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This article studies mode stability of a four-dimensional rotating black hole with four pairwise equal U(1)
charges derived in the framework of supergravity or the low energy string theory which is known now as STU
black hole. We investigate bosonic perturbations in a proposed equation of the Teukolsky type for probe fields
of different spins through the transformation technique devised by Whiting in 1989. Finally, we introduce
connection relations inspired by thework of Duztaş [Phys. Rev. D 94, 044025 (2016) ] to prove the absence of
unstable modes that solve the torsion-modified Dirac equation appropriate for this black hole background.
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I. INTRODUCTION

The stability of rotating black holes has been the subject of
active research in the field of gravitation for many years
because of its fundamental importance. In a series of recent
papers (see [1] and references therein) the stability of Kerr
black holes has been conclusively proved, at least for
sufficiently small angular momentum. This demonstration
marked an important triumph of general relativity, as it proves
consistency of the theory with the observed prevalence in
nature of black holes of this kind. An important first step in
investigations of black hole stability is to prove the absence of
exponentially increasing modes in the master equation,
derived by Teukolsky for the Kerr metric [2]. Mode stability
for the aforementioned solution was proved byWhiting over
three decades ago [3] by virtue of transformations mapping
the physical modes into functions from an auxiliary space, in
which the corresponding analysis becomes much simpler.
This transformation results in awavelike equation fromwhich
an auxiliarymetric can be inferred. The space associated with
this auxiliary metric lacks an ergoregion, and may thus be
used to evade the difficulties that arise from its presence. We
also point out that the so-called superradiance instability
caused by the ergoregion of a rotating black hole takes place
for fields (particles) of an integer spin, but it does not occur in
the fermionic case.
The present work aims to show mode stability in the pair-

wise equal charged STU black hole background. Such black

holes have been previously investigated in Refs. [4–10]
among several others. References [4,5], in particular, have
successfullymade use ofWhiting’s procedure to demonstrate
mode stability formassless scalars (s ¼ 0) inSTUblackholes
of four and five dimensions respectively. Separability
of the torsion modified Dirac equation that we shall use to
investigate spin �1=2 perturbations of the metric has been
proved in a recentwork by two of the authors [9]. As far aswe
knowproper perturbationsof the consideredblackhole space-
time or field equations for spin s > 1=2 at this background
have not been studied yet, but taking into account the wave
equations for s ¼ 0 and s ¼ 1=2, we have conjectured
equations which can be treated as the generalization of the
decoupled Teukolsky equations for the case of the pair-wise
equal charged geometry [9]. Herewe show that instead of the
pair of decoupled equations a unique equation can be written
and the former follows from the latter after separation of
variables. Having this equation we consider perturbations of
both bosonic and fermionic nature. The former ones will be
studied through the implementation of Whiting’s procedure,
as was done in the aforementioned papers. Fermionic
perturbations, however, require a separate treatment. This
necessity stems from the form of Whiting’s differential
transformations which, as we shall show, are not appropriate
for half-integer spin. To circumvent this difficulty, wewill use
connection relations similar to those introduced in [11] in their
study ofmode stability for neutrino perturbations. As shall be
explained in details below, this demonstration is based on the
assumption that the expansion coefficient YðinÞ, relating to
ingoing modes at infinity, can be treated as an analytic
function of a and ω, with a well-defined nonrotating limit
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as a → 0. As we will show, the connection relations, which
follow from the field equations and separability of the theory,
are not consistent with the presence of unstable modes, thus
allowing us to rule out their existence.
The paper is structured as follows: after this introductory

section, we present, in Sec. II, a Teukolsky-like master
equation for the STU background, which is assumed to
describe decoupled parts of perturbations in the metric for
different values of s. Although the derivation of the
Teukolsky equation for the STU space-time is rather
straightforward and follows Teukolsky’s original approach
[2], whether or not it can be used to describe physical
perturbations with spin higher than s > 1=2, including
gravitational perturbations (s ¼ �2), remains an open
question. The equation used in this work has been con-
clusively shown to be valid for s ¼ 0;�1=2. Beyond these
values, we make a quite reasonable assumption that there
should be a unique extension of the Teukolsky equation to
include higher spin (s > 1=2) minimally coupled fields.
This assumption should, of course, be verified by direct
calculations in the future. In Sec. III, we use these equations
to perform an analysis with the use of Whiting’s trans-
formations, which allow for the introduction of an energy-
like functional with a positive integrand, which we then use
to prove that the modes are bounded. Although this
procedure seems to work without explicit specification
of s, which appears as a parameter in the perturbation
equations, we notice that one of Whiting’s transformations
involves a power of a differential operator, and this power is
not integer for fermions. Thus, in Sec. IV we try a different
route by following a procedure first introduced in [11] to
derive connection relations which contradict the possibility
of unstable modes. Finally, we conclude in Sec. V, sum-
marizing what has been done throughout the paper and
pointing out perspectives meant for further investigations.

II. TEUKOLSKY EQUATION FOR A ROTATING
STU BLACK HOLE

In this work, we investigate small perturbations of an
STU black hole [12]. We consider only the pair-wise equal
charges case, for which separability of the torsion-modified

Dirac equation has been demonstrated recently [9].
The metric in the pairwise equal charges scenario is of
the form [6,12]:

ds2 ¼ −
X

Δ1=2
0

ðdt − a sin2θdφÞ2 þ Δ1=2
0

�
dr2

X
þ dθ2

�

þ sin2θ

Δ1=2
0

ðadt − ððrþ 2ms21Þðrþ 2ms22Þ þ a2ÞdφÞ2;

ð1Þ

where X¼ r2−2mrþa2,Δ1=2
0 ¼ ðrþ 2ms21Þðrþ 2ms22Þ þ

a2 sin2 θ, while si ¼ sinh δi; i ¼ 1; 2 are defined in terms of
the U(1) charges δi, following the notational conventions of
Ref. [9], we also refer reader to [6,12] for the explicit form
of the Lagrangian for the considered model and explicit
solutions for all the fields.
Gravitational perturbations of Kerr metric are uniquely

described by the well-known Teukolsky master equation
[2]. In addition to these perturbations, which are purely
bosonic by nature and correspond to spin s ¼ �1;�2, the
master equation also allows one to study the massless scalar
(s ¼ 0) and fermionic (s ¼ �1=2) cases, as pointed out by
Teukolsky himself [2]. Moreover, even spin s ¼ �3=2 can
be examined. Teukolsky equation was crucial in the proof
of separability for perturbations of arbitrary spin. As far as
we know, gravitational perturbations on a rotating STU
black hole background have not been studied yet. In any
case, it is tempting to have a corresponding analog of the
Teukolsky equation, since it provides a general framework
in which gravitational perturbations and massless fields, as
well as separability, may be investigated.
In a recent work by two of the authors [9], it was demon-

strated that a torsion-modified Dirac equation on a rotating
pair-wise equal charges STU black hole background [6,12]
is separable. We note that separability of a massless scalar
equation was proven a decade ago for more general setting
of four nonequal charges [10]. The decoupled (separated)
equations of motion for spin s ¼ 0;�1=2 can be written in
the form [9]:

1

sin θ
∂

∂θ

�
sin θ

∂Ss

∂θ

�
þ
�
a2ω2cos2θ þ 2saω cos θ −

k2 þ s2 þ 2ks cos θ
sin2θ

þ Ek;s

�
Ss ¼ 0; ð2Þ

X−s ∂

∂r

�
Xsþ1

∂Rs

∂r

�
þ
�
K2ðrÞ − 2isðr −mÞKðrÞ

X
þ 2isωF0ðrÞ − λk;s

�
Rs ¼ 0; ð3Þ

where KðrÞ ¼ ωFðrÞ þ ka, FðrÞ ¼ r1r2 þ a2, ri ¼ rþ 2ms2i , i ¼ 1; 2, λk;s ¼ Ek;s þ a2ω2 þ 2aωk − sðsþ 1Þ and here ω
and k are the angular frequency and magnetic quantum number respectively. The functions SsðθÞ and RsðrÞ in the above
equations are the angular and radial wave functions respectively, while λk;s is the separation constant.
Since proper gravitational perturbations or field equations for higher spins s > 1=2 in the STU background have not been

studied, we do not yet have a first principle derivation for a Teukolsky-like equation for higher spin fields in this geometry.
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We may, however, exploit the formal similarity between (1)
and the Kerr metric, together with our first-principle
knowledge of the cases s ¼ 0;�1=2, to make a reasonable
conjecture about the form of the master equation for higher
spin. The ensuing equations are similar in form to those
found by Teukolsky for the Kerr background, to which they
are reduced in the limit in which the U(1) charges are set to
zero. The generalization amounts to the shifts introduced
by the boosts represented by δi, as could be reasonably
expected given the form of (1). Thus, knowing that the

decoupled equations (2) and (3) are valid for s ¼ 0;�1=2,
we assume that this system of equations still holds for
higher values of s, corresponding to some minimally
coupled physical fields of higher spin, including gravita-
tional perturbations (s ¼ �2). As we have pointed out, our
assumption should be verified by direct calculations in
future investigations.
The conjectured generalization of the Teukolsky equa-

tion therefore takes the form

�
F2

X
− a2sin2θ

�
∂
2Ψs

∂t2
−
2aðX − FÞ

X
∂
2Ψs

∂t∂φ
þ
�
a2

X
−

1

sin2θ

�
∂
2Ψs

∂φ2

− X−s ∂

∂r

�
Xsþ1

∂Ψs

∂r

�
−

1

sin θ
∂

∂θ

�
sin θ

∂Ψs

∂θ

�
þ 2s

�
aðr −mÞ

X
− i

cos θ
sin2θ

�
∂Ψs

∂φ

þ 2s

�ðr −mÞF
X

− r1 − r2 þ ia cos θ

�
∂Ψs

∂t
þ ðs2cot2θ − sÞΨs ¼ 0; ð4Þ

where Ψs is the Teukolsky wave function for spin s, and
ri ¼ rþ 2ms2i are “shifted” radial coordinates. If Ψs is
assumed to be in the form

Ψsðt; r; θ;φÞ ¼ eiðωtþkφÞRsðrÞSsðθÞ; ð5Þ

the conjectured Teukolsky equation (4) can be easily
decoupled to the system of equations (2) and (3) with
λk;s as the separation constant. It is worth noting that

contribution of nonzero spin into the Teukolsky equation (4)
is given through multiplication by powers of s.
Equation (4) can be rewritten in a more concise form,

convenient for further application. To obtain it, we take the
wave function Ψs (or rather its radial part Rs) in the form

Ψs ¼ X−s=2Ψ̄s; ⇔ RsðrÞ ¼ X−s=2R̄sðrÞ: ð6Þ
Thus, the above relation allows one to rewrite the
Teukolsky equation (4) in the following way:

−
∂

∂r

�
X
∂Ψ̄s

∂r

�
þ 1

X

�
F

∂

∂t
þ a

∂

∂φ
þ sðr −mÞ

�
2

Ψ̄s −
1

sin θ
∂

∂θ

�
sin θ

∂Ψ̄s

∂θ

�

−
1

sin2θ

�
asin2θ

∂

∂t
þ ∂

∂φ
þ is cos θ

�
2

Ψ̄s − 2sðr1 þ r2 − 2ia cos θÞ ∂Ψ̄s

∂t
¼ 0: ð7Þ

We stress once more that, although Eqs. (4) and (7) have
been derived and are thus directly applicable only to the
cases s ¼ 0;�1=2, we expect that features for minimally
coupled fields of higher spins, including gravitational
perturbations, can be properly accounted by them as well.
Our expectations are also based on the fact that, in the
Kerr limit (s1 ¼ s2 ¼ 0), both of these equations reduce
to the corresponding forms of Teukolsky for Kerr space-
time.

III. STABILITY OF TEUKOLSKY
EQUATION SOLUTIONS

Teukolsky equation showed its advantage at the attempt
to solve a quite general puzzling question, namely whether
there were unstable solutions (modes). For the Kerr black

hole the matter is more subtle due to the presence of an
ergoregion outside the black hole. Whiting proposed a
procedure which allowed to overcome this difficulty,
allowing him to demonstrate the absence of unstable modes
of the Teukolsky equation for the Kerr black hole [3]. In
this work we will show the absence of unstable modes (of
both bosonic and fermionic nature) for a rotating STU
black hole with pair-wise equal charges. For convenience,
we work with Eq. (7).
Following the notation of [4,5], we introduce new

variables instead of the radial r and angular θ coordinates:

x ¼ r − r−
rþ − r−

; y ¼ 1

2
ð1 − cos θÞ: ð8Þ
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We point out here that the same transformation of coordinates was used in our earlier paper [9] to rewrite the corresponding
equations for the wave function components in a standard form of Heun equation. However, the aforementioned paper only
examined the s ¼ �1=2 cases. Now, we note that the radial equation (3) can be rewritten as follows:

X 00
s þ

�
−α̃2 þ α̃ κ̃þλ̃þ 1

2
κ̃2

x
þ

1
4
− β̃2

x2
þ α̃ κ̃−λ̃ − 1

2
κ̃2

x − 1
þ

1
4
− γ̃2

ðx − 1Þ2
�
X s ¼ 0; ð9Þ

where

α̃ ¼ iωϰ; β̃ ¼ s
2
−

i
ϰ
ðηr− þ ξÞ; γ̃ ¼ s

2
þ i
ϰ
ðηrþ þ ξÞ; κ̃ ¼ s − iη;

λ̃ ¼ 1

2
þ α̃ðγ̃ − β̃Þ − 1

2
ðγ̃ − β̃Þ2 þ λk;s þ ν; ν ¼ s; ð10Þ

and here η ¼ 2mωð1þ s21 þ s22Þ, ξ ¼ 4ωm2s21s
2
2 þ ka,

ϰ ¼ rþ − r−. Here we have performed the transformation
X s ¼ ðxðx − 1ÞÞ1=2R̄s of the radial wave function. We
point out that for the particular case s1 ¼ s2 ¼ 0 the
relations (10) are reduced to corresponding parameters
derived for standard Kerr solution [3]. For the scalar field
(s ¼ 0) the derived relations (10) are in agreement with
coefficients, obtained in [4] for the particular case of
pairwise equal charges.
For the angular part we perform the transformation Ys ¼

ðyð1 − yÞÞ1=2Ss and write

Y00
s þ

�
−α2 þ ακ þ λþ 1

2
κ2

y
þ

1
4
− β2

y2

þ ακ − λ − 1
2
κ2

y − 1
þ

1
4
− γ2

ðy − 1Þ2
�
Ys ¼ 0; ð11Þ

and the coefficients in this equation are given by

α¼2aω; β¼ sþk
2

; γ¼ s−k
2

;

κ¼ s; λ¼1

2
þαðγ−βÞ−1

2
ðγ−βÞ2þλk;sþs: ð12Þ

Equations (9) and (11) are much more convenient for
further computations.
Following Whiting’s procedure [3] we introduce a new

function h̄ðxÞ defined by the integral transformation

h̄sðxÞ ¼ eα̂xxβ̂ðx − 1Þγ̂
Z þ∞

1

e2α̃xze−α̃zz−
1
2
−β̃

× ðz − 1Þ−1
2
−γ̃X sðzÞdz; ð13Þ

where

α̂¼−α̃; β̂¼−
1

2

�
β̃þ γ̃þ κ̃

�
; γ̂¼−

1

2

�
β̃þ γ̃− κ̃

�
:

ð14Þ

The transformed wave function h̄sðxÞ solves the following
equation:

xðx − 1Þh̄00s þ ð2x − 1Þh̄0s þ
�
4ωðηmþ ξÞx − λk;s − s

þ ω2ϰ2xðx − 1Þ − s2
x − 1

x
þ η2

x
x − 1

�
h̄s ¼ 0: ð15Þ

To transform the angular equation (11) a differential
transformation should be applied [3]. Let us briefly
describe the key points of this transformation. It was
shown that there is a relation between YsðyÞ and a new
function vsðyÞ which satisfies an equation with the same
structure as (11). Namely, if for chosen values of param-
eters ε; ε0; ε00 (ε; ε0; ε00 ¼ �1) the parameter n, defined as

n ¼ ε00γ þ ε0β þ εκ ð16Þ

takes integer values, then the function

vsðyÞ ¼ eᾱyyβ̄ð1 − yÞγ̄
�
∂

∂y

�
n
eεαyyε

0βð1 − yÞε00γYsðyÞ ð17Þ

is a solution of an equation similar to (11), if barred
parameters take the form

ᾱ¼−εα; β̄¼1

2
ð1þnÞ−ε0β; γ̄¼1

2
ð1þnÞ−ε00γ: ð18Þ

In order to achieve our goal, only two options for the
order of derivative n are possible, namely n ¼ js − kj
and n ¼ jsþ kj. Taking the latter one, we arrive at the
equation

v00sðyÞ þ
�
−4a2ω2 þ λk;s þ sþ 1

2
− 4aωk

y

−
λk;s þ sþ 1

2

y − 1
þ 1=4

y2
þ 1=4 − s2

ðy − 1Þ2
�
vsðyÞ ¼ 0: ð19Þ
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Introducing new function vsðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yð1 − yÞp

v̄sðyÞ, we
rewrite it in the form�
yð1 − yÞ∂2y þ ð1 − 2yÞ∂y − 4a2ω2yð1 − yÞ

þ 4aωkðy − 1Þ þ λk;s þ sðsþ 1Þ − s2

1 − y

�
v̄sðyÞ ¼ 0:

ð20Þ

The key step toward proving the stability of Teukolsky
equation solutions or the absence of unstable modes is the
so-called “unseparation of variables.” Since Eqs. (15) and
(20) have the same separation constant λk;s, which comes
from the original Teukolsky equation (7), it may be
assumed that both Eqs. (15) and (20) are derived from a
single equation through the same process we have used to
obtain Eqs. (9) and (11) from Eq. (7), i.e., using separation
of variables and the transformation of coordinates (8). This
reasoning leads to the equation

�
∂

∂r

�
X

∂

∂r

�
þ 1

sin θ
∂

∂θ

�
sin θ

∂

∂θ

�
− ðPðrÞ þ a2cos2θÞ ∂

2

∂t2

− 2a

�
r −m
ε0m

− cos θ

�
∂
2

∂t∂φ
− s2

�
r − rþ
r − r−

þ 1 − cos θ
1þ cos θ

��
eiðωtþkφÞh̄sðrÞv̄sðθÞ ¼ 0; ð21Þ

where ε0 ¼ ðrþ − r−Þ=ðrþ þ r−Þ and the function PðrÞ is defined as follows:

PðrÞ ¼ 4m2ð1þ s21 þ s22Þ2
ðr − r−Þ
ðr − rþÞ

þ 8m2

ϰ
ð1þ s21 þ s22 þ 2s21s

2
2Þðr − r−Þ þ r2 − 2mr: ð22Þ

Equation (21) conforms with the corresponding equations
in the Kerr case [3], and with the recently derived equation
for the scalar field (s ¼ 0) in a more general background
geometry with four distinct charges [4]. We also point out
that the spin-dependent term in the Eq. (21) is of the same
form as for the Kerr background, and supposedly similar
dependence may take place for a more general background
geometry. The only term in Eq. (21) which depends on the
electric and magnetic charges is the function PðrÞ, similarly
to what was observed in [4]. We also note that PðrÞ is
positive in the outer domain (r > rþ), which is very
important for showing that there are no unstable modes.
Equation (21) allows us to derive the inverse auxiliary

metric ĝμν up to a conformal factor. Before we obtain this
metric, we point out that Eq. (21) can be represented as a
“massive” scalar field equation in terms of the auxiliary

metric, namely: b∇μ
b∇μΦ − fðr; θÞΦ ¼ 0, where b∇ denotes

the covariant differentiation operator with respect to the
metric ĝ. Now we easily write components of the inverse
auxiliary metric

ĝtt ¼ −
1

Ω2
ðPðrÞ þ a2cos2θÞ; ĝrr ¼ X

Ω2
;

ĝθθ ¼ 1

Ω2
; ĝtφ ¼ −

a
Ω2

�
r −m
ε0m

− cos θ

�
: ð23Þ

Imposing that the equation is exactly of the form (21) we
obtain explicitly the conformal factor Ω

Ω2 ¼ a
ffiffiffiffi
X

p �
r −m
ε0m

− cos θ

�
sin θ: ð24Þ

Finally, we write the auxiliary metric

dŝ2 ¼ Ω2

�
dr2

X
þ dθ2

�
þ X
Ω2

ðPþ a2cos2θÞsin2θdφ2

− 2
ffiffiffiffi
X

p
sin θdtdφ: ð25Þ

This metric is in agreement with the expression derived
in [4] for the scalar case. The Killing vector of time
translation Kμ ¼ ∂=∂t is everywhere null for the metric
(25). We will show that for the auxiliary metric (25) the
energy density current for the scalar field Jμ ¼ KλTμ

λ is
positive at least outside the black hole. As we have noted
above, the Eq. (21) can be derived form a “massive” scalar
field Lagrangian, which can be written in the form

L ¼ −
1

2
b∇λΦ�b∇λΦ −

f
2
jΦj2; ð26Þ

where f ¼ s2

Ω2 ðr−rþr−r−
þ 1−cos θ

1þcos θÞ, that is positive in the outer
region. The stress-energy tensor for the field Φ is

Tμν ¼ −
1

2

�b∇μΦ�b∇νΦþ b∇μΦb∇νΦ�

− ĝμν
�b∇λΦ�b∇λΦþ fjΦj2

��
: ð27Þ
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Using the above relation for calculation of the energy
current J0 and taking into consideration the factor

ffiffiffiffiffiffi
−ĝ

p
, we

obtain

ffiffiffiffiffiffi
−ĝ

p
J0 ¼ 1

2

�
ðPðrÞ þ a2cos2θÞj∂tΦj2 þ Xj∂rΦj2

þ j∂θΦj2 þ s2
�
r − rþ
r − r−

þ 1 − cos θ
1þ cos θ

�
jΦj2

�
sin θ:

ð28Þ

This current is manifestly positive outside the black hole.
The current in (28) generalizes the corresponding relation
for the Kerr background [3]. It is also a higher-spin
generalization for the STU black hole [4] with pairwise-
equal charges. Conservation of energy E ¼ R

d3x
ffiffiffiffiffiffi
−ĝ

p
J0

together with positive definiteness of the integrand give rise
to the conclusion that unstable modes should be withdrawn
from the solution.

IV. CONNECTION RELATIONS AND MODE
STABILITY FOR MASSLESS FERMIONIC

PERTURBATIONS

Fermionic perturbations should be considered separately,
because the differential part of the transformations is not
applicable directly for a half-integer spin. Indeed, if
s∈Z=2 the parameter n ¼ sþ k, which was assumed to
be integer as an order of differentiation, turns to be a half-
integer as well. Here we examine spin s ¼ 1=2 fermion
only and we use the Dirac equation instead of the general
Teukolsky equation. Additionally there is no superradiance
for spin s ¼ 1=2 fermions, therefore the Whiting’s trans-
formation can be avoided. Recently it was shown that, to
prove the absence of unstable modes in the Kerr case, some
analytical properties of the differential equation and the so-
called connection conditions, which relate the functions of
opposite directions of spin, can be used [11].
Throughout this derivation, we shall assume that the

angular frequency ω is real. For the Kerr black hole, one
may show that this case is possible through recourse to the
work of Hartle and Wilkins [13]. The basic reasoning goes
as follows: (i) The Schwarzschild black hole, which
corresponds to the a → 0 limit of Kerr, is known to be
stable, so that the ingoing modes YðinÞ cannot have zeros.
(ii) as a is continuously increased, a zero of YðinÞ cannot
move to the lower half of the complex plane without
crossing the real axis. To rigorously prove the second
assertion it is necessary to show that YðinÞ, viewed as a
function of a and ω, is analytic in these variables, so that
there are no branch points and zeros cannot reach the lower
half-plane without crossing the real axis. This was carefully
proved in the aforementioned Ref. [13]. For the purposes of
this derivation, we shall temporarily assume that this
reasoning is still valid for the background at hand, which

amounts to the assumption that the addition of the U(1)
charges in the metric (which may be seem as a smooth
deformation of the Kerr background) does not create
branch points or otherwise affect the reasoning above. A
brief explanation of why the arguments given in [13]
remain valid for the geometry considered in this paper
will be given at the end of this section.
To derive the connection relations, we write two pairs of

equations, for the radial and angular components of the
Dirac spinor, which appear due to separation of variables [9]

ffiffiffiffi
X

p
D̂−R̄1

2
ðrÞ ¼ λR̄−1

2
ðrÞ; ð29Þ

ffiffiffiffi
X

p
D̂þR̄−1

2
ðrÞ ¼ λR̄1

2
ðrÞ; ð30Þ

where the differential operators D̂� ¼ ∂r ∓ iK=X, the
functions KðrÞ and XðrÞ are defined above and λ is the
separation constant, related to the parameter λk;s of the radial
Teukolsky equation (3). Radial components of Dirac spinor
are denoted as R̄�1

2
ðrÞ to avoid confusion with the radial

wave functions of the Teukolsky equation (3). The radial
wave function for s ¼ − 1

2
in the system (29) and (30) is

identical to the corresponding Teukolsky wave function (3),
i.e., R̄−1

2
ðrÞ ¼ R−1

2
ðrÞ. To achieve complete agreement for

s ¼ 1
2
instead of the Dirac wave function R̄1

2
we define a new

function R1
2
ðrÞ as follows: R1

2
ðrÞ ¼ X−1

2R̄1
2
ðrÞ. Now the

system (29) and (30) can be rewritten as follows:

X

�
D̂− þ X0

2X

�
R1

2
ðrÞ ¼ λR−1

2
ðrÞ; ð31Þ

D̂þR−1
2
ðrÞ ¼ λR1

2
ðrÞ: ð32Þ

The main advantage of the system (31) and (32) is the
fact that both wave functions R�1

2
ðrÞ coincide with the

corresponding radial Teukolsky wave functions (3).
We also write the system for angular components of the

spinor wave function

L̂þS1
2
ðθÞ ¼ λS−1

2
ðθÞ; ð33Þ

L̂−S−1
2
ðθÞ ¼ −λS1

2
ðθÞ; ð34Þ

where L̂� ¼ ∂θ � ðaω sin θ þ k
sin θÞ and S�1

2
ðθÞ denote cor-

responding angular components of the spinor wave func-
tion. If the frequency ω is real then the differential operators
L̂� are also real. The angular components S�ðθÞ are real
functions as natural generalizations of spin spherical
harmonics. In this case the separation constant λ is real
as well. These considerations are crucial for the proof of
absence of unstable modes.
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To obtain the connection relations it is necessary to have
asymptotic relations for the radial wave functions R�1

2
ðrÞ

near the horizon and at infinity. To achieve this aim, we use
the Teukolsky equation (3) and, to simplify analysis we
introduce the tortoise coordinate r�, defined as follows

dr� ¼ FðrÞ
XðrÞ dr. Moreover, for convenience to introduce

auxiliary function X s ¼ X
s
2F

1
2RsðrÞ instead of the

Teukolsky wave function Rs. At infinity r → ∞
(r� → þ∞) from the Teukolsky equation (3) it follows that

∂
2X s

∂r2�
þ
�
ω2 þ 2isω

r�

�
X s ≈ 0: ð35Þ

This equation holds up to ∼Oð1=r2Þ terms, which defi-
nitely go to zero as r → ∞. The asymptotic solutions of
Eq. (35) enable us to write asymptotic relations for the
Teukolsky wave function Rs:

Rs ≃ YðinÞ
s

e−iωr�

r
þ YðoutÞ

s
eiωr�

r2sþ1
; ð36Þ

where YðinÞ
s and YðoutÞ

s are amplitudes for ingoing and
outgoing waves respectively for the corresponding values
of spin s.
Near the horizon (r → rþ or r� → −∞) we obtain

∂
2X s

∂r2�
þ
�
ω̃ − is

rþ −m
FðrþÞ

�
2

X s ≈ 0; ð37Þ

where ω̃ ¼ ωþ ka
FðrþÞ. The solutions near the horizon

should be ingoing waves (infalling particles are examined),
therefore its solution and the corresponding Teukolsky
wave function take the form

X sðrÞ ≃ ZðinÞ
s e−iðω̃−is

rþ−m
FðrþÞÞr� ≃ ZðinÞ

s X−s
2e−iω̃r�

⇒ Rs ≃ ZðinÞ
s X−se−iω̃r� : ð38Þ

Here we point out that our asymptotic relations for the
radial wave functions RsðrÞ at the horizon and at the
infinity conform with the corresponding relations obtained
for the Teukolsky equation in Kerr case [2].
Now, using the asymptotic relations (36) and (38) and

the Eqs. (31) and (32), we find the connection relations
between the amplitudes YðinÞ

s , YðoutÞ
s , and ZðinÞ

s for opposite
values of spin. Taking the asymptotic relation (36) and the
Eqs. (31) and (32) we derive respectively:

2iωYðoutÞ
1
2

¼ λYðoutÞ
−1
2

; −2iωYðinÞ
−1
2

¼ λYðinÞ
1
2

: ð39Þ

Finally, if we take the asymptotic relations (38) and the
Eq. (32) we arrive at the following relation:

ZðinÞ
−1
2

ðrþ −m − 2iω̃FðrþÞÞ ¼ λZðinÞ
1
2

: ð40Þ

Similar connection relations for the Kerr background
were obtained in [11] and our relations are consistent with
them.
The other type of connection relations associates the

amplitudes YðinÞ
s , Yðout

s and ZðinÞ
s at infinity and at the

horizon for the same orientation of spin. This connection
relation can be established by virtue of the equation for the
auxiliary wave function X s which takes the form

∂
2X s

∂r2�
þUðr; sÞX s ¼ 0; ð41Þ

and we note that the explicit form of the function Uðr; sÞ is
not important for the further consideration, even though it
can be obtained easily. It is known that for any differential
equation of the form (41), the Wronskian is a constant,

namely for a pair of its two independent solutions X ð1Þ
s and

X ð2Þ
s we can write

WðX ð1Þ
s ;X ð2Þ

s Þ≡ X ð1Þ
s;r�X

ð2Þ
s − X ð1Þ

s X ð2Þ
s;r� ¼ const; ð42Þ

where the derivatives are taken with respect to r�. The
potential Uðr; sÞ satisfies U�ðr; sÞ ¼ Uðr;−sÞ while all the
other parameters of the potential Uðr; sÞ are held fixed,
therefore the invariance of the Wronskian can be rewritten
in the form

W
�
X 1

2
;X�

−1
2

�
rþ

¼ W
�
X 1

2
;X �

−1
2

�
∞
: ð43Þ

Using the explicit relation for the function X s and the
asymptotic relations (36) and (38) we can calculate both
sides of latter relation. Namely at the horizon we obtain

W
�
X 1

2
;X�

−1
2

�
rþ

¼ ZðinÞ
1
2

ZðinÞ
−1
2

��−ðrþ −mÞ − 2iω̃FðrþÞ
�
;

ð44Þ

and at infinity we arrive at the following form

W
�
X 1

2
;X�

−1
2

�
∞
¼ 2iω

�
YðoutÞ

1
2

YðoutÞ
−1
2

� − YðinÞ
1
2

YðinÞ
−1
2

��: ð45Þ

Finally, substituting the connection relations (40) and (39)
into the relations (44) and (45) respectively and equating
both of them we obtain

jZðinÞ
1
2

j2 ¼ jYðinÞ
1
2

j2 − 4ω2

λ2
jYðoutÞ

1
2

j2: ð46Þ

We also point out that to write the upper equation we have
used our assumption that the frequency ω and the separation
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constant λ are real. Clearly, if YðinÞ
1
2

¼ 0, the above equation

does not have any solution corresponding to real ω. This

means that a zero of YðinÞ
1
2

could never move to the lower half-

plane by crossing the real axis. When a ¼ 0, modal stability
can be shown rather straightforwardly from an energy func-
tional argument since, in this limit, the absence of an ergo-
sphere makes it possible to define a nonnegative energy
density directly from (4), without recourse to Whiting-type
transformations, such as the one used in the previous section
[14]. Modal stability implies that any nontrivial mode in the
nonrotating case must correspond to a frequency such that
ImðωÞ > 0. It follows that theremust exist a neighborhood of

a ¼ 0 in which the equationYðinÞ
1
2

ða;ωÞ ¼ 0 corresponds to a

frequency belonging to the upper half-plane. If an unstable
mode exists for the rotating black hole, this zeromust migrate
to the lower half-plane as a is changed, crossing the real axis
for some intermediate value of this parameter. The results

above show that, if YðinÞ
1
2

is an analytic function of a and ω, it

cannot develop a zero and cannot therefore give rise to an
unstable mode. A similar connection relation can be written
for s ¼ − 1

2
and the exact same argumentmay be conducted to

rule out unstable perturbations.
As previously explained, the argument above rests on the

premise that a zero of YðinÞ
s can only move from the upper to

the lower complex half-plane by crossing the real axis. This

is true provided that YðinÞ
s , viewed as a function of a and ω,

is analytic. To prove this statement, we must generalize the
argument given in Ref. [13] to the geometry at hand.
Fortunately, the formal analogy between the equations in
the STU and Kerr backgrounds greatly simplifies what
would otherwise be a strenuous task. The singularities of
both the radial and the angular equation for Dirac fermions,
as well as the behavior of the solutions in their neighbor-
hood, have been investigated in detail in a previous work by
two of the authors [9]. We thus know that, in the outer
region, there are two singularities: a regular one located at
the event horizon, and an irregular singularity at infinity. As
shown in [13], it is possible to study the properties of the
desired coefficient in terms of the behavior of the solution
in a neighborhood of those two singularities. The behavior
at infinity is governed by Eq. (35), which in exactly the
same one found for Kerr. This is to be expected, since the
difference between ri and r becomes negligible at infinity.
Thus, the demonstration given in [13] for the analyticity of
the solution in this region still holds in our case, without
need for any adjustments. Near the horizon, we have
Eq. (37), which is of the form

∂
2X s

∂r2�
þ Ω2X s ¼ 0; ð47Þ

where Ω2 is a constant. Although Ω has a different value in
relation to what is found in the Kerr background, the above
equation has the same form in both geometries. The proof
of analyticity given in [13], which is mainly conducted in
terms of Ω, still works in our case, with some tedious but
straightforward adjustments. The numeric value of Ω may
be important for some applications, but it does not matter
for our present purposes, since it does not change the signs
in any of the bounds relevant to the demonstration of
analyticity.1 Thus, it may be directly verified, through the
same steps conducted in the aforementioned reference, that

YðinÞ
s is still analytic in the appropriate domain. This,

together with the fact that the behavior at infinity is the
same as in the Kerr background, suffices to ensure that a
zero cannot migrate from infinity or through branch cuts.

V. CONCLUSIONS

The mode stability for black holes has become a very
active area of study in recent years among both mathema-
ticians’ and physicists’ communities [1,4,5,15]. To exam-
ine mode stability for general relativistic backgrounds, the
celebrated Teukolsky equation is often used [2,3], but for
more general black hole backgrounds, such as those from
string theory and/or supergravity, an equation of this kind is
not yet known.
In a previous work from two of the authors [9], the

separability of the Dirac equation on a rotating pair-wise
equal charged STU black hole background has been
analyzed. The results from this investigation, as well as
earlier ones concerning scalar fields [4], have led us to
conjecture the Teukolsky-like equation that has been used
in this work to study minimally coupled probe fields of
higher spins. Thus, we have used Eq. (4) to derive
decoupled equations for the radial and angular parts,
obtained though the method of separation of variables.
Generalizing Whiting’s procedure, we study mode stability
for minimally coupled fields of higher integer spin. The
obtained results are in agreement with the analysis con-
ducted in Ref. [4] for scalar fields in a more general metric.
There are some subtleties for the fermionic case, which
preclude a straightforward application of Whiting’s pro-
cedure. To examine mode stability for the torsion-modified
massless Dirac equation, we derive connection relations
relating the two components of this equation, following the
approach considered in [11]. The connection relations are
shown to be in direct contradiction with the existence of
unstable modes in the theory, which allows us to rule them
out. We note that spin 1=2 fields were observed to cause

1Indeed, the charges only enter the calculations through FðrþÞ,
which generalizes the expression r2 þ a2 ≈ 2mrþ. Since FðrþÞ is
also a positive constant, it plays the same role in the argument,
regardless of the choice of δi. In particular, this generalization
leads to ImðωÞ < C=FðrþÞ, where C is a positive constant, which
suffices to cover the lower half-plane for any δi.
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instability of the event horizon [11], but this issue needs
careful study and will be examined elsewhere.
An important direction for further study is the applica-

tion of the developed techniques for five dimensional STU
black holes, where up to now only scalar field mode
stability has been examined [5].
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