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This paper considers the possibility that, starting from a relativistic Hermitian quantum field theory in the
ultraviolet (UV) regime, and applying a nonperturbative renormalization-group (RG) flow, we arrive at a
situation where there are infrared (IR) singularities in the RG flow of couplings. The latter can be resolved
by assuming that the theory can have a phase described by a related non-Hermitian PT -symmetric
modification in the IR. The UV-to-IR (Hermitian-to-PT -symmetric) transition can occur in a single
renormalization-group flow of the pertinent couplings, as demonstrated in concrete examples. When
embedded in a gravitational setting such a transition can lead to a repulsive gravity phase. If there is a RG
flow to a repulsive PT -symmetric gravity, then this would be an alternative to dark energy. The discussion
here is presented in the context of a string-inspired Chern-Simons gravitational effective action, which
involves a pseudoscalar (axionlike) field coupled to Abelian gauge fields and gravity; it may also hold more
generally in gravity with torsion. The validity of such a scenario in realistic theories might alleviate the need
for de Sitter phases in the current epoch of cosmological evolution, thus avoiding their associated
conceptual and technical complications.
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I. INTRODUCTION AND MOTIVATION

This paper proposes a novel scenario for the observed
acceleration of the Universe. Rather than attributing this
acceleration to a positive cosmological constant or a dark-
energy-dominated era, we interpret it instead as a transition
of the Universe at large length scales to a new phase
where the dynamics is described by a non-Hermitian
PT -symmetric gravitational theory [1] and the gravitational
interaction is repulsive. Non-Hermitian PT -symmetric field
theories [2–17] are field theory extensions ofPT -symmetric
quantum mechanics [1,18–23], which has a plethora of
applications, both, experimental [24,25] and theoretical.P is
a linear operator (such as parity) and T is an antilinear
operator (such as time-reversal). A quantum mechanical
system with unbroken PT symmetry has a completely real
spectrum which leads to unitary dynamics [1,18,22].
The antilinearity, rather than Hermiticity, characterizes
PT -symmetric theories and provides a novel guiding
principle for quantum theory [26,27]. PT - symmetric field
theories are effective field theories, which may describe

aspects of beyond-the-Standard Model physics (BSM),
including massive neutrinos [14,28–45]. The role of
PT -symmetric formulations changing repulsive forces to
attractive forces and vice versa has a history, which was
instigated by a classic paper by Dyson on the divergence
of perturbation theory in quantum electrodynamics
(QED) [46]. He argued that the weak-coupling perturbation
expansion in QED, which is a formal series in powers of the
fine-structure constant α ∼ 1=137, is divergent. Dyson
argued that since the classical Coulomb force is proportional
to α, if the sign of α were changed by replacing the electric
charge e by ie, the repulsive force between two electrons
would become attractive. Thus, there is an abrupt change in
the nature of the physics at α ¼ 0. The possibility of
classical repulsive PT -symmetric gravity was noted in
[1] at a speculative level but with no concrete proposal.
Clearly gravity is attractive at everyday scales, but at very
large scales it is not. One way of understanding scales is
through the renormalization group in quantum theory. In this
article we consider a gravitating system that exhibit singu-
larities in their phase diagrams for large length scales.
Our aim in this work is to pursue, using nonperturbative

methods, a potential gravitational aspect of PT -symmetric
quantum physics related to the observed accelerated
expansion of the universe [47,48]. We start from a
Hermitian theory in the UV (ultraviolet) and see how a
non-Hermitian PT -symmetric theory can emerge in the IR
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(infrared). Our methods are necessarily approximate, but
such behavior has been demonstrated rigorously in two
dimensional minimal integrable models [49,50]. In particu-
lar, we conjecture that a PT -symmetric phase of gravity [1],
in which the gravitational interaction appears as repulsive,
arises within Chern-Simons (CS) gravity [51,52] inspired
from string theory [53–57]. This phase is due to a specific
singular behavior1 under nonperturbative renormalization-
group (RG) flows of specific couplings in the model,
related to the interactions of axionic degrees of freedom,
known [57,58] to characterise string theory spectra [53–56],
with CS terms; such terms arise in the theory as a result of
the Green-Schwarz mechanism [59] for the cancellation of
gauge and gravitational anomalies in the extra-dimensional
spaces of compactified strings. Such systems involve axion
(pseudoscalar) degrees of freedom coupled to topological
Pontryagin anomalous densities of both gravitational and
gauge nature. For simplicity we consider the restricted case
of Abelian gauge sectors and the absence of gravitational
anomalous terms, i.e., axion electrodynamics,. For this case,
we show that the singularities in the phase diagram of the
quantum theory lead to inconsistencies that can be remedied
(by an appropriate phase transition) on replacing the
Hermitian theory by a non-Hermitian but PT -symmetric
version.
We shall consider string effective theories in which

gravitational and gauge CS anomalous terms survive in
the (3þ 1)-dimensional spacetime after string compactifi-
cation. The flat spacetime limit of such constructions leads
to an axion electrodynamics model, once the gauge sector
CS terms are restricted to Abelian U(1) (electromagnetic)
gauge groups. On coupling the axion electrodynamical
system to dynamical gravity, we conjecture that the
PT -symmetric non-Hermitian IR phases may correspond
to repulsive gravitational interactions at large (cosmologi-
cal) scales. We reinterpret existing works in the literature on
nonperturbative renormalization group (RG) studies of such
axion-electrodynamics models [60], in terms of potential
phase transitions of the Hermitian system to a non-
Hermitian but PT -symmetric one. The transition occurs
at the singularities of the RG beta functions in the infrared
(IR) region, which such systems exhibit. Should such a
phase be valid in realistic cosmologies, it might describe the
observed accelerated expansion of the universe at late eras,
thus avoiding the technical and conceptual issues associated
with de Sitter vacua [61], especially from the point of view
of string theory. Positive cosmological-constant (de Sitter)
gravitational backgrounds appear in conflict with both
perturbative [62,63] and nonperturbative string theory
frameworks [64–66]. The presence of (observer-dependent)
de Sitter horizons, prevents the existence of a well-defined
scattering S-matrix, due to the lack of asymptotic “in” and

“out” states. Also the failure of infinite towers of massive
string states to decouple at specific points of the moduli
spaces of string theory in de Sitter backgrounds, leads to the
incompatibility of such backgrounds with a consistent
embedding in a quantum gravity setting. Thus the latter
models appear to belong to the so-called “swampland
regions” [66] of quantum gravity theories. Therefore such
frameworks allow only quintessesnce models for dark
energy as the cause of the currently observed accelerating
expansion of the universe.
PT symmetric quantum mechanics poses some technical

issues because it is non-Hermitian. It is often treated using
canonical quantization and Hilbert space methods [1]. For
unitarity the Hilbert space requires an inner product which is
different from the Dirac inner product used for Hermitian
theories. Even in quantum mechanics (with a finite number
of degrees of freedom) it is not usually possible to calculate
this inner product exactly. For an infinite number of degrees
of freedom the construction of the inner product can only be
done perturbatively for “realistic” (rather than toy) field
theories. The resultant perturbative quantum theory may be
highly singular [67] and so not useful.2 Quantum theory,
however, has an alternative formulation in terms of path
integrals and associated functional methods in general
spacetime dimensions D, which can alleviate the above
difficulties. The partition function (or generating functional)
is expressed as a path (functional) integral [68] and serves as
a starting point for both perturbative and nonperturbative
calculations of Schwinger functions and beta functions. The
path integral (in analytic approaches) can be defined semi-
classically for weak coupling. For a theory to be defined this
path integral needs to exist [69], whether in a Hermitian or
PT symmetric context. In the semiclassical framework
paths are chosen to be the functional analogue of steepest-
descent paths [70,71] (terminology from D ¼ 0) deter-
mined by Picard-Lefschetz theory. In the language of fixed
points suited for D ¼ 0, the steepest descent paths connect
the trivial fixed point to nontrivial saddle points. The
imaginary contributions, which arise from the nontrivial
saddle points, are canceled by the imaginary part of the
Borel sum of the perturbative fixed point. This is the crucial
nonperturbative physics of PT symmetry [72,73] present at
weak coupling, which is harder to unravel using canonical
methods. In this approach the Feynman diagrams follow
from gaussian evaluations around the trivial fixed point.
Although weak coupling analysis in simple models does
suggest the possibility of flows between Hermitian and
PT -symmetric fixed points [74], in our gravitational model
we require a strong coupling nonperturbative analysis,
which is possible using functional methods.
The functional approach has been studied at length

recently [73–77]. It leads to Schwinger-Dyson equations

1Singular nonanalytic behavior occurs generally due to the
divergent nature of weak coupling perturbation theory.

2When PT symmetry is broken, such a construction is not
possible.
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[3,78] and the functional renormalization group (FRG)
equations [79,80], which are compatible with PT sym-
metry. The role of the inner product in this approach can be
seen clearly in a PT symmetric theory for a pseudoscalar
field ϕ with a potentialUðϕÞ. The partition function Z½j� [in
the presence of a source3 jðxÞ] can be expressed in two
different ways [81], Z1½j� and Z2½j�, a time (T) ordered
vacuum expectation value [68]; so

Z½j� ¼ Z1½j� ¼
Z

Dϕ exp

�
iS½ϕ� −

Z
jðxÞϕðxÞ

�
ð1Þ

and

Z½j� ¼ Z2½j� ¼ h0jηT
�
exp

�
−
Z

dx jðxÞϕðxÞ
��

j0i: ð2Þ

with η as the time-independent metric of canonical PT
theory. The representation of Z½j� by Z2½j� is known as the
Symanzik construction [68]. The Schwinger-Dyson equa-
tions (SDE) obtained from Z1½j� and Z2½j� are known to
coincide [77]. Solutions of the SDE give the content of the
quantum theory. On taking the Legendre transformation of
the generating functional Z1½j�, we can derive the Wetterich
equation used in the functional renormalization group
flow [82]. The fact that nonperturbative renormalization
can lead from a Hermitian theory toPT symmetric theory is
the source of understanding the Lee model [83,84], which
before the PT -symmetric interpretation was regarded (for
decades) as full of ghosts.

A. Nonanalyticity and the rise
of PT -symmetric theories

Motivated by these considerations, we give arguments
in favor of PT -symmetric gravitational theories which
may offer alternative explanations of the current-era
cosmological data. Our investigation is prompted by
intriguing developments in a field theoretic study of
gravitational axion phenomenology and dynamical mass
generation [40,41,77,78,85]. We noticed a RG flow [77]
from Hermitian values of the coupling to those of a non-
Hermitian but PT -symmetric version of the field theory in
a one-loop analysis. This might be interpreted as a
dynamical appearance of PT symmetry, as in the non-
Hermitian Nambu-Jona-Lasinio model, for instance,
where the non-Hermiticity is claimed to appear sponta-
neously [16]. We further examine the robustness of these
findings by working with beta functions with nonzero ϵ
(where spacetime dimension D ¼ 4 − ϵ) calculated to
three loops in the Yukawa coupling and two loops in
the quartic coupling [74,86]. The possibility that the
effects of renormalization can lead from a Hermitian

theory to a PT symmetric theory is first demonstrated
in a different context in the Lee model [83,84], a solvable
toy model. However, the concepts of PT symmetry are
most developed in the context of quantum mechanics [18].
PT symmetry is realized not just in the form of the
Hamiltonian, but implies also a different phase of the
system [2,73,87] with an energy spectrum that cannot be
obtained from a Hermitian theory by analytic continuation
in the couplings of the theory [88–90]. Although the PT
phase is understood for the quantum mechanical anhar-
monic oscillator (with negative coupling), it can only be
deduced approximately in higher dimensional quantum
field theoretic systems through, for example, singularities
in renormalization group flows.
First let us consider RG flows in the simpler context of

chiral Yukawa interactions of axion fields ϕðxÞ coupled to
fermion fields ψðxÞ with coupling constant g [40,77,78],

LYukawa ¼ igϕψ̄γ5ψ : ð3Þ

The one-loop RG β function of g in D spacetime dimen-
sions as ϵ → 0þ leads to4

d
dt

ðg2Þ ¼ 5

8π2
ðg2Þ2 − ϵg2; ð4Þ

where d=dt≡ μd=dμ, and μ is a transmutation mass scale.
The solution to (4) with ϵt ≪ 0 is

g2 ≈ −
1

Cþ 5
8π2

t
; ð5Þ

where C is an integration constant. This calculation is only
heuristic but persists at two loops. It is admittedly
perturbative so we cannot conclude that it will definitely
persist as a nonpertubative effect [77]. For Hermitian
couplings [where g in (3) is real] at t ¼ 0 and C < 0,
we see from (5) that g2 increases with increasing μ until g2

hits a pole at finite t ¼ tp ¼ 8π2jCj=5 > 0 [91]. This is
similar to the Landau pole in Abelian U(1) gauge theories
and may be a sign of new physics. In terms of an infrared
(IR) cutoffm, t ¼ logðμ=mÞ. Here, t ¼ 0 corresponds to an
IR (large-distance) regime and t → ∞ (μ ≫ m) corre-
sponds to an ultraviolet (UV) (short-distance) fixed point.
Perturbation theory (at this order) breaks down at the

pole, and one must decide how to go around the pole.
Formally, for values of t > tp the theory becomes
non-Hermitian because g2 < 0. However, this theory is

3To formally maintain PT symmetry in the presence of a
nonzero source, the source can be coupled to iϕ [79].

4An analysis with respect to the coupling g rather than g2 was
made in Refs. [77,78] but in this paper we restrict our attention to
RG flows of g2. In [74] the analysis is extended to higher loops
where the renormalization group flows show the same qualitative
features.
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PT - symmetric and asymptotically free [92] because
g2 → 0− as t → ∞. The β function of the Hermitian theory
blows up at a pole (starting from some IR regime), while
the β function of the PT -symmetric non-Hermitian theory
starts at that pole, and then exhibits asymptotic freedom in
the UV. Given the approximate nature of this calculation
the precise nature of this singularity cannot be deduced and
is unlikely to be a pole, and could even be an essential
singularity, in a nonperturbative treatment. This indicates
that one could indeed go past this singularity to the
asymptotically free non-Hermitian PT -symmetric version,
which has the same observables.5

A conjectural prescription based on analysis of scalar
field theories in D ¼ 1 is given in Ref. [73] that allows the
continuation of a Hermitian (but ill-defined) self-interact-
ing scalar theory in D spacetime dimensions to a well-
defined non-Hermitian PT -symmetric theory. The con-
jecture in higherD (which is not proven) states that ifZðλÞ
is the partition function of the path integral of the
Hermitian self-interacting scalar theory with coupling λ,
then the corresponding partition function ZPT ðgÞ of the
PT -symmetric theory with self-interaction coupling g, is
given by

lnZPT ðgÞ ¼ Re½lnZðλ ¼ −gþ i0þÞ�: ð6Þ

This conjecture suggests a mechanism for avoiding the
aforementioned poles in the RG β functions by analytically
continuing the theory to aPT -symmetric theory. However a
word of caution: from the work of Bender and Wu [90,93]
on the anharmonic oscillator the singularity structure in the
complex g-plane is very complicated and is full of non-
analytic singularities. The path of any analytic continuation
may be tortuous.
Recently, the conjecture was applied in [94] to treat the

UV pole that appears in the RG β-function of the OðNÞ
scalar models at large N with Hermitian self-interactions of
the form (in Euclidean formalism)

Lint ¼
λ

N
ðϕ⃗T · ϕ⃗Þ2; N ≫ 1; λ∈R; ð7Þ

where ϕ⃗ denotes the N-component scalar field and T
indicates matrix transposition [91]. The avoidance of the
pole in the conjecture of [73] is accomplished under the
condition that the physical observables of the conjectured
PT -symmetric theory in the IR and the original Hermitian

theory in the UV remain the same and the poles in the β
function do not affect the physical observables.6

The Hermitian large-N theory is known to be charac-
terized by a positive RG β-function and a Landau pole in
the UV [96], as found for the renormalized coupling (5)
of the Yukawa interaction (3) in (3þ 1)-dimensional
models [74,77,78]. The PT -symmetric theory is obtained
by replacing λ → −g in the Euclidean formalism (taking
care of the Riemann sheet structure in complex g shown
in detail for the quantum anharmonic oscillator [93]),
where g denotes the PT -theory coupling; following the
conjecture (6) of Ref. [73], one analytically continues
λ → −gþ i0þ in the corresponding expressions of the
initially Hermitian theory, such as thermodynamic quantities
at finite temperature [94]. The nonperturbative (large N)
renormalized coupling gRðμÞ of PT symmetry (in dimen-
sional regularization in D ¼ 4 − ϵ dimensions, ϵ → 0þ),
exhibits a negative β function [94],

β ¼ d
d ln μ

gRðμÞ ¼ −
8π2

ln2
�
μ2

Λ2
c

� ¼ −
g2RðμÞ
2π2

< 0; ð8Þ

where μ is a transmutation mass scale. The scale Λc denotes
the scale at which the running coupling gRðμÞ develops a
pole as μ increases from μ ¼ Λc toward the UV

gRðμÞ ¼
4π2

ln
�
μ2

Λ2
c

� : ð9Þ

Notably, the expressions (8) and (9) are exact in the large-N
limit. As in the Yukawa case (5), the renormalized coupling
ofPT symmetry becomes small in the UV; that is, it exhibits
asymptotic freedom.
In Ref. [97] the authors apply the conjecture of [73] to a

(4 − ϵ)-dimensional theory, ϵ → 0þ, with fermionic self-
interactions (the large-N Gross-Neveu model of a four-
fermion interaction among N-component fermions):

Lint ¼
�
α

N

� 1
D−1ðψ̄fψfÞ D

D−1; ð10Þ

where ψT
s ¼ ðψ2;ψ2;…;ψNÞ, represents the N-component

fermion fields and α is a coupling. The Hermitian versions
of such theories are asymptotically free in the UV and
exhibit IR poles in their RG β functions (a situation
opposite to the Yukawa coupling of [74,77,78] examined
above. The avoidance of the β-function pole is similar).

5Since the PT theory has in general a different dynamical
behavior, and a different phase space than the initial theory, the
word “analytic continuation” here should be interpreted as
meaning the substitution of the pertinent coupling g by its purely
imaginary image, ig, g∈R. This is to be understood throughout
the current article.

6There are unresolved subtleties in defining a PT -symmetric
path integral for N-component fields. Moreover, the conjecture
of [73] has been scrutinized in [95], where, within a WKB
approximation it was argued that the conjecture is valid under
certain conditions.
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The switch in Ref. [73] to the counterpart PT -symmetric
non-Hermitian theories in the IR leads to interesting phase
transitions in a finite-temperature analysis. Indeed, the
renormalized coupling of the Hermitian theory αðμÞ has
a negative β-function

βα ¼
dαRðμÞ
d ln μ

¼ −
α2RðμÞ
2π2

; ð11Þ

which is opposite in sign from the corresponding β-function
of the large-N scalar theory [94]. Its solution leads to the
existence of a pole at some cutoff scale Λc in the IR, and
asymptotic freedom in the UV (μ=Λc → 0þ):

αRðμÞ ¼ 4π2= lnðμ2=Λ2
cÞ: ð12Þ

On the other hand, for large N the nonperturbatively
renormalized coupling of the PT theory, αPTR ðμÞ, obtained
by the analytic continuation procedure of Ref. [73], has a
positive β function, which decays into the IR regime,

βPTα ¼ d
d ln μ

αPTR ðμÞ ¼ αPTR ðμÞ2
2π2

⇒ αPTR ðμÞ ¼ −
4π2

ln
�
μ2

Λ2
c

� ;

μ < Λc: ð13Þ

These simple models may contribute to a nonperturbative
understanding of the rich phase structure that such systems
may posses.7

B. Main theme and structure of the article

In this article we consider gravitating systems that exhibit
singularities in their phase diagrams for large length scales.
These systems involve axion degrees of freedom coupled to
topological Pontryagin anomalous densities of both gravi-
tational and gauge nature. These couplings are related. Such
self-gravitating axion systems have a natural interpretation
as low-energy systems of (3þ 1)-dimensional string-
inspired gravity (after compactification), where the axion
plays the role of the dual of the field strength of the Kalb-
Ramond (KR) spin-one field of the massless gravitational
multiplet of the string. This KR axion is the so-called string-
model independent axion, which seems to be present in all
string models. In addition, in string theory there are addi-
tional axions, coming from compactification, which depend
on the underlying microscopic string theory model, and
they are not part of the string massless gravitational
multiplet [58]. We can simplify to the case of Abelian

gauge sectors with no gravitational anomalous terms. This
simplification allows us to make use of results from axion
electrodynamics [60]. We demonstrate that there are
singularities in the phase diagram of the theory, which
lead to inconsistencies that can be remedied (by appro-
priate phase transitions) involving a replacement of the
Hermitian theory by a non-Hermitian PT -symmetric
version. As we shall discuss in this article, when embedded
in curved space time, such models lead to gravitational
models with negative values of the Newton constant. This
feature should be contrasted with the usual (in the context
of (weak) quantum Einstein gravity) running of the
Newton constant (asymptotic safety approach), where,
as we shall see in the next section, the flow never leads
to repulsive gravity phase [98–101].
The KR (or gravitational) axions may also be viewed as

(3þ 1)-dimensional duals to totally antisymmetric torsion
in the geometry of the string-inspired effective theory
[57,102], at least up to quartic order of target-spacetimes
derivatives in a Regge slope α0 expansion [53–56]. Such a
link could also lead to the conjecture that the aforemen-
tioned behavior may characterize more general gravitational
theories with torsion [103–107], such as Einstein-Cartan
theory [108] and Chern-Simons gravity [51] and not just
standard Einstein gravity.
It is important to contrast our approach with a quantum

field theoretic approach with mixed repulsive and attractive
interactions. It is possible that a renormalization group flow
of the respective couplings might allow a trajectory
between basins of attraction of fixed points [109] which
does not require any singular behavior. For instance, in
cases where the relevant potential contains the difference
between two Yukawa potentials, one could in principle
define (typically violating spectral positivity) an appropri-
ate combined running coupling such that the total force
switches from attractive to repulsive. This case is not in
general associated with the existence of a singular point of
the renormalization-group flow, unlike our case discussed
above, because the (renormalized) couplings of the two
Yukawa interactions typically have independent fixed
points. Our case is not simply a non-Hermitian quantum
field theory with attractive and repulsive interactions in the
same channel. As we shall argue in Sec. V, the change of
the sign of the gravitational interaction is induced by the
existence of singular points of (the nonperturbative)
renormalization-group flows of the axion-electrodynamics
part of the curved-space string-inspired CS effective action
in (26), which necessitates a nontrivial jump to the PT
symmetric framework, in order to bypass such a singularity
(cf. Sec. IV).
This paper is organized as follows: In Sec. II, we briefly

review some results from the asymptotic safety approach to
quantum gravity, as regards UV versus IR properties of the
running of the gravitational constant with the renormaliza-
tion group (RG) scale; this running will be correlated with

7The thermodynamical analysis of Ref. [97] reveals also an
interesting first-order phase transition at the pole, separating
stable, meta-stable, and unstable phases.
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the running of the coupling in our axion electrodynamics.
In Sec. III we give details of the superstring-inspired
gravitational model and explain the origin of the axion
and its anomalous gauge and gravitational couplings in this
context. In Sec. IV, based on a reduction of the gauge
structure of the string-inspired model to Abelian electro-
magnetic interactions only, we discuss the nonperturbative
renormalization of the coupling in (a flat-spacetime) axion
electrodynamics, the prototypical Hermitian model. The RG
flow shows a singular infrared behavior which lies near the
nontrivial infrared fixed point of the model. Although this
singularity is much more complicated than, for example, a
pole (noted in an earlier example), we propose to bypass
such a singular flow behavior by replacing the theory by its
non-Hermitian PT -symmetric counterpart, which has a
trivial IR fixed point but a nontrivial UV fixed point. In
Sec. V, we connect this flat spacetime model to our (string-
inspired) gravitational theory (in a dynamically curved
spacetime) and provide arguments on how the analytically
extendedPT version of the model in the infrared results in a
phase transition to a repulsive- gravity phase at large scales.
We also discuss potential subtleties concerning the validity
of this conjecture in the quantum gravity sector, which
itself has a RG running of the gravitational coupling [76]
(Newton’s “constant”). Our conjecture rests on the presence
of the (singularly) running axion coupling; the gravitational
coupling changes sign at the infrared and leads to a
repulsive-gravity phase at large scales. Our conclusions
and outlook are given in Sec. VI.

II. ASYMPTOTIC SAFETY
AND QUANTIZATION OF GRAVITY

The quantization of Einstein gravity as an ordinary field
theory leads to thewell-known asymptotic safety of Einstein
(3þ 1)-dimensional gravity [98,110], and the existence of a
UV fixed point for the running Newton constant [99,111].
For our purposes we follow the treatment in [99], and
references therein (in particular [100,101]), which is closer
in spirit to the work here. The approach is based on
a quantization of gravity on a Euclidean lattice, using a
discrete higher-derivative action whose naive classical
continuum limit corresponds to the action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−

1

2κ2
Rþ bRμνρσRμνρσ

þ 1

2
ða − 4bÞCμνρσCμνρσ þ Λ

�
; ð14Þ

where a and b are dimensionless constants, Cμνρσ is the
Weyl tensor, and Λ is a cosmological constant term. The
higher-derivative terms in the action help to avoid unbound-
edness (from below) of the Einstein-Hilbert action on the
lattice [112,113]. For string-inspired quantum theories of
gravity, such higher-derivative additions are natural.

According to that approach to gravity quantization, the
RG running of Netwon’s constant G ¼ 8πκ2 in the vicinity
of the UV fixed point is described by

Gðk2Þ ¼ 8πκ2 ¼ Gc

�
1þ a0

�
m2

IR

k2

�
1=2ν

þO
��

m2
IR

k2

�
1=ν

��
;

ð15Þ

where k2 is a running mass scale, and m2
IR is an IR mass

scale, which can be taken to be of the order of today’s
Hubble parameterH0, if we are to explain the current-epoch
acceleration of the expansion of the universe. The detailed
computations of [100,101] have shown that a0 > 0 and the
critical exponent ν ¼ 1=3. The running Newton’s coupling
flows to Gc, asymptotically for large k ≫ mIR (short
distances); Gc can be identified with the physical value
of Newton’s “constant,” measured at laboratory scales, i.e.,
(in units ðℏc ¼ 1Þ: ffiffiffiffiffiffiffiffiffiffiffi

8πGc
p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8πGphys
p

∼M−1
Pl , with the

reduced Planck mass scale MPl ¼ 2.4 × 1018 GeV.
The UV behavior (15) is model dependent, but the

approach of G to an UV fixed-point value Gc as k2=m2
IR →

∞ seems to be model independent [98]. On the other hand,
the expression (15) is ill behaved in the IR, k2=m2

IR → 0þ,
where it develops a pole that needs to be regulated. Such a
regularization is highly model dependent. In [99], the
following regularization has been suggested, by means
of which the pole 1=k2 is replaced simply by 1=ðk2 þm2

IRÞ.
Under such a scheme one may write for the IR behavior of
the running Netwon’s coupling in the models of [99–101]

Gðk2Þ ≃ Gc

�
1þ a0

�
m2

IR

k2 þm2
IR

� 1
2ν þ…

�
: ð16Þ

If this assumption is correct, this would imply the following
IR (large (cosmological) distance) behavior of the running
Newton’s coupling in (3þ 1)-dimensions:

lim
k2=m2

IR→0þ
Gðk2Þ ¼ G∞

�
1 −

�
a0

2νð1þ a0Þ
þ…

�
k2

m2
IR

þO
�

k4

m4
IR

��
; ð17Þ

where G∞ ¼ Gcð1þ a0 þ…Þ, independent of the IR
cutoff mIR.
In the above formulas the UV cutoff ΛUV, which can be

identified with the (reduced) Planck scale MPl, appears
inside the expression for Gc ¼ Λ−2

UVG̃c, with G̃c a dimen-
sionless coupling. In this scheme for regulating the IR pole
in the large-distance behavior of the renormalized
Newton’s coupling G, the latter is always positive, thus
gravity appears as attractive during the entire RG flow
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from UV to IR. In such a formalism, the addition of a
positive cosmological constant Λ > 0 can be interpreted as
leading to an effectively repulsive gravity that leads to the
current-era acceleration of the universe [47]. However, in
such a de Sitter Universe, the asymptotic Newtonian limit
cannot be rigorously defined, and hence such an inter-
pretation is not strictly valid [114] unless the de Sitter
phase is metastable.
Bypassing this IR pole will be of concern to us below,

where we argue that such a task can also be achieved by
passing to a non-Hermitian but PT -symmetric version of
gravity that we shall define properly within the context of
CS gravity [51,52] inspired by string theory [53–56]. The
non-Hermitian theory will be argued to characterise a
repulsive phase of the anomalous CS gravity. This model
requires a detailed discussion not commonly found in
treatments of ordinary Einstein gravity theory, as we see
in the next section.

III. STRING-INSPIRED MODELS
OF CHERN-SIMONS GRAVITY

In superstring theory [53–56], after compactification to
four space-time dimensions, the bosonic ground state of the
closed-string sector consists of massless fields in the so-
called gravitational multiplet, which contains a spin-0
(scalar) dilaton ΦðxÞ, a spin-2 traceless symmetric tensor
field, gμνðxÞ, which is uniquely identified as the (3þ 1)-
dimensional graviton, and a spin-1 antisymmetric tensor
gauge field BμνðxÞ ¼ −BνμðxÞ, known as the Kalb-Ramond
(KR) field. In what follows, for brevity and concreteness,
we set the four-dimensional dilaton field to a constant,
ΦðxÞ ¼ Φ0. This fixes the string coupling

gs ¼ expðΦÞ ¼ expðΦ0Þ: ð18Þ

There are always consistent solutions of the four-dimen-
sional string theory with such a configuration, and this
suffices for our purposes.
There is a Uð1Þ gauge symmetry of the closed-string

(3þ 1)-dimensional target-space-time effective-field-theory
action, associated with the KR B-field transformations

BμνðxÞ→BμνðxÞþ ∂½μθν�ðxÞ; μ;ν¼ 0;…3; θμðxÞ∈R;

ð19Þ

where Greek indices from now on denote space-time
indices, taking on the values 0;…3, and the symbol ½…�
denotes antisymmetrization of the respective indices. The
Uð1Þ gauge symmetry of the closed-string sector implies
that the corresponding effective action will be expressed
only in terms of the field strength of the B-field

HμνρðxÞ ¼ ∂½μBνρ�ðxÞ: ð20Þ

This is subject to the following Bianchi identity

H½νρσ;μ� ¼ ∂½μHνρσ� ¼ 0: ð21Þ

From now on, we omit the space-time-coordinate arguments
of the fields for brevity. The semicolon denotes covariant
derivative with respect to the standard Christoffel connec-
tion Γα

μν ¼ Γα
νμ of the metric gμν.

We next make the important remark that in superstring
theory anomaly cancellation requirements imply a modi-
fication of the KR field strength (20) by appropriate gauge
[Yang-Mills (Y)] and Lorentz (L) (gravitational) CS terms
(Green-Schwarz mechanism) [54]

H ¼ dBþ α0

8κ
ðΩ3L −Ω3YÞ;

Ω3L ¼ ωa
c ∧ dωc

a þ
2

3
ωa
c ∧ ωc

d ∧ ωd
a;

Ω3Y ¼ A ∧ dAþA ∧ A ∧ A; ð22Þ

where α0 ¼ M−2
s , withMs the string mass scale, which is in

general different from the four-dimensional Planck mass
scale MP ¼ 1.22 × 1019 GeV≡ ffiffiffiffiffiffi

8π
p

κ−1. We use standard
differential form notation for brevity [115]. Above, A is
the Yang-Mills gauge field one-form, and ωa

b the spin-
connection one-form (the Latin indices a, b, c, d are
(3þ 1)-dimensional tangent-space [i.e., Lorentz-group-
SO(1,3)] indices, referring to the Minkowski manifold
which is tangent to the space-time manifold at a coordinate
point x). The addition of the CS terms to (22) leads to a
modification of the Bianchi identity (21), which can now
be written as [54]

εμνρσH½νρσ;μ� ¼ εabc
μHabc

;μ

¼ α0

32κ

ffiffiffiffiffiffi
−g

p �
RμνρσR̃μνρσ − FμνF̃

μν
�
; ð23Þ

where the right side denotes the mixed anomaly, due to
chiral fermions in the theory circulating in the anomalous
loop [116,117], g denotes the determinant of the metric
tensor, F ¼ dAþA ∧ A is the two-form corresponding to
the Yang-Mills field strength (we use form notation for
brevity here), Rμνρσ is the Riemann space-time curvature
tensor8 and

εμνρσ ¼
ffiffiffiffiffiffi
−g

p
ϵμνρσ; εμνρσ ¼ sgnðgÞffiffiffiffiffiffi−gp ϵμνρσ; ð24Þ

8Our conventions and definitions used throughout this work
are: signature of metric ðþ;−;−;−Þ, Riemann curvature tensor
Rλ

μνσ ¼ ∂νΓλ
μσ þ Γρ

μσΓλ
ρν − ðν ↔ σÞ, Ricci tensor Rμν ¼ Rλ

μλν,
and Ricci scalar R ¼ Rμνgμν.
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with ϵ0123 ¼ þ1, etc., are the gravitationally covariant
Levi-Civita tensor densities, totally antisymmetric in their
indices. The tilde symbol above the curvature and gauge-
field tensors denotes the corresponding dual, defined as

R̃μνρσ ¼
1

2
εμνλπRλπ

ρσ; F̃μν ¼
1

2
εμνρσFρσ: ð25Þ

The nonzero quantity on the right hand side of (23) is
the “mixed (gauge and gravitational) quantum anomaly”
[116,117], which is known to be a total divergence of a
topological current Kμ [containing the CS forms in (22)].
In general, the parameters α0 and κ2 are independent in
generic string models [55,56], especially in view of the
possibility of large-extra-dimension compactifications.
Implementing the Bianchi identity (23) in a path integral

of the low-energy theory, we obtain an effective target-
space gravitational action for the ground state of the
bosonic sector of superstring theory, of interest to us here.
To lowest order in the string Regge slope α0, the (3þ 1)-
dimensional effective action of the closed-string bosonic
sector is then given by [53–57,118]:

SeffðIÞB ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−

1

2κ2
Rþ 1

2
∂μb∂μb

þ
ffiffiffi
2

3

r
α0

96κ
bðxÞ

�
RμνρσR̃μνρσ − FμνF̃

μν

�
þ…

�
;

ð26Þ

where the dots … denote gauge, as well as higher
derivative terms appearing in the string effective action,
that we ignore for our discussion here. In this construction,
bðxÞ is the KR axion, which appears initially as a standard
pseudoscalar Lagrange multiplier field, and eventually
becomes dynamical, after path-integration of the Hμνρ

field [57], with a canonically normalized kinetic term with
the correct sign [118] relative to the space-time curvature
(Einstein-Hilbert) terms in (26).
At this point we should remark that, in (3þ 1) spacetime

dimensions, the KR axion field is the dual of the KR field
strength Hμνρ:

∂σb ∝ εσμνρHμνρ: ð27Þ

Given that in string theory, up and including Oðα0Þ in the
effective target-space action, Hμνρ plays the role of space-
time torsion, one may observe that the considerations in our
article regarding the model (26), apply also to Einstein-
Cartan theories [108], in which the axionic degrees of
freedom are dual [in the above sense (27)] to the totally

antisymmetric part of the torsion [103–105,107]. For
completion at this stage we also note that, because
of (27), the Euclidean version of the string effective action
[to Oðα0Þ] [53–56]:

SB ¼ −
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2κ2
Rþ 1

6
HλμνHλμν þ…

�
; ð28Þ

there are ambiguities when we analytically continue (28),
with (27), back to Minkowski-signature spacetimes. The
latter are associated with the order we implement (27) in
the path integral [118]. Indeed, if we first use the property of
the Levi-Civita tensor density in four space-time dimensions
with Euclidean metric,

εðEÞμνρλε
μνρσðEÞ ¼ þ6δσλ ; ð29Þ

where δσλ denotes the Kronecker delta, and then analytically
continue the action (28) to Minkowskian-signature space
time, we obtain the real (Hermitian) effective gravitational
action (26). However, if we first analytically continues (28)
to a Minkowski-signature space time, and then use the
Minkowski-signature version of (29), that is the relation:

εμνρλε
μνρσ ¼ −6δσλ ; ð30Þ

then, we obtain an effective action in which the kinetic terms
of the b field have the wrong sign relative to the space-time-
curvature terms in the effective action, and thus the KR
axion would behave like a ghost (phantom) field. As
discussed in [41], one can map such an action into a
non-Hermitian PT version of attractive CS gravity [51,52].
In our article we stay within the normal axion field case. Our
PT non-Hermitian gravity theory, that represents the phase
transition of the Hermitian system at the infrared-region
singularities of the RG flow, corresponds to a repulsive
gravitational force at large distances.
The KR axion is the so-called model-independent string

axion [119], associated with the gravitational string multi-
plet as explained above, which is to be distinguished from
other stringy axions arising from compactification. We
also observe that, in view of the mixed anomaly appearing
in (23), the KR axion field couples to the gravitational and
gauge fields. This latter interaction is P and T violating;
hence, in view of the overall CPT invariance of any
relativistic, local and unitary (quantum) field theory (26),
the interaction is CP violating (where C denotes the Dirac
charge-conjugation operator). This is the standard
approach to deriving the effective theories of string
gravitational axions and their mixing with the axions
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coming from compactifications [57,119], in which the
axions are pseudoscalar fields. This approach leads to a
rich phenomenology [120–126].9
For our purposes we reduce the gauge sector to only

Abelian (Uð1Þ electrodynamics) terms. In what follows we
ignore, for the moment, the gravitational dynamics placing
the rest of the terms in (26) in flat target spacetimes. The
resulting part of the action (26) then leads to an axion
electrodynamics model discussed in Sec. IV, which is
quantized using path-integral and RG analysis nonpertur-
batively for the axion coupling [60]. This reveals a crucial
singular behavior (in infrared regions of the energy scale) in
the phase space, which we bypass by means of replacing
(near an appropriate infrared fixed point) the Hermitian
model by a suitable non-Hermitian but PT -symmetric
model, obtained via the replacement of the axion coupling
fb (33) by a purely imaginary one10:

fb → ifb: ð34Þ

The replacement (34) signifies a new phase. We then use
such flat-spacetime arguments as support for our conjecture
on the emergence of a repulsive phase of gravity at large
scales (infrared), once we embed the model in a dynamical
curved spacetime.
In the next section, we revisit a nonperturbative (func-

tional) renormalization-group (RG) analysis of the flat-
space axion electrodynamics, given in [60]. This model
constitutes (the flat-spacetime) part of the effective string-
inspired Chern-Simons gravity model, and its RG structure
will be used to argue the existence of a PT -symmetric
phase of gravity, when the model is embedded in curved
spacetimes. The nonperturbative RG flow given in [60] is
an important technical input to show the singularity in the
RG flow of the Hermitian theory and also to discuss the
flow in the associatedPT -symmetric theory. Hence we first
review some of the analysis in [60] to make our argument
clear. Our interpretation in terms of PT phases given below
is completely new, and constitutes the main purpose of the
current manuscript.

IV. A REINTERPRETATION
OF THE NONPERTURBATIVE

RENORMALIZATION GROUP ANALYSIS
OF AXION ELECTRODYNAMICS

We commence our discussion by first reviewing a
nonperturbative RG analysis [60] of the Euclidean
LagrangianLE related to (32) in the massless (m → 0) limit

LE ¼ 1

4
FμνFμν þ

1

2
∂μa∂μaþ

1

2
m2a2 þ 1

4
igaFμνF̃μν; ð35Þ

with gauge fixing ∇:A ¼ 0 and A0 ¼ 0. The mass dimen-
sion of g is −1 and so the theory is not perturbatively
renormalizable.11

This theory, however, can be treated using the functional
renormalization group (FRG) and the Wetterich equation
[80,82,128].

∂tΓk ¼
1

2
Tr½∂tRkðΓð2Þ

k þ RkÞ−1� ð36Þ

where ∂

∂t ≡ k d
dk, with k a running RG scale. Γk is the

effective average action. Γk→Λ ¼ SΛ is the bare action and
Λ is the UV cut-off. Γk→0 ¼ Γ is the full quantum effective
action. The Wetterich equation is an integro-differential
nonlinear equation and cannot be solved exactly. Progress
in obtaining solutions requires an ansatz for Γk. A standard
ansatz restricts Γk to

9We note for completeness that an important property of the
Hermitian non-Abelian axion-gauge-Pontryagin-index inter-
actions in (26) is periodicity of the effective actions under shifts
of the axion field bðxÞ. Indeed, in view of the Pontryagin-
topological-class interpretation of the gauge CS anomalous action
term (in the language of forms for brevity) [115]:

χ ¼ 1

16π2

Z
d4xTrðF ∧ FÞ∈Z; ð31Þ

where F the non-Abelian gauge field strength two form, we
observe that the Hermitian action term involving the CS coupling
of the b-field:

S ∋
1

16π2fb

Z
d4xbðxÞTrðF ∧ FÞ ð32Þ

exhibits a periodicity in the b field, bðxÞ → bðxÞ þ 2πfb, where
fb defines the so-called axion coupling, which in the case of (26)
is given by

f−1b ¼ π2

2

ffiffiffi
1

6

r
α0

κ
: ð33Þ

This implies the breaking of the shift-symmetry bðxÞ → bðxÞ þ
constant (due to the total derivative nature of the anomalous
Pointryagin terms in (26), by instanton effects in the non-
Abelian gauge theories for which the index χ ≠ 0 (31), and
leads to the well-known nonperturbative axion potentials
VðbÞ ¼ Λ4

inst½1 − cosðb=fbÞ�, and axion masses of order mb ∼
Λ2
inst=fb, where Λinst is the scale of the non-Abelian gauge group

instanton effects.
10The reader should notice that the resulting non-Hermitian

field theory no longer exhibits a periodicity in the axion field bðxÞ
unlike the Hermitian case. Axion masses in such a case may be
generated dynamically, e.g. through their Yukawa interactions
with appropriate chiral fermions [40,41,77,78,85], including
heavy right-handed neutrinos [127], that may appear in exten-
sions of the Standard Model.

11At this stage the reader should recall, for future use, that in
the context of our string theory (26), the axion field aðxÞ
corresponds to the KR massless axion bðxÞ, and the coupling

g is given by g ¼
ffiffi
2
3

q
α0
24κ ¼ 1

4π2fb
, where fp is defined in (33).
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Γk ¼
Z

d4x

�
ZF

4
ðFμνðxÞÞ2 þ

Za

2
ð∂μaÞ2 þ

m2
k

2
aðxÞ2

þ igk
4

aðxÞFμνðxÞF̃μνðxÞ
�
þ ZF

Z
d4xLGF ð37Þ

where LGF denotes a gauge fixing piece to the Lagrangian,
whose details can be found in [60]. The beta functions
calculated using this scheme are not universal but are
scheme dependent [60]. This is a feature of nonrenormalis-
ability in the perturbative sense.
From the above ansatz it is shown in [60] that

∂

∂t
m2

k ¼
∂

∂t
gk ¼ 0: ð38Þ

The physical observables are expressed in terms of dimen-
sionful quantities:

m2
R ¼ m2

k

Za
; g2R ¼ g2k

Z2
FZa

ð39Þ

where

∂tZa ¼
1

Ω

�
∂
2

∂q2

Z
d4p

δ2

δaðpÞδað−qÞ ∂tΓk

�
a;A;q→0

; ð40Þ

∂tZF ¼ 1

Ω

�
4

3

∂
2

∂q2

Z
d4pnκnλ

δ2

δAκðpÞδAλð−qÞ
∂tΓk

�
a;A;q→0

ð41Þ

This is a standard procedure in applying the functional
renormalization group. Associated dimensionless quan-
tities are

m2 ≡m2
R

k2
; g2 ≡ g2Rk

2: ð42Þ

We define the field anomalous dimensions as

γa ¼ −∂t logZa; γF ¼ −∂t logZF: ð43Þ

This leads to the following nonperturbative beta functions,
which determine the running of the coupling constants:

∂tg2 ¼ ð2þ 2γF þ γaÞg2; ð44Þ

∂tm2 ¼ ðγa − 2Þm2: ð45Þ

where

γa ¼
g2

6ð4πÞ2
�
2 −

γF
4

�
; ð46Þ

γF ¼ g2

6ð4πÞ2

0
B@

�
2 − γa

4

�
ð1þm2Þ2 þ

�
2 − γF

4

�
1þm2

1
CA ð47Þ

These equations, derived in [60], are the starting point of
our analysis. They have not been carefully analyzed for the
full range of m and g. However, the analysis of various
limiting cases is still relevant for us in conjunction with
relations of the form given in (16); these will be discussed
in the next subsection.

A. Behavior of renormalization group flows
in limiting cases

For m ≫ 1 and g ≪ 1 (weak coupling),

∂tg2 ¼
�
2þ g2

3ð4πÞ2
�
g2 ð48Þ

which has a solution g2RðkÞ ¼ g2RðΛÞ
1þ 1

6ð4πÞ2ðΛ
2−k2Þg2RðΛÞ

. Also

m2
RðkÞ ¼ m2

RðΛÞ
1þ 1

6ð4πÞ2ðΛ
2−k2Þg2RðΛÞ

.

Let us consider the massless theory, which is appropriate
for the flat spacetime and Abelian gauge sector limit of our
string-inspired gravitational axion theory (26), discussed in
the previous section. In this case, from (44) we deduce that
m ¼ 0 is an infrared fixed point. For m ¼ 0 and g ≪ 1

∂tg2 ¼
�
2þ 5g2

3ð4πÞ2
�
g2: ð49Þ

This leads to

g2RðkÞ ¼
g2RðΛÞ

1þ 5
6ð4πÞ2 ðΛ2 − k2Þg2RðΛÞ

; ð50Þ

a result similar to that found for the case m ≫ 1, examined
above. Both these results do not indicate any interesting
nonanalyticity in the flow to the infrared. We move away
from these limits to see whether there is any nonanalytic
structure.
For arbitrary values of g we are able to solve (46) for γa

and γF (as discussed in detail in [60], where we refer the
interested reader for further study)
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∂tg2 ¼ βg2 ¼ 2g2
13g4 − 384π2g2ð21þ 17m2 þ 4m4Þ − 147456π4ð1þm2Þ2

g4 − 384π2g2ð1þm2Þ − 147456π4ð1þm2Þ2 ð51Þ

∂tm2 ¼ βm2 ¼ 6m2
−g4 þ 128π2g2ð3þ 7m2 þ 4m4Þ − 49152π4ð1þm2Þ2

−g4 þ 384π2g2ð1þm2Þ þ 147456π4ð1þm2Þ2 ð52Þ

This form of the beta functions is manifestly nonperturba-
tive. Our application of the solution of these equations to
Chern-Simons gravity and an emergence of PT symmetry
is new. For m ¼ 0 the expressions simplify and we are able
to solve these equations, which is crucial for our analysis.

B. Massless case: Infrared singularities in the
nonperturbative renormalization group flows and a

PT symmetric phase

We consider the massless case, m ¼ 0, but arbitrary g,
studied in [60], which corresponds to the flat spacetime and
Abelian gauge limit of the string effective action (26). The
corresponding beta function reads12

∂tg2 ¼ 2g2
13g4 − 8064π2g2 − 147456π4

g4 − 384π2g2 − 147456π4
ð53Þ

The beta function is plotted in Fig. 1 as a function of g2.
The values of g for which the denominator vanishes (thus
leading to a singular behavior of the beta function) have the
property that they are either real or purely imaginary and
come in pairs

Singularity of βg occurs for gsing∶ ð�48.3728i;�78.2689Þ:
ð54Þ

This is significant and leads to a new PT symmetric
interpretation, which crucial for our analysis. Hence,
presumably, the beta function of a non-Hermitan theory
would also show such singular behavior, as we shall show
later. Of interest in what follows will be the singularity of
the Hermitian theory, occurring at [cf. (54)]:

g2sing ¼ ðgsingRðkÞkÞ2jk¼ksing ¼ 6126.0207; ð55Þ

which corresponds to a RG momentum scale k ¼ ksing > 0.

Next we look at the fixed points of the beta function of the
Hermitian theory, i.e., the values of the coupling at which
the beta function vanishes. Notably, (53) has a trivial IR
attractive fixed point at zero coupling g ¼ gIR⋆ ¼ 0, as well
as two real and two purely imaginary nontrivial fixed points,
but no fixed points with both real and imaginary parts.
Explicitly the nontrivial fixed points denoted by g⋆ are

g⋆ ¼ ð�13.2389i;�79.3174Þ: ð56Þ

For the Hermitian theory therefore, the nontrivial IR stable
fixed point occurs at

g⋆2 ¼ 6291.2499: ð57Þ

This is an IR fixed point as seen from the form of the beta
function in the neighborhood of this fixed point (passing
from negative to positive, as g2 increases). Thus, the
Hermitian theory has an IR attractive fixed point at zero
coupling g ¼ gIR⋆ ¼ 0, followed (as g2 increases) by a
singular behavior, which occurs at a RG momentum scale
k ¼ ksing > 0, corresponding to the value (55) of g.
We now examine the scale k ¼ ksing corresponding to

the singularity (55) of the RG β function near the nontrivial
IR fixed point (see Fig. 1). We estimate the value of ksing
by solving the RG equation (53) to obtain g ¼ gðtÞ.

FIG. 1. The beta function βg ≡ ∂tg2 of the Hermitian theory,
given in Eq. (53), exhibiting the proximity of a singular behavior
at a finite running coupling (55), as well as a fixed point behavior
(βgðgÞjg¼g⋆ ¼ 0), characterized by the existence of a trivial fixed
point at zero coupling, and a nontrivial one at strong coupling,
g2⋆ ≫ 1. A similar figure appears in [60].

12This equation can be solved using initial conditions deter-
mined, e.g. from astrophysical data for axion physics [129], if we
accept the role of the KR axion as a standard axion. This might
not be the case within the most general framework of string
theory, so other constraints might be applicable. For our purposes
such constants are not relevant, as we are dealing with ratios of
couplings for appropriate points in the RG flow.
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On integrating (53) from the nontrivial IR fixed point (57),
corresponding to a RG scale k0 ≡mIR, to a point corre-
sponding to an RG scale k, we obtain13

jgðkÞjð2281þ 13g2ðkÞÞ−0.46j27.6 − 4.4 × 10−3g2ðkÞj0.0013

¼ aet−t0 ¼ a
k
k0

: ð58Þ

where [cf. (57)] a≡ jg⋆jð2281þ 13g⋆2Þ−0.46j27.6 − 4.4×
10−3g⋆2j0.0013 ≃ 0.4, and thus, the RG running scale ksing,
corresponding to the singularity (55), is given by:

ksing ¼ 1.01k0: ð59Þ

The solution in (58) is just the principal branch of a
function gðkÞ with an infinite Riemann sheet structure and
so is extremely complicated. The singularity structure and
nonanalyticity indicate that the underlying approximations
are inadequate, and so the field theory may exist in a
different phase (as occurs in an anharmonic oscillator in
quantum mechanics where a much more complete analysis
is possible). From (58) we deduce at k ¼ ksing immediately
a very similar relation for gsing. This result is consistent
since in this range of g2 the beta function is negative; hence
in the RG flow from the region of the singularity (55) to the
nontrivial IR fixed point (57), an increasing running g2ðkÞ
corresponds to a decreasing RG running scale k. Formally,
we can take k0 → 0, indicating that the singularity of the
Hermitian theory lies very near the nontrivial IR fixed
point. Physically k0 could be taken to be the energy scale
corresponding to the inverse size of the Universe, for our
purposes.
For g2 > g2sing the beta function has (very large) negative

values until the (nearby) nontrivial IR fixed point g⋆2 >
g2sing is reached, at which the beta function vanishes. After
this second IR fixed point the beta function is positive,
increasing monotonically (in an unbounded way) with
increasing g. So as g2 → ∞ the beta function tends to
infinity. Indeed in the region of very large positive g2, the
beta function equation (53) can be approximated by

∂tg2 ≃ 26g2; g2 ≫ g⋆2 ¼ 6291.2499: ð60Þ

and so as g → ∞, the above equation is easily integrated to
give analytically the scaling [60]:

g2ðk∞Þ
g2ðkÞ ∼ e26ðt∞−tÞ ¼

�
k∞
k

�
26

; g2ðkÞ≫ 1; k < k∞;

ð61Þ

where k∞ ∼ et∞ is a large RG scale at which gðk∞Þ is very
large; so the coupling diverges highly nonlinearly with the
RG scale (large anomalous dimension). We next remark
that, if we adopt the point of view of effective field theory,
that no RG scale can exceed the UV cutoff Λ, then in
Eq. (61) we must identify k∞ with Λ. In our string-inspired
model, we may identify Λ ¼ Ms, where Ms is the string
scale, which is assumed not renormalized, i.e., it does not
run with the scale k. In the pertinent part of the diagram of
Fig. 1, then, the RG scale k flows from k0 ∼ 0 to Ms, in

FIG. 2. Nonperturbative RG beta function for non-Hermitian
case as a function of g̃2, given in Eq. (62) is qualitatively different
from the Hermitian beta function. The area included in the red
rectangle includes a nontrivial fixed point (apart from the trivial
one at zero coupling), which is indicated explicitly in the middle
panel. The lower panel is added for completeness, and shows the
behavior of the beta function as a function of g̃ > 0, in the
neighborhood of its fixed points. The middle figure is similar to
that in [60].13In our analysis we denote

ffiffiffiffiffiffiffiffiffiffiffi
g2ðkÞ

p
by jgðkÞj.
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agreement with the positive signature of the corresponding
beta function.
The plot in Fig. 1 is problematic below the nontrivial IR

fixed point, due to the singular behavior of the beta function
which lies close to the IR fixed point. We would like to
connect the interacting theory to the free theory at g ¼ 0
smoothly via an appropriate RG flow from an UV to IR
fixed point. This appears not to be possible if we stay
exclusively within the Hermitian theory, as a result of the
beta-function singularity at (55).
In the following we treat the singular behavior of the

Hermitian beta function at k ¼ ksing as a phase transition in
the system by considering the corresponding non-
Hermitian theory obtained via14 g → ig. Notably, this is
not an analytic continuation. This is due to the different RG
behavior of this theory. We therefore replace the part of the
diagram in Fig. 1 to the left of (and including) the
singularity until the trivial IR fixed point by the corre-
sponding flow diagram pertaining to the non-Hermitian
PT -symmetric theory.

The non-Hermitian theory can be studied explicitly by
writing g ¼ ig̃. In this case, we obtain [60]

∂tg̃2 ¼ βg̃ ¼ 2g̃2
13g̃4 þ 8064π2g̃2 − 147456π4

g̃4 þ 384π2g̃2 − 147456π4
: ð62Þ

The beta function exhibits a singularity at g2singNH ¼
2339.93 and nontrivial fixed points at g̃�NH ¼ �13.2456 ⇒
g̃�2NH ¼ 175.4459. We give plots of βg̃ as a function of g̃2

(and g̃) in Fig. 2. The nontrivial fixed point, which is UV in
nature due to the form of the beta function (turning from
positive to negative, as g2 increases, see Fig. 2), is
asymptotically free for this Abelian case. Thus, the RG
scale at the nontrivial fixed point can be identified with the
UV cutoff k⋆ ¼ Λ. The trivial fixed point is an infrared (IR)
attractor.
As in the Hermitian case, by integrating the beta function

from the UV fixed point (corresponding to k ¼ k⋆NH ¼ Λ)
to the scale kNHsing, corresponding to the singularity of the
beta function (cf. Fig. 2), we obtain:

jg̃singNHjj2281 − 13g̃2singNHj−0.46ð27.6þ 4.4 × 10−3g̃2singNHÞ0.0013
¼ aNHet−t

⋆ ¼ aNHkNH sing=k⋆NH; ð63Þ

(where aNH ≡ jg̃⋆NHjj2281 − 13g̃⋆2NHj−0.46ð27.6 þ 4.4×
10−3g̃⋆2NHÞ0.0013) which implies that the singularity of the
beta function of the non-Hermitian theory occurs at:

kNHsing ≃ 0.34Λ ð64Þ

This is a consistent result. The beta function is negative for
g2 > g⋆NH

2, which implies that g2 should increase for
decreasing k, in agreement with the above result. But
the singularity here occurs in the UV regime.
The singularity of the beta function of the Hermitian

theory, which corresponds to a RG scale ksing, (59), is
assumed in our approach to correspond to a phase transition
of the system, which for k≲ ksing is described by the non-
Hermitian theory. The reader should bear in mind that the
scale ksing ≪ kNHsing ¼ 0.34Λ ¼ 0.34k⋆NH. Since the beta
function of the non-Hermitian theory is positive, this
implies that in the region of the RG scales k ≤ ksing,
gNHðkÞ < gNH sing, and thus the corresponding portion of
the non-Hermitian theory connects smoothly (via a RG
flow) to the trivial fixed point g ¼ 0 with g ≠ 0.

V. INTERPRETATION IN TERMS
OF A REPULSIVE GRAVITY PHASE

We now make inferences for the scale dependence of
Newton’s constant from the above results. Our findings,
using axion electrodynamics, are embedded into the dis-
cussion of string-inspired gravity with effective action
given by (26). The analogue of the dimensionless running
(renormalized) axion coupling [defined in (35)] is given by:

g ¼ gRk ¼ 1

24

ffiffiffi
2

3

r �
MPl;RðkÞ
M2

s;RðkÞ
�
k; ð65Þ

where the index R denotes a renormalized quantity, and k is
a “running” (RG) momentum scale. Our assumption is that
when we embed this theory into a quantum string-inspired
gravity version, the effective low-energy theory will also be
characterized by a renormalized combination of scales

ðMPlðkÞ
MsðkÞÞR, running with the scale k. Since the string mass

scaleMs is associated with the UVmomentum cutoff of the
effective low-energy theory, it is reasonable to assume that
Ms is not renormalized, i.e., it does not run with the RG
scale k. The effective four-dimensionalMPl is renormalized
and runs since it is defined as the effective gravitational
scale of the (3þ 1)-dimensional effective theory.15 Hence

14We note for completion that, the nonperturbative RG study of
this non-Hermitian axion electrodynamics model has been dis-
cussed in the Appendix of [60], without, however, making any
attempt to give that theory any physical significance, or the
connection with the PT phase of gravity we are conjecturing in
the present article.

15In conventional string theory MPl is proportional to the
string-compactification volume and runs with k.

CHERN-SIMONS GRAVITY AND PT SYMMETRY PHYS. REV. D 110, 045004 (2024)

045004-13



the square of the dimensionless running [renormalized (R)]
axion coupling (65) is g2 ¼ 1

864
1
G̃N

k2

M2
s
where the dimension-

less quantity G̃N ≡ GNM2
s, with GN the (3þ 1)-dimen-

sional gravitational (Netwon’s) coupling,
In the case of the effective string-inspired low energy

theory, we define t≡ logð k
Ms
Þ which implies that the

ultraviolet (UV) region is described by the limit
k → Ms, i.e. tUV → 0. By contrast, the infrared (IR) region
corresponds to k → 0 (or k → k0 ¼ mIR ≪ Ms, with mIR

an infrared mass cutoff).16 The RG running of G̃NðkÞ with
k, or equivalently with t, is obtained by differentiating both
sides of (65) with respect to t. This leads to

d
dt

logðg2G̃NÞ ¼ 2 ⇒ g2G̃N ¼ D expð2tÞ; ð66Þ

where D is a positive integration constant to be fixed by
the boundary conditions of the RG flow. Considering the
equation in the UV regime, t → 0, we have D ¼
g2ðt ¼ 0ÞG̃Nðt ¼ 0Þ. For finite k ¼ Ms < ∞, the value
of gðk ¼ MsÞ ≈ gðt ¼ 0Þ is large but finite, while the
dimensionless G̃Nðt ¼ 0Þ cannot be directly constrained
from the running of g, which scales with k as ðk=MsÞ26 as
follows from the nonperturbative renormalization flow of
g2ðtÞ. We can therefore assume it also finite.
Thus, from (66), we arrive that at the nontrivial

infrared fixed point of the RG flow [see Eq. (57)], in
which limt→−∞gðtÞ ¼ g⋆ < ∞, finite, we obtain for
the Newton’s gravitational parameter in the IR region of
this flow

lim
t→−∞

G̃NðtÞ ¼ lim
t→−∞

g2ðt ¼ 0Þ
g⋆2

G̃Nðt ¼ 0Þe2t ¼ 0;

indicating that the gravitational constant at the singularity
goes to zero. The finite value G̃Nðt ¼ 0Þ is identified with
the Newton’s constant in the UV regime (short distances).
In (26) the axions couple to both gravitons and gauge
fields; the presence of gravitons is expected to modify the
axion self energy, and through this their nonperturbative
running. However, the topological (metric independent)
nature of the Pontryagin density term of (26), bFF̃, is
expected not to alter the singularity structure of the axion
coupling, thus leading to the aforementioned properties of
the running gravitational coupling, in particular its vanish-
ing in the infrared.

Transitioning to the non-Hermitian CS theory, is
achieved by replacing g with ig, which, in the context of
our string inspired theory (35) and (65), is equivalent to the
replacement of the gravitational constant in the effective
action (26) by a purely imaginary one,

κ → iκ̃; κ̃∈R: ð67Þ

Under this very restrictive complexification of the
gravitational coupling, the effective action becomes a
PT -symmetric non-Hermitian action,17 describing repul-
sive (anti)gravity dynamics18

Seff antiB ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2κ̃2
Rþ 1

2
∂μb∂μb

− i

ffiffiffi
2

3

r
α0

96κ̃
bðxÞ

�
RμνρσR̃μνρσ − FμνF̃

μν

�
þ…

�
;

ð68Þ

In the non-Hermitian theory, the running of the gravita-
tional coupling with t also follows from (65), and we have
the following relation connecting the values of the cou-
plings at the trivial IR fixed point with their values in the
UV one of the pertinent RG flow

lim
t→−∞

g2ðtÞG̃Nðt→−∞Þ ¼ lim
t→−∞

g2ðt¼ 0Þ
g⋆2

G̃Nðt¼ 0Þe2t ¼ 0:

ð69Þ

But at the trivial IR fixed point limt→−∞g2ðtÞ → 0
(see Fig. 1), while at the nontrivial UV fixed point
g2ðt¼0Þ¼g⋆2<∞, a fixed finite value. With G̃Nðt¼0Þ
finite, as discussed above, this leaves G̃Nðt → −∞Þ also
undetermined, and we assign it a finite value, which is that
of a Newton’s gravitational constant at large scales.
This scenario may lead to a reinterpretation of the dark-

energy sector of the universe observed at large distances.
The issue is to observe the possibility that unbroken PT
symmetry is a low energy symmetry of the real world. In this
sense repulsive gravity would correspond to a low-energy
(large distance) phase of the universe, which would be
described effectively by the non-Hermitian PT -symmetric
gravitational effective action (68) of an underlying string

16When we discussed nonperturbative renormalization of the
axion electrodynamics field theory (35), we gave an alternative
definition of the running RG parameter t, in terms of an IR scale
k0: t ¼ logðk=k0Þ, with k0 ¼ mIR, which eventually can be taken
to zero, unless there are IR divergencies. In such a case the UV
region corresponds to large t ≫ 1 (formally t → ∞), while the IR
regime is described by t → 0. The connection with our case is to
subtract from t the (formally infinite) constant logðk0=MsÞ.

17Our approach does not consider issues related to the
conjecture that there are no global symmetries in quantum
gravity [130].

18As already mentioned, the presence of imaginary CS
terms implies the loss of periodicity of the effective axion
potential, in contrast to the Hermitian case [cf. (31) and (32)]. In
the non-Hermitian case, one may have though dynamical
generation of the axion mass, as in the scenarios exploited
in [40,41,77,78,85,127]. We hope to come back to such
scenarios in a future publication.
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theory. In summary, upon assuming the phase transition at
ksing to a phase whose dynamics is described by the non-
Hermitian theory for k < ksing, one can connect smoothly a
zero gravitational constant GðksingÞ ¼ 0 to a negative, non-
zero and finite Netwon’s constant GðmIRÞ < 0. This behav-
ior that characterises our string-inspired Chern-Simons
gravity model is different from the standard RG analysis
in asymptotic safety model [cf. Eqs. (15) and (17)]. In our
analysis, loop corrections in the gravity sector have not been
considered, and so we can only provide arguments on this
behavior for gravity in this CS model, but not a proof.
The complete answer on the running of Newton’s

gravitational parameter in our PT -symmetric-non-
Hermitian-gravity approach can only be determined when
the full quantum dynamics of the gravity sector in the model
is taken into account. Nonetheless, we make the important
remark that the topological nature of the gauge Pontryagin
density (but not of the Hirzebruch term in (26), whose
variation with respect to the metric field yields the Cotton
tensor [51,52]) is encouraging for the maintenance of the
crucial singularity structure of the axion coupling in such
cases. Further analysis in the gravitational sector is necessary
to fully understand this behavior, but this is beyond the scope
of the current article.

VI. CONCLUSIONS AND OUTLOOK

This article presents a novel perspective on repulsive
gravity at large cosmological distances, potentially explain-
ing the observed accelerated expansion of the Universe. It
contrasts the conventional interpretation of this accelerated
expansion in terms of a positive cosmological constant or
dark energy, with the proposal of a PT -symmetric phase of
gravity. The gravitational system, which leads to this
conjecture, is a string-inspired Chern-Simons gravity,
involving the coupling of axions to anomalous Chern-
Simons gauge and gravitational terms. Thus the conjecture
may be specific to such string-inspired systems.
Our conjecture is based on having a running Newton’s

coupling (i.e., the inverse of the square of the reduced
Planck mass), which in the ultraviolet regime exhibits an
asymptotic safety behavior, (15), with the running coupling
tending to a nontrivial UV fixed-point value as the scale
k2=m2

IR → ∞. In the IR, however, the running leads to the
beta function of the Hermitian system developing a singu-
larity at a running RG scale ksing ∼ 1.01mIR → 0. There is a
relation (65) between the axion couplings in the string
effective action (26) and the coupling in field theory for
massless axion electrodynamics, which is the limit of the
string-effective gravitational theory for flat-spacetime and
Abelian-gauge-group. We refer to this connection as an
embedding. The IR singularity corresponds to a phase
transition in axion electrodynamics. The Hermitian version
of the embedded model exhibits an RG flow (cf. Fig. 1)
characterized by a singularity of the beta function (55) in the

IR region of the running RG scale (59). We propose that
such a region corresponds to a phase transition of the
system, such that the theory that describes the singularity,
as well as the region k < ksing, is the non-Hermitian model
obtained by g → ig̃, g̃∈R. This theory exhibits a smooth
behavior in the RG running from ksing of the Hermitian
model to the trivial IR fixed point at g̃ ¼ 0 (cf. Fig. 2).
Bypassing the singular behavior is a highly model-de-
pendent issue. In most of the approaches so far, the
attractive nature of gravity is maintained when the IR
behavior of gravity is regulated (17). In this work we have
given a prescription for avoiding the IR singular behavior
of the Newton’s coupling, as the running RG scale
k2=m2

IR → 0þ, within the context of the string-inspired
gravity model with axions. The presence of the anomalous
topological couplings are crucial for inducing the repul-
sive PT phase. In our case, the embedded non-Hermitian
axion electrodynamics theory leads in the IR region of
the RG running, to a repulsive phase of gravity upon
using (67), in which the axion coupling g is related to the
gravitational scales of string theory (65). This gives a
prescription for PT -symmetric version of repulsive grav-
ity at large (cosmological) scales. For a more complete
justification of the conjecture of the repulsive phase of
gravity, we need a proper (nonperturbative) quantization
of the effective gravitational theory obtained from strings.
This is very challenging.
Finally, we stress that ordinary quantized Einstein gravity

does not appear to exhibit repulsive behavior [110]. It is
only after the addition of a (dominant) positive cosmologi-
cal constant (de-Sitter type) term, that the effective force
appears repulsive.19

We only see this effect in anomalous string-inspired
gravity with gravitational axions (26) ([53,54]). Such
features do characterize strings, but one can also postulate
local gravity theories that share them, most notably modi-
fied gravity theories with torsion [103–108], known to be
associated with propagating axionic degrees of freedom.
Apart from the possible connection with repulsive gravity,
our scenario of the emergence of PT symmetry is also
connected to a change in the generalized symmetries [131]
of axionic electrodynamics. This deserves closer attention
per se which we hope to consider in a future publication.
As mentioned in the introduction (Sec. I B), we contrast

our approach with the study of quantum field theories with
couplings for repulsive and attractive interactions, and the
renormalization group flow of the couplings. The latter
flow is not in general associated with the existence of a
singular point of the renormalization-group flow, unlike our
case. In our case the change of sign of the gravitational
interaction is induced by the existence of singular points of

19Although, even this interpretation has been questioned
in [114], as mentioned previously in Sec. II.
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(the nonperturbative) renormalization-group flows of the
axion-electrodynamics part of the curved-space string-
inspired CS effective action in (26); this flow necessitates
a nontrivial jump to the PT symmetric framework, in order
to bypass such a singularity. This has been interpreted in
our work as indicating a phase transition of the system to a
repulsive gravity phase.
From a phenomenological view point, our gravitational

theory (26), being a CS gravity [51,52], has features
distinguishing it from ordinary gravity. One of them is
the birefringent behavior of gravitational waves (GW).
Indeed, when GW are produced through nonspherically
symmetric coalescence of, say, primordial black holes or
collisions of domain walls [132], the gravitational CS term
becomes nontrivial because different helicities (left, right) of
the tensor (metric) perturbations propagate in a different
way. This difference of the wave equations for the left and
right—handed polarizations arises from the (nontrivial)
metric variation of the gravitational CS term [51], which,
in turn, modifies the gravitational equations leading
to gravitational wave birefringence of cosmological
origin [133–135].20

However, for our purposes the most important phenom-
enological consequence of our approach is the effect on the
associated phase transition to a PT -symmetric phase of
gravity at late epochs in the evolution of the universe. The
latter could leave important and novel imprints on the
associated GW, in analogy, e.g., with the effects of phase
transitions in the early universe (e.g. QCD, first-order
electroweak, topological defects, etc.) on the resultant
GW profiles [137–141].
Our conjectural model of cosmic acceleration is too early

in its development to predict exactly the pertinent features
in the profiles of the GW induced by the PT phase
transition, given that its nature is still under investigation.
Nonetheless, we believe that this is a research avenue
worthy of further study, that could elucidate potential
phenomenological/observational tests of this model for
the cosmic acceleration. We hope to be able to report on
such issues in future works.
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