n¼1

cosðπnÞf2ðmβnÞ: ð100Þ
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In particular, from Eq. (91), we conclude that the temper-
ature correction term in the massless limit is as follows

ΔFEðβÞ ¼ −
7

2

π2

90
T4; ð101Þ

the standard black body radiation energy density associated
with the massless spinor field. As we have seen, this
contribution is directly related to the non-null coefficient
c0. Inmoregeneral spaceswith nontrivial topology, however,
there may be temperature corrections to the above Stefan-
Boltzmann law, proportional to T4, coming from heat kernel
coefficients associated with spacetime topology. These
coefficients vanish in the limit of infinite space [47,74].
Since the Casimir effect is a purely quantum phenome-

non, the above term should not dominate in the high-
temperature limit. Although not divergent, this quantum
term should be subtracted in the renormalization procedure
to obtain a correct classical contribution in this limit. By
doing so, we end up with the renormalized version of the
free energy (86)

F renðβ; m; LÞ ¼ 2m4

π2
X∞
n¼1

cosðπnÞf2ðnmLÞ

þ 4m4

π2
X∞
n¼1

X∞
p¼1

cosðπnÞ cosðπpÞ

× f2

 
mβ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ L2

β2
n2

s !
: ð102Þ

In particular, by using the limit (91), the above expression
yields the massless contribution

F renðβ; LÞ ¼ EcasðLÞ

þ 8

π2β4
X∞
n¼1

X∞
p¼1

cosðπnÞ cosðπpÞ	
p2 þ L2

β2
n2


2

; ð103Þ

where EcasðLÞ is the Casimir energy density associated with
massless spinor field at zero temperature, Eq. (95). The
presence of the double sum is convenient if one is interested
in obtaining the low- and high-temperature asymptotic
limits. Although the final result is the same, performing the
sum in p first is more straightforward for obtaining the
high-temperature limit, while performing the sum in n first
is less complicated for obtaining the low-temperature limit.
The final result for the free energy is equivalent. Choosing
which one first is a simple question of convenience to attain
our purposes.
To conduct our analysis, let us rewrite L as L ¼ a

ffiffiffi
γ

p
by

convenience, where γ ¼ 1þ ðb=aÞ2. In Fig. 1, we have
plotted the ratio R of the renormalized free energy density,
F renðβ; LÞ, to the Casimir energy density, EcasðLÞ, varying
with aT for different values of the parameter γ.

In each case, the plot shows the ratio R ¼ F ren=Ecas
going to 1 as T approaches zero, as we should expect, and
decaying to zero as T approaches infinity. In particular, this
decay becomes more pronounced as the parameter γ
increases, as illustrated by the curve for γ ¼ 9. The curves
associated with γ > 2, which decay to zero faster, corre-
spond to the case where b is greater than a, whereas the
curve with γ ¼ 2 illustrates the particular case b ¼ a. In the
limiting case when γ ≃ 1 (b ≪ a), the system exhibits a
structure known as a quantum spring, as discussed by [91]
in the context of the scalar Casimir effect.
In what follows, we will analyze the asymptotic limits of

temperature corrections to the massless free energy den-
sity above.

1. High-temperature limit

Let us analyze the high-temperature limit, β ≪ L, of the
final expression (103). In this case, it is more appropriate to
perform the summation in p first, namely

1

β4
X∞
p¼1

cosðπpÞ
ðp2 þ L2

β2
n2Þ2

¼ −
1

2L4

1

n4
þ T2

2L2

1

n2
cschðnπLTÞ

×

�
cothðnπLTÞ þ 1

nπLT

�
: ð104Þ

Inserting this summation into Eq. (103), we are eventually
led to the following expression

F renðβ; LÞ ¼
4T2

L2

X∞
n¼1

cosðπnÞ
n2

cschðnπLTÞ

×

�
cothðnπLTÞ þ 1

nπLT

�
: ð105Þ

Note that the first term on the right-hand side in Eq. (104),
after performing the summation in n, gives rise to Casimir

FIG. 1. Plot of the ratio R ¼ F ren=Ecas in terms of aT for
several values of the parameter γ. R decreases with aT and tends
to zero when aT goes to infinity.
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energy density associated with massless spinor field (95)
but with the opposite sign. Therefore, the effect of this latter
term is entirely compensated by the corresponding one in
the free energy density (103). Such a natural cancellation
between the massless Casimir energy density and its
corresponding temperature correction is not unusual. It is
an intrinsic characteristic of temperature corrections at the
high-temperature limit [48].
Now our task is to evaluate the series (105) at a high-

temperature limit, β ≪ L (or equivalently LT ≫ 1).
Through an asymptotic expansion up to terms of order
Oðe−πLTÞ, we arrive at the finite temperature

F renðβ ≪ LÞ ≃ −
8T
L3

ð1þ πLTÞe−πLT; ð106Þ

which is exponentially suppressed at high T and converges
to zero as T → ∞, in accordance with Fig. 1. This behavior
is expected for a spinor field since, differently from the
scalar field [80], it lacks a temperature correction term that
is linearly dependent on T. We emphasize the need for the
free energy density to undergo a finite renormalization by
subtracting from it the blackbody radiation contribution,
proportional to T4, to obtain the correct classical limit, a
free energy density renormalized to zero at very high
temperatures. Reference [75] found a similar result for
temperature corrections associated with the spinor field in
the closed Friedmann cosmological model.
With the renormalized free energy density now available,

we can obtain an analytical expression for the renormalized
entropy density. Employing the relation (31), we have

Srenðβ; LÞ ¼
4πT2

L2

X∞
n¼1

cosðπnÞ
n

cschðnπLTÞ

×

�
1 −

1

ðnπLTÞ2 þ 2csch2ðnπLTÞ

−
1

nπLT
cothðnπLTÞ

�
: ð107Þ

The corresponding asymptotic expansion in the high-
temperature regime, LT ≫ 1, decays exponentially with
the temperature T

Srenðβ ≪ LÞ ≃ −
8

πL3
½1þ πLT − ðπLTÞ2�e−πLT: ð108Þ

Note that the lack of a classical term proportional to T in the
free energy density results in the Casimir entropy density
approaching zero at very high temperatures, which differs
from the scalar case where it is dominated by a constant
term [80].

2. Low-temperature limit

Let us now consider the asymptotic expansion of the
expression (103) in the low-temperature regime, where
β ≫ L, or equivalently LT ≪ 1. To accomplish this, as
previously mentioned, we shall perform the summation in n
first, providing

1

β4
X∞
n¼1

cosðπpÞ�
p2 þ L2

β2
n2
�

2
¼ −

T4

2π2
1

p4
þ 4T2

L2

1

p2
csch

�
pπ
LT

�

×

�
LT
pπ

þ coth

�
pπ
LT

��
: ð109Þ

Substituting it back in Eq. (103), we get

F renðβ; LÞ ≃ −
7

2

π2

90L4
þ 7

2

π2

90
T4

þ 4T2

L2

X∞
p¼1

cosðπpÞ
p2

csch

�
pπ
LT

�

×

�
LT
pπ

þ coth

�
pπ
LT

��
; ð110Þ

which at the low-temperature regime up to terms of the
order Oðe− π

LTÞ, presents the following free energy density
asymptotic behavior

F renðβ ≫ LÞ ≃ −
7

2

π2

90L4
þ 7

2

π2

90
T4

−
8T2

L2

�
1þ LT

π

�
e−

π
LT: ð111Þ

Let us make a few remarks comparing our findings and
those reported in [80] for the low-temperature behavior of
the free energy associated with the scalar field under helix
topology. Apart from the additional T3 term for temperature
correction observed in the scalar case, they differ by
constant multiplicative factors that naturally arise because
of the spinor degrees of freedom. Note that at small T, the
above asymptotic expansion is dominated by the first term,
the massless Casimir energy density at zero temperature,
Eq. (95), as expected [47,74,75].
The entropy density can be obtained by inserting

Eq. (111) into Eq. (31), providing

Srenðβ; LÞ ¼ −
7π2

45
T3 −

4π

L3

X∞
p¼1

cosðπpÞ
p

csch

�
pπ
LT

�

×

�
1þ 3

�
LT
pπ

�
2

þ 2csch2
�
pπ
LT

�

−
3LT
pπ

coth

�
pπ
LT

��
: ð112Þ
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Its corresponding asymptotic expansion in the low-temper-
ature limit, where LT ≪ 1, is found to be

Srenðβ ≫ LÞ ≃ 7π2

45
T3 þ 8π

L3

�
1þ 3LT

π
þ 3

�
LT
π

�
2
�
e−

π
LT:

ð113Þ

As expected, the above expression tends to zero as the
temperature approaches zero. It implies that the entropy
density for a massless spinor field satisfying an antiperiodic
condition along the compact vector satisfies the third law of
thermodynamics (the Nernst heat theorem) [86].

V. CONCLUSION

In the present work, we have investigated the thermal
Casimir effect associated with a massive spinor field
defined on a four-dimensional flat space with a circularly
compactified dimension. The periodicity represented by S1

is oriented not along a coordinate axis as usual, but along a
vector L belonging to the xy plane, Eq. (59). This geometry
introduces a topological constraint inducing a spatial
antiperiodic boundary condition on the spinor field,
Eq. (61), which modifies the vacuum fluctuations, produc-
ing the Casimir effect. Imposing this boundary condition
led to the discrete eigenvalues for the momentum along
vector L, Eq. (64), allowing for determining explicitly the
eigenvalues (67). They are used to construct the generalized
zeta function for the spinor field and thus remove the
formal divergences involved in the Casimir effect.
These divergencies were introduced by the Dirac operator

determinant in the partition function originating from the
infinite product over eigenvalues, Eq. (17). This divergence
was encoded into the generalized zeta function employing
the important relation connecting it with the partition
function, Eq. (29). It was analyzed from the asymptotic
behavior of the spinor heat kernel function, Eq. (44), and
removed in the renormalization scheme by subtraction of the
divergent contribution associated with non-null heat kernel
coefficients. A rather peculiar aspect of the zeta function
regularization prescription is related to the existence of
ambiguities. Such ambiguities appear whenever the mass-
dependent c2ðmÞ heat kernel coefficient is nonvanishing,
Eq. (50), due to natural dependence on parameter μ, Eq. (53).
For the geometry presented here, c0 was the only non-null
heat kernel coefficient, Eq. (85), associated with the
Euclidean heat kernel contribution, Eqs. (80) and (100).

In order to derive physically meaningful expressions, all
contributions associated with c0 were dropped to ensure that
the renormalization procedure is unique and thus obtain an
unambiguous spinor vacuum free energy. Besides that, since
c0 is multiplied by mass with a positive exponent, we adopt
an additional requirement that vacuum energy should be
renormalized to zero for large masses.
We outline all the mathematical machinery required for

computing the vacuum-free energy density, starting with the
construction of the partition function for the spinor field
through Euclidean path integrals. In this Euclidean
approach, we find closed and analytical expressions for
the vacuum free energy density associated with the spinor
field in thermal equilibrium at finite temperature T ¼ β−1,
satisfying antiperiodic conditions in the imaginary time t
and along vectorL. This energy density can be expressed as a
summation of the zero-temperature Casimir energy density,
Eq. (90), and temperature correction terms, Eq. (102), which
generalize the results presented in Refs. [78,79]. We also
analyzed the high- and low-temperature asymptotic limits,
which agree entirely with the curves shown in Fig. 1. The
ratio of the renormalized free energy density to the Casimir
energy density goes to 1 as T approaches zero and decays to
zero as T approaches infinity. At high temperatures, in
particular, we have shown that the c0 coefficient gives rise to
the Stefan-Boltzmann law, proportional to T4. Although not
divergent, this quantum term was subtracted in the renorm-
alization procedure to obtain a correct classical contribution
in this limit. Also, the free energy density does not possess a
classical limit at high temperatures. Except for this classical
limit, all our results for spinor fields differ from the ones for
scalar fields by constant multiplicative factors that naturally
arise because of the spinor degrees of freedom. Finally, our
analysis confirms that the entropy density agrees with the
Nernst heat theorem.
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