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We construct a family of local static, vacuum five-dimensional solutions with two commuting spatial
isometries describing a black hole with a S3 horizon and a 2-cycle “bubble” in the domain of outer
communications. The solutions are obtained by adding distortions to an asymptotically flat seed solution.
We show that the conical singularities in the undistorted geometry can be removed by an appropriate choice
of the distortion.
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I. INTRODUCTION

A classic result of Lichnerowiscz asserts that the only
globally stationary, four-dimensional asymptotically flat
solution of the Einstein-Maxwell equations is Minkowski
spacetime [1] (see also [2]). Physically, this implies that an
isolated gravitating system with positive energy must
contain a black hole. A similar result can be proved for
electrovacuum static solutions in dimensions greater than
four [3] (see also [4]). On the other hand, in spacetimes
with dimension greater than four, there are a large number
of families of stationary, asymptotically flat solutions that
have positive energy but do not contain black holes (for a
review, see e.g., [5]). Such spacetimes may be referred to as
“gravitational solitons” [6]. They are characterized by
nontrivial 2-cycles, or “bubbles”, which are prevented
from collapsing by a magnetic flux. Indeed, one can show
quite easily using the positive mass theorem and Stokes’
theorem that in the pure vacuum case, with vanishing
Maxwell fields, such solutions cannot exist. Moreover, it
can be proved that the assumption of trivial topology on
Cauchy surfaces is sufficient to rule out the existence of
solitons [7].
Consider the existence of asymptotically flat stationary

spacetimes containing a black hole which has such non-
trivial topology in its domain of outer communication. This
can be interpreted as an equilibrium configuration of a

black hole and a soliton. Such solutions would produce a
continuous failure of black hole uniqueness, even for fixed
horizon topology, as one could not distinguish between two
black holes with the same conserved charges computed at
asymptotic infinity. Explicit examples of such configura-
tions have indeed been constructed, confirming this con-
tinuous violation of uniqueness for topologically spherical
black holes [8,9]. The nontrivial topology leads to new
terms in the first law of black hole mechanics [7]. The
known examples are all supersymmetric, where there is a
great deal known about the local form of solutions [10].
They have nonzero charge and angular momenta.
Nonetheless, it is natural to expect that nonsupersymmetric,
and possibly even pure vacuum, black hole spacetimes with
nontrivial topology in the exterior region should exist.
Indeed, only recently, an explicit example of a family of
nonsupersymmetric black hole solutions of this type in
minimal supergravity was constructed [11]. The static black
hole uniqueness theorem states that all (electro)vacuum,
asymptotically flat black holes are members of the
(Reissner-Nordström) Schwarzschild family [12]. Hence,
any stationary, asymptotically flat vacuum black hole
spacetime with a bubble would have to be nonstatic.
Explicitly constructing smooth solutions of this type is
well-known to be quite difficult.
To gain some insight on this problem, one could consider

relaxing one or more of the conditions, such as asymptotic
flatness or nonstaticity. It is fairly straightforward to
construct explicit solutions describing a black hole bubble
configuration within the Weyl class of static, biaxisym-
metric solutions [those admitting a R ×Uð1Þ ×Uð1Þ
isometry group with mutually orthogonal generators] [13].
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The resulting local metrics can be chosen to be asymp-
totically flat, but they suffer from conical singularities
associated to the fixed-point sets (axes) of the rotational
Killing vector fields (see Sec. II). The conical singularities
can be chosen to lie either in the interior of the spacetime or
at infinity. As shown by Tomlinson [14], Harrison-type
transforms can be used to produce new solutions of the
Einstein-Maxwell equations from this seed solution. The
new solutions will have additional parameters which could
in principle be used to eliminate the conical singularities,
although the regular solutions will no longer be asymp-
totically flat. Such a strategy was carried out in detail
in [14], although it was found the parameters could not be
appropriately chosen to achieve regularity. In this article,
we will focus on a different approach to achieve regularity;
relaxing the condition of asymptotic flatness. As we
explain below, this can be thought of as including external
matter in the asymptotic region, which distorts the geom-
etry near the black hole.
Most of our understanding of stationary black holes,

their properties and structures come from studying black
holes with maximal symmetry, such as Schwarzschild,
Kerr, or Reissner-Nordström-like black hole solutions. In
analogy with the theory of electromagnetism, the study of
such black holes is analogous to the study of a single charge
in an empty space where no interaction is present. We may
wonder to what extent the properties of such black holes
are a reliable guide to those of more general solutions.
Are there new unexpected properties when we study the
interactions of black holes with surrounding matter and
sources? We can think of large black holes as long
wavelength IR backgrounds where Einstein’s classical
equations are reliable. However, the large black holes
have so much information even though they are IR
objects. From this perspective, as stated by Agmon
et al. [15] “black holes are the star of the show in many
aspects of quantum gravity”.
Lately, many of the Swampland conditions are also

motivated by black hole physics, although some others just
have string theory backing [15]. These new developments,
although not the only motivation, enhance the need for
study of more general class of black hole solutions. For
example, it has been shown that some of the features of
black holes are not as universal as we might think. In
particular, it was demonstrated that, in the case of a
distorted five-dimensional Myers-Perry black hole, the
ratio of the horizon angular momentum and the mass
J2=M3 is unbounded, and can grow arbitrarily large [16].
Similarly, for a distorted Kerr black hole, the solution is
regular outside the horizon even though the spin parameter
can satisfy J2=M4 > 1 [17]. There have also been efforts in
investigating various aspects of more general black holes.
For example, a heuristic argument for the universal area
relation of a four-dimensional adiabatically distorted Kerr-
Newman black hole has been proposed [18–20].

Recently, it was illustrated that some deformed black
holes with less symmetry are more stable against more
general class of perturbations [21]. Thus, studying distorted
black holes is crucial as at times their properties diverge
from the universal characteristics observed in symmetric
black hole solutions, challenging our understanding and
highlighting the need for a more comprehensive explora-
tion of black hole physics to capture the diverse phenomena
arising from interactions with surrounding matter and
sources. Although the ideal situation would be to analyze
dynamical black holes, there exists a well-known technique
for constructing distorted static black hole solutions. This
method relies on the fact that for the Weyl class of metrics,
the Einstein equations reduce to solving for axisymmetric
solutions of Laplace’s equation on R3 [22]. The resulting
linearity can be used to “deform” a given Weyl solution by
adding harmonic functions. In higher dimensions, using the
generalized Weyl form [13], we can construct distorted
higher-dimensional black holes. In Newtonian gravity,
multipole expansions are commonly used to expand the
potential associated with a particular mass distribution.
Around a central point such a series can be written in terms
of both positive and negative powers of a radial function r
(the origin is r ¼ 0). However it is typically applied to just
one of two situations: 1) if the mass is localized to a small
region then the expansion is in terms of exterior multipole
moments; negative powers so that the potential goes to zero
at infinity or 2) if the mass is in a shell far from the origin
then the expansion is in terms of interior multipole
moments; positive powers so that potential diverges
at infinity. It is in this context that we consider a local
black hole solution. Namely, as pointed out by Geroch and
Hartle [23], the procedure can be interpreted physically as
adding new external “sources” from an isolated self-
gravitating system that distort the interior geometry.1 In
this case, in analogy with the multiple expansion in
electromagnetism we do not include exterior sources in
the solution. Thus, the solution is valid only in the interior,
local region near the black hole and suffers from lack of
asymptotic flatness. This solution-generating technique
has been used to produce and study many new solutions,
generally known as distorted black holes or black objects,
such as distorted Schwarzschild, Kerr, or Reissner-
Nordström solutions, distorted Myers-Perry black hole,
and static and charged black rings, etc., [16–18,24–46].
In this paper, we construct a distorted local static vacuum

black hole-bubble solution that is smooth in the interior
region (far from external sources) on and outside the event
horizon and in particular is free of conical singularities.

1As discussed in [23], there is no guarantee that these
“sources” will not violate the energy conditions. The allowed
values of the multipole moments will be constrained if one wishes
to only consider distortions that can be imposed by nonenergy-
condition violating matter. Exact constraints must be determined
on a case-by-case basis.

TAVAYEF, ABDOLRAHIMI, BOOTH, and KUNDURI PHYS. REV. D 110, 044071 (2024)

044071-2



The solution should not be considered physical in the
asymptotic region where the curvature may diverge along
certain directions. For example, in the case of distorted four-
dimensional Schwarzschild black hole [23], the Kretchmann
scalar diverges at infinity. This is expected, sincewe consider
a vacuum solution which does not explicitly include the
external matter distribution responsible for deforming the
original asymptotically flat black hole. Similarly, in electro-
magnetic theory, consider a charge distribution located in
some external region characterized by a radius R. In the
interior region r ≪ R, we can perform an expansion of the
potential in terms of spherical harmonics, although themodel
is not physical for r=R ∼ 1 and the potential will diverge at
infinity. It is expected that the local black hole solution
constructed may be extended into a more general solution,
where the nonvacuum region with the sources is included,
and then the solution is further extendable into another
asymptotically flat vacuum region.

II. THE BLACK HOLE BUBBLE SOLUTION

We first describe a vacuum solution describing a black
hole with a noncollapsing S2 “bubble” in the domain of
outer communication. The geometry is asymptotically flat,
but the metric suffers from two conical singularities along
two axes of symmetry. We briefly describe the construction
of such metrics below.

A. Weyl solutions

The general solution of the D-dimensional vacuum
Einstein equations admitting D − 2 orthogonal commuting
(non-null) Killing vector fields is given in terms of D − 3
independent axisymmetric solutions of Laplace’s equation
in Euclidean R3. Such solutions are known as Weyl
solutions based on the classic original work in D ¼ 4.
We will focus on the D ¼ 5 case. We refer to the reader to
the review [13,22] for details.
A five-dimensional Weyl metric can be locally expressed

in the form,

ds2 ¼ −e2U0dt2 þ e2νðdr2 þ dz2Þ þ e2U1dψ2 þ e2U2dϕ2;

ð1Þ

where t∈R is a timelike coordinate, r > 0, z∈R, and ψ ;ϕ
will be chosen to each be identifiedwith period 2π in order to
obtain an asymptotically flat geometry and/or a regular
solution. The Killing vector fields ∂t; ∂ψ ; ∂ϕ generates the
commuting isometry groupR × Uð1Þ ×Uð1Þ. TheRicci flat
equations imply that the metric functions Ui ¼ Uiðr; zÞ,
i ¼ 0, 1, 2 are each axisymmetric solutions of the Laplace
equation in R3, which in cylindrical coordinates ðr; z; θÞ
reads

∂
2Ui

∂r2
þ 1

r
∂Ui

∂r
þ ∂

2Ui

∂z2
¼ 0: ð2Þ

Here ðr; zÞ is identified with the orbit space of the original
spacetime by the isometry group and θ ∼ θ þ 2π is an
auxiliary coordinate. Equivalently, ∇2Ui ¼ 0 where ∇2 is
the Laplacian associated to flat R3 with metric

ds2 ¼ dr2 þ r2dθ2 þ dz2: ð3Þ

Note that, the threeUi functions are not all independent, but
satisfy the constraintX

i

Ui ¼ log rþ c: ð4Þ

We can adjust the constant term c freely by rescaling the
coordinates xi. It’s important to note that log r represents a
solution to Laplace’s equation, which is the Newtonian
potential sourced by a one-dimensional rod with an infinite
length along the z-axis, having a uniform mass density
of 1=2. Once two harmonic functions Ui are selected, the
Weyl metric is locally fully determined. The remaining
function ν ¼ νðr; zÞ satisfies the first-order equations

∂rν ¼ −
1

2r
þ r
2

X2
i¼0

ðð∂rUiÞ2 − ð∂zUiÞ2Þ; ð5Þ

∂zν ¼ r
X2
i¼0

ðð∂rUiÞð∂zUiÞÞ: ð6Þ

The integrability condition for (5) and (6) reduces to (2) and
so ν is determined up to quadrature.
Let ĝ denote the restriction of the metric to the Killing

vector fields ð∂t; ∂ψ ; ∂ϕÞ. Observe that

det ĝ ¼ −e2U0þ2U1þ2U2 ¼ ðe2cÞr2: ð7Þ

The set r ¼ 0, namely the z-axis, can be shown to
decompose into intervals characterized by whether the
timelike field ∂t is null or a linear combination of the
spatial Killing fields ð∂ψ ; ∂ϕÞ degenerate. The resulting
submanifolds in the spacetime correspond to an event
horizon or an axis of symmetry of either of the Killing
fields. The points in the orbit space where two spacelike
axis intervals (referred to as “rods”) intersect are called
“corners”. At these points the Uð1Þ2 torus action degen-
erates. Potential conical singularities arise on these axes
and the parameters of the solutions must be chosen to
achieve a globally smooth metric. This latter step cannot
always be performed. In particular, this is the case for the
asymptotically flat black hole bubble solution which we
now describe. We refer the reader to [13] where a large
class of examples are discussed in detail.
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B. Unbalanced black hole bubble solution

As described above, an event horizon in the full
spacetime corresponds to a (finite) timelike rod za < z <
zb on which e2U0 ¼ 0. A finite spacelike axis rod with
corners as endpoints, where one of e2Ui , i ¼ 1, 2 vanishes,
corresponds to a topological S2 (the S1 corresponding to the
generator associated to Ui degenerates) with poles at the
corner points. Such S2 surface lie in the region connected to
the asymptotic region r2 þ z2 → ∞ and represent “bub-
bles” in the black hole exterior. Another possibility for a
finite spacelike rod is that one of its endpoints intersect the
event horizon rod; such a rod describes a topological disc
(hemisphere) in the full spacetime. Furthermore, for a five-
dimensional asymptotically flat metric, there must be two
semi-infinite axes ð−∞; z1Þ and ðz2;∞Þ on which ∂ψ and
∂ϕ degenerate, respectively; these correspond in the space-
time to the poles of the asymptotic S3 boundary at spatial
infinity. For a given spacetime in the Weyl class, the
associated collection of horizon and axis rods is referred to
as its rod structure.
One can construct a simple example of an asymptotically

flat black hole with a S3 horizon and a bubble in the exterior
in the region within the Weyl class [47] as follows. Let a, b,
c be positive constants satisfying 0 < a < b < c and define

μk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ðz − kÞ2

q
− ðz − kÞ: ð8Þ

Observe that log μk is an axisymmetric harmonic function
on R3=A where A represents the region on the z− axis
where μk ¼ 0, i.e., fðr; zÞjr ¼ 0; z > kg; it is the
Newtonian potential for a semi-infinite rod z > k of mass
density 1=2. It is a simple to construct a Weyl solution by
superimposing these potentials and using the linearity of
the Laplace equation. The black hole bubble solution we
will consider has harmonic functions Ui defined by

e2U0 ¼ μ0
μa

; e2U1 ¼ r2μb
μ0μc

; e2U2 ¼ μaμc
μb

: ð9Þ

From this choice we may read off the rod structure
(see Fig. 1):

(1) I1: A semi-infinte rod−∞ < z < 0 corresponding to
the asymptotic symmetry axis of ∂ψ ;

(2) H: A finite timelike 0 < z < a corresponding to an
event horizon with spatial cross section S3;

(3) ID: A finite spacelike rod a < z < b on which ∂ϕ

degenerates. This represents a disc;
(4) IB: A finite spacelike rod b < z < c on which ∂ψ

degenerates. This represents a bubble as explained
above;

(5) I2 Asemi-infinte rod c < z < ∞ corresponding to the
asymptotic symmetry axis on which ∂ϕ degenerates.

This solution represents an asymptotically flat black hole
with horizon cross section S3 with a nontrivial 2-cycle
(bubble) in the domain of outer communications, i.e., the
exterior region to the black hole from which light signals
can escape to the asymptotic region. Solutions of this type
were considered previously [47] (see also [14]).
Before proceeding, it is helpful to compare the black

hole bubble solution considered here with other five-
dimensional Weyl solutions which also contain finite
spatial rods. First recall that, as explained above, there is
both a finite spatial rod whose endpoints are corners (the
bubble) and a second finite rod with one endpoint on the
horizon (the disc). Consider the solution with the rod
diagram given in Fig. 3(c) of [13] which has a single spatial
finite rod. This rod corresponds to a disc in the spacetime,
not a bubble, and further the full spacetime is not
asymptotically flat. This is because the same Killing field
vanishes on both of the semi-infinite rods, characteristic of
having an asymptotic spatial boundary S1 × S2 (that is, it is
“asymptotically Kaluza-Klein”). In contrast, our solution is
asymptotically flat since a different Killing field vanishes
on the two semi-infinite axes, and it also has a genuine
bubble as well as a disc. Next, consider the recently
constructed family of Weyl metrics with rod diagram as
in Fig. 11(d) of [48]. This rod structure also has a finite
spatial rod that corresponds to a disc, not a bubble, and
furthermore, one of the semi-infinite rods is actually in the
timelike direction, corresponding in the spacetime to an
acceleration horizon similar to that of the C-metric (see the
discussion in [13]). Thus this solution is neither asymp-
totically flat nor asymptotically Kaluza-Klein.
To write the metric in the form (1) requires an explicit

expression for the function ν. We follow the approach of
Iguchi, Izumi, and Mishima [49]. Define the Euclidean
distance from a point in the orbit space from ð0; zÞ,

Rc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ðz − cÞ2

q
ð10Þ

and

μc ¼ Rc þ ðz − cÞ ð11Þ

along with Uc ¼ 1
2
logðRc þ ðz − cÞÞ so that μc ¼ e2Ūc ,

FIG. 1. The rod structure for a black hole with a bubble [47].
Here the finite rod along (0 < z < a) corresponds to a static black
hole horizon with spatial cross section S3.
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γcd ¼
1

2
Uc þ

1

2
Ud −

1

4
logYcd;

Ycd ¼ RcRd þ ðz − cÞðz − dÞ þ r2: ð12Þ

Then the γcd satisfy the first-order equations

∂rγcd ¼ rð∂rUc∂rUd − ∂zUc∂zUdÞ; ð13Þ
∂zrγcd ¼ rð∂rUc∂zUd þ ∂zUc∂rUdÞ: ð14Þ

For the black hole bubble solution, we can rewrite the Ui in
terms of the Ui,

U0 ¼ Ua −U0; U1 ¼ U0 þ Uc −Ub;

U2 ¼ log r −Ua −Uc þUb: ð15Þ

This leads to the relations,

e2U0 ¼ μa
μ̄0

; e2U1 ¼ μ̄0μ̄c
μ̄b

; e2U2 ¼ r2μ̄b
μ̄cμ̄a

: ð16Þ

It remains a tedious process to rewrite dν in terms of the Ūi.
Doing so and comparing to (13), (14) one finds [47]

νðr; zÞ ¼ Ub − Ua −Uc þ γ00 þ γaa þ γbb þ γcc

− γ0a þ γ0c − γ0b − 2γbc þ γac − γab þ C; ð17Þ
whereC is an integration constant which is fixed by requiring
asymptotic flatness. Consider the flat Euclideanmetric onR4

in spherical coordinates ðR0; θ;ϕ1;ϕ2Þ,
δ4 ¼ dR02 þ R02ðdθ2 þ sin2 θdϕ2

1 þ cos2 θdϕ2
2Þ; ð18Þ

with R0 > 0, θ∈ ð0; π=2Þ and ϕi, i ¼ 1, 2 are angles with
period 2π. We can rewrite this in the Weyl form by
identifying ϕ1 ¼ ψ ;ϕ2 ¼ ϕ and using the transformation,

R0 ¼ ½4ðr2 þ z2Þ�1=4; tan 2θ ¼ r
z
; ð19Þ

which has inverse

r ¼ R02 sin 2θ
2

; z ¼ R02 cos 2θ
2

; ð20Þ

one finds that the Euclidean metric on R4 is

δ4 ¼
dr2 þ dz2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2

p þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ z2
p

þ z
�
dψ2

þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ z2
p

− z
�
dϕ2: ð21Þ

Thus, for a Weyl metric to be asymptotically flat, we require
that as R0 → ∞, e2ν →

ffiffiffi
2

p
R0−2 þOðR0−4Þ. Comparing this

to (17) fixes

C ¼ −
1

4
log 2: ð22Þ

To summarize, the local form of the metric describing an
asymptotically flat black hole with a bubble in the exterior is
given in the Weyl form (1) with metric functions (9) and
conformal factor ν given in (17) and C fixed by (22).
We now turn to global properties of the metric. The

functions (9) are analytic everywhere away from the singular
sets of the Ui (being compositions of the exponential
function and harmonic functions) and hence the metric is
analytic as well away from the singular set defined by r ¼ 0.
Each Ui becomes singular on some interval ðzi−1; ziÞ of the
z-axis, corresponding to the horizon or axes. These intervals
meet at rod points zi where two of the e2Ui simultaneously
vanish. Regularity of the metric at these points is guaranteed
provided certain admissibility conditions are met (namely,
that the determinant of the matrix formed by the associated
rod vectors is �1) [50]. This condition is automatically
satisfied forWeyl solutions as the rod vectors are orthogonal.
Potential singularities may arise on the interior of each

interval upon which a givenUi behaves like log r as r → 0.
The singular set of U0 corresponds to the event horizon
where ∂t becomes null. Our choice of U0 is sufficient
to guarantee that the metric will be smooth across the
horizon [50]. The other types of singularity that can arise
are conical singularities associated to fixed point sets of the
rotational Killing fields. Consider an axis rod (a codimen-
sion-2 surface in spacetime), upon which a spatial Killing
field K vanishes. Let ϕ be an adapted coordinate so that
K ¼ ∂ϕ. A smooth degeneration of K (removal of conical
singularities) requires that ϕ ∼ ϕþ Δϕ, where

Δϕ ¼ 2πlim
r→0

ffiffiffiffiffiffiffiffiffiffi
r2e2ν

jKj2

s
: ð23Þ

For a solution with multiple axes for a given K ¼ ∂ψ ; ∂ϕ,
it is not generally possible to choose Δϕ;Δψ so that all
conical singularities are removed.
Along the two semi-infinite rods, it is easily checked thatffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lim
r→0

r2e2ν

e2U2

s
¼ 1; z > c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lim
r→0

r2e2ν

e2U1

s
¼ 1; z < 0;

ð24Þ
which fixes the periodicities Δψ ¼ Δϕ ¼ 2π. This is
necessary due to the requirement that the spacetime is
asymptotically flat, and hence there is an asymptotic round
S3 boundary at spatial infinity.
For a black hole with a bubble, there are also two finite

axis rods as shown in Fig. 1. Each finite axis rod in this
solution is associated to a conical singularity. First, we
examine the case of ID, the disc topology region corre-
sponding to r ¼ 0; a < z < b along which ∂ϕ degenerates.
A calculation showsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lim
r→0

r2e2ν

e2U2

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðb − aÞ
cðc − aÞ

s
; a < z < b < c: ð25Þ
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Regularity requires that this be equal to unity, implying
bþ c ¼ a. However, since by assumption 0 < a < b < c,
this cannot be achieved. Next along the bubble rod IB where
r¼0;b<z<c along which ∂ψ degenerates, we findffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lim
r→0

r2e2ν

e2U1

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc − bÞ2
cðc − aÞ

s
; b < z < c: ð26Þ

However, it is clear thatffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc − bÞ2
cðc − aÞ

s
< 1: ð27Þ

Therefore, there is noway to choose the parameters ða; b; cÞ
to remove the conical singularities while keeping the rod
structure fixed, i.e., 0 < a < b < c. One could choose the
periodicities of the angles so that the conical singularities are
removed on the disc a < z < b and on the bubble b < z < c
although the resulting solution would have conical singu-
larities along the semi-infinite rods that extend to spatial
infinity. We will, for brevity, refer to the solutions where ϕ
and ψ have period 2π as BHB-AF, since the spacetime is
asymptotically flat, although it is not free of conical
singularities in the interior region. As a comparison, also
consider the area of the black hole, bubble, and disk for the
undistorted black hole bubble solution, where the period of
ϕ and ψ are given by Δϕ ¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðb − aÞ=cðc − aÞp

and
Δψ ¼ 2πðc − bÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=cðc − aÞp
, respectively.Wewill denote

this solution by BHB-NF, since the spacetime is not
asymptotically flat. In this case, the bubble and disc are
smooth, although the horizon S3 will have conical singu-
larities at one of its poles (z ¼ 0).
Before we turn to constructing the distorted solution, we

give expressions for some geometric invariants of physical
interest. From the expansion

gttðR0; θÞ ¼ −1þ 2ðaÞ
R02 þOðR0−4Þ ð28Þ

one can read off the Komar mass

m ¼ 3πa
4

; ð29Þ

which must agree with the Arnowitt-Deser-Misner (ADM)
mass for stationary, asymptotically flat solutions. Note
that the mass is independent of the parameters ðb; cÞ. The
surface gravity of the event horizon is

κ ¼ lim
r→0

ffiffiffiffiffiffiffiffiffiffi
e2U0

r2e2ν

s
¼

ffiffiffiffiffiffiffiffi
c

2ab

r
; ð30Þ

where 0 < z < a on the horizon rod. Spatial cross sections
of the horizon have topology S3 with an inhomogeneous
metric. As discussed above, here will be a conical singu-
larity at one pole (at the pole z ¼ a where ∂ϕ vanishes).
The area of the horizon is

AH ¼
Z
H
dμ ¼ 4π2

Z
a

0

eνþU1þU2dz ¼ 4π2a

ffiffiffiffiffiffiffiffi
2ab
c

r
: ð31Þ

Observe that the Smarr relation

m ¼ 3κAH

16π
¼ 3πa

4
: ð32Þ

holds. The Komar mass on the horizon,

mH ¼ −
3

32π

Z
H
⋆dk ¼ 3π

4

Z
a

0

∂rU0eU0þU1þU2dz ¼ 3π

4
· a;

ð33Þ

which equals the mass computed at infinity, as it must by
Stokes’ theorem. The area of the S2 bubble is

AB ¼ 2π

Z
c

b
eνþU2dz ¼ 2πðc − bÞ

"
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðb − aÞ
cðc − aÞ

s
þ affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cðc − aÞp log

� ffiffiffi
b

p
−

ffiffiffiffiffiffiffiffiffiffiffi
b − a

pffiffiffi
c

p
−

ffiffiffiffiffiffiffiffiffiffiffi
c − a

p
�#

; ð34Þ

and the area of the disc (hemisphere) is

AD ¼ 2π

Z
b

a
eνþU1dz ¼ 2πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cðc − aÞp �
b − aþ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðb − aÞ

p
sinh−1

�
b
a
− 1

��
: ð35Þ

C. The event horizon

The Weyl coordinate system covers only the region
of spacetime outside any event horizons. Note that gtt ¼
−e2U0 < 0 and it vanishes in the limit r → 0 and z∈ ð0; aÞ.
We can pass to a natural radial-type coordinate by intro-
ducing coordinates ðρ; xÞ,

r2 ¼
�
ρ2 −

a2

4

�
ð1 − x2Þ; z ¼ a

2
þ ρx: ð36Þ

In this coordinate chart, the horizon corresponds to
ρ ¼ a=2 and jxj ≤ 1. Under this transformation,
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e2νðdr2 þ dz2Þ ¼ e2ν
�
ρ2 −

a2x2

4

��
dρ2

ρ2 − a2
4

þ dx2

1− x2

�
: ð37Þ

The metric degenerates at the horizon endpoints
ρ ¼ a=2; x ¼ �1. In the region near the horizon, the
ðt; rÞ part of the metric can be expressed in terms of
ðρ; xÞ coordinate chart as

ds22 ¼ −
ρ − a

2

a
½1þOðρ − a=2Þ2�dt2

þ dρ2

ρ − a
2

�
b
2c

þOðρ − a=2Þ2
�
: ð38Þ

We can then introduce coordinates that are regular on the
event horizon by

v ¼ a−1=2
�
tþ

ffiffiffiffiffiffi
ab
2c

r
log ðρ − a=2Þ

�
ð39Þ

in which case the metric takes the form

ds22 ¼ −
�
ρ −

a
2

�
dv2 þ 2

ffiffiffiffiffi
b
2c

r
dvdρþ…; ð40Þ

where the “…” denote terms that are smooth as ρ → a=2.
We thus conclude that we can analytically continue the
metric through the (nondegenerate) event horizon into the
black hole interior region.
The geometry of the horizon is given by

ds2h ¼
ab

2zcða − zÞ dz
2 þ 2ðb − zÞz

c − z
dψ2

þ 2ða − zÞðc − zÞ
b − z

dϕ2: ð41Þ

This can written in a simpler form by writing x ¼ cos 2θ
with 0 < θ < π=2, giving

ds2h ¼ 2a

�
b
c
dθ2 þ ðb − acos2θÞcos2θ

c − acos2θ
dψ2

þ ðc − acos2θÞsin2θ
b − acos2θ

dϕ2

�
: ð42Þ

This can be extended to an inhomogeneous metric on S3,
although it necessarily has a conical singularity at one the
two poles at θ ¼ 0 or θ ¼ π=2.

III. DISTORTED BLACK HOLE BUBBLE
SOLUTION

A. Distorting Weyl solutions

For the Weyl class of solutions, the construction of a full
vacuum equations reduce to selecting two axisymmetric

harmonic functions in R3. The Laplace equation is obvi-
ously linear, and so it is relatively simple to superimpose
solutions. In particular, one can add higher-order axisym-
metric harmonics to an existing solution in such a way that
the underlying rod structure (but not the geometry) is
unaffected.
Although one can formally consider the solution even at

the infinity. Such consideration would lack proper physical
interpretation. As we discussed in the introduction, we have
two choices either to analyze the spacetime in the interior
region of the sources or the exterior region of the sources.
This is in analogy with the interior or exterior multiple
expansions in the electromagnetism. We choose the interior
multiple moments. Thus, our solution is valid only in the
interior region, i.e., a local distorted black hole by presence
of external sources. In such analysis, the solution is not
asymptotically flat. In other words, between the black hole
horizon and the asymptotic infinity the sources are located.
However, the vacuum Einstein equations we use here to
construct the distorted black hole solution cannot account
for the sources and thus are valid only in the interior region
of sources far away from the sources. As we will see, this
can help to remove conical singularities in the black hole
bubble system, at the cost of asymptotic flatness.
Consider a fixed Weyl solution ðfUi; ν̃Þ, referred to as

the background solution. We consider a solution ðUi; νÞ
defined by

Ui ¼ fUi þcUi; ν ¼ ν̃þ ν̂; ð43Þ

where ðÛi; ν̂Þ are understood to represent the deformation.
We have

fU0 þ fU1 þ fU2 ¼ log r; cU0 þ cU1 þ cU2 ¼ 0: ð44Þ

It is convenient to reparametrize the background and
deformation fields in terms of unconstrained fields as
follows:

fU0 ¼ Ũþ W̃þ logr; fU1¼−W̃; fU2¼−fU; ð45Þ

ν̃ ¼ Ṽ þ Ũ þ fW; ð46Þ

cU0 ¼ Û þ Ŵ; cU1 ¼ −Ŵ; cU2 ¼ −Û; ð47Þ

ν̂ ¼ V̂ þ Û þ Ŵ: ð48Þ

The Weyl metric is then expressed as

ds2 ¼ e2ðŨþW̃þÛþŴÞð−r2dt2 þ e2ðṼþV̂Þðdz2 þ dr2ÞÞ
þ e−2ðW̃þŴÞdψ2 þ e−2ðŨþÛÞdϕ2: ð49Þ

The background fields Ũ; W̃ are both harmonic whereas Ṽ
is determined from
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Ṽ;r ¼ rðŨ2
;r þ W̃2

;r þ Ũ;rW̃;r − Ũ2
;z − W̃2

;z − Ũ;zW̃;zÞ; ð50Þ

Ṽ;z ¼ rð2Ũ;rŨ;z þ 2W̃;rW̃;z þ Ũ;rW̃;z þ Ũ;zW̃;rÞ: ð51Þ

In addition, the deformation fields Û and Ŵ are harmonic, and V̂ can be obtained by using the following integrable
equations:

V̂;r ¼ rðÛ2
;r þ Ŵ2

;r þ Û;rŴ;r − Û2
;z − Ŵ2

;z − Û;zŴ;z þ Ũ;rŴ;r þ W̃;rÛ;r − Ũ;zŴ;z − W̃;zÛ;z

þ 2½Ũ;rÛ;r þ W̃;rŴ;r − Ũ;zÛ;z − W̃;zŴ;z�Þ;
V̂;z ¼ rð2Û;rÛ;z þ 2Ŵ;rŴ;z þ Û;rŴ;z þ Û;zŴ;r þ Ũ;rŴ;z þ Ũ;zŴ;r þ W̃;rÛ;z þ W̃;zÛ;r

þ 2½Ũ;rÛ;z þ Ũ;zÛ;r þ W̃;rŴ;z þ W̃;zŴ;r�Þ: ð52Þ

Choosing the black hole bubble solution as the background, we read off

Ũ ¼ −fU2 ¼
1

2
log

�
μc μa
r2μb

�
; ð53Þ

W̃ ¼ −fU1 ¼
1

2
log

�
μb

μ0 μc

�
; ð54Þ

and since Ub −Ua −Uc ¼ Ub − Uc − Ũ − log r − Ub þ Uc ¼ −Ũ − log r we have

ν̃ ¼ −Ũ − log rþ γ00 þ γaa þ γbb þ γcc − γ0a þ γ0c − γ0b − 2γbc þ γac − γab −
1

4
log 2: ð55Þ

We also have Ṽ ¼ ν̃ − Ũ − W̃

Ṽ ¼ −2Ũ − W̃ − log rþ γ00 þ γaa þ γbb þ γcc − γ0a þ γ0c − γ0b − 2γbc þ γac − γab −
1

4
log 2: ð56Þ

We now determine the deformation field explicitly. The
solution of Laplace equation is well known in cylindrical
coordinates ðr; zÞ. As mentioned before, the functions Û
and Ŵ satisfy the Laplace equation (2). In the cylindrical
coordinates the solution of Laplace equation is

X̂ðr; zÞ ¼
X
n≥0

½AnRn þ ÂnR−ðnþ1Þ�PnðcosϑÞ; ð57Þ

where

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2

p

m
; cos ϑ ¼ z

R
: ð58Þ

where PnðcosϑÞ represent the Legendre polynomials of the
first kind, m is a scaling free parameter, and X̂ refers to
either Û or Ŵ. The expansion (57) involves two sets of
coefficients, An and Ân, which can be attributed to interior
and exterior multipole moments, respectively [51], in the
sense that they represent distortions to the gravitational
field that arise from the “near” and “far” region respec-
tively. In this discussion, we only consider An coefficients,

which describe the local distortion of a black hole with a
bubble due to external fields and will be called (interior)
multipole moments. These deformations vanish as R → 0
but diverge at infinity.
It is possible to obtain the function V by using Eqs. (52)

if the distortion fields Û and Ŵ are already known. We can
rewrite Eq. (52) as V̂ ¼ V̂1 þ V̂2, where

V̂1 ¼ V̂Û Û þ V̂Ŵ Ŵ þ V̂Û Ŵ; ð59Þ

V̂2 ¼ V̂Ũ Ŵ þ V̂W̃ Û þ 2V̂Ũ Û þ 2V̂W̃ Ŵ; ð60Þ

where

VðfgÞ;r ¼ rðf;rg;r − f;zg;zÞ; ð61Þ

VðfgÞ;z ¼ rðf;rg;z þ f;zg;rÞ: ð62Þ

The three parts V̂Û Û; V̂Ŵ Ŵ; V̂Û Ŵ involve only the distor-
tion fields. We can write the function V̂1 in the following
form:
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V̂1 ¼
X
n;k≥1

nk
nþ k

ðanak þ anbk þ bnbkÞRnþk½PnPk − Pn−1Pk−1�; ð63Þ

where Pn ¼ Pnðz=RÞ.
Due to the fact that Û and Ŵ are logarithmic functions, we can further decompose each of the 60 terms in the

following manner:

ðV̂Ũ X̂Þ;r ¼ rðŨ;rX̂;r − Ũ;zX̂;zÞ ð64Þ

and we know

Ũ ¼ Uc þ Ua −Ub − log r:

By substituting it in the above equation we have

ðV̂Ũ X̂Þ;r ¼ rððUc þ Ua −Ub − log rÞ;rX̂;r − ðUc þ Ua − Ub − log rÞ;zX̂;zÞ; ð65Þ

ðV̂Ũ X̂Þ;r ¼ V̂Uc X̂;r
þ V̂Ua X̂;r

− V̂Ub X̂;r
− X̂r: ð66Þ

Thus,

V̂Ũ X̂ ¼ V̂Uc X̂
þ V̂Ua X̂

− V̂Ub X̂
− X̂: ð67Þ

Also Ŵ ¼ Ub − U0 −Uc. By substituting it in (61), we get

ðV̂W̃ X̂Þ;r ¼ rðW̃;rX̂;r − W̃;zX̂;zÞ; ð68Þ

ðV̂W̃ X̂Þ;r ¼ rððUb −U0 − UcÞ;rX̂;r − ðUb −U0 −UcÞ;zX̂;zÞ
¼ rðUb;rX̂;r −Ub;zX̂;zÞ − rðU0;rX̂;r −U0;zX̂;zÞ − rðUc;rX̂;r − Uc;zX̂;zÞ
¼ V̂Ub X̂;r

− V̂U0 X̂;r
− V̂Uc X̂;r

V̂W̃ X̂ ¼ V̂Ub X̂
− V̂U0 X̂

− V̂Uc X̂
: ð69Þ

Then each term can be found by a line integral,

V̂□□ðr; zÞ ¼
Z

r;z

ðr0;z0Þ
½ðV̂□□ðr; zÞÞ;rdrþ ðV̂□□ðr; zÞÞ;zdz�;

ð70Þ

where the integral is taken along any path connecting the
points ðr0; z0Þ and ðr; zÞ. Thus, the field V̂ is defined up to
an arbitrary constant of integration defined by the point
ðr0; z0Þ. We choose this arbitrary constant using a boundary
condition. Here,□’s are to be filled with the corresponding
notation for each term in V̂. After calculating V̂Ũ Û, V̂Ũ Ŵ ,

V̂W̃ Û, and V̂W̃ Ŵ we can obtain V̂2 by (60) for each of the
multiple moments.
Given the metric form (49), the functions (53)–(56) for

the background spacetime, and (57) when Ân ¼ 0, (63) for
V̂1, (60), Eqs. (67), (70), (70) for V̂2, and V̂ ¼ V̂1 þ V̂2, we
have the general form of the metric. The only terms that is
given in terms of the integral is V̂2 which is very tedious to
compute it for higher orders.
In this paper, we give explicit expressions for n ¼ 1, 2, 3

moments (here An, Bn denote the coefficients in the
expansions of Û; Ŵ, respectively),

V̂2ðr; zÞ ¼
�
−1
2m

�
½ðB1 − A1ÞðRb − RcÞ þ ð2A1 þ B1ÞRa − ðA1 þ 2B1ÞR0 þ 3ðA1 þ B1Þz�; n ¼ 1; ð71Þ
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V̂2ðr; zÞ ¼
�
−1
2m2

�
½ð2A2 þ B2Þðaþ zÞRa þ ðbþ zÞðB2 − A2ÞRb − ðA2 þ 2B2ÞzR0 þ ðcþ zÞðA2 − B2ÞRc�

−
�
−1
2m2

��
3

2
ðA2 þ B2Þðr2 − 2z2Þ

�
; n ¼ 2; ð72Þ

V̂2ðr; zÞ ¼
�
−1
4m3

�
½ðr2 − 2z2Þð2B3 þ A3ÞR0 þ ð2a2 þ 2z2 − r2 þ 2azÞðB3 þ 2A3ÞRa�

−
�

1

4m3

�
½ð2b2 þ 2z2 − r2 þ 2bzÞðB3 − A3ÞRb − ð2c2 þ 2z2 − r2 þ 2czÞðB3 − A3ÞRc�

−
�

1

4m3

�
½ð6z3 − 9r2zÞðA3 þ B3Þ�; n ¼ 3: ð73Þ

Note that for all of these V̂ ¼ V̂1 þ V̂2 satisfy the Eqs. (52),
which implies vacuum Einstein equations are satisfied.
However, we have also explicitly confirmed that metric
(49) with the functions (53)–(56) for the background
spacetime, (57) for Û or Ŵ and (63) for V̂1 and V̂2 given
by (71)–(73) satisfy Einstein equations. Note that for V̂2,
we can choose any value of n or sum of any combinations.
The same is true for Û, Ŵ, or V̂1. However, in analogy to
the multiple expansion in electromagnetism or gravitational
Newtonian potentials of external sources (corresponding to
the interior multiple moments), An and Bn become weaker
with increasing value of n. In the four-dimensional case
these relativistic multiple moments were mapped to
Newtonian multiple moments of a ring of mass or two
masses along the axis in [38] in the simplest case.

B. Regularity

As a result of the constraint (44), the rod structure, which
is determined by the zeroes of the determinant of the
restriction of the metric to the Killing fields (in the Weyl
coordinate system, this is simply the function r2), is not
changed by the deformation. The deformations are char-
acterized by harmonic functions which diverge at asymp-
totic infinity but remain smooth and bounded everywhere
else. Analyticity of the metric is thus guaranteed, as in the
undistorted case, away from the singular sets of the
harmonic functions. We have also confirmed the regularity
of the spacetime by explicit computation of the curvature
invariants of the spacetime.

1. Dipole deformations

The dipole term in a multipole expansion represents the
lowest-order contribution to the field or potential, followed
by the quadrupole, octupole, and higher-order terms. The
strength of these terms diminishes with increasing order,
meaning that the dipole term typically dominates the
behavior of the system compared to higher-order terms

such as the quadruple. In many physical systems, especially
those with a significant degree of symmetry, the dipole term
may be the most important in determining the overall
behavior. In what follows a dipole deformation refers to
the case where A1 ≠ 0, B1 ≠ 0, and An≥1 ¼ Bn≥1 ¼ 0.
Similarly, the quadruple case refers to when A2 ≠ 0,
B2 ≠ 0, and An≠2 ¼ Bn≠2 ¼ 0. The functions Û and Ŵ
and thus multiple moments An and Bn are independent, and
correspond to independent distortion fields.
When addressing the conical singularities using multiple

moments, the goal is to utilize terms such as dipole and/or
quadruple to remove the conical singularities from the local
black hole bubble solution. Although in removing the
conical singularities we would need to impose conditions
on values of multiple moments.
Let us consider the solution on the negative semi-infinite

rod z < 0,

β1 ¼ lim
r→0

r2eν

e2U1
¼ exp ½−ð2A1 þ B1Þa − ðA1 − B1Þðc − bÞ�;

ð74Þ

whereas for the finite bubble rod with b < z < c,

β2 ¼ lim
r→0

r2eν

e2U1
¼ ðc − bÞ2

cðc − aÞ
× exp ½ð2A1 þ B1Þa − ðA1 − B1Þðcþ bÞ�: ð75Þ

Regularity requires β1 ¼ β2 and then the period of ψ
must be Δψ ¼ 2π

ffiffiffiffiffi
β1

p
. On the semi-infinite rod z > c,

the Killing vector field ∂ϕ degenerates, with regularity
requiring,

β3 ¼ exp ½ð2A1 þ B1Þaþ ðA1 − B1Þðc − bÞ�: ð76Þ

Similarly on the finite rod a < z < b,
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β4¼
ðb−aÞb
cðc−aÞ exp ½ð2A1þB1Þa− ðA1−B1Þðc−bÞ�: ð77Þ

Regularity requires β3 ¼ β4 and that the period of ϕ must
be Δϕ ¼ 2π

ffiffiffiffiffi
β3

p
. Then

β3
β4

¼ 1 ¼ ðc − aÞc
ðb − aÞb exp ½2ðA1 − B1Þðc − bÞ� ð78Þ

and

β2
β1

¼ 1 ¼ ðc − bÞ2
cðc − aÞ exp ½2að2A1 þ B1Þ − 2bðA1 − B1Þ�:

ð79Þ

The former gives

eB1 ¼
�
cðc − aÞ
bðb − aÞ

� 1
2ðc−bÞ

eA1 ð80Þ

which leads to

eA1 ¼
�
cðc − aÞ
ðc − bÞ2

�
bðb − aÞ
cðc − aÞ

�bþa
c−b
� 1

6a

: ð81Þ

Substituting this back into (80) gives

eB1 ¼ ðcðc − aÞÞ2a−2bþc
6aðc−bÞ ðbðb − aÞÞ b−2a

6aðc−bÞ

ðc − bÞ 1
3a

: ð82Þ

Note that the right-hand sides of (81) and (82) are strictly
positive so that A1 and B1 are uniquely defined. Of course,
as the rod points of the undistorted solution approach each
other (i.e., a → b or b → c), the distortions required to
achieve regularity become arbitrarily large. We consider
such case unrealistic.
In summary, regularity of the metric is achieved provided

we choose the distortion parameters ðA1; B1Þ to satisfy (81)
and (82), respectively. In this case the periods of ψ and ϕ
must be chosen to be

Δψ ¼ 2π
ffiffiffiffiffi
β1

p
; Δϕ ¼ 2π

ffiffiffiffiffi
β3

p
; ð83Þ

where

β1 ¼ ðeA1Þ−ð2aþc−bÞðeB1Þc−b−a;
β3 ¼ ðeA1Þ2aþc−bðeB1Þa−ðc−bÞ: ð84Þ

Near the horizon surface, the dipole distorted metric is

ds2 ¼ − exp ½2ðA1 þ B1Þz�
�

1

4zða − zÞ r
2 −

ða2 − 2azþ 2z2Þ
16z3ða − zÞ3 r4 þOðr6Þ

�
dt2

þ exp ½ð−2aþ b − cþ 2zÞA1 − ðaþ b − c − 2zÞB1�
�

ab
2czða − zÞ þOðr2Þ

�
ðdr2 þ dz2Þ

þ
��

2zð−zþ bÞ
ðc − zÞ þ ðz4 − 4cz3 þ ð4bcþ 2c2Þz2 − 2bcðbþ cÞzþ b2c2Þ

2zðc − zÞ3ð−zþ bÞ r2
�
expð−2B1zÞ þOðr4Þ

�
dψ2

×

�
2ða − zÞðc − zÞ expð−2A1zÞ

ð−zþ bÞ
�
dϕ2:

The metric on the horizon of the distorted black hole is given by

ds23 ¼ 2a

�
exp ½ððA1 þ B1Þð2cos2θ − 1Þ − A1Þaþ ðA1 − B1Þðb − cÞ� b

c
dθ2

þ exp½−2aB1cos2θ�
ðb − acos2θÞcos2θ

ðc − acos2θÞ dψ2 þ exp½−2aA1cos2θ�
ðc − acos2θÞsin2θ
ðb − acos2θÞ dϕ2

�
; ð85Þ

where 0 < θ < π=2 and z ¼ a=2þ a=2 cos θ. The metric
extends to a smooth metric on S3. Note that removing the
conical singularity at θ ¼ π=2 requires that the period of ψ

is given by Δψ ¼ 2π
ffiffiffiffiffi
β3

p
. This corresponds to the removal

of the conical singularity on the semi-infinite rod z < 0.
Similarly, removing the conical singularity at θ ¼ 0
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requires that the period of ϕ is given by Δϕ ¼ 2π
ffiffiffiffiffi
β4

p
. This

corresponds to removing the conical singularity on the
disc a < z < b.

2. Quadropole deformations

We now turn to the n ¼ 2 deformations parameterized by
ðA2; B2Þ. For the quadruple case, we consider A1 ¼ B1 ¼ 0.
We seek to mitigate conical singularities by choosing
appropriate values of multiple moments of ðA2; B2Þ. Such
adjustments show that we can balance the black hole bubble
system when the black hole is surrounded by appropriate
sources.
On the negative semi-infinite rod z < 0,

γ1¼ lim
r→0

r2eν

e2U1
¼ exp ½−ð2A2þB2Þa2− ðA2−B2Þðc2−b2Þ�;

ð86Þ

whereas for the finite rod with b < z < c,

γ2 ¼ lim
r→0

r2eν

e2U1
¼ ðc − bÞ2

cðc − aÞ
× exp ½ð2A2 þ B2Þa2 − ðA2 − B2Þðc2 þ b2Þ�: ð87Þ

Regularity requires γ1 ¼ γ2 and that we impose the
periodicity condition ψ ∼ ψ þ 2π

ffiffiffiffiffi
γ1

p
. On the semi infinite

rod z > c, the Killing vector field ∂ϕ degenerates with
regularity requiring,

γ3 ¼ exp ½ð2A2 þ B2Þa2 þ ðA2 − B2Þðc2 − b2Þ�: ð88Þ

Similarly on the finite rod a < z < b,

γ4 ¼
ðb − aÞb
cðc − aÞ exp ½ð2A2 þ B2Þa2 − ðA2 − B2Þðc2 − b2Þ�:

ð89Þ

Regularity requires γ3 ¼ γ4 and that the period of ϕmust be
Δϕ ¼ 2π

ffiffiffiffiffi
γ3

p
. Using γ3=γ4 ¼ 1 implies

eB2 ¼
�
cðc − aÞ
bðb − aÞ

� 1

2ðc2−b2ÞeA2 ð90Þ

and using γ2=γ1 ¼ 1 fixes

eA2 ¼
�ðbðb − aÞÞa

2þb2

c2−b2

ðc − bÞ2 ðcðc − aÞÞ−a
2−2b2þc2

c2−b2

� 1

6a2

; ð91Þ

which gives

eB2 ¼
�

1

ðc − bÞ
� 1

3a2 ½bðb − aÞ�
b2−2a2

6a2ðc2−b2Þ½cðc − aÞ�
2a2−2b2þc2

6a2ðc2−b2Þ :

ð92Þ

In summary, we must select the period of ψ to be

Δψ ¼ 2π
ffiffiffiffiffi
γ1

p
; γ1 ¼ e−ð2a2þc2−b2ÞA2eðc2−a2−b2ÞB2 ; ð93Þ

and the period of ϕ must be chosen such that

Δϕ ¼ 2π
ffiffiffiffiffi
γ3

p
; γ3 ¼ eð2a2þc2−b2ÞA2eða2−c2þb2ÞB2 : ð94Þ

The horizon metric of the deformed black hole in terms of
the quadropole parameters A2 and B2 is given by

ds23 ¼
2ab
c

exp½−a2ð2A2 þ B2Þ − ðA2 − B2Þðc2 − b2Þ þ 2a2ðA2 þ B2Þ cos4 θ�

þ 2a exp½−2a2B2 cos4 θ�ðb − a cos2 θÞ cos2 θ
c − a cos2 θ

dψ2 þ 2a exp½−2a2A2 cos4 θ�ðc − a cos2 θÞ sin2 θ
b − a cos2 θ

dϕ2; ð95Þ

where 0 < θ < π=2 and z ¼ a=2ð1þ cos 2θÞ. Where, this
also confirms that to have a smooth metric on S3, we
have the above regularity conditions Δψ ¼ 2π

ffiffiffiffiffi
γ1

p
and

Δϕ ¼ 2π
ffiffiffiffiffi
γ4

p
.

C. Physical properties

In this section, we discuss various classical properties of
the black hole, bubble, and disk. For brevity we will use the
acronym DBHB to refer to the smooth distorted black hole
bubble solution. Simple expressions are obtained for
horizon/bubble area, and surface gravity. We find that
the Komar integral over the horizon (33) is unchanged
when the black hole gets distorted. Recall that the surface
gravity is defined by

κ2 ¼ −
1

2
ð∇αξβÞð∇αξβÞ; ð96Þ

where, ∇α is the covariant derivative defined with respect to
the metric and limit as the horizon is approached is under-
stood. Here, we have considered ξαðtÞ ¼ δαt . However, since

the spacetime is not asymptotically flat, the surface gravity is
defined only up to an arbitrary “red-shift” factor. More
precisely, the surface gravity is only defined up to an arbitrary
constant which depends on the normalization of the time-like
Killing vector. In this case, the quantity of the surface gravity
is changed by an exponential factor (which can be absorbed
considering the redshift factor),
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κ ¼ lim
r→0

ffiffiffiffiffiffiffiffiffiffi
e2U0

r2e2ν

s
¼

8>><>>:
ffiffiffiffiffiffi
c

2ab

p
exp

h
1
2
ðð2aþ c − bÞA1 þ B1ða − cþ bÞÞ

i
; if n ¼ 1;ffiffiffiffiffiffi

c
2ab

p
exp

h
1
2
ðð2a2 þ c2 − b2ÞA2 þ ða2 − c2 þ b2ÞB1Þ

�
; if n ¼ 2:

ð97Þ

The surface area of a spatial cross-section of the black hole horizon is a key feature that gives its entropy and information
content. For theundistorted blackholes, it obeys a “second law”, or area theorem, subject to energy conditions, that requires it to
be nondecreasing. Note that, in general a distorted and an undisturbed black hole are not related to each other by a dynamical
process of bringing masses around a black hole adiabatically from infinity, although such process could be formally imagined.
The area of the horizon for the dipole distortion is

AH ¼ ΔϕΔψ

ffiffiffiffiffiffiffiffiffiffi
2a3b
c

r
exp

�
1

2
ð−ð2aþ c − bÞA1 þ ðc − a − bÞB1Þ

�
; ð98Þ

and for the quadruple distortion it is

AH ¼ ΔϕΔψ

ffiffiffiffiffiffiffiffiffiffi
2a3b
c

r
exp

�
1

2
ð−ð2a2 þ c2 − b2ÞA2 þ ðc2 − a2 − b2ÞB2Þ

�
: ð99Þ

We could formally define the mass of the nonasymptotically
flat solution by setting

m ¼ 3

16π
κAH: ð100Þ

although, we emphasize that this identification does not
come from some well-defined ADM energy. As is well-
known, mechanical laws of black holes represent relations
between the black hole variables, such as mass, horizon
area, surface gravity. These can be thought of as describing
the tangent space within a family of solutions (i.e., a
linearization). The classic works of Bekenstein [52] and
Bardeen, Carter, and Hawking [53] have shown that the
mechanical laws governing classical systems containing
black holes can be placed in analogy with those of
thermodynamics. This correspondence has been made
explicit for many solutions.
Geroch and Hartle investigated this correspondence for

the systems of black hole plus distorting matter for a
Schwarzschild black hole in four dimensions [23]. They
considered the black hole as a single system acted upon by
the gravitational forces of the external matter and found that
its laws continue to have a simple correspondence with
those of thermodynamics. The first law of black hole
mechanics delineates a connection between two equilib-
rium states of a black hole, altered by variations in its mass,
horizon area, and additional parameters such as electric
charge and angular momentum, alongside alterations in
the stress-energy of surrounding matter, if applicable. The
global first law applies to the system comprising both the
black hole and the external matter influencing it. Extending

spacetime to attain asymptotic flatness is necessary to
define the global first law of black hole mechanics.
Achieving this extension is done under the assumption
that the solution can incorporate the sources of the
distorting matter. To achieve such an extension, we need
to violate the Einstein equations within the vicinity of the
source’s position. Then, such an extension requires con-
sidering the solution at the exterior region of sources and
requiring the decay of the distortion field as we approach
spatial infinity and extending the manifold to infinity.

FIG. 2. Area of the bubble AB for dipole distortions of the
DBHB for several values of b. In this plot a ¼ 1, c ¼ kb.
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The constructed solution in this paper is valid only in the
interior region of the sources. Only when such an extension
is formally performed beyond the region where external
sources are located, can we then normalize the timelike
Killing vector ξðtÞ at spatial infinity such that ξ2ðtÞ. On the
other hand, the local first law applies specifically to the
black hole system itself, excluding any consideration of
distorting matter within black hole mechanics. It is for-
mulated by observers residing close to the black hole who
solely attribute the local gravitational field to the black
hole, viewing it as an isolated and undistorted entity. Thus,

assuming that there is no other matter presenting the
spacetime is asymptotically flat, they define its surface
gravity, the horizon area, and the black hole Komar mass
such that they satisfy the Smarr formula (100). Note that as
far as the Smarr relation is concerned, the bubble and disc
surface will not contribute in the vacuum, although such
contributions do appear when refinements to the Smarr
relation are considered, such as those discussed for asymp-
totically flat vacuum solutions in [54].
The area of the bubble and disc of the distorted solutions

are, for n ¼ 1

AB ¼ Δϕ
c − bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðc − aÞp Z

c

b

ffiffiffiffiffiffiffiffiffiffiffi
z

z − a

r
exp

�
1

2
ðð2a − b − c − 2zÞA1 þ ðaþ bþ c − 2zÞB1Þ

�
dz;

AD ¼ Δψ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðb − aÞ
cðc − aÞ

s Z
b

a

ffiffiffiffiffiffiffiffiffiffiffi
z

z − a

r
exp

�
1

2
ðð2aþ b − c − 2zÞA1 þ ða − bþ c − 2zÞB1Þ

�
dz; ð101Þ

and for the quadruple distortion,

AB ¼ Δϕðc − bÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðc − aÞp Z

c

b

ffiffiffiffiffiffiffiffiffiffiffi
z

z − a

r
exp

�
1

2
ðð2a2 − b2 − c2 − 2z2ÞA2 þ ða2 þ b2 þ c2 − 2z2ÞB2Þ

�
dz;

AD ¼ Δψ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðb − aÞ
cðc − aÞ

s Z
b

a

ffiffiffiffiffiffiffiffiffiffiffi
z

z − a

r
exp

�
1

2
ðð2a2 þ b2 − c2 − 2z2ÞA2 þ ða2 − b2 þ c2 − 2z2ÞB2Þ

�
dz: ð102Þ

In this section, we consider the area of the black hole, bubble,
and disk for the smooth distorted black hole bubble solution
(DBHB), i.e., where the distortion parameters Ai, Bi are
chosen to remove the conical singularity. This requires that

the period of ψ and ϕ are given by (83).We consider the area
of the black hole horizon, bubble and disk for the asymp-
totically flat undisturbed black hole bubble solution,whereψ
and ϕ are identified with period 2π.

FIG. 3. Area of the bubble AB for dipole distortions of the BHB-AF solution (left) and the BHB-NF solution (right) for several values
of b. For both cases a ¼ 1, c ¼ kb.
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In these various cases, the solutions are parameterized by
the positive numbers 0 < a < b < c. In order to simplify
the analysis, we will use the scaling freedom to arrange
a ¼ 1. We can then consider plots of physical quantities
with c ¼ kb where k > 1 while varying the distance b − a.
Ideally, one would like to eliminate these parameters in
favor of physical quantities, namely the area of the horizon,
bubble, and disc. One could then compare, e.g., the size of

the horizons of the distorted and undistorted cases with
fixed bubble area. However, we have found it too compli-
cated to perform this explicitly. It should be noted, of
course, that the interval lengths b − a and c − b are, in fact,
geometric invariants that can be used to uniquely character-
ize vacuum Weyl solutions [55].
In Fig. 2, we consider the area of the bubble AB for

DBHB, for different values of b in the case of dipole
deformations when we increase c ¼ kb. We compare this
area to the case of the BHB-AF or to BHB-NF in Fig. 3.
Roughly, as b is increased, the horizon area decreases while
the bubble and disc areas grow. Qualitatively, the BHB-AF
and DBHB show similar behavior. As k is varied, we expect
the area of the bubble to grow (indeed as k → 1 the bubble
rod disappears). Consider next Fig. 4, in which plots the
area of the horizon AH for DBHB, for different values of b
in the case of smooth dipole deformations. We compare this
area to the case of the BHB-AF and BHB-NF in Fig. 5.
Here, the distorted black hole-bubble shows qualitatively
different behavior; as k grows (the size of the disc rod
becomes large) the area of the horizon approaches a
constant independent of k, whereas in the undistorted
case, the area of the horizon grows arbitrarily small. In
particular, for the BHB-AF case, the horizon area is
independent of b. In Fig. 6, we consider the area of the
disk AD for the DBHB, for different values of b in the
case of dipole deformations. We compare this area to
the case of BHB-AF and BHB-NF in Fig. 7. We observe
that for BHB-AF when we increase c, the area of the
bubble increases while the area of the black hole horizon
and the area of the disk both decrease (see Figs. 3, 5,
and 7). In contrast, this behavior is not observed for

FIG. 4. Area of the horizon AH for dipole distortions of the
DBHB for different values of b. In this plot, a ¼ 1 and c ¼ kb.

FIG. 5. Left side: area of the horizon, AH , for dipole distortions of AF black hole-bubble solution for different values of b. In this plot
a ¼ 1 and c ¼ kb. Right side: area of the horizon, AH , for dipole distortions of the BHB-nf b. In this plot a ¼ 1 and c ¼ kb.
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BHB-NF or DBHB. In the case of DBHB, the area of
the bubble increases with increasing c. However, the area
of the black hole horizon or disk may decrease or
increase (see Figs. 2, 4, and 6). Enforcing the removal
of conical singularities on the bubble and disc (that is, for
the BHB-NF and DBHB) seems responsible for this
behavior.

Finally, Figs. 8 and 9 directly compare the distorted
the BHB-AF cases by plotting the ratios of the areas of the
bubble and horizon respectively at fixed values of the
parameters. In Fig. 8, the bubble interval length c − b is
held fixed on each curve with a ¼ 1 and we allow b to vary.
One sees that the distorted bubble area is initially larger
than that of the undistorted case, but as b increases,
smoothness forces the distorted bubble to have a smaller
area than the undistorted solution. The ratios of horizon
areas of the distorted and BHB-AF are plotted in Fig. 9.
One observes that in both cases, increasing a while holding
c − b ¼ b − a fixed has a strong effect on the distorted
solution, forcing the areas of the bubble and horizon to
increase quickly relative to the undistorted case. Note that
A1 and B1 both diverge as b → c or k ¼ 1, so they can no
longer be thought of as small.

IV. DISCUSSION

An interesting feature of asymptotically flat black hole
solutions in spacetime dimensions larger than four is
that the domain of outer communication need not be
homeomorphic to the exterior of a ball in Euclidean space.
As discussed in the Introduction, explicit examples of
such solutions have been found in supergravity theories.
Such solutions necessarily carry an electric charge. There
are no theorems, however, that rule out the existence of
pure vacuum solutions. In this work, we have constructed
completely regular vacuum solutions in this class by
relaxing the asymptotic flatness condition. The solutions

FIG. 6. Area of the disk, AD, for dipole distortions of DBHB for
several values of b. In this plot, a ¼ 1, c ¼ kb.

FIG. 7. Left side: area of the disk, AD, for dipole distortions of the AF black hole bubble solution. In this plot a ¼ 1 and c ¼ kb. Right
side: area of the disk, AD, for dipole distorted BHB-nf for different values of b. In this plot a ¼ 1 and c ¼ kb.
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contain a noncollapsing S2 “bubble” outside a smooth
event horizon with spatial cross section topology S3 (a
completely regular asymptotically flat solution of this type
can be constructed in supergravity, although it carries
angular momenta and electric charge [8]).
Distorted black holes reveal some unique and remark-

able properties, serving as a theoretical framework for
understanding how various properties of black holes
change when distorted. This paper focuses on examining

a five-dimensional local distorted black hole bubble
solution. The metric describing the BHB-AF solu-
tion, excluding distortion sources, is presented in a
five-dimensional Weyl form. The distorted solution is
constructed by using the static asymptotically flat Weyl
solution as a seed solution. Using the underlying linearity
of the vacuum equations reduced on Weyl metrics,
we applied “distortions”, which can thought of as
adding dipole and quadrupole sources to the seed solution.

FIG. 8. Left side: ηB ¼ ðarea of the distorted bubbleÞ=ðarea of theAF undistorted bubbleÞ for different values of δ. In the first plot,
c − b ¼ δ is a constant and a ¼ 1. Right side: ηB ¼ ðarea of the distorted bubbleÞ=ðarea of the undistortedAF bubbleÞ for different
values of δ. In each plot, both c − b ¼ δ and b − a ¼ δ are constant.

FIG. 9. Left side: ηH ¼ ðThe area of the distorted horizonÞ=ðThe area of the horizon of theAF undistorted solutionÞ for different values
of δ. In each plot, c − b ¼ δ is a constant.Herea ¼ 1. Right side: ηH ¼ ðarea of the distorted horizonÞ=ðarea of the AF undistorted horizonÞ
for different values of δ. In each plot, both c − b ¼ δ and b − a ¼ δ are constant.
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These can be physically interpreted as being produced by
distant sources in an asymptotic region far from the event
horizon. The distorted DBHB solution is a local solution
valid in the region interior to the sources. Distortions
influence the black hole horizon. We also have shown that
with proper adjustment of the dipole or quadruple dis-
tortions we can remove the conical singularities present in
the asymptotically flat case.
We expect that constructing explicit asymptotically flat

black hole vacuum solutions with nontrivial exterior (i.e.,
finite spatial rods) will require using inverse scattering
techniques that produce non-static solutions with angular
momenta. Remarkably, very recently, such a construction
was carried for charged nonextreme solutions in super-
gravity [56] to produce charged, asymptotically flat black
holes with such finite spatial rods and horizon cross section
topology S1 × S2 and Lð1; 1Þ ¼ S3 [more general families
with Lðn; 1Þ; n > 1 horizon topology were constructed
locally, but these necessarily had conical singularities].
There is strong evidence, using integrability methods, that
regular vacuum solutions with the same rod structure as the
aforementioned charged solutions and lens-space horizon
topology Lðn; 1Þ; n ≥ 1 are ruled out [57]. For example,
asymptotically flat vacuum solutions with Lð2; 1Þ lens
space topology can be effectively ruled out [58]. Such
solutions also have a disc-topology region outside the event
horizon, similar to the solutions considered here. It would
be interesting to see whether the Weyl distortions method

can be applied to a suitable seed solution to produce regular
vacuum black lens solutions.
There are multiple ways to define a black hole, focusing

either on the causal structure defining the black hole
region to be the set of all points that cannot send signals to
future infinity or geometric, defining the black hole region
to be the union of all trapped surfaces in a spacetime. At
least for dynamical spacetimes, black hole characteriza-
tion is complicated and these definitions may deviate from
each other. It was also shown that highly deformed static
distorted Schwarzschild black holes may lack surfaces
that are marginally trapped or outer trapping, making the
trapping horizon neither future nor outer [59]. These
features have also been analyzed in [41], where the
authors have constructed a black hole deformed by the
presence of a thin ring. Further study of these features
of distorted static and stationary black holes could
be very insightful.
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