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Recently Danielson, Satishchandran, and Wald (DSW) have shown that quantum superpositions held
outside of Killing horizons will decohere at a steady rate. This occurs because of the inevitable radiation of
soft photons (gravitons), which imprint a electromagnetic (gravitational) “which-path” memory onto the
horizon. Rather than appealing to this global description, an experimenter ought to also have a local
description for the cause of decoherence. One might intuitively guess that this is just the bombardment of
Hawking/Unruh radiation on the system, however simple calculations challenge this idea—the same
superposition held in a finite temperature inertial laboratory does not decohere at the DSW rate. In this
work we provide a local description of the decoherence by mapping the DSW setup onto a worldline-
localized model resembling an Unruh-DeWitt particle detector. We present an interpretation in terms of
random local forces which do not sufficiently self-average over long times. Using the Rindler horizon as a
concrete example we clarify the crucial role of temperature, and show that the Unruh effect is the only
quantum mechanical effect underlying these random forces. A general lesson is that for an environment
which induces Ohmic friction on the central system (as one gets from the classical Abraham-Lorentz-Dirac
force, in an accelerating frame) the fluctuation-dissipation theorem implies that when this environment is at
finite temperature it will cause steady decoherence on the central system. Our results agree with DSW and
provide the complementary local perspective.
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I. INTRODUCTION

A. Motivation

Through a beautiful stroke of insight, Danielson,
Satishchandran, and Wald (DSW) arrived at the conclu-
sion that quantum superpositions held near Killing hori-
zons will suffer a steady rate of decoherence [1,2]. Their
intuition came from fundamental considerations regarding
the consistency of causality with the fact that long-ranged
Newton and Coulomb fields can entangle particles. Their
logical conclusion: if causality is to be preserved
while Alice and Bob attempt to perform Einstein-
Podolsky-Rosen-like tests on either side of a horizon,
there must be a pervasive source of decoherence conspir-
ing to disrupt the experiments [3,4].
The effect is exemplified by a lab which accelerates with

proper acceleration a, containing a particle of charge q,
which is held in a superposition of two states separated by

distance ε. With respect to the lab’s proper time, the system
decoheres with a constant rate1

ΓEM
DSW ¼ q2a3ε2

12π2
: ð1Þ

That is, the visibility of interference fringes is suppressed
by expð−TΓEM

DSWÞ, where T is the total elapsed proper time.
DSW provided a slick argument for the decoherence by

demonstrating the existence of electromagnetic and gravi-
tational memory effects for Killing horizons, wherein
certain processes involving charged (massive) particles
would imprint a net dc change in the electromagnetic
(gravitational) wave profile on the horizon. As it is a dc
shift, it is explained quantum mechanically by the radiation
of soft photons and gravitons through the horizon.
From a global perspective the decoherence is intuitive—

the two branches of the superposition radiate soft photons
carrying “which-path” information through the horizon.
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1For brevity, here and throughout, we refer to the decoherence
rate as ΓEM

DSW; however it should be understood that DSW first
determined the scaling whereas Gralla and Wei [4] first computed
the precise numerical coefficients.
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It remains unclear, however, how the experimenter would
explain the effect in their local frame. A natural first guess
is that this is due to Unruh/Hawking radiation; however
simple estimates suggest that thermal photons cannot be the
cause. If the decoherence were to be explained by the
scattering of thermal photons, then one expects that the rate
would depend on the Thompson cross section. As already
noted by DSW, this cross section scales inversely with the
mass of the charged particle and can be made arbitrarily
small relative to Eq. (1).
This however raises a puzzle: how could the experi-

menter in the accelerating lab locally explain this persistent
decoherence if it is not coming from the Unruh effect? In
the language of open quantum systems, rather than describ-
ing the decoherence as arising from the central system
radiating zero-energy modes into the bath, we ought to be
able to explain it locally as a physical action of the bath
onto the central system—but what is this action if not
simply thermal fluctuations?
In this paper we aim to address this question and provide

an intuitive explanation for the steady rate of decoherence
from the perspective of the accelerated observer. Despite
the above hesitation, we demonstrate that from their
perspective it can in fact be explained by well-known
properties of classical electromagnetism plus the existence
of a finite temperature due to the Unruh effect. Our results
agree precisely with DSW, providing a complementary
perspective on the effect. Furthermore, the essential role
played by temperature corroborates the findings of Gralla
and Wei [4], who demonstrated the vanishing of the DSW
decoherence for extremal black holes. We primarily restrict
to the case of electromagnetic radiation and Rindler
horizons, however this is sufficient to illustrate the general
lesson.

B. Equivalence between DSW and Unruh-Dewitt

The main statement in its heuristic form is: if coupling a
system to a certain environment induces Ohmic friction (a
force term given by a first time derivative) in the system’s
classical equation of motion, then when that environment is
at finite temperature it will have a spectrum of thermal
fluctuations that cause a constant rate of decoherence in the
system. From this, and the fact that in an accelerated frame
the relativistic Abraham-Lorentz-Dirac (ALD) radiation
reaction force contains an Ohmic piece, it follows that a
finite Unruh temperature will lead to decoherence.
The physical picture turns out to be somewhat different

than a typical collisional decoherence model; rather, it is
dephasing which dominates. The experimenter prepares a
superposition of a particle with charge q delocalized in
position space, jψi ¼ j þ ε=2i þ j − ε=2i. In the absence
of electric fields this state can evolve without acquiring a
relative phase between branches. However, in the presence
of an electric field fluctuation such that qδE > 0, the state
j − ε=2i sits at a slightly higher energy δH ≈ qεδE than the

state j þ ε=2i. Provided that the electric field fluctuation is
sufficiently coherent over the duration of the experiment,
the two states accumulate a relative phase due to their
relative energy difference. While coherent over a single
experiment, the long-lived mode δE⃗ is still a random
variable and will be completely randomized over many
such experiments, leading to a measured loss of interfer-
ence contrast. This dephasing between the two branches of
the wave function does not depend on the mass of the
charged particle.
Ohmic baths are particularly relevant here, because the

fluctuation-dissipation theorem ensures that they have the
requisite long-time correlated fluctuations. Electric fields
near a Rindler horizon, as we will demonstrate, behave as
Ohmic baths. This then leads to the interesting observation,
that for a single-shot interference measurement near a
horizon it will appear as if the vacuum has spontaneously
selected a preferred nonzero static electric field about
which it fluctuates.
Before proceeding to the detailed computations, it is

interesting to try to provide an order-of-magnitude estimate
of the DSW decoherence rate using elementary physics—
although there is a “pitfall” in this naive process. For two
paths separated by a displacement vector ε, their phase
difference in an electromagnetic (EM) field is given by

ΔΦ ¼ q
Z

dτÊðτÞ · εðτÞ; ð2Þ

and the loss in contrast is given by

hΔΦ2i ¼ q2
ZZ

dτ1dτ2hÊIðτ1ÞÊJðτ2ÞiεIðτ1ÞεJðτ2Þ: ð3Þ

For steady state, we can write

hΔΦ2i ¼ q2
Z

dΩ
2π

SIJE ðΩÞε̃IðΩÞε̃�JðΩÞ; ð4Þ

where SIJE is the symmetrized spectral density:

hẼ�
I ðΩÞẼJðΩ0Þisym ¼ 2πδðΩ −Ω0ÞSEðΩÞ: ð5Þ

Suppose ε remains constant for a long duration T. As a
result, ε̃, the Fourier transform of ε, is highly bandlimited
near Ω ∼ 0. We can convert Eq. (4) into

hΔΦ2i≈q2SIJE ð0Þ
Z

dΩ
2π

ε̃�I ðΩÞε̃�JðΩÞ¼ q2εIεJSIJE ð0ÞT; ð6Þ

which corresponds to a decoherence rate

Γ ∝ εIεJSIJE ð0Þ: ð7Þ

This is very promising since it seems every steady bath
leads to a constant decoherence rate. The pitfall comes
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when we apply the Planck’s law for thermal radiation,
which gives

½SIJE ðΩÞ�Planck ¼ δIJ
Ω3

6π

�
1

2
þ 1

eβΩ − 1

�
; ð8Þ

where β ¼ ℏ=ðkBTÞ is the inverse temperature. This
does not recover decoherence at a constant rate since
½SIJE ð0Þ�Planck ¼ 0.
This should be compared with the decoherence for an

Unruh-DeWitt particle detector [5,6] coupled to a finite
temperature scalar field, for which the decoherence rate has
the similar form

Γ ∝ Sϕð0Þ ¼ lim
Ω→0

1

2

Z
dτ eiΩτhfϕðτÞ;ϕð0Þgi; ð9Þ

with

SϕðΩÞ ¼
Ω
π

�
1

2
þ 1

eβΩ − 1

�
: ð10Þ

This evidently has Sϕð0Þ ≠ 0, and the particle detector
suffers constant decoherence in a thermal bath.
Clearly, whether a thermal bath will or will not cause

steady decoherence is determined by presence or absence
of a term linear in frequency multiplying the Bose factor.
As it turn out, this depends on the nature of a system’s
coupling to the environmental field, and crucially for this
problem, it depends on the system’s acceleration. As we
will show, the spectrum of electric field fluctuations felt by
the dipole in a uniformly accelerated frame is actually

½SIJE ðΩÞ�accel ¼ δIJ
a2Ωþ Ω3

6π

�
1

2
þ 1

eβΩ − 1

�
; ð11Þ

with β ¼ 2π=a being the inverse Unruh temperature.2 This
leads to nonzero thermal fluctuations at arbitrarily low
frequencies and thus a steady decoherence rate

Γ ∝
q2jεj2a2

β
; ð12Þ

We will show that upon careful computation this line of
reasoning matches the DSW decoherence rate exactly.

C. Connection to fluctuation-dissipation
theorem and radiation damping

The emergence of this a2Ω term can be anticipated by
classical reasoning. The fluctuation-dissipation theorem
(FDT), states that for a linear system coupled to a thermal

bath, the force F̂ from the bath on the coordinate x̂ has a
fluctuation spectrum

SF ¼ Im½χ−1x � coth βΩ
2

; ð13Þ

where χ−1x is the inverse of response function of x̂. To be
concrete, let us consider an oscillator in an inertial frame
with electric charge q, which has a Langevin equation of

m ̈x̂þmω2
mx̂þ

q2

6π
⃛x̂ ¼ F̂ ¼ qÊ; ð14Þ

where the triple-derivative term is the Abraham-Lorentz
radiation reaction force, and F is the Langevin force from
the EM field. Here ωm is the mechanical resonant fre-
quency of the oscillator and m is its mass—but regardless
of ωm and m, the EM field’s contribution to Im½χ−1x � is
always

Im½χ−1x �inertial ¼
q2Ω3

6π
: ð15Þ

This contribution, together with Eq. (13), explains Eq. (8)
and fixes its numerical factors.
If one instead takes the fully relativistic ALD force

fμ ¼ q2

6π

�
d3xμ

dτ3
−
dxμ

dτ

�
d2xν

dτ2
d2xν
dτ2

��
ð16Þ

and considers a small perturbation of the uniformly
accelerated trajectory, xμ ¼ z̄μ þ εμ, with ̈z̄μ ¼ a2z̄μ and
εμz̄μ ¼ 0, the ALD formula reduces to

fμ ¼ q2

6π

�
d3εμ

dτ3
− a2

dεμ

dτ

�
: ð17Þ

This implies enhanced low frequency radiation damping

Im½χ−1x �accel ¼
q2ðΩ3 þ a2ΩÞ

6π
: ð18Þ

According to the FDT there is then an enhancement of low
frequency thermal fluctuations, Eq. (11), and thus the
system undergoes the steady decoherence rate Eq. (12).

D. Organization of the paper

The rest of the paper is organized as follows.3 In Sec. II
we review general derivations of decoherence, and focus on
highlighting a relationship between interpretations of

2See also [7,8], for analogous results, outside of the context of
decoherence.

3This paper is intended to serve a more pedagogical purpose.
To maximize readability across communities we have performed
analogous (if not identical) computations in different approaches
—separated by section so as to avoid confusion. Additionally, we
provide a fair amount of review of known formalism and results.

DECOHERENCE BY WARM HORIZONS PHYS. REV. D 110, 045002 (2024)

045002-3



decoherence as arising from radiative losses and from
random local forces. As a tool, we map the DSW thought
experiment onto a Unruh-DeWitt particle detector model.
In Sec. III we perform specific computations of
decoherence due to interaction with a thermal bath. We
then do detailed computations in Sec. IV of the DSW
decoherence, in a scalar field model, by counting the
number of photons carrying away “which-path” data. In
Sec. V we compute the local force spectrum acting on the
particle detector in a number of cases, and show that it
matches Gralla and Wei’s result for the DSW decoherence
rate. In Sec. VI we employ the FDT and discuss the reason
why the decoherence rate differs from a standard calcu-
lation of thermal decoherence. Finally in Sec. VII, we
summarize our discussions.

II. GENERAL FORMALISM OF DECOHERENCE

In this section, we shall first make a general proof that
the decoherence of an Unruh-DeWitt detector can be
quantified by the radiation content far from the experiment.
We start with a system coupled to a scalar field, for which
we make a dipole approximation, and relate the
decoherence between two paths that were first split and
recombined to the number of photons radiated by a dipole
that first appears and then disappears. We then do a more
general discussion of decoherence, and in the electromag-
netic case we make the connection to Wilson loops.

A. Dipole approximation

Suppose our Hamiltonian of the system contains three
parts: Ĥfield for the free field, Ĥsys that provides the
trajectory of the test particle, and the interaction
Hamiltonian V̂. Suppose Ĥsys already makes sure that
the wave function of the system is given by

jψ ð0ÞðtÞi ¼
����zμðτðtÞÞ þ 1

2
εμðτðtÞÞ

�

þ
����zμðτðtÞÞ − 1

2
εμðτðtÞÞ

�
;

¼ jψþðtÞi þ jψ−ðtÞi: ð19Þ

Here the jψ�ðtÞi are the two branches, each a very narrow
wave packet; they are mutually separated by εμðτÞ. Note
that along the trajectory,

żμεμ ¼ 0: ð20Þ

Suppose also that the mass is infinitely heavy, and that the
field couples to the position of the mass. In this situation,
the shapes of the packets will not be modified, yet there can
be phases added to the two components. At time t, the
system’s part of the Hilbert space still only involves
jψ�ðtÞi, and we consider the product space between this

two-dimensional Hilbert space and that of the field. We
essentially have a two-level system—an Unruh-Dewitt
detector.
Up to first order, V̂ is given by

�
ϕ̂ðzμ þ ϵμ=2Þ 0

0 ϕ̂ðzμ − ϵμ=2Þ

�

≈ ϕ̂ðzμðτÞÞI þ ϵνðτÞ
2

∂νϕ̂ðzμðτÞÞσ̂z: ð21Þ

We throw away the ϕ̂ term because it is common to both
paths, and gives an overall phase shift without introducing
decoherence. Therefore, we keep only the second piece,
and the evolution operator is given by

Û ¼ T

�
exp

�
i
Z

dτ
σ̂z
2
½εμ∂μϕ̂�τ

�	
;

¼ I þ iσ̂z
2

Z
dτ½εμ∂μϕ̂�τ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

Φ̂1

−
I
8

Z
τ2>τ1

dτ2dτ1½εμ∂μϕ̂�τ2 ½εμ∂μϕ̂�τ1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Φ̂2

: ð22Þ

Suppose the system has an initial state described by ρ̂ð0Þsys, and

it forms a product statewith the field, ρ̂ini ¼ ρ̂ð0Þsys ⊗ ρ̂vac, then
the final state is given by

ρ̂fin ¼ ρ̂ini þ
i
2
½σ̂zΦ̂1; ρ̂ini�

−
1

8
ðΦ̂2ρ̂ini þ ρ̂iniΦ̂2 − 2Φ̂1σ̂zρ̂iniσ̂zΦ̂1Þ: ð23Þ

Taking the partial trace over the field, we obtain

ρ̂ð1Þsys ¼ trfieldρ̂fin ¼ ρ̂ð0Þsys −
1

2

�
σ̂z
2
;

�
σ̂z
2
; ρ̂ð0Þsys

��
N ; ð24Þ

where

N ¼
Z

dτ1dτ2εμðτ1Þενðτ2Þh½∂μϕ̂�τ1 ½∂νϕ̂�τ2ivac: ð25Þ

For an initial system state of

ρ̂ð0Þsys ¼
�
ρþþ ρþ−

ρ−þ ρ−−

�
; ð26Þ

the final state is given by
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ρ̂ð1Þsys ¼

0
B@ ρþþ

�
1 − 1

2
N
�
ρþ−�

1 − 1
2
N
�
ρ−þ ρ−−

1
CA: ð27Þ

In this way, N determines the loss in interference contrast
and directly measures decoherence. The formulation here
does not depend on the initial system state—we can have any
pure ormixed state, as specified byρfþþ;þ−;−−g, and the same
lawofdecoherence (27) canbederived (see [9–11] for related
work). Note that this lawof decoherence is directly caused by
incoming field fluctuations.Dependingon the temperature of
the surrounding environment, we can have a different
decoherence rate.
However, because of action and reaction, the outgoing

radiation carries information about the interaction between
the field and the system. By examining the outgoing field,
one can also determine the decoherence of the system:
information lost from the system can be recovered from the
outgoing field. By tracing out the system, we have

ρ̂ð1Þfield ¼ ρ̂vac þ
i
2
trðσ̂zρ̂sysÞ½Φ̂1; ρ̂vac�

−
1

8
ðΦ̂2ρ̂vac þ ρ̂vacΦ̂2 − 2Φ̂1ρ̂vacΦ̂1Þ; ð28Þ

which leads to

hvacjρ̂ð1Þfieldjvaci ¼ 1 −
1

4
N : ð29Þ

Perturbatively, the final state of the field is in a super-
position of zero and one photon states, and Eq. (29)
indicates that the mean number of photons emitted is
always N =4. It is a little curious here that this N =4 does
not depend on the quantum state of the system. A careful
examination reveals that this is a special case, because the
observable σz that couples to the radiation field has σ2z ¼ 1.
The physical interpretation is that whatever the state of the
mass, there is always a dipole moment σ̂z, and field
amplitude will be ϕ̂ ∼ σ̂z, with ϕ̂2 ∼ σ2z always the same.
Also the factor of 1=4 arises from the fact that each
component of the superposition has magnitude ε=2. Our
calculation in this section is illustrated in Fig. 1.

B. General split path experiment

The perturbative result of the previous section actually
exponentiates. A more general framework for describing
decoherence is given by the decoherence functional, which
itself is a part of the Feynman-Vernon influence functional
[12,13]. This object generally lives in the integrand of a
central system’s path integral, encapsulating all effects due
to interactions with the bath system. However, in situations
where the dynamics of the central system are under control,
it can often be sufficient to evaluate the influence functional

FIG. 1. Schematic diagram showing the joint unitary evolution of the field and the system, as well as the evolution of each of their
density matrices when the other party is traced out. From this diagram, we can see that the level of decoherence of the quantum system
can be extracted consistently by examining the field evolution. However, in order to obtain all the details of the system’s evolution, one
must focus on the density-matrix evolution of the system, which means tracing out the outgoing field. Although equations here are
written specifically for the dipole calculation in Sec. II A, the structure presented here applies to a broad set of problems.
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only along the classical trajectory—for the examples
considered in this paper, such an approximation is indeed
valid. For the two-path system, the reduced density matrix
is given by

ρ̂sys ¼
�

ρþþ ρþ−F ½þ;−�
ρ−þF ½−;þ� ρ−−

�
; ð30Þ

whereF ½þ;−� is the influence functional. It is a functional of
the trajectory of the system along its evolution ψ�ðtÞ. Only
themagnitude is relevant for quantifying decoherence, soone
typically writes jF j ¼ expð− 1

2
DÞ, where D ≥ 0 is the

decoherence functional.
A general review of the influence functional is given in

Appendix B, here we take just a specific application of the
general result: for an interaction described by the action

Sint½q;ϕ� ¼
X
a

Z
dτQaðqðτÞÞϕaðτÞ; ð31Þ

where a is a generic, possibly continuous index, q is a set of
system variables, Q is a function of these system variables,
and ϕa is a set of bath variables, the decoherence functional
is given by

D½Qþ; Q−� ¼ 1

2

Z
t

−∞
dτ
Z

t

−∞
dτ0hfϕaðτÞ;ϕbðτ0Þgiconn

× ðQþaðqðτÞÞ −Q−aðqðτÞÞÞðQþbðqðτ0ÞÞ
−Q−bðqðτ0ÞÞÞ þ � � � ; ð32Þ

where the ellipsis denotes connected (n > 2)-point func-
tions of ϕ. The notation Q� indicates the value of the
function QðqÞ along the (�) trajectory. The correlation
function is evaluated in the initial state of the bath, where it
was assumed to be decoupled from the central system. No
assumption was made about the state of the bath, nor its
composition (aside from it being described by bosonic
variables). However, the above expression is only computa-
tionally convenient when higher connected n-point func-
tions are suppressed. This is certainly the case for photon
and graviton baths at low energies.
One of the wonderful pieces of intuition developed by

Feynman and Vernon is that decoherence functionals of the
form Eq. (32) always have an interpretation as arising from
the coupling ofQa to a classical stochastic driving force fa.
Indeed, one can disregard any notion of a dynamical bath
and simply consider a classical source of the form

Ssource ¼
X
a

Z
dτQaðqðτÞÞfaðτÞ: ð33Þ

If fa is a zero mean Gaussian stochastic process with
autocorrelator matching the bath’s so-called noise kernel,
faðτÞfbðτ0Þ ¼ hfϕaðτÞ;ϕbðτ0Þgiconn., then the decoherence

it causes on the central system is described by Eq. (32).
Thus, this leading order perturbative decoherence always
has an interpretation in terms of random local classical
forces.
Despite the interpretation of the decoherence functional

as arising from random local forces, consistency with
Eq. (27) implies that it agrees with the photon count,
D ¼ hN i. We will use this as a cross-check in later
sections, computing the decoherence both by counting
photon flux and by computing the force spectrum on the
quantum system.

1. Charged particle example

As a concrete example of a decoherence functional
consider a minimally coupled electric charge,

Sint ¼ q
Z

dτ
dzμ

dτ
AμðzðτÞÞ: ð34Þ

The thought experiment we will consider here will be
creation of a two-state spatial superposition of the charged
particle, where each branch of the wave function follows a
path zLðτÞ or zRðτÞ. We assume that there is a lab trajectory
zðτÞ such that at early and late times the trajectories
coincide zL ¼ zR ¼ z̄.
The coherence of the evolution can be probed via an

interference experiment. A simple example of this involves
attaching a qubit degree of freedom to the particle which
itself does not couple directly to anything. We assume that
the initial state of the qubit is jψi ¼ αj0i þ βj1i, and in a
manner resembling Stern-Gerlach, the particle follows
trajectory zL if the qubit is in state j0i and zR is the qubit
is in state j1i. While the particle trajectories coincide at late
times, the qubit density matrix takes a form entirely
analogous to Eq. (30), with the relevant decoherence
functional [14]

D½zL; zR� ¼
q2

2

Z
d4x

Z
d4yJμqðxÞJνqðyÞhfAμðxÞ; AνðyÞgi;

ð35Þ

with effective “quantum” source

JμqðxÞ ¼
Z

∞

−∞
dτðżμLðτÞδðx − zLðτÞÞ − żμRðτÞδðx − zRðτÞÞÞ:

ð36Þ

Note that since the quantum source vanishes at early and
late times, a simple integration by parts proves that it is
conserved, ∂μJ

μ
q ¼ 0. Since the source is conserved, the

decoherence functional is independent of the gauge choice
for Aμ.
This gauge independence can be manifested by writing

this integral in the language of differential forms
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D½zL; zR� ¼ q2
I

C
A
I
C
A

�
¼ q2

Z
S
F
Z
S
F

�
; ð37Þ

where the curve C ¼ zL � ð−zRÞ is the closed loop going
forward along zL and then back along zR, and S is any two-
dimensional surface anchored to C. Note that although we
have omitted the anticommutator in the correlation func-
tion, the integrand is symmetric, so we will only be picking
out the symmetric part of the Wightman function above.
This geometric picture goes a step further if we observe that
the magnitude of the whole influence functional may then
be written as the Wilson loop

jF ½zL; zR�j ¼

exp

�
iq
I
C
A

��
: ð38Þ

2. Relevant models

We are interested in long-time persistent effects, for
which the relevant field modes are very long wavelength.
Small scale details of experiments conducted in a finite size
laboratory are irrelevant to these modes. Their coupling to
everything in the lab is best modelled by an effective
worldline description where the field couples to localized
dynamical multipole-moment operators which characterize
the dynamics of the experiment, as in e.g. [15–17].
For present calculations we’ll consider three effective

models. In each case we will consider a two-state system
carried along a lab worldline z̄μðτÞ and coupled to a quantum
field.Wewill consider: (1) the original Unruh-DeWitt model
of a monopole-moment coupling to a massless scalar field,
(2) a dipole-moment coupling to a massless scalar field, and
(3) an electric-dipole coupling to the electromagnetic field.
Scalar monopole. We have a Hamiltonian

HintðτÞ ¼ λðτÞσzϕðzðτÞÞ; ð39Þ

where λ is a time dependent coupling, σz ¼ �1 is the
detector’s monopole moment operator, and we will assume
that the detector has no other dynamics (e.g. no bias terms
such as H0 ¼ −B⃗ · σ⃗). We will assume that λ has compact
support, and that observations on the detector are per-
formed after decoupling. The decoherence functional for
this particle detector system is then simply

D¼ 2

Z
∞

−∞
dτ
Z

∞

−∞
dτ0 λðτÞλðτ0ÞhfϕðzðτÞÞ;ϕðzðτ0ÞÞgi: ð40Þ

Scalar dipole. The action is

Sint ¼
Z

dτ dμðτÞ∂μϕðz̄ðτÞÞ: ð41Þ

The dipole moment dμ can be taken without loss of
generality as defined in the local orthonormal frame,

dμðτÞ ¼ dIðτÞeμI ðτÞ, where eμI ðτÞ ˙̄zμðτÞ ¼ 0. For a super-
position in which the dipole moment is either
dIðτÞ ¼ � 1

2
qεIðτÞ, we have the decoherence functional

D ¼ q2

2

Z
∞

−∞
dτdτ0 εμðτÞενðτ0Þhf∂μϕðz̄ðτÞÞ; ∂νϕðz̄ðτ0ÞÞgi:

ð42Þ

Electric dipole. The action is

Sint ¼ q
Z

dτ εμðτÞ ˙̄zνðτÞFμνðz̄ðτÞÞ; ð43Þ

for a dipole moment qεμ. The dipole moment may again be
taken as orthogonal to the four-velocity, and we consider
a superposition of the following trajectories, εμðτÞ ¼
� 1

2
εIðτÞeμI ðτÞ. The decoherence functional is then

D ¼ q2

2

Z
∞

−∞
dτdτ0 εIðτÞεJðτÞhfEIðτÞ; EJðτ0Þgi; ð44Þ

where the local electric field is defined as EIðτÞ ¼
eμI ðτÞ ˙̄zμðτÞFνμðz̄ðτÞÞ. The open quantum dynamics of radi-
ation coupled dipoles has been studied extensively in the
non-relativistic limit, see e.g. [12,18] and references therein;
however Eq. (44) as presented here is valid for general
trajectories and is not limited to Minkowski spacetime.
In Sec. IV,wewill focus on the scalar dipole in a uniformly

accelerated lab, as the simplest model which captures the
physics observed by DSW.Wewill computeN in twoways,
one using the characteristic approach taken by DSW, and
another using the standard Cauchy approach. In Sec. V we
will compute D for the scalar and electric dipoles, finding
exact agreement with the previous computations.

III. STANDARD THERMAL DECOHERENCE

Decoherence of a system due to interactions with a
thermal bath is a well studied phenomenon [12]. In this
section we will focus on the case of simple Unruh-DeWitt
particle detectors at rest, coupled to a scalar field at finite
temperature. For the simplest case, a qubit with monopole
moment coupling, thermal decoherence proceeds with a
steady rate. The analogous computation in an accelerated
frame gives exactly the same result, provided that
a ¼ 2πβ−1. This is a classic example [5,19], but is useful
to review before we proceed. Interestingly though, when
we extend to the case of a dipolar coupling we will find that
there is zero thermal decoherence.4 This is consistent with

4Here, and throughout, we are referring only to the linear
dependence of D on the total proper time T. There is generically
also logðTÞ contributions to the decoherence functional coming
from radiation which reaches null infinity [4,20–22], which we
are not investigating in this work.
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expectations coming from the vanishing Thompson cross
section in the limit of no recoil, and bolsters the confusion
around the local explanation for the DSW soft photon
decoherence.
We’ll start with Eq. (40) for the decoherence of a

monopole-moment coupled detector. In the vacuum state
the symmetric correlation function is given by

Gð1Þðx; yÞ ¼ h0jfϕðxÞ;ϕðyÞgj0i ¼ 1

2π2
1

ðx − yÞ2 ; ð45Þ

where we are using mostly plus Lorentzian signature, and
the principal value is implied.
Consider first an inertial lab trajectory, zμðτÞ ¼ uμτ, and

states of the bath such that this correlation function is
stationary, i.e. a function only of the combination τ − τ0.
Since λ is equal to a constant value λ0 for a long time, we
effectively have a constant decoherence rate, 1

2
D ≈ ΓT,

with

Γ ¼ λ20

Z
∞

−∞
dτhfϕðuτÞ;ϕð0Þgi: ð46Þ

Concretely we may then write the vacuum decoherence rate
as

Γinertial ¼
−λ20
2π2

Z
∞

−∞
dτ

1

ðτ − iϵÞ2 ¼ 0: ð47Þ

This vanishing can be seen simply by closing the contour in
the lower half plane.
Consider now the inertial observer at rest relative to a

thermal bath with inverse temperature β. For systems in
thermal equilibrium we have the Kubo-Martin-Schwinger
(KMS) relation

Trðe−βHϕðx0; x⃗Þϕð0; 0ÞÞ ¼ Trðe−βHϕð0; 0Þϕðx0 þ iβ; x⃗ÞÞ;
ð48Þ

which implies the periodicity of the symmetric correlation
function in imaginary time,

Gð1Þ
β ðx0; x⃗Þ ¼ Gð1Þ

β ðx0 þ iβ; x⃗Þ: ð49Þ

Together with the equation of motion, this periodicity
condition implies that the free field thermal correlation
function is given by a simple image-sum over the vacuum
correlation function

Gð1Þ
β ðx0; x⃗Þ ¼

X∞
l¼−∞

Gð1Þðx0 þ ilβ; x⃗Þ: ð50Þ

For the free scalar field this is

hfϕðuτÞ;ϕð0Þgiβ ¼
X∞
l¼−∞

−1
2π2

1

ðτ þ ilβÞ2 : ð51Þ

We can then use the following identity

1

sin2ðπxÞ ¼
1

π2
X∞
l¼−∞

1

ðx − lÞ2 ; ð52Þ

to obtain the thermal correlation function

Gð1Þ
β ðτ; 0Þ ¼ −1

2β2
1

sinh2
�
πτ
β

� : ð53Þ

Integrating over τ, the corresponding decoherence rate is

Γβ ¼
λ20
πβ

: ð54Þ

Compare this with the experience of a uniformly
accelerated detector moving through a field in the
Minkowski vacuum state. For the trajectory

z̄μðτÞ ¼ ðt; x; y; zÞ ¼
�
1

a
sinhðaτÞ; 0; 0; 1

a
coshðaτÞ

�
; ð55Þ

the symmetric correlator Eq. (45) evaluated along the
worldline is

Gð1ÞðzðτÞ; zð0ÞÞ ¼ −a2

8π2
1

sinh2
�
aτ
2

� : ð56Þ

The fact that the correlation functions Eqs. (56) and (53)
are identical under the identification of β ¼ 2π=a, is a
statement of the Unruh effect. We then see that for a
uniformly accelerated detector with monopolar coupling to
the scalar field the decoherence can be completely under-
stood in the local frame as coming from interaction with a
thermal bath.
Now consider the decoherence functional for a dipole

coupled to a scalar field, Eq. (42). For a lab at rest relative to
a thermal bath, the correlation function is stationary and we
have the decoherence rate

Γ ¼ q2εiεj

4

Z
∞

−∞
dτhf∂iϕðuτÞ; ∂jϕð0Þgiβ: ð57Þ

Taking the appropriate derivatives of Eq. (45), this corre-
lation function is then written as the thermal image sum

hf∂iϕðuτÞ; ∂jϕð0Þgiβ ¼
δij
π2
X∞
l¼−∞

1

ðτ þ ilβÞ4 : ð58Þ
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Carefully evaluating the integral over τ, one finds for n ≥ 1

Z
dτ
X∞
l¼−∞

1

ðτ þ ilβÞ2n ¼
� −2π

β ; if n ¼ 1

0; otherwise
: ð59Þ

Evidently, while the monopole-moment coupled detector
(n ¼ 1) demonstrated thermal decoherence, the dipole and
higher derivative couplings have vanishing thermal
decoherence rates.
The DSW thought experiment can be mapped onto an

Unruh-DeWitt detector computation, albeit one with dipo-
lar coupling. Given that the monopole-coupled Unruh-
DeWitt decoherence was entirely explained by thermal
fluctuations, one would naturally expect that the DSW
decoherence would also be explained by thermal fluctua-
tions. This expectation is challenged, however, by the
above explicit computation.
Next, in Sec. IV, we will compute decoherence via

photon emission, while in Sec. V, we will perform an
alternative computation where we carefully track the effect
of the field’s vacuum fluctuations on the detector, achieving
equivalent results and addressing the apparent inconsis-
tency between those results and the ones in this section.

IV. PHOTON EMISSION RATE OF
ACCELERATED QUANTUM SYSTEMS (DSW)

In this section, we shall compute the photon emission
rate N of a uniformly accelerated dipole using two
different approaches: the characteristic approach of DSW
and a Cauchy approach. We have generalized the DSW
treatment by considering a dipole along a generic direction.
The results of the two approaches will agree with
each other.

A. Characteristic calculation

Suppose we have a trajectory

zμðτÞ ¼ ðt; x; y; zÞ ¼
�
1

a
sinhðaτÞ; 0; 0; 1

a
coshðaτÞ

�
; ð60Þ

where τ is the proper time and a the proper acceleration. On
this trajectory, we have a particle with dipole moment

qεμðτÞ ¼ q
a
½εZðτÞ sinhðaτÞ; εXðτÞ; εYðτÞ; εZðτÞ coshðaτÞ�:

ð61Þ

Here εX;Y;Z are components of the dipole moment along
the x, y, and z directions. Note that for εZ, the direction of
εμ contains both t and z components, so εμ can maintain
orthogonality with żμðτÞ.
It is understandable that ε will become very close to zero

within a finite duration. In this way, the dipole source does
not extend to infinity. Let us consider the scalar field
sourced by this dipole. We consider a new trajectory, with

zμðτ; λÞ ¼ zμðτÞ þ λεμðτÞ; ð62Þ

and four-velocity vector

uμðτ; λÞ ¼ żμðτÞ þ λε̇μðτÞ; ð63Þ

where λ ¼ � 1
2
. For any field point, the Lienard-Wiechert

potential is given by

ϕðx⃗Þ¼ δ

δλ

�
−

q
4π

1

½xμ− zμðτretðx⃗;λÞ;λÞ�uμðτretðx⃗;λÞÞ
�
; ð64Þ

where τretðx⃗; λÞ satisfies

½xμ − zμðτretðx⃗; λÞ; λÞ�½xμ − zμðτretðx⃗; λÞ; λÞ� ¼ 0; ð65Þ

and u⃗ðτÞ is the 4-velocity of the particle. More specifically,
consider a point

P ¼ ðξ; x; y; ξÞ ð66Þ

on the Rindler horizon H of the particle. Here ξ is the
retarded time on the horizon. Relating to ξ, the retarded
proper time on the trajectory is given by

τretðξ; x; yÞ ¼
1

a
log

2aξ
1þ a2ρ2

þ λ

a

�
2axεXðτÞ þ 2ayεYðτÞ þ ½−1þ a2ρ2�εZðτÞ

1þ a2ρ2

�
τ¼τð0Þret ðξ;x;yÞ

; ð67Þ

where we have defined

ρ ¼ x2 þ y2; τð0Þret ðξ; x; yÞ ¼
1

a
log

2aξ
1þ a2ρ2

: ð68Þ

This allows us to compute the dipole potential for ξ > 0, which is given by

ϕðPÞ ¼
�
−

qa
2πð1þ a2ρ2Þ2 ½½2aεZ þ ð1 − a2ρ2Þε0Z� − 2axðaεX þ ε0XÞ − 2ayðaεY þ ε0YÞ�

	
τ¼τð0Þret ðξ;x;yÞ

: ð69Þ
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From here, we will see that a constant ϕ exists for the
duration in ξ which tracks back to a retarded time τret that
had a nonzero dipole. It was from here that Danielson,
Satishchandran, and Wald argued for the decoherence

proportional to proper time. We can go on and compute
the radiative flux through the Rindler horizon.
Note that this is only nonzero for ξ > 0. We can

then write

ϕðω; x; yÞ≡
Z þ∞

0

dξ eiωξϕðξ; x; y; ξÞ;¼ −
qa2

2π

Z þ∞

−∞
dτ

h
εZðτÞ þ 1−a2ρ2

2a ε0ZðτÞ
i
− x½aεXðτÞ þ ε0XðτÞ� − y½aεYðτÞ þ ε0YðτÞ�

ð1þ a2ρ2Þ

× exp

�
aτ þ iω

1þ a2ρ2

2a
eaτ
�
: ð70Þ

The photon number is then given by (see also
Appendix A)

N ¼
ZZ þ∞

−∞
dxdy

Z þ∞

0

dω
2π

2ωjϕðω; ρÞj2: ð71Þ

To compute the photon number radiated, we first perform
an integral by parts in Eq. (70), obtaining an integral only
over εx;y;zðτÞ and not its derivatives, before inserting into
Eq. (71). This leads to

N ¼
ZZ

dτ1dτ2WIJ
DSWðτ1; τ2Þε�I ðτ1ÞεJðτ2Þ: ð72Þ

Here we have allowed ε to be complex for purposes that
will become clear later. We find

Wxx;yy
DSWðτ1; τ2Þ ¼

q2a4

32π2

�
1

−iϵþ sinh aðτ1−τ2Þ
2

�
4

;

Wzz
DSW ¼ q2a4

32π2

�
1

−iϵþ sinh aðτ1−τ2Þ
2

�
4

−
q2a4

16π2

�
1

−iϵþ sinh aðτ1−τ2Þ
2

�
2

: ð73Þ

Using

εJðτÞ ¼
Z

dΩ
2π

ε̃JðΩÞe−iΩτ; ð74Þ

we can write

N ¼
Z þ∞

−∞
WIJ

DSWðΩÞε̃�I ðΩÞε̃JðΩÞ
dΩ
2π

ð75Þ

and

Wxx
DSWðΩÞ ¼

q2a2Ω
12π

�
1þ

�
Ω
a

�
2
��

coth
πΩ
a

þ 1

�
;

Wzz
DSWðΩÞ ¼ Wxx

DSWðΩÞ þ
q2a2Ω
4π

�
coth

πΩ
a

þ 1

�
: ð76Þ

To perform the Fourier transform here, one way is to make a
substitution z ¼ eaðτ1−τ2Þ and τ1 − τ2 ¼ a−1 log z and per-
form a contour integral that goes below the positive real
axis, turns above the real axis, and then around a large
circle. Here the branch cut for log should start from the
origin and run along the positive real axis.
We notice thatW is complex in the time domain, therefore

in the frequency domain, we have WðΩÞ ≠ W�ð−ΩÞ.
However, W is still a Hermitian operator on ε, with

Wðτ1; τ2Þ ¼ W�ðτ2; τ1Þ; ð77Þ
which guarantees that N is real valued.
To compute the number of photons emitted by the dipole,

we will restrict to real-valued ε in the time domain.
Correspondingly, we need to define a symmetrized force
spectrum

SFðΩÞ ¼
WðΩÞ þWð−ΩÞ

2
; ð78Þ

which in our case is

Sxx;yyF ðΩÞ ¼ q2a2Ω
12π

�
1þ

�
Ω
a

�
2
�
coth

πΩ
a

; ð79Þ

SzzF ðΩÞ ¼
q2a2Ω
12π

�
4þ

�
Ω
a

�
2
�
coth

πΩ
a

: ð80Þ

This will indeed relate to the force on the dipole as we
explicitly compute its decoherence in Sec. V. The fact that
SFðΩÞ ∼ a3 as Ω → 0 leads to the scaling of

N ∼ q2a3jεj2T: ð81Þ
More specifically, suppose εðτÞ is a constant value ε for a
long (proper time) duration T and smoothly transitions to
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zero at both ends. If T ≫ 1=a and ε only has low-frequency
components at Ωa ≪ 1, then we can write

N ¼
Z þ∞

−∞
SIJF ðΩÞε̃�I ðΩÞε̃JðΩÞ

dΩ
2π

;

≈ SIJF ð0Þ
Z þ∞

−∞
ε̃�I ðΩÞε̃JðΩÞ

dΩ
2π

;

¼ SIJF ð0Þ
Z þ∞

−∞
εIðτÞεJðτÞdτ ¼ εIεJTSIJF ð0Þ;

¼ Tq2a3

12π2
ðjεj2 þ 3ε2ZÞ: ð82Þ

In the second line, the narrow bandwidth of ε̃ limits the
integration bound to the region where SFðΩÞ is well
approximated by SFð0Þ, while in the third line we have
applied the Parseval theorem.

B. Cauchy calculation

It is more conventional to compute the photon number
radiated by using the Fourier approach. For a particle
trajectory zμðτÞ and dipole trajectory εμðτÞ, we can use a
classical scalar field equation

□ϕ ¼
Z

dτενðτÞ∂νδð4Þðxμ − zμðτÞÞ: ð83Þ

This can be solved using a Fourier transform, with

ϕðt;xÞ¼
Z

dω
2π

e−iωt
Z

d3k
ð2πÞ3 e

−ik·x SðkμÞ
ðωþ iϵÞ2−k2

: ð84Þ

Where the iϵ prescription above selects the retarded
boundary conditions. The source term S is given as an
integral along the path of the system,

SðkμÞ ¼
Z þ∞

−∞
dτ ikμεμðτÞe−ikμzμðτÞ: ð85Þ

We note that kμ ¼ ðω;kÞ does not yet have to be on shell in
the above integrals, which take place in the entire four-
dimensional kμ space.
Since the source term is practically limited within a finite

duration in time, the integral over ω in Eq. (84) can be done
by extracting the residue pole at ω ¼ jkj, leading to

½ϕðt;xÞ�late ¼ q
Z

d3k
ð2πÞ3 e

−iωkt
1

2ωk
SðkÞeik·x: ð86Þ

Evaluating the integral at late times allow us to use SðkÞ,
which is the on-shell value of SðkμÞ. In this way, the
radiated number of photons will be given by

N ¼ q2
Z

d3k
ð2πÞ3

1

2ωk
jS2ðkÞj: ð87Þ

Specifically, in our case, we can define

SðkÞ ¼
Z þ∞

−∞
dτsðk; τÞ ð88Þ

and

sðk; τÞ ¼ εμðτÞkμeikμzμðτÞ;
¼ fεZðτÞ½−ωk sinhðaτÞ þ kz coshðaτÞ�
× kxεXðτÞ þ kyεYðτÞge−i

ωk
a ½sinhðaτÞ−cos θ coshðaτÞ�:

ð89Þ

This leads to exactly the same decoherence rate as in the
DSW case. It is interesting to note that evaluating the
radiation flux on the just the future horizon, without
consideration of future null infinity, is sufficient to repro-
duce the effect. We can see this from the Appendix A.
One tip for obtaining the time-domain Wightman func-

tion is to add a regularization term eϵω, ϵ → 0þ in the k
integral, and only compute the case of τ1 þ τ2 ¼ 0—
because Wðτ1; τ2Þ only depends on τ1 − τ2.

V. DECOHERENCE FROM VACUUM
FLUCTUATIONS (UNRUH-DEWITT): SCALAR

AND ELECTRIC DIPOLES

In this section, we shall employ the Unruh-DeWitt
approach to compute decoherence rate due to incoming
vacuum fluctuations.

A. Scalar-dipole superposition decoherence

Let us directly compute the decoherence rate for a
constantly accelerating system via the noise term in the
influence functional. That is, let us evaluate

D ¼ q2

2

Z
∞

−∞
dτdτ0 εμðτÞενðτ0Þhf∂μϕðz̄ðτÞÞ; ∂νϕðz̄ðτ0ÞÞgi;

ð90Þ

with the field in the Minkowski vacuum state. The
correlation function above is the symmetric part of the
Wightman function

GðþÞðx; yÞ ¼ h0jϕðxÞϕðyÞj0i

¼ −1
4π2

1

ðx0 − y0 − iϵÞ2 − ðx⃗ − y⃗Þ2 : ð91Þ

Since the Minkowski vacuum is invariant under Lorentz
boosts, and points along the uniformly accelerated world-
line are all connected by boosts, the pullback of the scalar
Wightman function to the worldline is a function of τ − τ0
alone,
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GðþÞðz̄ðτÞ; z̄ðτ0ÞÞ ¼ −a2

16π2

 
1

sinh
�
a
2
ðτ − τ0Þ

�
− iϵ

!
2

: ð92Þ

The partial derivatives spoil the stationarity of the
Wightman function; however when they are projected into
the local orthonormal frame the stationarity is restored:

GðþÞ
IJ ðτ; τ0Þ≡ eμI ðτÞeνJðτ0Þ

∂

∂xμ
∂

∂yν
GðþÞðx; yÞjx¼z̄ðτÞ;y¼z̄ðτ0Þ;

¼ a4

32π2
δIJ

 
1

sinh
�
a
2
ðτ − τ0Þ

�
− iϵ

!
4

−
a4

16π2
δZI δ

Z
J

 
1

sinh
�
a
2
ðτ − τ0Þ

�
− iϵ

!
2

: ð93Þ

Here the vectors eμI for I ¼ ðX; Y; ZÞ form a local ortho-
normal basis orthogonal to ˙̄zμ, see Fig. 2. In Minkowski
coordinates they are

eμX ¼ ð0; 1; 0; 0Þ; eμY ¼ ð0; 0; 1; 0Þ
eμZ ¼ ðsinhðaτÞ; 0; 0; coshðaτÞÞ: ð94Þ

The Fourier transform is then

GðþÞ
IJ ðΩÞ ¼ ðδIJðΩ3 þ a2ΩÞ þ 3δZI δ

Z
J a

2ΩÞ
12π

×
�
coth

�
πΩ
a

�
þ 1

�
; ð95Þ

in terms of which the decoherence functional is

D ¼ q2

2

Z
dΩ
2π

εIðΩÞεJð−ΩÞðGðþÞ
IJ ðΩÞ þGðþÞ

IJ ð−ΩÞÞ: ð96Þ

As expected this is in agreement with the number of
radiated photons, Eq. (76). For dipoles held constant for
very long times, εIðΩÞ ≈ εI2πδðΩÞ, we have the steady
decoherence rate

D ≈
Tq2a3

12π2
εIεJðδIJ þ 3δZI δ

Z
J Þ: ð97Þ

As an aside, note that the force spectrum diverges as Ω3

at high frequencies. This is the typical scaling of electric
field vacuum amplitude fluctuations, and we will show that
this divergence is cut off by a physical detector.

B. Unruh-DeWitt particle detector

A physical system with finite resolution will not be
sensitive to divergent vacuum fluctuations described by
Eq. (95), and we can illustrate this point by considering a
simple particle detector model. This particle detector model
will also give us yet another way of understanding the
decoherence rate of the superposed charged particle.
Suppose now that we utilize a constant dipole qεA as an

Unruh-DeWitt detector for ϕ particles. That is, we apply a
local bias field to our two-state system such that they now
have an energy gapΔ, and we couple two system to a scalar
field via a dipolar interaction. Evolving the joint system
perturbatively, we will then have a final state ofZ

dτ½σþe−iΔτ þ σ−eþiΔτ�qεμðτÞ∂μϕ̂ðz̄ðτÞÞjgij0i; ð98Þ

where jgi is the ground state of the two-level system and j0i
is the ground state of the field. The probability that the
system detects a particle, i.e. gets excited from its ground
state, is then given by the detector response function

F ðΔÞ ¼ q2εIεJ
Z

0

−∞
dτ
Z

∞

−∞
dτ0e−iΔðτ−τ0ÞGðþÞ

IJ ðz̄ðτÞ; z̄ðτ0ÞÞ:

ð99Þ

In the language of the previous section, we effectively
have

εIðΩÞ ¼ εI2πδðΩ − ΔÞ: ð100Þ

This will lead to a photodetection rate of

dN=dt ¼ q2εIεJGðþÞ
IJ ð−ΔÞ

¼ q2εIεJ

6π

ða2ΔðδIJ þ 3δZI δ
Z
J Þ þ Δ3Þ

e2πΔ=a − 1
: ð101Þ

FIG. 2. Space-time diagram illustrating the trajectory (blue) of a
constantly accelerating quantum system and the deviation vector
ε⃗ (red arrows) along which a superposition state is formed. We
have shown an initial Cauchy surface Σin, from which incoming
radiation originates, and a final Cauchy surface Σout, from which
outgoing radiation exits.Wehave also shownon the figure aKilling
horizon H, on which outgoing radiation can be studied.
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This features a Bose distribution with temperature
β−1 ¼ a=2π, characteristic of the Unruh effect, however
it is not equal to the Planck spectrum. The photodetection
rate is finite, and for systems with large energy gaps,
Δ ≫ β−1, the rate is exponentially suppressed. As expected
on physical grounds, a photodetector will not suffer from
the same divergence as a detector with infinite resolution to
amplitude fluctuations.
From this expression we may also see another interpre-

tation of the DSW decoherence rate. If we take the gap size
to zero, then the photodetector clicks with a rate

dN=dt ¼ q2a3

12π2
εIεJðδIJ þ 3δZI δ

Z
J Þ: ð102Þ

This agrees exactly with the number of radiated soft
photons, Eq. (82), as seen in the inertial frame. It also
agrees with the decoherence predicted by the description of
local random forces acting on the dipole, Eq. (97). The
agreement with Eq. (102) suggests yet another interpreta-
tion from the perspective of the lab frame, the two branches
of the dipole’s wave function randomly mix with one
another due to the absorption of soft photons from a
thermally populated bath.

C. Electric dipole decoherence

Let us now consider the more physically relevant system
of a delocalized charged particle. From the general dis-
cussion in Sec. II, we know that for our purposes the
generic two-path Wilson loop expression, Eq. (37), can be
simplified down to a dipole approximation

D ¼ q2

2

Z
∞

−∞
dτdτ0 εAðτÞεJðτÞhfEAðτÞ; EJðτ0Þgi; ð103Þ

where EAðτÞ is the electric field in the local orthonormal
frame in the lab following worldline z̄μðτÞ. Again, the field
is taken to be in the Minkowski vacuum state.
Since the decoherence functional is gauge invariant, we

may compute the above correlation function by evaluating
certain derivatives of the Feynman gauge Wightman
function

h0jAμðxÞAνðyÞj0i ¼
−ημν
4π2

1

ðx0 − y0 − iϵÞ2 − ðx⃗ − y⃗Þ2 ;

ð104Þ
to obtain

GðþÞEM
IJ ðτ; τ0Þ≡ h0jEIðτÞEJðτ0Þj0i;

¼ δIJa4

16π2

�
1

sinh ða
2
ðτ − τ0ÞÞ − iϵ

�
4

: ð105Þ

In contrast with the scalar case, this is actually isotropic in
the local frame. The Fourier transform is

GðþÞEM
IJ ðΩÞ ¼ δIJ

Ω3 þ a2Ω
6π

�
coth

�
πΩ
a

�
þ 1

�
; ð106Þ

and the steady decoherence rate is

D ≈
Tq2jε⃗j2a3

6π2
: ð107Þ

Here we have an isotropic rate of decoherence regardless
of which spatial direction the superposition is along. Since

GðþÞEM
IJ is constant as Ω → 0, we still have a decoherence

level proportional to proper time T. In the time domain this
nonvanishing zero-frequency limit corresponds to electric
field correlations which do not average out over arbitrarily
long times, i.e.

h0j
�Z

∞

−∞
dτEIðτÞ

�
EJð0Þj0i ¼

a3

6π2
: ð108Þ

Given the discussion around Eq. (33), it follows that the
electric charge undergoing superposition feels a stochastic
force which remains correlated over arbitrarily long times,
never averaging out, and always causing dephasing on the
quantum system.
As we contrast the EM result Eq. (107) with the scalar

case Eq. (97), we see that for the X and Y directions, the
EM decoherence rate is double the scalar case. For the Z
direction, the scalar case is double the EM case.
More importantly, we note that the fluctuation spectrum

for the local electric field is

GðþÞEM
IJ ðΩÞ þ GðþÞEM

IJ ð−ΩÞ
2

¼ δIJ
Ωða2 þ Ω2Þ

3π

�
1

2
þ 1

e2πΩ=a − 1

�
; ð109Þ

which differs crucially from the naive Planck spectrum for
thermal fluctuations in an inertial lab,

SIJðΩÞ ¼ δIJ
Ω3

3π

�
1

2
þ 1

eβΩ − 1

�
; ð110Þ

by the addition of a linear term multiplying the Bose
factor. This difference is crucial to explaining why the
decoherence observed by DSW is not just explained by
thermal radiation bombarding the quantum state.
The difference between the accelerated and thermal case

can be seen in the force spectrum, and can also be seen
clearly at the level of the Wightman function. A thermal
correlator of electric fields in an inertial rest frame is
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Z
dteiΩtTrðe−βHEIðtÞEJð0ÞÞ¼ δIJ

Ω3

6π

�
coth

�
βΩ
2

�
þ1

�
:

ð111Þ

We show the z dipole and x dipole Unruh-DeWitt
Wightman functions together with the thermal one at the
same temperature, as well as the F functions, in Fig. 3.
We have seen that the steady rate of decoherence is not

trivially explained by considering the same experiment in
an inertial thermal bath; however, in the following section
we will see that the existence of the thermal bath of Unruh
photons is the only relevant quantum mechanical effect.
The slight modification of the Wightman function will be
understood from classical considerations alone, and is in
fact already apparent from the familiar Abraham-Lorentz-
Dirac radiation reaction force.

VI. GENERAL DISCUSSIONS ON DECOHERENCE
RATE AND BATH TEMPERATURE

This is a well-documented feature in the literature, as
discussed by Ref. [23] and references therein. However, we
provide a more pedagogical treatment here in our text.

A. The KMS state and the end state of thermalization

Let us first show that while the end state of our quantum
system is a thermal one,

pn ¼
1

Z
e−

En
kBT ¼ 1

Z
e−

2πEnc
ℏa ; β ¼ 1; ð112Þ

its dynamical path toward that thermal state will be
different. Let us first explain why the end state of the
accelerating quantum system should be thermal with
temperature β ¼ 2πℏa=ðkBcÞ. For any field operators A
and B, for example, electric and magnetic fields or their
derivatives in the rest frame of the constantly accelerating
observer, we have the so-called KMS property:

hAðτ1ÞBðτ2Þi¼ hBðτ2ÞAðτ1þ2πin=aÞi; n∈Z: ð113Þ

We can explicitly see this in calculations in Sec. V, because
all dependence on τ are via e�aτ. Typically, we expect the
system to gain the same periodicity as the bath—as is true
for real-valued periods. If this is indeed the case, then for a
finite-dimensional system, we can consider the operator

P̂mn ¼ jmihnj ð114Þ

with jmi and jni the energy eigenstates of the system. For
the Heisenberg operators of P̂mn, we expect

hP̂mnðtÞP̂nmðtÞi ¼ hP̂nmðtÞP̂mnðtþ 2πiaÞi: ð115Þ

This leads to

ρmm ¼ e2πaðEn−EmÞ=ℏρnn; ð116Þ

which indeed corresponds to a thermal state with

β ¼ 2πa=ℏ: ð117Þ

FIG. 3. Unruh-DeWitt versus thermal Wightman functions. Left panel: we use the blue solid line to denote the Wightman function of a
dipole along the direction of acceleration, blue dashed line for a dipole along transverse directions, and black solid line for any dipole in
a thermal field (in this case, the Wightman function is orientation independent). The right panel shows the symmetrized Wightman
function, which represents the force spectrum acting on the dipole. The positive-frequency portion of the left panel also indicates photon
counts by an Unruh-DeWitt detector along the accelerating path. The three curves all exponentially decay and agree with each other at
high frequencies. Photon fluxes computed by DSW agree with the Unruh-DeWitt Wightman functions. Their disagreement with the
thermal Wightman function reflects the different way an accelerating dipole couples to a scalar field, rather than the state of the
scalar field.
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Having the same temperature only means the same end
state of thermalization—it does not guarantee the same
decoherence rate, as the time it takes to reach the end state
can be different.

B. Fluctuation-dissipation theorem and the process
toward thermalization

To illustrate the possible difference in decoherence rates,
let us consider a dipole antenna that is part of an oscillator,
and use that antenna to measure the temperature of the field.
Suppose we have

Ĥ ¼ ĤA − x̂ F̂þĤfield; ð118Þ

where the two-time correlation function of F̂, in absence of
coupling, is given by

hF̂ð0Þðτ1ÞF̂ð0Þðτ2Þi ¼ Wðτ1; τ2Þ: ð119Þ

We can further define

hF̂ð0Þðτ1ÞF̂ð0Þðτ2Þisym ¼ Wðτ1; τ2Þ þWðτ2; τ1Þ
2

ð120Þ

and

½F̂ð0Þðτ1Þ; F̂ð0Þðτ2Þ� ¼
Wðτ1; τ2Þ −Wðτ2; τ1Þ

2
: ð121Þ

For a steady state system, we haveWðτ1; τ2Þ ¼ Wðτ1 − τ2Þ
and

SF ¼ WðΩÞ þWð−ΩÞ
2

: ð122Þ

We also define response functions of x̂ and F̂,

χA ¼ i
Z þ∞

0

dτeiΩτ½Âð0ÞðτÞ; Âð0Þð0Þ�: ð123Þ

One can show that

Im½χFðΩÞ� ¼
WðΩÞ −W�ð−ΩÞ

2
: ð124Þ

In this way, we have related the symmetric and antisym-
metric Wightman function (in the time domain) to the force
spectrum given by the bath and the response function of the
bath to the system. We will now show that this is also
related to the damping the system experiences once coupled
to the bath.
Now that the oscillator and the bath are coupled, we have

x̂ð1Þ ¼ x̂ð0Þ þ χx½F̂ð1Þ þ G�; ð125Þ

F̂ð1Þ ¼ F̂ð0Þ þ χFx̂ð1Þ: ð126Þ

From this we can obtain

x̂ð1Þ ¼
�
1

χx
þ χF

�
−1
½Gþ Fð0Þ�: ð127Þ

In this way, we find that the inverse response of the
oscillator changes by χF, or�

1

χx

�ð1Þ
¼
�
1

χx

�ð0Þ
þ χF: ð128Þ

If the oscillator originally has no damping to any other bath,
then we will then have

Imχx ¼
WðΩÞ −W�ð−ΩÞ

2
: ð129Þ

If we were to apply the fluctuation-dissipation theorem, for
a bath inverse temperature β, we will have

SFDTF ¼ coth
βΩ
2

Imχx ð130Þ

In order to reconcile Eqs. (122) and (130), we need to
impose

WðΩÞ þWð−ΩÞ ¼ coth βΩ½WðΩÞ −Wð−ΩÞ�: ð131Þ

We can now apply the above formalism to the most
interesting electromagnetic case. For a charge q, we have

WEM
IJ ðΩÞ¼ δIJ

q2a2

6π
Ω
�
1þ
�
Ω
a

�
2
��

coth
πΩ
a

þ1

�
: ð132Þ

From here, we obtain

Im½χEMFABðΩÞ� ¼
q2ðΩ3 þ a2ΩÞ

6π
: ð133Þ

This reduces to the vacuum case when a → 0, recovering
the Abraham-Lorentz damping. Similarly enhanced low
frequency damping in accelerated frames has been dis-
cussed previously outside the context of decoherence (see
e.g. [24–27]).

C. General relationships between
decoherence and friction

The preceding computations invite a more general
analysis. A natural question to address is this: Under what
circumstances will one find steady decoherence? In Sec. III
we illustrated the monopolar coupling example, and in the
other sections we went through a number of computations
for dipolar couplings. In both cases we found that
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experiments done in the accelerated lab underwent
decoherence, however only for the monopolar coupling
could this be entirely explained via a thermal bath of Unruh
radiation. To understand this, we return to the general
formula for decoherence, Eq. (B8).
Consider the simplest setting which parallels the cases

we are interested in, that of bilinear coupling: QðqÞ ¼ q,
ΦðϕÞ ¼ ϕ. Let qþðτÞ ¼ 1

2
εðτÞ, q−ðτÞ ¼ − 1

2
εðτÞ, where

εðτÞ vanishes at early and late times. We will also assume
that hϕi ¼ 0, and that ϕ is a free field in the sense that
½ϕðτÞ;ϕðτ0Þ� is a c number. The decoherence functional
then has the form

D ¼ 1

2

Z
∞

−∞
dτ
Z

∞

−∞
dτ0 εðτÞεðτ0ÞhfϕðτÞ;ϕðτ0Þgi: ð134Þ

Let us focus on the case that ϕðτÞ is a finite temperature
quantum system. We may then use the fluctuation-dis-
sipation theorem to relate the spectrum of the fluctuations
to the response function,Z

dτeiωτhfϕðτÞ;ϕð0Þgiβ ¼ 2coth

�
βω

2

�
Im½χϕðωÞ�; ð135Þ

where

Im½χϕðωÞ� ¼
1

2

Z
dτeiωτh0jϕðτÞϕð0Þ−ϕð0ÞϕðτÞj0i: ð136Þ

In the long time limit, with ε constant, we then find the
leading contribution to the decoherence of the form
1
2
D ¼ ΓβT, with rate

Γβ ¼
ε2

β
lim
ω→0

�
Im½χϕðωÞ�

ω

�
: ð137Þ

We see that the stationary rate of decoherence is determined
by the linear part of the spectral density.
While the linear part of the spectral density plays a

central role in determining the decoherence rate, it also
arises in a more familiar classical physics context, namely,
friction. Taking the bilinear qϕ interaction, we can ask how
much energy is dissipated into ϕ if we fix a particular
classical trajectory for qðτÞ. Classical linear response
theory then gives the rate of dissipation

Ė ¼ qðτÞ d
dτ

Z
dτ0χϕðτ − τ0Þqðτ0Þ: ð138Þ

If the system is driven periodically such that its velocity is
given by q̇ ¼ v cosðωτÞ, then it is straightforward to
evaluate the integral and find the cycle-averaged dissipation
rate

˙̄Eω ¼ 2v2
Im½χϕðωÞ�

ω
: ð139Þ

The zero frequency part of this, relevant to constant motion
qðτÞ ¼ vτ, is related to our decoherence rate. The energy
dissipated via constant motion with velocity v is directly
related to the friction coefficient, γ1, defined by the Ohmic
friction force F ¼ −γ1q̇,

lim
ω→0

˙̄Eω ¼ 2v2γ1; ð140Þ

which immediately identifies the linear part of the spectral
density with the Ohmic friction coefficient γ1.
Taking this together, we have a simple universal relation

between the decoherence rate and friction force induced by
a thermal bath,

Γβ ¼
ε2

β
γ1: ð141Þ

Said again, if an environment induces a simple Ohmic
friction force on a system (proportional to the first
derivative of the system) then when that environment is
at a finite temperature it will invariably cause a constant rate
of decoherence in the system. This generic behavior is well
known in the field of open quantum systems [28].
This argument can be made more quantitative if one

starts from the influence functional, Eq. (B7), and derives
an effective Langevin equation, as in [29]. Disregarding the
decoherence functional, the remaining part of the influence
functional is given by the off-diagonal effective action

S̃½qþ; q−� ¼ i
2

Z
t

−∞
dτ
Z

τ

−∞
dτ0h½ϕðτÞ;ϕðτ0Þ�i

× ðqþðτÞ − q−ðτÞÞðqþðτ0Þ þ q−ðτ0ÞÞ: ð142Þ

The classical motion of the central system is described by
the evolution of its expectation value, hqðtÞi, and in the in-
in path integral this is equivalently computed by either hqþi
or hq−i. Hence, a natural change of variables is to X ¼
1
2
ðqþ þ q−Þ and ξ ¼ qþ − q−. To find the effective

classical dynamics for q one expands the effective action
to leading order in ξ,

Seff ¼ Sq½qþ� − Sq½q−� þ S̃½qþ; q−�

≈
Z

dτξðτÞ
�

δ

δXðτÞ Sq½X� −
Z

dτ0χϕðτ − τ0ÞXðτ0Þ
�
;

ð143Þ
where the response function is given by the Kubo formula

χϕðτ − τ0Þ ¼ −iθðτ − τ0Þh½ϕðτÞ;ϕðτ0Þ�i: ð144Þ
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The classical equation of motion for X follows from a ξ
variation,

δ

δXðτÞ Sq½X� þ F̃ðτÞ ¼ ηðτÞ; ð145Þ

the first term is the equation of motion in the absence of the
bath, ηðτÞ is a stochastic forcing term with noise spectrum
determined by the correlation function hfϕðsÞ;ϕðs0Þgi
appearing in the decoherence functional, and the environ-
ment mediated deterministic forces are

F̃ðτÞ ¼ −
Z

dτ0χϕðτ − τ0ÞXðτ0Þ: ð146Þ

Provided that the spectral density of ϕ is an analytic
function in frequency space over the range of energies
for which the effective theory is defined, we can write a low
energy expansion

Im½χϕðωÞ� ¼ γ1ωþ γ3ω
3 þ � � � : ð147Þ

In general the bath response function may also generate
conservative forces; however the contributions coming
from the odd part of the spectral density will lead to
dissipative contributions to F̃, and for a dissipative
response parametrized as Eq. (147), one finds dissipative
forces in the classical equation of motion5 for x,

F̃dissðτÞ ¼ −γ1ẊðτÞ þ γ3 ⃛XðτÞ þ � � � : ð148Þ

Some relevant examples of this computation include: a
particle with charge q and generic worldline XμðτÞ [30],
and a dipole qεI anchored to a uniformly accelerated
worldline z̄μðτÞ, for which the above computation yields,
respectively,

F̃μ ¼ q2

6π
ðημν þ ẊμẊνÞ⃛Xν; ð149Þ

and

F̃I ¼ −
q2a2

6π
ε̇I þ q2

6π
⃛εI; ð150Þ

which are the relativistic Abraham-Lorentz-Dirac force (i.e.
the familiar third derivative term suitably projected into the
local orthonormal frame), and an analog formula for a
dipole. By noting that d2

dτ2 ðẊμẊμÞ ¼ 0, the ALD formula
can actually be equivalently rewritten as

F̃μ ¼ q2

6π
ð⃛Xμ − ẊμðẌνẌνÞÞ: ð151Þ

From this form it ismore obvious that forXμ ¼ z̄μðτÞ þ εIeμI ,
with aεI ≪ 1 oriented in the X, Y directions, the ALD
formula is equal to the dipole force formula.
In general though, these formulae are not identical. The

ALD force Eq. (151) is expressed in spacetime indices,
whereas our derived force Eq. (150) is expressed in the
local orthonormal frame. This difference is immaterial for
transverse displacements since ∂τe

μ
X ¼ ∂τe

μ
Y ¼ 0, and the

formulas do agree. For εμ with components tangential to the
acceleration noninertial frame effects arise which lead to a
disagreement between the formulas. This disagreement is
no issue though, as Eq. (150) is the force felt by an electric
dipole in an accelerated frame whereas Eq. (151) is the
force felt by an electric monopole which has small
displacement. These two notions agree for transverse
displacements but they simply disagree for longitudinal
displacements.
Even without a careful computation of the dipolar

radiation reaction force one could take the ALD force
and anticipate the appearance of an Ohmic friction term. To
do so, simply omit the third-derivative “Schott-term” in
Eq. (151), and focus only on the “radiation” term. This term
then maps into the local orthonormal frame cleanly, and for
all components of ε one indeed matches the first-derivative
term in Eq. (150), as expected.
Returning now to our main point, we can summarize the

above discussion as follows. If a system is linearly coupled
to a thermal bath it will experience an irreducible constant
rate of decoherence given by Eq. (141), where ε2 character-
izes the “size” of the superposition, β−1 is the bath
temperature, and γ1 is the coefficient of the Ohmic friction
force which the bath induces in the classical equation of
motion for the system. For the uniformly accelerated
dipole, the Ohmic friction coefficient is γ1 ¼ q2a2=6π,
which leads to a thermal decoherence rate,

Γβ ¼
ε2

β

q2a2

6π
⟶
Unruhq2ε2a3

12π
; ð152Þ

which exactly matches that computed by DSW when β−1 is
taken to be the Unruh temperature.

VII. CONCLUSIONS

In this paper, we proved explicitly the decoherence effect
found by DSW is the same as what one would obtain by
going through a Unruh-DeWitt type calculation based on
the local field fluctuations. This equivalence is connected to
the unitarity of quantummechanics: decoherence caused by
incoming field fluctuations disturbing the quantum system
is related to information of the system flowing into the
outgoing field.
We verified the equivalence through explicit calculations

considering coupling to both scalar and to electromagnetic
fields, with the system undergoing superposition being split
in arbitrary directions. In all such situations, the system

5Generally the odd part of the spectral density also renorm-
alizes couplings in conservative sector, and we have omitted the
details of this here.
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under constant acceleration had a constant decoherence rate
proportional to ∼q2ε2a3.
Such a constant decoherence rate was, at first sight, in

conflict with thermal decoherence, because a two-path
experiment along an inertial central trajectory does not
have a constant decoherence rate when the ambient
radiation field has a constant temperature. We reconcile
this conflict by noting that as a quantum system is under-
going acceleration, its coupling to the scalar or EM field
causes an additional radiation damping at low frequencies,
which restores the constant decoherence rate. More spe-
cifically, in the EM case, the nonrelativistic Abraham-
Lorenz damping force is proportional to ∼q2 ⃛x, while in an
accelerating frame there is an additional damping force
proportional to ∼q2a2ẋ.
More generally, as we consider a steady-state Wightman

function W, the dephasing force (fluctuation) has a spec-
trum related to the symmetric part of W,

SF ¼ WðΩÞ þW�ð−ΩÞ
2

: ð153Þ

with decoherence rate given by

Γ ¼ SFð0Þ: ð154Þ

On the other hand, the damping (dissipation) of the system
is given by

ImχF ¼ WðΩÞ −W�ð−ΩÞ
2

: ð155Þ

The two are related via

WðΩÞ þW�ð−ΩÞ
WðΩÞ −W�ð−ΩÞ ¼ coth

βΩ
2

; ð156Þ

which is guaranteed by the KMS condition. The
decoherence rate in a thermal bath is then

Γ ¼ 2

β
lim
Ω→0

ImχFðΩÞ
Ω

: ð157Þ

Even though the Danielson-Satishchandran-Wald
decoherence ended up “equivalent” to the Unruh-DeWitt
decoherence, their insight about a steady stream of soft
photons escaping across the Killing horizon is still the most
efficient and elegant way to understand the physical
mechanism for this decoherence effect. Now that we
understand this equivalence, we can see that the DSW
mechanism not only underlies the constant decoherence
rate, but more importantly it also underlies the elevated
level of radiation reaction for an accelerating quantum
system.
Let us now summarize the logic of how an accelerated

observer, Alice, would explain the observed decoherence of

her experiment. In the accelerated lab her classical elec-
tronics function slightly differently. In particular, the
radiative losses from her antenna (with dipole moment
qεI) have a form described at low frequencies by an Ohmic

friction force FI ¼ − q2

6π a
2ε̇I . Alice can then deduce that at

low frequencies, the local electric field has a linear spectral

density Im½χIJðΩÞ� ¼ δIJ
q2a2

6π Ω.
She wants to perform an experiment in which she places

the dipole into a superposition state and holds it for a very
long time, and she naively anticipates that a vacuum-state
electromagnetic field will cause no issue because the
vacuum spectral density vanishes at low frequencies.
The problem for Alice, though, is that the Unruh effect
forces her accelerated lab to feel a finite temperature
β−1 ¼ a=2π. As a result, the electromagnetic field is
instead in a thermal state and the divergent thermal
population of low energy modes nBðΩÞ þ 1

2
≈ ðβΩÞ−1

compensates the linearly vanishing spectral density and
leads to a flat spectrum of low energy thermal electric field
fluctuations. Alice’s superposed dipole experiences thermal
electric field fluctuations correlated over all timescales and
decoheres exponentially with a constant rate.
The explicit calculations is this paper involved only

Rindler horizons, however the extension to discussions of
black hole horizons is clear. The drastic Bose enhance-
ment of the Wightman function at low frequency will
occur, provided that the black hole is subextremal and that
the state of the quantum fields propagating on the black
hole spacetime is the Hartle-Hawking state or the more
physical Unruh vacuum. Given this enhancement, all that
is required to find constant decoherence is that the
response function for the fields propagating on the black
hole spacetime has a leading Ohmic behavior, i.e.
absorption linear in frequency. This behavior has been
demonstrated, in detail, in the effective field theory of
black hole horizons [31,32]—indeed the authors already
discussed the low frequency enhancement of the
Wightman function in thermal states that we have empha-
sized here. The authors of that work noted that the low
frequency enhancement would only be observable in
Planck suppressed corrections to classical processes, since
the only correlator measurable in a classical process is the
antisymmetric part of the Wightman function, i.e. retarded
Green’s function. The decoherence suffered by Alice’s
probe is a quantum mechanical probe of the state of the
fields and so can be sensitive to “state-dependent” corre-
lators. Studying decoherence is perhaps the simplest setting
in which one is indeed sensitive to the aforementioned low
frequency enhancement.
In this work we have studied the decoherence of

stationary superpositions of charged particles (coupled to
either scalar or electromagnetic fields). As shown by DSW,
for an arbitrarily slowly prepared superposition, a finite
amount of decoherence is inevitable for superpositions in
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the frame of a Rindler observer, or at rest in Schwarzschild
or de Sitter spacetimes—and moreover the off-diagonal
density matrix elements decay exponentially with constant
rate. We verify these results, in the specific case of Rindler
observers, via an equivalent but complementary local
description of the decoherence. The finite Unruh temper-
ature felt in the accelerating lab plays a central role, as it
leads to an drastic enhancement of locally measured low
frequency electric field fluctuations. These fluctuations
induce a stochastic force on the delocalized charged
particle for which the autocorrelations do not self-average
over arbitrarily long time periods—resulting in inevitable
dephasing.
The approach setup in this paper, utilizing the Feynman-

Vernon influence functional and worldline-localized radi-
ation effective field theory, can be readily be generalized to
discuss the following: gravitational radiation, radiation
from higher multipole moments, and observers in the
presence of generic Killing horizons; however this will
be left for future work.

Note added. Nearly coincidentally with the submission of
this work, [33] appeared which has some overlap with the
content of this paper.
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APPENDIX A: PHOTON NUMBER IN THE
CHARACTERISTIC FORMULATION

For completeness, I will discuss why the integral used in
the characteristic formulation is the correct one for evalu-
ating photon fluxes. Suppose we decompose

ϕðxμÞ ¼
Z

d3k
ð2πÞ3 ffiffiffiffiffiffiffiffiffi

2ωk
p ½e−iωtþikxxþikyyþikzzϕkx;ky;kz þ eþiωt−ikxx−ikyy−ikzzϕ�

kx;ky;kz
�; ðA1Þ

we can obtain ϕkx;ky;kz from the Fourier transform

ΦΩ;k̃x;k̃y ¼
Z

dξdxdy½eiΩξ−ik̃xx−k̃yyϕðξ; x; y; ξÞ�: ðA2Þ

We obtain

ΦΩ;k̃x;k̃y ¼
Z

dkz
δðΩ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k̃2x þ k̃2y þ k2z

q
þ kzÞffiffiffi

2
p ðk̃2x þ k̃2y þ k2zÞ1=4

ϕk̃x;k̃y;kz
þ
Z

dkz
δðΩþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k̃2x þ k̃2y þ k2z

q
− kzÞffiffiffi

2
p ðk̃2x þ k̃2y þ k2zÞ1=4

ϕ�
−k̃x;−k̃y;kz

: ðA3Þ

For Ω ≥ 0, we will only have the first branch.

δðΩ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k̃2x þ k̃2y þ k2z

q
þ kzÞ ¼

k̃2x þ k̃2y þ Ω2

2Ω2
δ

�
kz −

k̃2x þ k̃2y −Ω2

2Ω

�
: ðA4Þ

This leads to

ΦΩ;k̃x;k̃y ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k̃2x þ k̃2y þ Ω2

q
Ω3=2 ϕ

k̃x;k̃y;
k̃2xþk̃2y−Ω

2

2Ω

: ðA5Þ

We note that as long as k̃2x þ k̃2y does not vanish, the k̃z value
is able to span all real numbers. Here we still remember that
Ω is chosen to be positive. In this way,

½Ω; k̃x; k̃y�∈Rþ × R × R ðA6Þ

is a new coordinate system for the ðkx; ky; kzÞ space. Note
that

N ¼
Z

dkxdkydkz
ð2πÞ3 jϕ2

kx;ky;kz
j: ðA7Þ

We can rewrite this integral in terms of ðΩ; k̃x; k̃yÞ, with

k̃x ¼ kx; k̃y ¼ ky; Ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y þ k2z

q
− kz: ðA8Þ

where
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���� ∂ðk̃x; k̃y;ΩÞ
∂ðkx; ky; kzÞ

���� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y þ k2z

q
− kzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2x þ k2y þ k2z
q : ðA9Þ

In this way, we have

N ¼
ZZ

dk̃xdk̃y
ð2πÞ2

Z þ∞

0

dΩ
2π

2ΩjΦ2
Ω;k̃x;k̃y

j: ðA10Þ

APPENDIX B: INFLUENCE FUNCTION
APPROACH TO DECOHERENCE

To keep this article self-contained, in this appendix we
will review a derivation of the influence functional descrip-
tion of an open quantum system. We will consider a central
system with degrees of freedom qA, coupled to an envi-
ronmental bath system, with degrees of freedom ϕj. Here A
and j are generic indices which may include spacetime
tensor indices, spatial coordinates, and other internal labels.
We will assume an initially uncorrelated density matrix

in the asymptotic past and a joint unitary evolution of the
mutually interacting systems. The reduced density matrix
describing all observations made on the central system at
time t is then

ρ̄q ¼ TrϕfUðt;∞ÞρqρϕU†ðt;−∞Þg: ðB1Þ
We will describe the evolution operator U via a path
integral, and we will write the interactions between central
system and bath in the generic form

Sint½q;ϕ� ¼
Z

dτQaðqÞΦaðϕÞ; ðB2Þ

where a are generic indices to be summed over, and Q, Φ
are functions of the variables q, ψ and their derivatives. For
the cases of interest here we can assume that Q, Φ are
commuting numbers, rather than Grassman variables.

Elements of the reduced density matrix then have the in-
in (or Schwinger-Keldysh [34,35]) path-integral expression

ρ̄qðq;q0Þ¼
Z ðq;q0Þ

ρq

DqþDq−eiSq½qþ�−iSq½q−�F ½Qþ;Q−�; ðB3Þ

where the notation on the path integral indicates that the
initial state is to be ρq, and that at time t, the variable qþ is
set equal to q while the variable q− is set equal to q0. The
action Sq½q� describes the central system in the absence of
coupling to the bath. The relative sign between actions
comes, of course, from the (þ) variables describing U and
the (−) variables describing U†.
The influence functional is defined as

F ½Qþ;Q−�

¼
I
ρϕ

DϕþDϕ−eiSϕ½ϕþ�−iSϕ½ϕ−�eiSint½qþ;ϕþ�−iSint½q−;ϕ−�; ðB4Þ

where the integral notation here indicates that the fixed
boundary conditions ðϕ;ϕ0Þ at time t are to be set equal to
one another and summed over, i.e. traced. For the purpose
of computing the influence functional, Q� serve as fixed
external sources. The influence functional may then be
written in the condensed form

F ½Qþ; Q−� ¼ hei
R

dτðQaðqþÞΦaðϕþÞ−Qaðq−ÞΦaðϕ−ÞÞi; ðB5Þ

where the expectation values are taken in the initial bath
state ρϕ and are defined via the above path integral.
We will now specialize to the case where the connected

n-point correlation functions, i.e. cumulants, of the Φ
operators are suppressed for n > 2. Common examples
include: weak coupling between the system and bath, Φ
being a linear function with ϕj being a collection of weakly
coupled or free oscillators, or the Φ being good mean-field
variables in an interacting system with a factorizing large-N
limit (e.g. “single-trace” operators ). The standard cumulant
expansion then gives

F ½Qþ; Q−� ¼ exp

�
i
Z

t

−∞
dτhQþaΦþ

a −Q−aΦ−
a i

−
1

2

Z
t

−∞
dτ
Z

t

−∞
dτ0hðQþaðτÞΦþ

a ðτÞ −Q−aðτÞΦ−
a ðτÞÞðQþbðτ0ÞΦþ

b ðτ0Þ −Q−bðτ0ÞΦ−
b ðτ0ÞÞiconn

�
þ � � � : ðB6Þ

The standard in-out path integral generates time-
ordered correlation functions, however operators in the
in-in path-integral carry the additional (�) label indicating
on which section of the closed time contour (from −∞ to t
and back again) the operator is living. The generalization
of the usual time-ordering rule is rather simple: for a string
of operators with various (�) labels one should order all of

the (þ) operators to the right of all the (−) operators, time
order the string of (þ) operators amongst themselves, and
anti-time-order the string of (−) operators. With this
understanding we can separate the various correlation
functions which appear into combinations which manifest
the real (anticommutator) and imaginary (commutator)
parts,
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F ½Qþ;Q−�¼exp

�
i
Z

t

−∞
dτhΦaiðQþa−Q−aÞ−1

2

Z
t

−∞
dτ
Z

τ

−∞
dτ0ðQþaðτÞ−Q−aðτÞÞðQþbðτ0ÞþQ−bðτ0ÞÞh½ΦaðτÞ;Φbðτ0Þ�iconn

−
1

2

Z
t

−∞
dτ
Z

τ

−∞
dτ0ðQþaðτÞ−Q−aðτÞÞðQþbðτ0Þ−Q−bðτ0ÞÞhfΦaðτÞ;Φbðτ0Þgiconn

�
þ���: ðB7Þ

For the purpose of computing decoherence, i.e. the suppression of off-diagonal terms in the reduced density matrix ρ̄q, we
will only need the magnitude of the influence functional, F ½Qþ; Q−� ¼ expð− 1

2
D½Qþ; Q−�Þ. We will henceforth focus on

computing the decoherence functional

D½Qþ; Q−� ¼ 1

2

Z
t

−∞
dτ
Z

t

−∞
dτ0ðQþaðτÞ −Q−aðτÞÞðQþbðτ0Þ −Q−bðτ0ÞÞhfΦaðτÞ;Φbðτ0Þgiconn: ðB8Þ
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