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We introduce a discrete, graph theoretical approach to conformal field theory correlators. In a certain
basis, called the squid basis, the correlator of N scalar operators can be expressed as the determinant of a
natural, conformally covariant metric on a weighted graph, called the squid graph. We present the
construction of this metric and discuss its possible role in constraining conformal data.
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I. INTRODUCTION

The term universality in quantum field theory encodes
the observation that different physical systems, when they
reach a “fixed” point under their renormalization group
flow where all β functions vanish, are governed by the same
conformal symmetry. It is then an important issue to
understand to what extent universality is a physical or
mathematical property. The problem can be stated more
concretely by recalling that the system’s behavior near such
fixed points is determined by the critical exponents which
are the quantum corrections to the classical scaling dimen-
sions of operators Oi, forming the scaling dimensions Δi.
These appear in the correlators

ΣNðxi;ΔiÞ ¼ hO1ðx1Þ � � �ONðxNÞi ð1Þ

of operators.1 These correlators are fixed in a conformal
field theory (CFT) up to an invariant expression of
conformal invariants; however, the conformal symmetry
does not fix, at this level, the values of the scaling
dimensions Δi.
The question, therefore, is whether and by how far the

underlying mathematical structure is able to constrain theΔi
at a fixed point. We know that in a strict CFT context [1], in
order to constrain the scaling dimensions, at least one
additional assumption is needed, that of the operator product
expansion (OPE), which is, however, a physical rather than

a mathematical statement. Similarly, other physical con-
straints, such as the ones that originate from unitarity
(reflection positivity) or geometric constraints that arise
in one way or another after the OPE has been applied [2],
even though implicitly present, are not discussed here.
Instead, we would like to initiate an approach that could

provide some new insight into the role that mathematics
plays in the dynamics of conformal field theories. This will
be done by gradually providing postulates about the
mathematical framework being built through the use of a
metric on a graph and looking at the consequences to the
system’s dynamics in the form of, ultimately, restrictions to
its scaling dimensions Δi. Building such a framework to be
in line with everything known about conformal systems
(such as the results of the OPE) while also looking for
possible novel applications is, however, a vast endeavor,
and as such we intent to perform it in a stepwise fashion. In
this paper we present the derivation of the metric used and
show how the N point correlators derivable from it trans-
form as expected under conformal symmetry. Afterward,
we explain how one may draw parallels between the
expression of the correlator in this form that uses the
metric and the volume of a simplex that is associated with
it. Finally, we also discuss possible future paths to follow.

II. CONFORMAL TRANSFORMATIONS
ON A GRAPH

We consider N scalar operators Oi of scaling dimension
Δi placed in D-dimensional Euclidean space at points xi.
The correlator between these operators depends only on the
distances xij ≡ jxi − xjj and theΔi forN ≤ 3 and forN > 3

depends additionally on certain conformally invariant length
ratios that we will denote as uij in the following. The
approachwe propose here is to view this as a discrete system
that forms a graph with the operators replaced by the graph
vertices and with the scaling dimensions playing the role of
its vertex weights. The intervertex distances xij are then the
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1For simplicity we will restrict the discussion to scalar
operators.
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lengths of the edges of the graph and can be considered as
(geometric) edgeweights. The questionwewould like to ask
is, what then is the quantity that replaces the correlator in this
viewpoint?
Given N points, one can form various graphs with the

points being the vertices of the graph. We will consider two
types of simple graphs as being of particular interest to us,
namely, the complete graph and the so-called squid graph;
see [3]. So, a squid graph Sqðn;mÞ may be defined as the
simple graph one obtains when starting off with a cyclic
graph Cn and then choosing one of those vertices and
drawing another m ≥ 1 vertices that we only connect with
the chosen vertex through other m edges. In the following
we will deal solely with squid graphs where n ¼ 3, which
we will simply refer to as squid graphs of N points, where
N ¼ mþ 3. Examples of both types of graphs described
can be seen in Fig. 1. Given a graph one can place
weight functions on its vertices or its edges or both. One
can show [4] that in order to perform a conformal trans-
formation upon the edge weights wij of a discrete graph,
these edge weights should transform according to the
expression

w0
ij ¼ wijeuðviÞeuðvjÞ; ð2Þ

where u is a (weight) function of the vertex which we will
call the conformal factor. Edge weights are considered to be
dimensionless, even when they are interpreted as the geo-
metric edge weights xij. Thus, lengths, areas, and volumes
are all dimensionless. When passing to physical applica-
tions, one can always properly restore dimensionalities.
Conformal transformations, by definition, pose stronger

constraints on the system than those of the symmetry
group of Euclidean space2 and, as a consequence of this,
distances no longer are invariant under all transformations.
Instead, one can prove [5] that the conformal invariants of a
set of N points (in position space) and their in-between
distances are formed by taking the length cross ratios, i.e.,

certain ratios of products of lengths. In the following wewill
use a specific set of NðN − 3Þ=2 independent invariants for
the aforementioned N points, this choice of invariants taken
from [6] as it is tailored to the needs of our description:

u2k ≡ x23x1k
x13x2k

; 4 ≤ k ≤ N;

u3k ≡ x23x1k
x12x3k

; 4 ≤ k ≤ N;

uij ≡ x23x1ix1j
xijx12x13

; 4 ≤ i < j ≤ N: ð3Þ

Dimensionality conditions may then further restrain the
independent invariants of a system for larger N, the number
of which will be dependent on the available dimensions D.
The above choice of invariants characterizes what wewill call
the squid basis [6], which is a convenient basis where the
correlator of N scalar operators can be simply expressed.
Notice that the squid basis is such that its cross ratios contain
one and only one edge that belongs to the complete graph but
not to the squid. These are thediagonalsof the squid, and their
corresponding cross ratios parametrize its conformal defor-
mations. The existence of conformal invariants implies that
configurations of points which differ in their set of invariants
are immediately ruled out of being able to conformally
transform among themselves. Configurations that are related
by conformal transformations we consider to belong in the
same conformal class. An important result regarding these
conformal classes is that one can prove [4] that, for discrete
graphs, there always exists a unique representative of a
conformal class. That is, given an arbitrary graph, one is
always able to transform in a conformal way to some other
specific graph of some property which uniquely defines it
among all other graphs of the same conformal class. In the
following wewill refer to the positions of the points of such a
unique representative as the reference configuration of the
associated conformal class.
In addition, we are given a concrete reference configu-

ration in [4]; namely, it is the configuration whose graph’s
weights w̄ satisfy

∀ k∈ f1;…; Ng∶
Y
el∼vk

w̄ik ¼ 1; ð4Þ

where el ∼ vk denotes that the edge el that is associated
with the weight w̄ik has the vertex vk as an end point, and
thus the product runs over all edges adjacent to a given
vertex. And when this equality holds for all vertices of a
weighted graph we have a graph positioned at a reference
configuration of this property.
Thus far, as well as in the following, we have denoted

general weights with w;w0;…, while we will use the
notation w̄ for the reference configuration of [4] applied
to a complete graph and the notation w̃ for the same
reference configuration on a squid graph, which we will

FIG. 1. Left sketch: complete graph for seven points. Right
sketch: squid graph, modulo index permutations, for seven
points.

2As a convention, distances mentioned in the following will be
implied to be Euclidean, not Minkowski, as one can in general
apply a Wick rotation to move between descriptions.
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call the unit squid configuration. As we are interested only
in squid graphs of the form Sqð3; N − 3Þ, it is easy to see
that this means that all weights for its reference configu-
ration are unit sized.
In regard to the conformal transformation (2), note how

any set of real values for the conformal factors defines a
valid conformal transformation that transforms the edge
weights. We are thus free to rescale these, each by a
different in general (in the following positive) number, say,
Δi > 0. These rescalings simply define an automorphism
between conformal transformations,

ui ↔ u0i ¼ Δiui; ð5Þ

with ui ≡ uðviÞ, i.e., the conformal factors introduced
in (2). The set where ui ¼ 0 ∀ i is the identity element
of the group of conformal transformations. What remains is
to choose a conformal transformation as the scale of these
transformations, i.e., where ui ¼ 1 ∀ i. Since the problem
described is not really changed, we are free to choose
arbitrarily. We choose this unit transformation to be the one
defined by the underlying geometric length space. The
benefit of this is that it allows us to study the conformal
transformations of lengths as a limit of our system.
Looking at the subcase of the underlying conformal

space for which we define the weights to be lengths, one
can see that lengths transform conformally according to

x0ij ¼
���� ∂x

0
i

∂xi

����
1
2D

���� ∂x
0
j

∂xj

����
1
2D

xij; ð6Þ

although we are in the following going to adopt a more
agnostic stance, one dependent only on this conformal
transformation law upon a graph, and disregard the
continuous transformations from which we derived these.
This means that now we will treat the various Jacobian
determinants as a set of independent values chosen by us/
given to us that encode the conformal transformation to be
performed. For this reason, as well as for notational brevity,
we define the notation

ji ≡
���� ∂x

0
i

∂xi

����
1
2D

; ð7Þ

which we will solely use in the following. Note that
conformal transformations are orientation preserving and
thus for all the vertices ji ∈ ð0;þ∞Þ should hold.
However, this is not the most general conformal weight

function on the edges, as it is described by a particular
conformal transformation. Put another way: by knowing
any two of the three sets of initial weights, final weights,
and conformal factors, one can solve for the third. But this
excludes all other conformal transformations which one
may obtain by rescaling as before: it restrains the various
physical systems we may wish to model. To reestablish this

freedom, we can allow for an extra set of vertex weights.
So, we will look at the case where we are also given a set of
independent values, i.e., in CFT these are the scaling
dimensions Δi. By rescaling the conformal factors,

ui ¼ ln ji → ui ¼ Δi ln ji ð8Þ

the conformal transformation of weights takes the form

w0
ij ¼ JiJjwij; ð9Þ

where now we have additionally defined

Ji ≡ jΔi
i ; ð10Þ

the appropriate Jacobian factors defining the conformal
transformations of the weighted graph. Thus, in the
following, we will use the transformation rule of a general
edge weight wij determined by the Ji together with the
same transformation determined by the corresponding ji
applied to the underlying geometric length space.

III. A DETERMINANT

Considering the matrix with elements the edge weights
wij of the graph, we will be particularly interested in its
determinant. One can see that the conformal transformation
(2) can be written in matrix form as

W0 ¼ UWU; ð11Þ

with W and W0 the corresponding matrix forms of the
weights and U the diagonal matrix with elements the
exponentials of the conformal factors, i.e.,

Uii ≔ euðviÞ: ð12Þ

This, in turn, implies that the determinant’s transformation
relation is

detW0 ¼ e2uðv1Þ…e2uðvNÞ detW; ð13Þ

which may be written equivalently as

detW0 ¼ J21J
2
2…J2N detW; ð14Þ

which makes our interest in the determinant of the weight
matrix W apparent from a physicist’s standpoint: the con-
formal correlator transforms under conformal transforma-
tions as

hΦ1ðx01ÞΦ2ðx02Þ…ΦNðx0NÞi¼RNhΦ1ðx1ÞΦ2ðx2Þ…Φ3ðxNÞi;
ð15Þ

where
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RN ¼ J−21 J−22 …J−2N ; ð16Þ
hinting at a description of this property via the determinant of
W. In the following, for notational brevity, we will denote
these scalar correlators with ΣN ; hence, the above would be
written as

ΣNðx0Þ ¼ RNΣNðxÞ; ð17Þ
where x and x0 denote the set of positional variables of
the correlators, i.e., ðx1; x2;…; xNÞ and ðx01; x02;…; x0NÞ,
respectively.
Transformation (8) allows us to introduce lengths of the

underlying conformal space, which are a type of weight
function on the edges of the graphs, into the general
parameters transforming our graph, i.e., the conformal
factors. This is due to the fact that we can express the
Jacobian determinants through the graph’s initial and trans-
formed lengths by solving Eq. (6) for the various ji. The
system, and thus its solution, is clearly basis dependent and
we have to make a choice. It is at this point that we will use
the squid basis, as this choice allows for a unique solution.
For example, for N ¼ 3 we have

8>>>><
>>>>:

x0
23

x23
¼ j2j3

x0
12

x12
¼ j1j2

x0
13

x13
¼ j1j3

9>>>>=
>>>>;

⇒

8<
:

x0
23

x23
¼ j2j3

x0
12

x12

x0
13

x13
¼ j21j2j3

9=
;⇒ j21 ¼

x012
x12

x013
x13

x23
x023

;

ð18Þ

and symmetrically for the other indices. This generalizes in a
straightforward manner for any N ≥ 3, giving

j−21 ¼ x023
x012x

0
13

x12x13
x23

;

j−22 ¼ x013
x012x

0
23

x12x23
x13

;

j−23 ¼ x012
x013x

0
23

x13x23
x12

;

j−2i ¼ x012x
0
13

x023x
02
1i

x23x21i
x12x13

∀ i ¼ 4;…; N: ð19Þ

Owing to these Jacobian determinants encoding the one
dilatation and D special conformal transformation param-
eters we are able3 to transform the N lengths of the squid

graph to all be unity, hence transforming the squid graph
(more specifically the squid subgraph of the complete graph
formed by all the points) to the unit squid configuration. Any
other conformal transformation from this unit squid con-
figuration to a new one is encoded in the values of the
relevant ji bymeans of only the target lengths. Note that this
transformation goes from x̃ to x [with x̃ij ∈ Sqð3; N − 3Þ
equal to 1], something we need to reflect in the following
computation (20) when applying (19). The transformation
coefficient of the determinant (i.e. RN) can now be found
to be

RN ¼ J−21 J−22 …J−2N ¼ j−2Δ1

1 j−2Δ2

2 …j−2ΔN
N

¼
�

x23
x12x13

x̃12x̃13
x̃23

�
Δ1

�
x13

x12x23

x̃12x̃23
x̃13

�
Δ2

×

�
x12

x13x23

x̃13x̃23
x̃12

�
Δ3

�
x12x13
x23x214

x̃23x̃214
x̃12x̃13

�Δ4

� � �
�
x12x13
x23x21N

x̃23x̃21N
x̃12x̃13

�ΔN

¼
�

x23
x12x13

�
Δ1

�
x13

x12x23

�
Δ2

�
x12

x13x23

�
Δ3

×

�
x12x13
x23x214

�
Δ4 � � �

�
x12x13
x23x21N

�
ΔN

¼ x23−Δ23x12−Δ12x13−Δ13x14−Δ14…x1N−Δ1N ; ð20Þ

where we define the quantities

Δ23 ¼ −Δ1 þ Δ2 þ Δ3 þ
XN
i¼4

Δi;

Δ12 ¼ þΔ1 þ Δ2 − Δ3 −
XN
i¼4

Δi;

Δ13 ¼ þΔ1 − Δ2 þ Δ3 −
XN
i¼4

Δi;

Δ1i ¼ þ2Δi ∀ i ¼ 4;…; N; ð21Þ

and this form of RN is in agreement with the corresponding
part of the correlator of N scalar operators [6].

IV. THE CONFORMAL METRIC

Returning to a general transformation rule between two
weight configurations (9), we can make the following
postulate: Define the metric of a conformal graph by the
transformation rule,

wij ¼ JiJjw̃ij; i ≠ j ð22Þ

and wii ¼ 0, where the quantities Ji that appear in the
metric are the Jacobians of the transformation to the
weights wij from the weights w̃ij of the unit squid

3A configuration where the squid graph’s edges are of unit
length is always available in the general case where we may apply
transformations as denoted in [4], specifically of the form (9).
This is apparent: three conformal factors can be solved for to
make the (123) triangle equilateral, and then all other conformal
factors can be solved for in order to make the remaining
corresponding x1i lengths to be of unit length. The above holds
under the condition that no constraints arise due to the system’s
dimensionality.
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configuration. As a consequence of how this metric was
defined, we are guaranteed correct expressions for both the
transformation of the weights and the RN coefficient. This
definition is inspired by the Weyl rescaling of the Euclidean
metric in the continuum, with the unit squid being
analogous to the flat metric and the metric wij in the
conformal class of this unit squid being analogous to a
curved, conformally flat metric. Note that the above
definition immediately implies that the invariants in (3)
can be generalized away from the geometric limit by
xij → wij. Furthermore, from the definition of the metric
one can easily see that

½detW�−1 ¼ RN ½det W̃�−1; ð23Þ

which makes it clear that the quantity ½detW�−1 is propor-
tional to the correlator as it transforms conformally in the
same way [see (17)],

ΣN ¼ cN ½detW�−1 ¼ cNRN ½det W̃�−1 ¼ cNRNΩN: ð24Þ

The numerical constant cN is important in physical appli-
cations, but it will not concern us here. The notation

ΩN ≡ ½det W̃�−1 ð25Þ

refers to what we will call the angular part of the correlator,
while RN will be referred to as its radial part.

A. Unit squid in general weight space

Since RN has taken care of the covariance of the metric
determinant, ΩN has no choice but to be conformally
invariant, so it must be a function of the ũij invariants
constructed from the w̃ij through similar expressions to (3).
To study it, we need to write its form explicitly without
sacrificing any generality. Let us start with a tentative guess
and refine our approach as needed.
We may always define in a similar fashion as before, i.e.,

by removing any freedom granted by the conformal trans-
formation’s parameters Ji, the unit squid reference con-
figuration w̃ij. For instance, the N ¼ 4 unit squid metric is
of the form

W̃¼

2
66664

0 w̃12 w̃13 w̃14

w̃12 0 w̃23 w̃24

w̃13 w̃23 0 w̃34

w̃14 w̃24 w̃34 0

3
77775¼

2
66664

0 1 1 1

1 0 1 w̃24

1 1 0 w̃34

1 w̃24 w̃34 0

3
77775; ð26Þ

and we immediately see that

ũ24 ¼
w̃23w̃14

w̃13w̃24

¼ 1

w̃24

⇒ w̃24 ¼
1

ũ24
;

ũ34 ¼
w̃23w̃14

w̃12w̃34

¼ 1

w̃34

⇒ w̃34 ¼
1

ũ34
ð27Þ

(and similarly w̃ij ¼ ũ−1ij for the other invariants forN > 4),
thus implying that

W̃ ¼

2
66664

0 1 1 1

1 0 1 ũ−124
1 1 0 ũ−134
1 ũ−124 ũ−134 0

3
77775: ð28Þ

Note that in conventional CFT the angular part is in general
an arbitrary function of the invariants (3) which are
constructed from the lengths of the edges of the complete
graph; see the left sketch of Fig. 1. Here, it is the
determinant of the metric, as given in (25), that plays
the role of this function and is dependent on the set of
invariant elements w̃ij or, equivalently, ũij. These, in turn,
may depend on the conventional invariants (3) in general in
an arbitrary fashion, making the two descriptions equiv-
alent. In both descriptions the specific form that this
function takes for a given correlator within a given physical
system can be fixed by operations that go beyond the
basic rules. In CFT it is the OPE that unlocks the fixing
process. In this work, we only make some preliminary
remarks regarding the fixing process in the following.
This generalizes straightforwardly to the case of the unit

squid configuration of N points,

W̃ ¼

2
66666666666664

0 1 1 1 1 … 1

1 0 1 ũ−124 ũ−125 … ũ−12N
1 1 0 ũ−134 ũ−135 … ũ−13N
1 ũ−124 ũ−134 0 ũ−145 … ũ−14N
1 ũ−125 ũ−135 ũ−145 0 … ũ−15N

..

. ..
. ..

. ..
. ..

. . .
. ..

.

1 ũ−12N ũ−13N ũ−14N ũ−15N … 0

3
77777777777775

: ð29Þ

All elements are expressed in terms of the ũij; therefore,
they are all invariant.
We then would like to start at this configuration to

express any other weight wij (in the same conformal class).
However, plugging this in within the previous description
of a reference configuration would overconstrain our
description: the reference configuration in the previous is
already defined to be the one whose underlying geometrical
length space is that of the unit squid. And we cannot simply
choose this over the other reference configuration, as we
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have already used the fact that x̃ij ¼ 1 on the squid’s edges
when calculating (20).
To see how we cannot constrain the system any further

like this without losing generality, consider Eqs. (6) and (9)
and definition (10): as we know the lengths of the edges of
the initial and reference configuration, these initial lengths
encode the conformal transformation needed toward the
reference configuration. In other words, the parameters ji
are known; hence, due to the system always being of some
known Δi, the parameters of the weight’s transformation Ji
are also fully determined. In conclusion, once we choose
that we want to move to the unit squid configuration of
geometric lengths, we have also immediately and com-
pletely defined the transformation at the general weight’s
level. Given a general set of wij (as well as xij, Δi, and the
convention that x̃ij is the unit squid) means that the w̃ij is
determined and can therefore not be set by hand.
One can circumvent this problem in a number of ways,

depending on what one wishes to achieve. We could set the
weights w̃ij of the geometric unit squid x̃ij by hand,
accepting the loss of generality, if we say that we wish
to study this specific system of weights due to its having
some desired property. In our case, however, we will keep
the description as general as possible through the following
trick: in order to preserve the result in (20), i.e., without the
extra factors containing x̃ij appearing, we may pose a less
strict constraint than requiring x̃ij ¼ 1 for the squid’s edges.
Then the radial part is RNR̃−1

N with

R̃−1
N ≡

�
x̃12x̃13
x̃23

�
Δ1

�
x̃12x̃23
x̃13

�
Δ2

�
x̃13x̃23
x̃12

�
Δ3

×

�
x̃23x̃214
x̃12x̃13

�Δ4 � � �
�
x̃23x̃21N
x̃12x̃13

�ΔN ð30Þ

and we would like to demand that

R̃−1
N ¼ const: ð31Þ

Now, the reference configuration’s lengths need to conform
to just this one constraint instead of the previous N. This
allows for the following compromise in our description: we
first use all the conformal transformations to achieve the
form of the reference configuration’s weights w̃ij that we
desire (unit squid or crossing symmetric, to name two).
After this, we perform a dilatation of the weights; hence,

J1 ¼ � � � ¼ JN ¼ ρ; ð32Þ

with ρ some real positive number. This implies that all
elements of W̃ are multiplied by ρ2, which is invariant as a
characteristic property of our reference configuration,
resulting in its determinant being scaled by ρ2N. At the
same time, the length space is conformally transformed by
the set of parameters

ji ¼ J1=Δi
i ¼ ρ−1=Δi ∀ i∈ f1;…; Ng ð33Þ

(note: not a dilatation), which has the overall effect of the
radial part RN acquiring an extra factor of ρ−2N . In total,

ΣN ⟶ RNR̃−1
N ρ2Nρ−2NΩN; ð34Þ

and we can choose a ρ such that

R̃−1
N ρ2N ¼ 1; ð35Þ

so as to satisfy (20) up to an irrelevant constant that can be
absorbed into cN . To summarize,weights w̃ijmaybe applied
in their most general form to the reference configuration
while keeping the radial part of the correlator as before, as
long as a general scaling factor is taken into account and no
other assumptions are made for the lengths of the reference
configuration. By doing this, any dependence of the angular
part of the correlator on conformal invariants (usually in
literature the invariants of the underlying length space
u; v;…) is still present, only moved to all (in the general
case) the intermediate quantities of the weights, i.e.,
w̃ijðu; v;…Þ, from which we construct the angular part,
making its dependency from the metric manifest. In other
words, there is no loss of generality in (29), which will be
important in the following discussion.
There is one more step that has to be taken, which is to

ensure that detW satisfies crossing symmetry, that is, to
remain invariant under the exchange of the labels i ↔ j. As
it is, the expression for ΣN is not symmetric under such
exchanges. The process to make it symmetric is described
in the Appendix.

B. Volume considerations

In the following we will be concerned with the angular
part ΩN of the unit squid as it is given in (29). Computing
the determinant for N ¼ 4 explicitly, we obtain

Σ4¼c4ρ−8x
−Δ23

23 x−Δ13

13 x−Δ12

12 x−Δ14

14

× ½1þ ũ−224 þ ũ−234 −2ũ−124 ũ
−1
34 −2ũ−124 −2ũ−134 �−1: ð36Þ

The radial part is that of the correlator of four scalar
operators in a CFT, as already pointed out, but with the
generic function4 fðu; vÞ that appears in a standard con-
formal correlator fixed to a specific form. As the unit squid
is the representative of a conformal class, its angular part
characterizes the class. In fact, the expression in brackets in
(36) can be recognized as Heron’s formula for −16A2, with
A the area of a triangle with edges

4The connection between the invariants u and v typically used
in the literature to our squid basis’ invariants is u ¼ u24

u34
and v ¼ u24.
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a ¼ ũ−1=224 ; b ¼ ũ−1=234 ; c ¼ 1: ð37Þ

A connection between the N ¼ 4 correlator and the volume
of a tetrahedron for specific physical systems was made
in [7]. It would be interesting to understand the form this
result takes and its consequences for our approach. If we
return to the discussion we presented for N ¼ 4, this can
actually be generalized to any N, which we do next.
Looking at (29) we note the similarity with the Cayley-

Menger determinant formula, allowing for an interpretation
of it as an (n-dimensional simplex) volume. We remind the
reader that, given nþ 1 points, the n-volume of the
n-simplex (a convex polytope) defined by these points
can be calculated via the Cayley-Menger determinant
formula,

Volnðconvfx1;…; xnþ1gÞ2 ¼
ð−1Þnþ1

ðn!Þ22n CMðx1;…; xnþ1Þ;

ð38Þ

where

CMðx1;…;xnþ1Þ¼

������������������

0 1 1 1 � �� 1

1 0 x212 x213 � �� x2
1ðnþ1Þ

1 x212 0 x223 � �� x2
2ðnþ1Þ

1 x213 x223 0 � �� x2
3ðnþ1Þ

..

. ..
. ..

. ..
. . .

. ..
.

1 x2
1ðnþ1Þ x2

2ðnþ1Þ x2
3ðnþ1Þ � � � 0

������������������

:

ð39Þ

Defining

qij ≔ ũ−1=2ij ; ð40Þ

we can write

detW ¼ R−1
N det W̃ ð41Þ

¼ R−1
N

�������������������

0 1 1 1 1 … 1

1 0 1 q224 q225 … q22N
1 1 0 q234 q235 … q23N
1 q224 q234 0 q245 … q24N
1 q225 q235 q245 0 … q25N

..

. ..
. ..

. ..
. ..

. . .
. ..

.

1 q22N q23N q24N q25N … 0

�������������������
¼ R−1

N CMðq2; q3;…; qNÞ: ð42Þ

By taking n ¼ N − 2, we obtain

detW ¼ R−1
N ½ð−1ÞNþ1ððN − 2Þ!Þ22N−2�

× VolN−2ðconvfq2;…; qNgÞ2 ð43Þ

or, as a shorthand,

detW ¼ R−1
N ½ð−1ÞNþ1ððN − 2Þ!Þ22N−2�Ṽ2

N−2: ð44Þ

One may interpret ṼN−2 as the (N − 2)-volume between the
N − 1 points fx2; x3;…; xNg in some generalized length
space where distances between points are given by qij. Note
that the volume ṼN−2 is the one corresponding to the points
2; 3;…; N specifically of the unit squid configuration (so
q223 ¼ 1, etc.), and this is why it has a tilde. Since, however,
this volume is a conformal invariant due to its being a
property of the representative, it takes the same value in the
entire conformal class, so the tilde could be dropped.
Putting everything together, from

ΣN ¼ cN ½detW�−1 ð45Þ

we arrive at

ΣN ¼ cNρ−2NRN
ð−1ÞNþ1

ððN − 2Þ!Þ22N−2

�
ṼN−2

�−2: ð46Þ

For N ¼ 4 we have

Σ4 ¼ −c4ρ−8
1

16
R4

1

Ṽ2
2

; ð47Þ

and Ṽ2 ¼ A is the area of the tetrahedron’s face that is not
adjacent to x1. The interpretation of ΩN as a volume for a
generalN > 3 (area forN ¼ 4) is that of the discrete analog
of a solid angle that the “neck” of the squid at x1 sees, and
this justifies the term angular part mentioned earlier;
see Fig. 2.

FIG. 2. The area that represents Ω4.
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C. Beyond the determinant

A possible advantage of the existence of a metric is the
general statement that a metric typically contains
more information than what is contained in its determinant.
One way to extract more information is to construct
quantities from the metric, covariant under conformal
transformations but invariant for some other reason.
These reasons may be of a physical or mathematical origin.
The eigenvalues of the metric could be of some relevance as
they transform covariantly. We do not know at this point of
any physical quantity that is constructed from them but one
can have an illustrative example by demanding that
they remain invariant under conformal transformations.
This requirement yields a relation among Ji, ei, and Δi.
Another example can be given based on the quantity
Q¼maxfhf;Dfi∶f∈CðviÞ; hf;fi ¼ 1; h1; fi ¼ 0g, with
D a distance matrix and CðviÞ the space of all real valued
functions on the vertices [3]. On our squid it takes the value

Q ¼ −
12

3N þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðN − 3Þð3N − 8Þp ð48Þ

and clearly depends only on N. If it transforms covariantly
with respect to conformal transformations, it will yield
another relation among Ji, ei, and Δi. In general, topo-
logical invariants are expected to give more such relations
as long as they can be constructed from the metric.

V. CONCLUSION

Using first principles of a mathematical nature on a
graph, we defined the conformal metric associated with this
graph. This metric is of particular interest, both as a
mathematical tool for the study of graphs under conformal
transformations, which one may study simply as edge
weights or in parallel to an underlying position space that
transforms conformally alongside the weights, and from a
physics standpoint. Regarding the latter, beyond the estab-
lished immediate physical connection with the correlators
of CFT through its determinant, a careful analysis of its
form may provide valuable insight regarding the remaining
degrees of freedom of the system that the metric encodes
and their possible use. We therefore plan to explore this
path in future research.
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APPENDIX: CROSSING SYMMETRY

Crossing symmetry is the statement that a correlator
(detW) should remain invariant under a change of the
vertex weight labels fxi;Δig → fxj;Δjg. Mathematically
this can be expressed by demanding that it should be

invariant under the action by the N − 1 generators of the
symmetric group SN . In the squid basis it is convenient to
take these as the transpositions ð12Þ;…; ð1NÞ. For exam-
ple, one can generalize a noncrossing symmetry invariant
(take N ¼ 4) as

ũ24 ⟶ ũ24 þ ũ34 þ
1

ũ24
þ 1

ũ34
þ ũ24
ũ34

þ ũ34
ũ24

; ðA1Þ

which is simultaneously invariant under (12), (13), and
(14); therefore, it is invariant under S4.
In general, the symmetrization operation of detW must

be done in such a way that the product RNΩN remains
invariant. One obvious strategy is to make the radial and
angular parts separately invariant, the latter by substitutions
as in Eq. (A1) and the former by imposing invariance on RN
using the generators. Of course, this is not unique and one
can move factors built out of the ũij between the radial and
angular parts so that in the final form invariance is achieved
from the cancellation of their respective noninvariant parts.
The separate symmetrization of RN and ΩN is not unique
either. For instance, the method that uses Eq. (A1) makes
each element of W̃ invariant, which is straightforward to
carry out but is not the most general case. One can have a
situation where the elements w̃ij are not invariant but the
noninvariant parts cancel in the determinant. The most
general discussion can be carried out in the context of the
complete graph, in the left sketch of Fig. 1, for a general N.
In this context, we will show how to construct a symmetric
detW. We will illustrate some of the above statements
through the N ¼ 4 example by showing the construction of
a symmetric R4 and then that of a symmetric Ω4 with
noninvariant w̃ij elements. Then we can single out the squid
part in R4 and move the rest into Ω4.
For the radial part RN , we note that the expressions (19)

are not crossing symmetric; hence, the radial part (20) we
presented also is not. However, by multiplying by con-
formal invariants formed by the lengths xij in suitable
powers, one can arrive at the expressions

J1 ¼
�
x212x

2
13x

2
14

x23x24x34

�Δ1
6

; J2 ¼
�
x212x

2
23x

2
24

x13x14x34

�Δ2
6

;

J3 ¼
�
x213x

2
23x

2
34

x12x14x24

�Δ3
6

; J4 ¼
�
x214x

2
24x

2
34

x12x13x23

�Δ4
6

; ðA2Þ

and thus at

R4 ¼ J−21 J−22 J−23 J−24

¼
�
x23x24x34
x212x

2
13x

2
14

�Δ1
3

�
x13x14x34
x212x

2
23x

2
24

�Δ2
3

×

�
x12x14x24
x213x

2
23x

2
34

�Δ3
3

�
x12x13x23
x214x

2
24x

2
34

�Δ4
3

; ðA3Þ
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which is manifestly cross symmetric (and similarly, but
with negated exponents, for the ρ factor). This is gener-
alized in a straightforward way to N points. One could
solve this, not for the squid basis as we did but for some
basis of all lengths for which we demand crossing sym-
metry. Instead, and more simply, one can multiply by the
set of independent conformal invariants and demand that
their exponents bring the lengths under each scaling
dimension of the radial part into a crossing symmetric
form, i.e., have the same exponent for the length of all
edges that end on the vertex in question and another
exponent for all other lengths. One can then show that
this form can be written as

Ji ¼
� Y
i≠j≠k≠i

xijxik
xjk

� Δi
ðN−1ÞðN−2Þ

; ðA4Þ

i.e., we multiply over all distinct triplets of indices which
contain the index in question and for which all indices are
different from each other.
To find a crossing symmetric form for the angular part

ΩN , we will turn again to statement (4) regarding finding a
unique representative for a certain conformal class. We will
prove the following statement:
The representative of (4) is conformally invariant and

crossing symmetric.
Applying the described property to the weights of the

complete graph’s representative, we find in the general case
where we consider N points that

w̄12w̄13w̄14w̄15…w̄1N ¼ 1;

w̄12w̄23w̄24w̄25…w̄2N ¼ 1;

w̄13w̄23w̄34w̄35…w̄3N ¼ 1;

w̄14w̄24w̄34w̄45…w̄4N ¼ 1;

…

w̄1Nw̄2Nw̄3Nw̄4N…w̄ðN−1ÞN ¼ 1; ðA5Þ

and, using again the definitions of the conformal invariants,

w̄12w̄13w̄14w̄15…w̄1N ¼ 1;

w̄12w̄23

w̄23w̄14

w̄13ū24

w̄23w̄15

w̄13ū25
…

w̄23w̄1N

w̄13ū2N
¼ 1;

w̄13w̄23

w̄23w̄14

w̄12ū34

w̄23w̄15

w̄12ū35
…

w̄23w̄1N

w̄12ū3N
¼ 1;

w̄14

w̄23w̄14

w̄13ū24

w̄23w̄14

w̄12ū34

w̄23w̄14w̄15

ū45w̄12w̄13

…
w̄23w̄14w̄1N

ū4Nw̄12w̄13

¼ 1;

…

w̄1N
w̄23w̄1N

w̄13ū2N

w̄23w̄1N

w̄12ū3N

w̄23w̄14w̄1N

ū4Nw̄12w̄13

…
w̄23w̄1ðN−1Þw̄1N

ūðN−1ÞNw̄12w̄13

¼ 1:

ðA6Þ

By defining λij ≡ lnðw̄ijÞ and acting with the logarithm on
the above system, we get a regular linear system with the
following solution:

2
6666666666664

λ23

λ12

λ13

λ14

λ15

…

λ1N

3
7777777777775

¼ CT

2
6666666666664

0

lnðū24ū25…ū2NÞ
lnðū34ū35…ū3NÞ

lnðū24ū34ū45…ū4NÞ
lnðū25ū35ū45…ū5NÞ

…

lnðū2Nū3Nū4N…ūðN−1ÞNÞ

3
7777777777775

; ðA7Þ

where here C≡ 1
ðN−1ÞðN−2Þ and

T ≡

2
6666666666664

1 N − 2 N − 2 −1 −1 … −1
1 N − 2 −1 −1 −1 … −1
1 −1 N − 2 −1 −1 … −1
1 −1 −1 N − 2 −1 … −1
1 −1 −1 −1 N − 2 … −1
..
. ..

. ..
. ..

. ..
. . .

. ..
.

1 −1 −1 −1 −1 … N − 2

3
7777777777775

:

ðA8Þ

Knowing the weights on the squid is enough to find all
the weights of the complete graph through the invariants.
This proves that the representative is conformally invariant.
More specifically, the result produced predicts, for N ¼ 4,

W̄ ¼

2
6666664

0 ū1=624 ū−1=334 ū−1=324 ū1=634 ū1=624 ū1=634

ū1=624 ū−1=334 0 ū1=624 ū1=634 ū−1=324 ū1=634

ū−1=324 ū1=634 ū1=624 ū1=634 0 ū1=624 ū−1=334

ū1=624 ū1=634 ū−1=324 ū1=634 ū1=624 ū−1=334 0

3
7777775

≡

2
66664

0 b c a

b 0 a c

c a 0 b

a c b 0

3
77775: ðA9Þ

Under any action by the generators of S4, i.e., (12), (13),
and (14), one of the three invariant quantities a, b, or c stays
the same and the other two swap places, thus leaving the
determinant crossing-symmetry invariant. Furthermore, in
terms of the a, b, and c parameters the determinant is
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det W̄ ¼ a4 þ b4 þ c4 − 2a2b2 − 2a2c2 − 2b2c2

¼ ða − b − cÞðaþ b − cÞða − bþ cÞðaþ bþ cÞ;
ðA10Þ

which can be recognized as being proportional to Heron’s
formula for the area squared A2 of a triangle with edges a,
b, and c, giving

det W̄ ¼ −16A2: ðA11Þ

Wealso need to show that our solution is crossing symmetric
in the general case where N ≥ 4. We therefore check the
metric and ultimately its determinant under the action of the
symmetric group’s generators, i.e., ð12Þ;ð13Þ;ð14Þ;…;ð1NÞ
or, for brevity, g12; g13; g14;…; g1N , respectively. First,
however, we will need to lay some groundwork for this.
Using the definitions for the invariants,we see that, under the
action of the generators of the group SN , the conformal
invariants transform as shown in Table I.
We now move our attention to the actual weights of

the metric, starting by looking at the squid’s weights
that are given in (A7) or, in a more explicit form, may
be written as

w̄23¼a
1

N−1
2 a

1
N−1
3 ½a4a5…aN �

−1
ðN−1ÞðN−2Þ

w̄12¼a
1

N−1
2 a

−1
ðN−1ÞðN−2Þ
3 ½a4a5…aN �

−1
ðN−1ÞðN−2Þ

w̄13¼a
−1

ðN−1ÞðN−2Þ
2 a

1
N−1
3 ½a4a5…aN �

−1
ðN−1ÞðN−2Þ

w̄1i¼a
−1

ðN−1ÞðN−2Þ
2 a

−1
ðN−1ÞðN−2Þ
3 a

1
N−1
i

× ½a4a5…ai−1aiþ1…aN �
−1

ðN−1ÞðN−2Þ ∀ i∈f4;5;…;Ng;
ðA12Þ

where we have defined

a2 ≡ ū24ū25…ū2N;

a3 ≡ ū34ū35…ū3N;

ai ≡ ū2iū3iū4i…ūði−1Þiūðiþ1Þi…ūNi ∀ i∈ f4; 5;…; Ng:
ðA13Þ

So, we can now determine how these quantities ai trans-
form under the generators of SN (i ≥ 4),

g12a2¼
1

a2
;

g12a3¼
a3
a2

;

g12ai¼
1

ū2i

ū3i
ū2i

ū4i
ū24ū2i

…
ūði−1Þi

ū2ði−1Þū2i

ūðiþ1Þi
ū2ðiþ1Þū2i

…
ūNi

ū2Nū2i

¼ ai
a2

1

ūðN−2Þ
2i

;

g13a2¼g13ðū24ū25…ū2NÞ¼
a2
a3

;

g13a3¼g13ðū34ū35…ū3NÞ¼
1

a3
;

g13ai¼
ū2i
ū3i

1

ū3i

ūi4
ū3iū34

…
ūði−1Þi

ū3iū3ði−1Þ

ūðiþ1Þi
ū3iū3ðiþ1Þ

…
ūiN

ū3iū3N

¼ ai
a3

1

ūðN−2Þ
3i

;

g1ia2¼
ū24ū3i
ū4i

…
ū2ði−1Þū3i
ūði−1Þi

ū3i
ū2ðiþ1Þū3i
ūðiþ1Þi

…
ū2Nū3i
ūNi

¼a2
ai
ūðN−2Þ
3i ;

g1ia3¼
ū34ū2i
ū4i

…
ū3ði−1Þū2i
ūði−1Þi

ū2i
ū3ðiþ1Þū2i
ūðiþ1Þi

…
ū3Nū2i
ūNi

¼a3
ai
ūðN−2Þ
2i ;

g1iai¼
ðū2iū3iÞðN−2Þ

ai
;

g1jai¼
ðū2jū3jÞðN−2Þ

ūðN−2Þ
ij

ai
aj
: ðA14Þ

Using these transformation rules, one can explicitly verify
via the solution that

g12w̄12¼ w̄12; g12w̄13¼ w̄23; g12w̄23¼ w̄13;

g13w̄12¼ w̄23; g13w̄13¼ w̄13; g13w̄23¼ w̄12;

g23w̄12¼ w̄13; g23w̄13¼ w̄12; g23w̄23¼ w̄23; ðA15Þ

and using these and the transformation laws of the
invariants in Table I it follows that

TABLE I. The conformal invariants when transformed under
the action of the generators of the group SN . The generators are
listed at the top of each column (with e being the identity
operator). Note that i, j, k ≥ 4 and are different from one another,
as when the same index is used this signifies that the index is
acted on by the group action.

e g12 g13 g1i g1k

ū2i 1
ū2i

ū2i
ū3i

ū3i ū2i ū3k
ūik

ū3i ū3i
ū2i

1
ū3i

ū2i ū3i ū2k
ūik

ūij ūij
ū2iū2j

ūij
ū3i ū3j

ū2i ū3i
ūij

ūijū2kū3k
ūikūjk
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g12w̄1i ¼ w̄2i; g13w̄1i ¼ w̄3i;

g12w̄2i ¼ w̄1i; g13w̄2i ¼ w̄2i;

g12w̄3i ¼ w̄3i; g13w̄3i ¼ w̄1i;

g12w̄ij ¼ w̄ij; g13w̄ij ¼ w̄ij;

g23w̄1i ¼ w̄1i; g1iw̄12 ¼ w̄2i;

g23w̄2i ¼ w̄3i; g1iw̄13 ¼ w̄3i;

g23w̄3i ¼ w̄2i; g1iw̄23 ¼ w̄23;

g23w̄ij ¼ w̄ij; g1iw̄ij ¼ w̄1j;

g1kw̄ij ¼ w̄ij: ðA16Þ

That is, SN acts covariantly on the indices of W̄, as it
should. At this point, having proven that the indices of the
w̄ij are exchanged in the expected way under all generators
and thus any element of SN , we are immediately also able to
prove the determinant det W̄ crossing symmetric. Consider
the weights in W̄ under the action of gij: this induces an
exchange between the relevant columns and also an
exchange between the relevant rows. Thus, the determinant
will pick up two negative signs from this exchange,
resulting in the same determinant value in the end. And
with this, the proposed angular part is proven crossing
symmetric.
The previous treatment of the angular part is done in

general terms, invoking the use of the ūij invariants, which,
in turn, depend on the weights w̄ij. One may, however,
wish to express all quantities through the lengths and
scaling dimensions of the problem. We will therefore also
outline an example of an alternative approach. In particular,
we take N ¼ 4 and make the following ansatz for an
element of the weights mij of the required reference
configuration:

m14 ¼ ua1Δ1þa2Δ2þa3Δ3þa4Δ4

24 ub1Δ1þb2Δ2þb3Δ3þb4Δ4

34 : ðA17Þ

Here, the invariants are constructed from the given lengths
of the problem. We have allowed for eight unknown
coefficients in the exponents, however, by repeatedly
applying the generators g12, g13, and g14 as before
on this, we not only get all other elements of the associated
weight matrix M but also restrict the unknown coefficients
down to two, namely, a1, and a2. Ultimately, one finds
that

m12 ¼ uþa1Δ1þa1Δ2þa2Δ3þa2Δ4

24 u−2a1Δ1−2a1Δ2−2a2Δ3−2a2Δ4

34 ;

m13 ¼ u−2a1Δ1−2a2Δ2−2a1Δ3−2a2Δ4

24 uþa1Δ1þa2Δ2þa1Δ3þa2Δ4

34 ;

m14 ¼ ua1Δ1þa2Δ2þa2Δ3þa1Δ4

24 ua1Δ1þa2Δ2þa2Δ3þa1Δ4

34 ;

m23 ¼ uþa2Δ1þa1Δ2þa1Δ3þa2Δ4

24 uþa2Δ1þa1Δ2þa1Δ3þa2Δ4

34 ;

m24 ¼ u−2a2Δ1−2a1Δ2−2a2Δ3−2a1Δ4

24 uþa2Δ1þa1Δ2þa2Δ3þa1Δ4

34 ;

m34 ¼ uþa2Δ1þa2Δ2þa1Δ3þa1Δ4

24 u−2a2Δ1−2a2Δ2−2a1Δ3−2a1Δ4

34 ;

ðA18Þ

and from this we can derive

detM ¼ m2
14m

2
23 þm2

13m
2
24 þm2

12m
2
34

− 2m14m23m13m24 − 2m14m23m12m34

− 2m13m24m12m34

¼ þu2E24u
2E
34 þ u−4E24 uþ2E

34 þ uþ2E
24 u−4E34

− 2u−E24 u
þ2E
34 − 2uþ2E

24 u−E34 − 2u−E24 u
−E
34 ; ðA19Þ

where we have defined

E≡ ða1 þ a2ÞðΔ1 þ Δ2 þ Δ3 þ Δ4Þ: ðA20Þ

Note that (A19) is once again proportional to Heron’s
formula, as in (36) and (A10), for a triangle with edges

uE=224 uE=234 ; uE=224 u−E34 ; u−E24 u
E=2
34 : ðA21Þ

As a last note on the angular part, if we require (A18) to
conform to the property given by (4), this would imply
taking a1 ¼ a2.
Having shown both the radial and angular parts to be

able to be written in a cross symmetric way, we may wish to
nevertheless work in some other basis of lengths in the
radial part, like the squid we have defined. We can do this
while simultaneously preserving crossing symmetry simply
by choosing the lengths we wish to keep in the radial part,
which should be the covariant part of the correlator, and
move what remains, which therefore should be some
invariant expression, into the angular part by multiplying
and dividing by this invariant quantity. As an example, let
us split out of R4 [see (A3)], the radial part of the squid
R4;sq, as in (20). This produces the expression

R4 ¼ R4;squ
−1
3
Δ1þ2

3
Δ2−1

3
Δ3þ2

3
Δ4

24 u
−1
3
Δ1−1

3
Δ2þ2

3
Δ3þ2

3
Δ4

34 ; ðA22Þ

and the remaining invariant part can be redistributed to the
angular part ΩN .
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