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Lagrangian formulation for perfect fluid equations which hold invariant under the l-conformal Galilei
group with half-integer l is proposed. It is based on a Clebsch-type parametrization and reproduces
Lagrangian description of the Euler fluid equations for l ¼ 1

2
. The transition from the Lagrangian

formulation to the Hamiltonian one is analyzed in detail.
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I. INTRODUCTION

Fluid mechanics with conformal symmetries currently
attracts considerable attention in connection with the
AdS/CFT-correspondence [1] and the fluid/gravity duality
[2]. In particular, the latter can be understood as a hydro-
dynamic limit of the former in which the formalism of fluid
mechanics is applied with the aim to an effective descrip-
tion of a strongly coupled quantum field theory. At the
same time successful efforts to extend holography to
strongly coupled condensed matter systems [3–5] stimulate
investigations of fluid dynamics with nonrelativistic
conformal symmetries.
In contrast to the unique relativistic conformal algebra,

there are several options available in the nonrelativistic
case. A well known example is the Schrödinger algebra
[6–8], which has been found to be relevant for a wide range
of physical applications (see Ref. [9] and references
therein). The Schrödinger group was originally discovered
as the maximal kinematical invariance group of the
Schrödinger equation for a free massive particle [7].1 In
addition to the Galilei transformations it contains dilatation
and special conformal transformation. Surprisingly
enough, the nonrelativistic contraction of the relativistic
conformal algebra [12] does not result in the Schrödinger
algebra. The latter fact stimulates interest in the study of

other finite-dimensional conformal extensions of the
Galilei algebra which are combined into a family known
in the literature as the l-conformal Galilei algebra [13,14].
The algebra is characterized by an arbitrary integer or

half-integer parameter l and, in addition to temporal
translation, dilatation and special conformal transforma-

tion, it involves a set of vector generators CðkÞ
i , where

i ¼ 1;…; d is a spatial index and k ¼ 0;…; 2l. Cð0Þ
i and

Cð1Þ
i link to spatial translations and Galilei boosts while

higher values of k correspond to the so called constant
accelerations. The case l ¼ 1

2
reproduces the Schrödinger

algebra, while l ¼ 1 is recovered in the nonrelativistic limit
of the relativistic conformal algebra. The latter is usually
referred to as the conformal Galilei algebra [12].
As far as dynamical realizations of the l-conformal

Galilei group are concerned (see e.g., [15–23] and refer-
ences therein), the physical meaning of the parameter l
may vary. In condensed matter physics, the reciprocal
z ¼ 1=l is known as a critical dynamical exponent, which
links to the fact that under dilatation temporal and spatial
coordinates scale differently, t0 ¼ λt, x0i ¼ λlxi, i.e., l
characterizes the degree of scaling anisotropy. In mechan-
ics, field theory, and fluid mechanics, l determines the
order of differential equations of motion. Because a number
of functionally independent integrals of motion needed to
integrate a differential equation correlates with its order, in
order to accommodate symmetries generated by the tower

of vector generators CðkÞ
i , one has to make recourse to

higher-derivative systems. In particular, in mechanics and
field theory the order of differential equations of motion is
2lþ 1, while in fluid mechanics it is 2l. To give a notable
example, the celebrated Pais-Uhlenbeck oscillator [24]
enjoys the l-conformal Galilei symmetry for a special
choice of its frequencies [22].

*Contact author: timofei.v.snegirev@tusur.ru

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

1In fact, similar nonrelativistic conformal structure has been
known since 19th century due to the work on classical mechanics
[10] and the heat equation [11].
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Previous studies of nonrelativistic conformal symmetries
in the context of fluid mechanics revealed interesting
results. A perfect fluid described by the Euler equations
has the Schrödinger symmetry (l ¼ 1

2
) provided a specific

equation of state is chosen [25,26] which links pressure to
density. For a viscous fluid the Schrödinger symmetries are
partially broken leaving one with the dilatation and Galilei
symmetries [27]. Attempts to discover the conformal
Galilei symmetry (l ¼ 1) for systems which derive from
relativistic conformally invariant hydrodynamic equations
did not lead to success [27–29]. In the nonrelativistic limit
such systems proved to be of limited physical interest.
Reasonable hydrodynamic equations can be obtained as a
result of a more subtle nonrelativistic contraction, but they
do not enjoy conformal Galilei symmetries. It was recently
shown that one can construct generalized perfect fluid
equations which accommodate the l-conformal Galilei
symmetries for an arbitrary l [30,31]. In particular, these
equations contain the generalized Euler equation with
higher material derivatives, which reduces to the perfect
fluid equations for l ¼ 1

2
.

Given a set of equations ofmotion, it is always desirable to
have a Lagrangian formulation. There are two approaches to
describe the nonrelativistic perfect fluid equations [32–36]
(for modern developments see also [37–41]). The first
approach (the Lagrange picture) deals with coordinates of
a fluid particle parametrized by a set of continuum labels
(see the classic monograph [34]). In this case, the
Lagrangian function has the same form as in Newtonian
mechanics and the action is invariant under volume-pre-
serving diffeomorphism. The second approach (the Euler
picture) is akin to classical field theory and deals directly
with physical variables which are interpreted as the fluid
density and thevelocity vector field.Here the fluid equations
can be naturally put into the Hamiltonian form [42].
The peculiarity of the latter formulation is that the
Poisson brackets among the physical fields are non-
canonical. In order to identify canonical variables and
go over to a Lagrangian description, the Clebsch para-
metrization [43] of the velocity vector field is usually used.
The latter description as well as a relation between the
two approaches to fluid mechanics are reviewed in detail
in [35].
It was recently shown [44] that the approach involving

noncanonical Poisson brackets [42] can be adapted to
construct a Hamiltonian formulation of the generalized
perfect fluid equations with the l-conformal Galilei sym-
metries for an arbitrary half-integer l. Aiming at a
Lagrangian formulation, it is important to understand
whether canonical variables exist in which the perfect fluid
equations with the l-conformal Galilei symmetries arise
from the variational principle. The goal of this work is to
elaborate on this issue.
The paper is organized as follows. In the next section, we

briefly review the generalized perfect fluid equations

invariant under the l-conformal Galilei group [30] and
their Hamiltonian formulation developed in [44]. In
Sec. III, we construct the Lagrangian formulation based
on a Clebsch-type parametrization in which the generalized
perfect fluid equations arise from the variational principle.
In Sec. IV, the Dirac method is used to analyze constraints
which arise after transition to the Hamiltonian formalism. A
relation to the Hamiltonian description in terms of nonca-
nonical Poisson brackets [44] is studied in detail. In the
concluding Sec. V, we summaries our results discuss
possible further developments.

II. EQUATIONS OFMOTION AND HAMILTONIAN
FORMULATION

Let us take briefly recall the structure of the l-conformal
Galilei algebra [14]. Its generators include temporal trans-
lation H, dilatation D, special conformal transformation K

and a set of vector generators CðkÞ
i , k ¼ 0;…; 2l. The latter

correspond to spatial translations (k ¼ 0), Galilei boosts
(k ¼ 1) and the so-called constant accelerations (k > 1).
The structure relations of the algebra read,2

½H;D� ¼ H; ½H;CðkÞ
i � ¼ kCðk−1Þ

i ;

½H;K� ¼ 2D; ½D;CðkÞ
i � ¼ ðk − lÞCðkÞ

i ;

½D;K� ¼ K; ½K;CðkÞ
i � ¼ ðk − 2lÞCðkþ1Þ

i : ð2:1Þ

They can be realized in a nonrelativistic space-time para-
metrized by ðt; xiÞ, i ¼ 1;…; d, by the following way [14]3:

H ¼ ∂0; D ¼ t∂0 þ lxi∂i;

K ¼ t2∂0 þ 2ltxi∂i; CðkÞ
i ¼ tk∂i:

Generalized perfect fluid equations invariant under the
l-conformal Galilei group were formulated in a recent
paper [30],

∂0ρþ∂iðρυiÞ¼0; D2lυi¼−
1

ρ
∂ip; p¼νρ1þ

1
ld; ð2:2Þ

where ρðt; xÞ, υiðt; xÞ, and pðt; xÞ are the density, the
velocity vector field, and the pressure, respectively, and
D ¼ ∂0 þ υi∂i is the material derivative. The first equation
is the continuity equation, while the second and third
equations describe the generalized Euler equation with
higher derivatives and the equation of state which links the
pressure to the density, ν being a constant. For l ¼ 1

2
,

Eqs. (2.2) reproduce the perfect fluid equations invariant
under the action of the Schrodinger group [26]. In what

2The algebra also includes spatial rotation which in what
follows will be disregarded.

3Throughout the text we use the notations ∂0 ¼ ∂

∂t, ∂i ¼ ∂

∂xi
.

Summation over repeated indices is understood.
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follows, we will refer to the model (2.2) as the l-conformal
perfect fluid.
For half-integer values l ¼ nþ 1

2
; n ¼ 0; 1;…,

Eqs. (2.2) admit a Hamiltonian formulation [44]. In order

to construct it, auxiliary fields υðkÞi , k ¼ 0; 1;…; 2n are

introduced with υð0Þi ¼ υi and the second equation in (2.2)
is rewritten as the equivalent first-order system,

DυðkÞi ¼ υðkþ1Þ
i ; Dυð2nÞi ¼ −

1

ρ
∂ip: ð2:3Þ

Then one can verify that the following Hamiltonian:

H ¼
Z

dx

�
1

2
ρ
X2n
k¼0

ð−1ÞkυðkÞi υð2n−kÞi þV

�
; V ¼ ldp;

ð2:4Þ

puts the original equations of motion into the Hamiltonian

form ∂0ρ ¼ fρ; Hg, ∂0υðkÞi ¼ fυðkÞi ; Hg provided the non-
canonical Poisson brackets,

fρðxÞ; υðkÞi ðyÞg ¼ −δðkÞð2nÞ∂iδðx − yÞ;

fυðkÞi ðxÞ; υðmÞ
j ðyÞg ¼ 1

ρ
ðδðkÞð2nÞ∂iυðmÞ

j − δðmÞð2nÞ∂jυ
ðkÞ
i

þð−1Þkþ1δðkþmÞð2n−1ÞδijÞδðx − yÞ;
ð2:5Þ

are introduced. Here δðkÞðmÞ is the Kronecker symbol.
Within theHamiltonian formalism thel-conformal Galilei

algebra is realized as follows. The Hamiltonian H (the
conserved energy) (2.4) links to temporal translation while
conserved charges associated with the dilatation, special
conformal transformation and vector generators read,

D ¼ tH −
1

2

Z
dxρ

X2n
k¼0

ð−1Þkðkþ 1ÞυðkÞi υð2n−k−1Þi ;

K ¼ t2H − 2tD −
1

2

Z
dxρ

X2n
k¼0

ð−1Þkððnþ 1Þð2nþ 1Þ − kðkþ 1ÞÞυðk−1Þi υð2n−k−1Þi ;

CðkÞ
i ¼

Xk
s¼0

ð−1Þs k!
ðk − sÞ! t

k−s
Z

dxρυð2n−sÞi ; k ¼ 0;…; 2nþ 1; ð2:6Þ

where υð−1Þi ¼ xi. Under the Poisson brackets (2.5), the
conserved charges obey the algebra (2.1), which is ex-
tended by the central charge [45],

fCðkÞ
i ;CðmÞ

j g¼ð−1Þkk!m!δðkþmÞð2nþ1ÞδijM; M¼
Z

dxρ:

ð2:7Þ
For a perfect fluid (l ¼ 1

2
, n ¼ 0) the Hamiltonian

formulation involving noncanonical Poisson brackets
was originally given in [42].

III. CLEBSCH PARAMETRIZATION AND
LAGRANGIAN FORMULATION

In order to demonstrate how the Eqs. (2.2) can be
obtained from the variational principle, let us first recall
(for more details see e.g., [35]) how the Lagrangian for a
perfect fluid is built which correctly reproduces the con-
tinuity equation and the Euler equation,

∂0ρþ ∂iðρυiÞ ¼ 0; ð3:1Þ

Dυi ¼ −
1

ρ
∂ip: ð3:2Þ

In three spatial dimensions this is achieved by making
recourse to the Clebsch parametrization for the velocity
vector field,

υi ¼ ∂iθ þ α∂iβ; ð3:3Þ

which involves three scalar functions θ, α, and β. Then the
Lagrangian reads,

L ¼ −
Z

dxρð∂0θ þ α∂0βÞ −H

¼ −
Z

dxρð∂0θ þ α∂0βÞ −
Z

dx

�
1

2
ρυiυi þ V

�
; ð3:4Þ

where H is the Hamiltonian (the total energy) with υi in
(3.3). The variation under θ gives the continuity equa-
tion (3.1), while the variations with respect to α and β give

Dα ¼ 0; Dβ ¼ 0; ð3:5Þ

where (3.1) was taken into account.
Finally, varying with respect to ρ and using (3.5), one

gets
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Dθ −
1

2
υiυi þ V 0

ρ ¼ 0: ð3:6Þ

As a result, the Euler equation (3.2) is satisfied,

Dυi¼Dð∂iθþα∂iβÞ¼−
1

ρ

∂p
∂xi

; p¼ρV0
ρ−V: ð3:7Þ

In order to generalize the construction above to the l-
conformal perfect fluid, we go over to the equivalent first-
order system (2.3). In the case of half-integer l ¼ nþ 1

2
, the

starting equations read,

∂0ρþ ∂iðρυð0Þi Þ ¼ 0; ð3:8Þ

DυðkÞi ¼ υðkþ1Þ
i ; k ¼ 0; 1;…; 2n − 1; ð3:9Þ

Dυð2nÞi ¼ −
1

ρ
∂ip; p ¼ νρ1þ

1
ld: ð3:10Þ

Note that these equations are completely equivalent to (2.2)
and hence completely characterize the l-conformal per-
fect fluid.
A key ingredient of the construction above was the

Clebsch parametrization of the velocity vector variable.
For the l-conformal perfect fluid one has a set of vector

variables υðkÞi and it seems natural to expect that a Clebsch-
type decomposition will be needed for each of them. It turns
out, however, that in order to obtain the equations (3.8)–
(3.10) from the variational principle only the highest

component υð2nÞi should be Clebsch-decomposed, while

the remaining vector variables υðkÞi with k < 2n may remain
intact. Up to a field redefinition, a suitable Clebsch-type
decomposition can be chosen in the form,

υð2nÞi ¼ ∂iθ þ α∂iβ þ
Xn−1
k¼0

ð−1Þkþ1υðkÞj ∂iυ
ð2n−k−1Þ
j : ð3:11Þ

When n ¼ 0, there is no sum on the right-hand side and the
decomposition for the Euler fluid (3.3) is reproduced. The
generalized Lagrangian reads,

L¼−
Z
dxρ

�
∂0θþα∂0βþ

Xn−1
k¼0

ð−1Þkþ1υðkÞi ∂0υ
ð2n−k−1Þ
i

�
−H;

ð3:12Þ

where H is Hamiltonian (2.4) with υð2nÞi in (3.11). Thus, the
basic variables for the Lagrangian (3.12) are the scalar fields

ρ, θ, α, β, and a set of vector fields υðkÞi with k < 2n.
Let us demonstrate how the Eqs. (3.8)–(3.10) follow

from the Lagrangian (3.12). By varying the Lagrangian
with respect to θ, one obtains the continuity equation (3.8).

Variations with respect to α and β give (3.5), as before.

Varying with respect to υðkÞi and taking into account (3.8),
Eqs. (3.9) are reproduced. Finally, varying with respect to ρ
and using (3.5), one gets

Dθ − υð0Þi υð2nÞi þ ð−1Þn
2

υðnÞi υðnÞi þ V 0
ρ ¼ 0: ð3:13Þ

As a result, the equation

Dυð2nÞi ¼ D
�
∂iθ þ α∂iβ þ

Xn−1
k¼0

ð−1Þkþ1υðkÞj ∂iυ
ð2n−k−1Þ
j

�

¼ −
1

ρ
∂ip; ð3:14Þ

is satisfied as well, where p ¼ ρV0
ρ − V.

Because the Lagrangian (3.12) involves only the first
temporal derivative, a transition to the Hamiltonian for-
malism will lead to constraints. In the next section, we use
the Dirac method [46] to analyze such constraints and
demonstrate how the noncanonical Poisson brackets (2.5)
show up.

IV. DIRAC’S CONSTRAINT ANALYSIS

For simplicity of the presentation, let us focus on the
l ¼ 3

2
case. The corresponding Lagrangian is given by

(3.12) with n ¼ 1,

L ¼ −
Z

dxρð∂0θ þ α∂0β − υð0Þi ∂0υ
ð1Þ
i Þ −H

¼ −
Z

dxρð∂0θ þ α∂0β − υð0Þi ∂0υ
ð1Þ
i Þ

−
Z

dx

�
ρυð0Þi υð2Þi −

1

2
ρυð1Þi υð1Þi þ V

�
; ð4:1Þ

whereH is the Hamiltonian (2.4) with υð2Þi defined in (3.11)

υð2Þi ¼ ∂iθ þ α∂iβ − υð0Þj ∂iυ
ð1Þ
j : ð4:2Þ

Further simplification occurs if one sets the scalar variables
α and β to zero as particular solutions to Eqs. (3.5).
This will not affect the final result but simplify the
calculations. In this case, the phase space consists of

basic variables XA ¼ ðρ; θ; υð0Þi ; υð1Þi Þ and their conjugate

momenta PA ¼ ðpρ; pθ; p
ð0Þ
i ; pð1Þ

i Þ, which obey the canoni-
cal Poisson brackets,

fρðxÞ;pρðyÞg¼δðx−yÞ; fυð0Þi ðxÞ;pð0Þ
j ðyÞ¼δijδðx−yÞ;

fθðxÞ;pθðyÞg¼δðx−yÞ; fυð1Þi ðxÞ;pð1Þ
j ðyÞ¼δijδðx−yÞ:

ð4:3Þ
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From the conditions determining the canonical momenta
PA ¼ ∂L

∂ð∂0XAÞ the following primary constraints arise:

ΦA ≡

0
BBBBB@

ϕρ

ϕθ

ϕð0Þ
i

ϕð1Þ
i

1
CCCCCA

¼

0
BBBBB@

pρ

pθ þ ρ

pð0Þ
i

pð1Þ
i − ρυð0Þi

1
CCCCCA

¼

0
BBB@

0

0

0

0

1
CCCA: ð4:4Þ

Then according to Dirac’s method [46] the total
Hamiltonian reads,

HT ¼Hþ
Z

dx
�
λρϕρþλθϕθþλð0Þi ϕð0Þ

i þλð1Þi ϕð1Þ
i

�
; ð4:5Þ

where H is the canonical Hamiltonian in (4.1) and

ðλρ; λθ; λð0Þi ; λð1Þi Þ are the Lagrangian multipliers. Requiring
the constraints to be conserved over time, ∂0ϕ¼fϕ;HTg¼0,
one unambiguously specifies the Lagrangian multipliers,

λρ ¼ −∂iðρυð0Þi Þ; λð0Þi ¼ υð1Þi − υð0Þj ∂jυ
ð0Þ
i ;

λθ ¼
1

2
υð1Þi υð1Þi þ υð0Þj ðυð2Þj − ∂jθÞ − V 0

ρ;

λð1Þi ¼ υð2Þi − υð0Þj ∂jυ
ð1Þ
i : ð4:6Þ

The latter fact implies that all the constraints (4.4) are
second-class. The same conclusion is reached by analyzing

the Poisson brackets among the constraints ΦA ¼
ðϕρ;ϕθ;ϕ

ð0Þ
i ;ϕð1Þ

i Þ, which form the nondegenerate matrix,

ΛABðx; x0Þ ¼ fΦAðxÞ;ΦBðx0Þg

¼

0
BBBBB@

0 −1 0 υð0Þi

1 0 0 0

0 0 0 ρδij

−υð0Þi 0 −ρδij 0

1
CCCCCA

x

δðx − x0Þ:

ð4:7Þ

The inverse matrix reads,

Λ−1
ABðx; x0Þ ¼ fΦAðxÞ;ΦBðx0Þg−1

¼

0
BBBBBBB@

0 1 0 0

−1 0
υð0Þi
ρ 0

0 − υð0Þi
ρ 0 − δij

ρ

0 0
δij
ρ 0

1
CCCCCCCA

x

δðx − x0Þ; ð4:8Þ

such that
R
dzΛ−1

ACðx; zÞΛCBðz; x0Þ ¼ δABδðx − x0Þ.
In order to make connection with the Hamiltonian

formulation presented in Sec. II, one should resolve the
constraints (4.4) and deal with the Dirac bracket,

fAðxÞ; BðyÞgD ¼ fAðxÞ; BðyÞg þ
Z

dz

�
fAðxÞ;ϕθðzÞgfϕρðzÞ; BðyÞg

−
�
fAðxÞ;ϕρðzÞg −

υð0Þi ðzÞ
ρðzÞ fAðxÞ;ϕð0Þ

i ðzÞg
�
fϕθðzÞ; BðyÞg

−
�
υð0Þi ðzÞ
ρðzÞ fAðxÞ;ϕθðzÞg þ

1

ρðzÞ fAðxÞ;ϕ
ð1Þ
i ðzÞg

�
fϕð0Þ

i ðzÞ; BðyÞg

þ 1

ρðzÞ fAðxÞ;ϕ
ð0Þ
i ðzÞgfϕð1Þ

i ðzÞ; BðyÞg
�
; ð4:9Þ

where Aðt; xÞ and Bðt; xÞ are two arbitrary field variables of the phase space.
By resolving the constraints, one eliminates the canonical momenta from the consideration reducing the set of fields

to ρ, θ, υð0Þi , and υð1Þi . Substituting them in (4.9) and taking into account (4.3), one obtains the following nonzero Dirac
brackets,

fρðxÞ; θðyÞgD ¼ δðx − yÞ;

fθðxÞ; υð0Þi ðyÞgD ¼ υð0Þi

ρ
δðx − yÞ;

fυð0Þi ðxÞ; υð1Þj ðyÞgD ¼ −
1

ρ
δijδðx − yÞ: ð4:10Þ

LAGRANGIAN FORMULATION FOR PERFECT FLUID … PHYS. REV. D 110, 045003 (2024)

045003-5



When α and β are not zero, it suffices to add the
following Dirac brackets:

fθðxÞ;αðyÞgD¼α

ρ
δðx−yÞ; fαðxÞ;βðyÞgD¼1

ρ
δðx−yÞ:

ð4:11Þ

Using (4.10) and (4.11), one can verify that the nonca-
nonical Poisson brackets (2.5) are reproduced for n ¼ 1

with υð2Þi defined in (4.2). Also one can easily identify the

canonical pairs ðρ; θÞ, ðρα; βÞ, and ðρυð0Þi ; υð1Þi Þ. The same
pairs result from the Lagrangian (4.1).
The constraint analysis above can be readily generalized

to the case of arbitrary half-integer l. One can see from the
Lagrangian (3.12) that the canonical pairs include ðρ; θÞ,
ðρα; βÞ, and ðρυðkÞi ; υð2n−k−1Þi Þ, where k ¼ 0; 1;…; n − 1.

V. CONCLUSION

To summarize, in this work the Lagrangian formulation
for the generalized higher-derivative perfect fluid equa-
tions, which hold invariant under the l-conformal Galilei
group with arbitrary half-integer parameter l, was con-
structed. It is based on a suitably chosen Clebsch-type
parametrization and correctly reproduces the Lagrangian
description of a Euler fluid in [35] for l ¼ 1

2
. The Dirac

method was used in order to analyze constraints which

arose after transition to the Hamiltonian formalism. It was
demonstrated that all the constraints are second class. The
corresponding Dirac brackets were computed, which repro-
duced the Hamiltonian description in [44] given in terms of
noncanonical Poisson brackets.
The recent works on fluid mechanics with the

l-conformal Galilei symmetry was mostly focused on
the development of the mathematical structure. It now
calls for physical applications. Firstly, a clear-cut thermo-
dynamic interpretation is needed. In this regard, the
approach in [47] may pave the way. Possible link to
statistical mechanics, in particular the universality classes
of Hohenberg and Halperin [48], is interesting to explore.
Because the generalized perfect fluid equations contain
higher-derivative terms, they may find potential applica-
tions within the context of the hyperjerk theory [49].
Turning to other possible developments, it would be

interesting to develop the Lagrange picture [34] for
describing higher derivative fluid mechanics and relate it
to the results presented in this paper. Supersymmetric
extensions of the Lagrangian (3.12) in the spirit of
[50,51] as well as possible applications within the context
of the fluid/gravity correspondence are worth exploring.
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