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3Charles University, V Holešovičkách 2, 180 00 Prague 8, Czech Republic

(Received 12 June 2024; accepted 7 August 2024; published 30 August 2024)

We study electrically charged, static, spherically symmetric black holes in quadratic gravity using the
conformal-to-Kundt technique, which leads to a considerable simplification of the field equations. We
study the solutions using a Frobenius-like approach of power-series expansions. The indicial equations
restrict the set of possible leading powers to a few cases, describing, e.g., black holes, wormholes, or naked
singularities. We focus on the black hole case and derive recurrent formulas for all series coefficients of the
infinite power-series expansion around the horizon. The solution is characterized by electric charge q, the
black-hole radius a0, and the Bach parameter b related to the strength of the Bach tensor at the horizon.
However, the Bach parameter has to be fine-tuned to ensure asymptotic flatness. The fine-tuning of b for a
given q and a0 returns up to two values, describing two branches of asymptotically flat, static, spherically
symmetric, charged black holes in quadratic gravity. This is in agreement with previous numerical works.
We discuss various physical properties of these black holes, such as their asymptotic mass, temperature,
photon spheres, and black-hole shadows. A straightforward generalization to dyonic black holes in
quadratic gravity is also briefly mentioned.
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I. INTRODUCTION

General relativity is currently our best theory of gravity,
predicting and describing such fundamental physical phe-
nomena as gravitational waves, cosmic expansion, and
black holes. This classical theory of gravity, however, does
not address quantum effects. From the effective field-theory
view, higher-order correction terms should be added to the
Einstein-Hilbert action. In this paper, we focus on quadratic
gravity, where correction terms quadratic in the curvature
are present.
Due to higher derivatives in this theory, the Ostrogradsky-

type instability and ghosts (possibly benign [1]) may be
present. However, it has been argued in [2] that relevant
solutions are not unstable but metastable in some cases,
and runaway rates can be sufficiently slow to agree with
observations. It has also been recently shown [3,4] for
simple mechanical systems with a higher-derivative
Lagrangian that theories with Hamiltonian unbounded from
above and below are compatible with stability. A possible
extension of these results to higher-derivative gravities is an
open question. In addition, it has been shown [5] that in
contrast with other higher-derivative gravities, quadratic
gravity is free of causality violations.

Recently there has been considerable interest in spheri-
cally symmetric black holes in quadratic gravity, following
early results of [6,7]. It is well known that, in four dimen-
sions, Einstein spaces obey the vacuum field equations of
quadratic gravity identically [8,9]. The Schwarzschild black
hole is, therefore, clearly a vacuum solution to quadratic
gravity. Recently, however, it has been shown that quadratic
gravity also admits another static, spherically symmetric
black hole solution over and above Schwarzschild [10,11],
violating the Birkhoff theorem of standard general relativity.
These non-Schwarzschild (or Schwarzschild-Bach) black

holes admit one additional parameter—the Bach parameter
b. However, the Bach parameter b has to be fine-tuned to
ensure asymptotic flatness [10–13], leading effectively to a
one-parameter family of asymptotically flat Schwarzschild-
Bach black holes. In contrast, in the case of static, spherically
symmetric black holes with nonvanishing cosmological
constant Λ [14,15], fine-tuning of the Bach parameter is
not necessary since the Schwarzschild-Bach-(anti–)de Sitter
black holes are asymptotically (anti–)de Sitter within certain
continuous ranges of parameters, cf. [16,17].
Recent works also studied the stability of static, spheri-

cally symmetric black holes in quadratic gravity. Long-
wavelength instability of Schwarzschild-Bach black holes
has been found [18] for horizon radii smaller than a critical
value. Thus there seems to be a lower bound for the horizon
radius of stable Schwarzschild-Bach black holes in quad-
ratic gravity [18].
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Charged, static, spherically symmetric black holes in
quadratic gravity have been studied in [19,20] using
numerical methods. In this paper, we will study these
black holes using the conformal-to-Kundt technique
recently employed in [13–15,17,21]. This approach leads
to a significant simplification of the field equations. This
will enable us to find recurrent formulas for coefficients of
power-series expansions of the metric functions and apply
analytical techniques to the study of these black holes.
In Sec. II, we revisit the electrovacuum field equations of

quadratic gravity and the conformal-to-Kundt approach.
In Sec. III, we derive the field equations in the Kundt

coordinates. In passing, we also mention a straightforward
generalization of the electrically charged black hole studied
in this paper to the case of a dyonic black hole in quadratic
gravity.
In Sec. IV, we employ a Frobenius-like approach to solve

the field equations in the Kundt coordinates in the vicinity
of a generic hypersurface of constant radius. The field
equations impose constraints on the dominant powers in the
expansions, leading to a few allowed classes of static,
spherically symmetric power-series solutions of quadratic
gravity with electromagnetism. Besides black holes, these
solutions may also represent wormholes and naked singu-
larities. However, in this paper, we focus on the black-hole
solutions.
In Sec. V, we concentrate on solutions admitting non-

extremal horizons. We derive recurrent formulas for co-
efficients of power-series expansions of the metric. We
observe that (at least for a certain range of parameters),
the coefficients asymptotically approach a geometric series,
which allows us to straightforwardly estimate the radii of
convergence of the solutions.
Let us stress that in contrast with the vacuum case, where

the Schwarzschild black hole solves the vacuum field
equations of quadratic gravity, in the electrovacuum case,
the Reissner-Nordström black hole does not obey the
electrovacuum field equations. Instead, in agreement with
the numerical results of [19,20], we identify and study
two branches of spherically symmetric, charged black
holes. One represents charged Schwarzschild black holes
in quadratic gravity (distinct from Reissner-Nordström),
and the other one represents charged Schwarzschild-
Bach black holes. In vacuum, the Schwarzschild and
Schwarzschild-Bach black hole families intersect for a critical
radius (e.g., r̄0 ∼ 0.876, for parameters chosen in [11]). In
the charged case, this is not always true, at least for a
sufficiently large charge.
In Sec. V, we also study photon spheres and black-hole

shadows of these charged black holes, benefiting from the
simplification of photon-sphere and black-hole shadow
description in the Kundt coordinates (as recently pointed
out in [22]).
In Sec. VI, we briefly discuss a case admitting an

extremal horizon. Again, we provide recurrent formulas

for coefficients of power-series expansions of the corre-
sponding metric. However, it seems much more difficult to
fine-tune this case for asymptotic flatness. Therefore from
our work, the existence of a charged, extremal, asymptoti-
cally flat black hole is inconclusive and will require further
study.1

Finally, for completeness, in the Appendix, we list the
fine-tuned values of the Bach parameter for various values
of charge and radius of the black hole.

II. BACKGROUND

A. The quadratic gravity field equations

The action of quadratic gravity coupled with electro-
magnetism reads

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
L

¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
γRþ βR2 − αCabcdCabcd −

κ

2
FabFab

�
;

ð1Þ

where γ ¼ 1=ð16πGÞ, G is the Newtonian constant (we
will set G ¼ 1 ¼ c), and α, β are coupling constants of
quadratic gravity.
The above action (1) leads to the following gravitational

field equations

γ

�
Rab −

1

2
Rgab

�
− 4αBab

þ 2β

�
Rab −

1

4
Rgab þ gab□ −∇b∇a

�
R ¼ κTab; ð2Þ

where the energy-momentum tensor Tab reads

Tab ¼ FacFb
c −

1

4
gabFcdFcd ð3Þ

and Bab is the Bach tensor

Bab ≡
�
∇c∇d þ 1

2
Rcd

�
Cacbd: ð4Þ

The Bach tensor is traceless, symmetric, conserved, and
well behaved under conformal transformations of the
metric tensor gab ¼ Ω2g̃ab:

gabBab ¼ 0; Bab ¼ Bba; ∇bBab ¼ 0;

Bab ¼ Ω−2B̃ab: ð5Þ

1In the numerical work of [19], it is stated that extremal black
holes in this theory could exist in the Schwarzschild branch while
not in the Schwarzschild-Bach branch.

PRAVDA, PRAVDOVÁ, and TURNER PHYS. REV. D 110, 044069 (2024)

044069-2



Note that, for Einstein spacetimes, the Bach tensor vanishes
[23] and thus for these spacetimes, the vacuum field
equations [Eq. (2) with Tab ¼ 0] hold identically, making
Einstein spacetimes, such as the Schwarzschild metric,
trivial solutions of quadratic gravity as noted in the
Introduction. This “immunity” of Einstein spaces to the
addition of quadratic gravity terms to the vacuum Einstein
field equations, however, does not generalize to electro-
vacuum solutions of Einstein gravity. In particular,
Reissner-Nordström black holes do not obey the quadratic
gravity field equations with electromagnetism (2).
In the vacuum case, the trace no-hair theorem of [24,11]

states that for asymptotically flat, static, spherically sym-
metric black holes in quadratic gravity, the Ricci scalar R
vanishes throughout the spacetime. Noting that the energy-
momentum Tab of an electromagnetic field is also traceless,
it has been argued in [19] that the vanishing of R applies
also to the electrovacuum case. This will be thus assumed
in the rest of this paper.
The field equations (2) then reduce significantly to

Rab − 4kBab ¼ κ0Tab; ð6Þ

where

k≡ α

γ
; κ0 ≡ κ

γ
; ð7Þ

assuming γ ≠ 0.

B. Conformal-to-Kundt ansatz

Instead of using the standard spherically symmetric
metric

ds2 ¼ −hðr̄Þdt2 þ dr̄2

fðr̄Þ þ r̄2dω2;

dω2 ¼ dθ2 þ sin2θdϕ2; ð8Þ

we will employ its conformal-to-Kundt form [13,21,25]

ds2 ≡Ω2ðrÞds2K ¼ Ω2ðrÞ½dω2 − 2dudrþHðrÞdu2�; ð9Þ

which leads to a considerable simplification of the field
equations.
This metric admits a gauge freedom

r → λrþ υ; u → λ−1u; ð10Þ

where λ, υ are constants. In addition, the metric (8) admits
also a timescaling freedom

t → t=σ ⇒ h → hσ2; ð11Þ

where the constant σ ≠ 0 can be used to adjust value of h at
a chosen radius r̄.

The standard metric form (8) can be obtained (assuming
Ω0 ≠ 0 ≠ H) by [25]

r̄ ¼ ΩðrÞ; t ¼ u −
Z

dr
HðrÞ ; ð12Þ

leading to

h ¼ −Ω2H; f ¼ −
�
Ω0

Ω

�
2

H; ð13Þ

where a prime denotes differentiation with respect to r.
The Killing horizon, where the Killing vector field

∂u ¼ ∂t becomes null, is located at the zeros r ¼ rh of
the metric function H,

Hjr¼rh ¼ 0: ð14Þ

Then using (13), also hðr̄hÞ¼0¼fðr̄hÞ, where r̄h¼ΩðrhÞ.
Curvature invariants constructed from the Bach and

Weyl tensors have the same form for vacuum [13] and
charged case

BabBab ¼ 1

72
Ω−8½ðB1Þ2 þ 2ðB1 þ B2Þ2�; ð15Þ

CabcdCabcd ¼ 1

3
Ω−4ðH00 þ 2Þ2; ð16Þ

where

B1 ≡HH0000; ð17Þ

B2 ≡H0H000 −
1

2
H002 þ 2: ð18Þ

Note that the Kundt coordinates are also useful for the
description of conformally invariant properties of space-
times, such as photon spheres, see Sec. VA 2.

1. The Reissner-Nordström black hole

Recall that the Schwarzschild metric is a vacuum
solution of quadratic gravity. In contrast, the Reissner-
Nordström metric is not a solution of electrovacuum
quadratic gravity (6) and (3). Nevertheless, it will be useful
for comparison with actual solutions.
In the Kundt coordinates, the Reissner-Nordström metric

functions read

ΩðrÞ ¼ −
1

r
; HðrÞ ¼ −r2 − 2Mr3 −

Q2

4πϵ0
r4: ð19Þ
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In the vicinity of a horizon, which is located at a nonzero
root of HðrhÞ ¼ 0, Eq. (19) gives

HðrÞ ¼ −
�
2þ 6Mrh þ

Q2

πϵ0
r2h

�
rhðr− rhÞ

−
1

2

�
2þ 12Mrh þ 3

Q2

πϵ0
r2h

�
ðr− rhÞ2

−
�
2Mþ Q2

πϵ0
rh

�
ðr− rhÞ3 −

Q2

4πϵ0
ðr− rhÞ4: ð20Þ

III. THE FIELD EQUATIONS IN KUNDT
COORDINATES

A. Maxwell equations

In agreement with the previous works [19,20], we start
with the following ansatz for the electromagnetic field

A ¼ Āðr̄Þdt; ð21Þ

which in the Kundt coordinates reads

A ¼ AðrÞdu −
AðrÞ
HðrÞ dr: ð22Þ

The Maxwell equations then reduce to

A00 ¼ 0 ð23Þ

and thus in the Kundt coordinates, they can be solved
exactly as

A ¼ qr ð24Þ

(the constant term can be removed by a gauge trans-
formation). In contrast, the fundamental electromagnetic
invariant FabFab can be expressed exactly in the physical
coordinates and turns out to be the same as in the Reissner-
Nordström case

FabFab ¼ −
2q2

Ω4
¼ −

2q2

r̄4
: ð25Þ

Note that the stress-energy tensor (3) and thus the full
system of the field equations is invariant under the SOð2Þ
group of electric-magnetic duality. It is thus straightforward
to construct a dyonic black hole in quadratic gravity by
adding the term BðθÞdϕ to the potential (21). Maxwell
equations then imply BðθÞ ¼ β cos θ, where β is magnetic
charge (the metric remains unchanged except for replacing
q2 by q2 þ β2). This is analogous to the case of the
Einstein-Maxwell system, where the dyonic generaliza-
tion of Reissner-Nordström black hole admitting both

electric and magnetic charges was constructed in [26]
(cf. also [27]).

B. Gravitational field equations

Following the same approach as in the previous
works [13–15,21] for quadratic gravity in vacuum, we find
that the quadratic gravity field equations (6) in the Kundt
coordinates (9) reduce to the following system of two
autonomous ordinary differential equations

ΩΩ00 − 2Ω02 ¼ 1

3
kH0000; ð26Þ

ΩΩ0H0 þ 3Ω02HþΩ2 ¼ 1

3
k

�
H0H000 −

1

2
H002 þ 2

�
þ κ0

2
q2:

ð27Þ

Occasionally, it is also useful to use the trace of the field
equations that follows from the two above equations

HΩ00 þH0Ω0 þ 1

6
ðH00 þ 2ÞΩ ¼ 0: ð28Þ

Note that the only difference from the vacuum case is the
term proportional to q2 appearing in (27).

IV. EXPANSION OF THE METRIC
IN POWERS OF r AROUND ANY

FIXED FINITE VALUE r0

In this section, we expand the metric functions ΩðrÞ and
HðrÞ in powers of Δ≡ r − r0 around some fixed, finite
value r0. The field equations (26) and (27) impose con-
straints on the dominant powers in the expansions, leading
to a limited number of allowed classes of static, spherically
symmetric power-series solutions of quadratic gravity with
electromagnetism summarized in Table I.

A. Expansion in powers of Δ
Now, let us solve (26) and (27) using expansions in

powers of Δ around an arbitrary, finite, fixed value r0,

ΩðrÞ ¼ Δn
X∞
i¼0

aiΔi; ð29Þ

HðrÞ ¼ Δp
X∞
i¼0

ciΔi; ð30Þ

where r0, n, and p are real numbers. We also assume that
the leading coefficients are nonvanishing, i.e., a0 ≠ 0,
c0 ≠ 0. Note that while the steps in Δ are integers, they
might not be so in the physical coordinate r̄, see, e.g., [21].
Substituting the series (29) and (30) into the field

equations (26), (27), and the trace equation (28), yields
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X∞
l¼2n−2

Δl
Xl−2nþ2

i¼0

aial−i−2nþ2ðl − i − nþ 2Þðl − 3i − 3nþ 1Þ

¼ 1

3
k
X∞
l¼p−4

Δlcl−pþ4ðlþ 4Þðlþ 3Þðlþ 2Þðlþ 1Þ; ð31Þ

X∞
l¼2nþp−2

Δl
Xl−2n−pþ2

j¼0

Xj

i¼0

aiaj−icl−j−2n−pþ2ðj − iþ nÞðl − jþ 3iþ nþ 2Þ þ
X∞
l¼2n

Δl
Xl−2n
i¼0

aial−i−2n

¼ 1

3
k

"
2þ

X∞
l¼2p−4

Δl
Xl−2pþ4

i¼0

cicl−i−2pþ4ðiþ pÞðl − i − pþ 4Þðl − i − pþ 3Þ
�
l −

3

2
i −

3

2
pþ 5

2

�#
þ κ0q2

2
; ð32Þ

and

X∞
l¼nþp−2

Δl
Xl−n−pþ2

i¼0

cial−i−n−pþ2

�
ðl − i − pþ 2Þðlþ 1Þ þ 1

6
ðiþ pÞðiþ p − 1Þ

�
þ 1

3

X∞
l¼n

Δlal−n ¼ 0; ð33Þ

respectively.
By a careful study of leading orders of equa-

tions (31)–(33), it turns out that only certain combinations
of exponents n, p appearing in the expansion of metric
functions ΩðrÞ and HðrÞ, (29) and (30), are allowed. The
resulting classes ½n; p� are summarized in Table I.
Distinct classes ½n; p� may or may not correspond to the

same branch of solutions in different regions of a space-
time. For example, class [0, 1] describing near-horizon
metric and class [0, 0] with appropriately chosen param-
eters describing the metric near a generic point outside the
horizon may represent the same physical solution. At the
same time, class [0, 0] with a different choice of parameters
can correspond to a generic point outside of a wormhole or
naked singularity, see [21].
In this paper, we are interested in cases describing black-

hole solutions to quadratic gravity in the vicinity of a
horizon. Thus in the rest of the paper, we will focus on the
classes [0, 1] and [0, 2], for which H ¼ 0 at r0 ¼ rh (14),

corresponding to nonextremal/extremal horizon, respec-
tively. Moreover, it seems that the case [0, 2] is not
asymptotically flat (see Sec. VI). Thus, the most physically
relevant case is [0, 1].

V. CHARGED BLACK HOLES WITH
NONEXTREMAL HORIZONS (CASE [0, 1])

So far, in Sec. IV, we employed the leading orders
of equations (31)–(33). Now let us focus on the case
corresponding to the solution in the vicinity of a nonex-
tremal horizon, set ½n; p� ¼ ½0; 1�, and study conditions
following from higher orders in Eqs. (31)–(33) [or equiv-
alently (26)–(28)].
The lowest nontrivial order of the trace equation (28)

gives

a1 ¼ −
a0
3c0

ðc1 þ 1Þ: ð34Þ

TABLE I. All possible classes ½n; p� of static, spherically symmetric solutions to quadratic gravity coupled with
electromagnetism that can be expressed as power series (29) and (30). Note that these classes may admit special
subclasses. For example, the case [0, 2] has special subcases for c1 ¼ 0, such as c2 arbitrary and a20 ¼ κ0q2=2 ¼ 12k,
or c1 ¼ c2 ¼ 0, c3 arbitrary and a20 ¼ κ0q2=2 ¼ 24k, or in general c1 ¼ c2 ¼ … ¼ cl−1 ¼ 0, cl arbitrary and
a20 ¼ κ0q2=2 ¼ 2klðlþ 1Þ.
½n; p� Constraints Free parameters Physical region

½−1; 2� c0 ¼ −1 a0, c1, r0, q r̄ → ∞
[0, 1] a0, c0, c1, r0 ¼ rh, q r̄ → r̄h ¼ a0
[0, 0] a0, a1, c0, c1, c2, r0, q r̄ → r̄0 ¼ a0
[0, 2] c0 ¼ −1, a20 ¼ κ0

2
q2 c1, r0 ¼ rh, q r̄ → r̄h ¼ a0

[1, 0] a0, c0, c1, c2, r0, q r̄ → 0
[n > 0, 2] c20 ¼ 1þ 3κ0

4k q
2, q2 ¼ − 4knðnþ1Þ½3nðnþ1Þþ2�

κ0 ½3nðnþ1Þþ1�2 ,

ð3n2 þ 3nþ 1Þc0 ¼ −1 for κ0
k > − 4

3q2

a0, c1, r0 r̄ → 0
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Then the lowest nontrivial order of (27) reduces to

c2 ¼
1

6kc0

�
2kðc21 − 1Þ þ a20ð2 − c1Þ

�
−

q2κ0

4c0k
: ð35Þ

All higher-order coefficients can be expressed via recurrent formulas

clþ2 ¼
3

kðlþ 3Þðlþ 2Þðlþ 1Þl
Xl

i¼0

aialþ1−iðlþ 1 − iÞðl − 3iÞ ∀ l ≥ 1; ð36Þ

al ¼
1

l2c0

�
−
1

3
al−1 −

Xl

i¼1

cial−i

�
lðl − iÞ þ 1

6
iðiþ 1Þ

��
∀ l ≥ 2; ð37Þ

where a0, c0, c1, and q are arbitrary constant parameters.
Note that the form of the recurrent expressions (36) and
(37) is identical to the uncharged case [21] since charge
enters only via c2 in (35).
On the horizon, the Bach and Weyl invariants, (15)

and (16), read

BabBabðrhÞ ¼
�
2a20ðc1 − 2Þ þ 3κ0q2

12a40k

�
2

¼
�
2a20bþ κ0q2

4a40k

�
2

; ð38Þ

CabcdCabcdðrhÞ ¼
½2ðc1 þ 1Þ�2

3a40
¼ 3

�
2ðbþ 1Þ

a20

�
2

; ð39Þ

respectively, where, similarly to the vacuum case, we intro-
duce a dimensionless Bach parameter b measuring the
strength of the Bach tensor at the horizon when q ¼ 0 by

b≡ 1

3
ðc1 − 2Þ: ð40Þ

Note that the invariant (38) vanishes either for
b ¼ 0 ¼ q, which corresponds to the Schwarzschild sol-
ution, or for b ¼ −κ0q2=ð2a20Þ.
Then a few terms in the expansions (29) and (30) read

H ¼ c0ðr − rhÞ þ ð3bþ 2Þðr − rhÞ2

þ 12kb2 þ 2bð8k − a20Þ þ 4k − κ0q2

4kc0
ðr − rhÞ3 þ…;

ð41Þ

Ω ¼ a0 −
a0ðbþ 1Þ

c0
ðr − rhÞ

þ a0
16kc20

�
16ðbþ 1Þ2kþ 2a20bþ κ0q2

�ðr − rhÞ2 þ…:

ð42Þ

Therefore, using (12), in physical coordinates, the
horizon is located at2

r̄ðrhÞ ¼ ΩðrhÞ ¼ r̄h ¼ a0 > 0; ð43Þ

where both metric functions f and h vanish [cf. (13)].
Using (10), one can also set a1 > 0, to ensure monotonic

increasing of r̄ as a function of r in the vicinity of the
horizon. Finally, for studying solutions around the outer
black hole horizon, we assume c0 < 0 (see [17]). To
summarize,

a0; a1 > 0; c0 < 0: ð44Þ

It turns out that similarly as in the vacuum case
[10,11,13], for a generic value of the Bach parameter b,
the metric (8) expressed using the expansions (29), (30) and
the recurrent formulas (36) and (37) is not asymptotically
flat. However, for given specific values of parameters, the
parameter b can be fine-tuned to obtain asymptotically flat
cases. Let us thus now present examples of [0, 1] solutions
for some specific values of parameters.
We will choose

r0 ¼ −1; k¼ 1=2; c0 ¼ −1; a0 ¼ 1; κ0 ¼ 1;

ð45Þ

together with a selected value of charge q and correspond-
ing fine-tuned values of b given in Table II. For q < ≈0.91
there will be two such values of b. The corresponding two
branches of solutions represent charged Schwarzschild3

and charged Schwarzschild-Bach solutions in quadratic
gravity.

2Note that, without loss of generality, the sign of a0 can be
chosen thanks to the invariance of (9) under the sign change
Ω → −Ω.

3Recall that charged Schwarzschild in quadratic gravity is
distinct from the Reissner-Nordström metric that is not a solution
of quadratic gravity with Maxwell field.
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First note that often, the series ai and ci asymptotically
approach geometric series4 (see Fig. 1). This will allow us
to estimate the radius of convergence of the series.
The behavior of the metric functions ΩðrÞ and HðrÞ for

parameters (45), q ¼ 0.5, and b ¼ 0.6314924332806 is
shown in Figs. 2 and 3, respectively. Using (13), one can
also express the metric functions fðr̄Þ and hðr̄Þ in the
physical coordinates, see Figs. 4 and 5, respectively.
Note that the function hðr̄Þ is rescaled to approach 1 at
large r̄.

FIG. 3. The metric function HðrÞ, using the parameters (45)
with b ¼ 0.6314924332806 and q ¼ 0.5, for the first 20 (red), 30
(orange), 40 (green), and 800 (blue) terms. The vertical dashed
lines indicate the interval of convergence of the series as in Fig. 2.

0 200 400 600 800

1.65

1.70
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1.80

1.85

1.90

1.95

FIG. 1. Ratios of consecutive coefficients, ai=ai−1 (blue) and
ci=ci−1 (yellow), in the expansions of metric functions (29) and
(30), using the parameters (45) with b ¼ 0.6314924332806
and q ¼ 0.5.

FIG. 2. The metric function ΩðrÞ, using the parameters (45)
with b ¼ 0.6314924332806 and q ¼ 0.5, for the first 20 (red), 30
(orange), 40 (green), and 800 (blue) terms. The vertical dashed
lines indicate the interval of convergence of the series (r0 � 1=p
where p is the value converged upon in Fig. 1).

FIG. 4. The metric function fðr̄Þ, using the parameters (45)
with b ¼ 0.6314924332806 and q ¼ 0.5, for the first 20 (red),
50 (orange), 100 (green), and 800 (blue) terms.

FIG. 5. The metric function hðr̄Þ, using the parameters (45)
with b ¼ 0.6314924332806 and q ¼ 0.5, rescaled to approach
1 at large r̄. The first 20 (red), 50 (orange), 100 (green), and
800 (blue) terms of the expansion are shown.

4If the series ai and ci do not asymptotically approach geo-
metric series, then more general criteria have to be used for
determining convergence of the series. For example, in this
context, the root test for convergence is employed in [22].
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The high precision needed for fine-tuning the Bach
parameter b is illustrated by Figs. 6 and 7. Both figures
correspond to the same parameters (45) and q ¼ 0.5, but
are fine-tuned for distinct values of b. Figure 6 corresponds
to the charged Schwarzschild-Bach black hole while Fig. 7
corresponds to the charged Schwarzschild black hole.
These two branches of solutions, charged Schwarzschild

and charged Schwarzschild-Bach, are shown in Fig. 8.

A. Some physical properties of charged
[0, 1] black holes

In this section, we study selected physical properties of
charged [0, 1] black holes. These include mass, temper-
ature, the radius of the photon sphere, and the black-hole
shadow.
Recall that the metric function h of the [0, 1] black hole

obtained from the recurrent formulas (36) and (37) with
the Bach parameter b fine-tuned for asymptotic flatness
and transformed to physical coordinates is in general
asymptotically approaching a constant distinct from 1.
To set the asymptotic value of h to 1 we employ the
scaling freedom (11). This will fix the value of σ for each
specific asymptotically flat [0, 1] black hole.

1. Asymptotic mass, horizon area, surface gravity,
and temperature

Asymptotic massM can be determined by comparing the
metric function fðr̄Þ or the rescaled metric function hðr̄Þ
with 1 − 2M=r̄. See Fig. 9 for the dependence of asymp-
totic mass M on charge q for both branches of asymptoti-
cally flat [0, 1] black holes. Note that while for the
Schwarzschild branch, asymptotic mass increases with
charge, for the Schwarzschild-Bach branch it decreases
and reaches negative values for sufficiently large charge.5

This can be also seen in Fig. 10.
In most figures, we keep the horizon radius r̄h ¼ a0,

cf. (43), fixed by (45). However, it is also of interest to
study the dependence of the asymptotic mass M on the
horizon radius r̄h ¼ a0, see Figs. 11 and 12 for the un-
charged and charged case, respectively.

FIG. 6. The metric function fðr̄Þ of charged Schwarzschild-
Bach solution for various values of b using the parameters (45)
and q ¼ 0.5: b ¼ 0.6314924332804 (blue, dashed); b ¼
0.6314924332805 (blue, solid); b ¼ 0.6314924332807 (red,
solid); b ¼ 0.6314924332808 (red, dashed); and the most finely
tuned b ¼ 0.6314924332806 in green. The black, dashed line
represents the function 1 − 2M=r̄ where 2M ≈ 0.212: the mass
determined from the asymptotic behavior of hðr̄Þ.

FIG. 7. The metric function fðr̄Þ of charged Schwarzschild
solution for various values of b using the parameters (45)
and q ¼ 0.5: b ¼ −0.269102353931866 (blue, dashed); b ¼
−0.269102353931867 (blue, solid); b ¼ −0.269102353931869
(red, solid); b ¼ −0.26910235393187 (red, dashed); and the
most finely tuned b ¼ −0.269102353931868 in green. The
black, dashed line represents the function 1 − 2M=r̄ where
2M ≈ 1.327: the mass determined from the asymptotic beha-
vior of hðr̄Þ.

FIG. 8. Finely tuned Bach parameters b corresponding to
asymptotically flat solutions [with parameters (45)] as functions
of charge q. The charged Schwarzschild branch (blue) truncates
around q ≈ 0.91 while the charged Schwarzschild-Bach branch
(yellow) permits asymptotically flat solutions with greater charge.

5Note, however, that for sufficiently small a0, this behavior is
interchanged, e.g., for the Schwarzschild branch, the asymptotic
mass decreases with increasing charge, see [20].
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The null Killing vector ξ≡ σ∂u ¼ σ∂t generates the
horizon. The location of which is given by vanishing of
the norm of ξ, i.e., by HðrÞ ¼ 0 at r ¼ rh, using (41). The
horizon area reads

A ¼ 4πΩ2ðrhÞ ¼ 4πa20 ¼ 4πr̄2h: ð46Þ

The surface gravity κ2 ≡ − 1
2
ξμ;νξ

μ;ν [28], where the
only nonvanishing derivatives of ξ are ξu;r ¼ −ξr;u ¼
1
2
σðΩ2HÞ0, ξr;u ¼ −ξu;r ¼ Ω−4ξu;r, using (41), reads

κ=σ ¼ −
1

2
ðH0 þ 2HΩ0=ΩÞjr¼rh ¼ −

1

2
H0ðrhÞ ¼ −

1

2
c0:

ð47Þ

Then the temperature of the black hole horizon T ≡ κ=ð2πÞ
[29] is given by

T=σ ¼ −
1

4π
c0: ð48Þ

Figure 13 shows the dependence of temperature on charge
for both branches of black holes.

2. Photon sphere and black-hole shadow

In this section, we study photon spheres and black-hole
shadows for asymptotically flat, spherically symmetric,
charged black holes in quadratic gravity.
In the physical coordinates (8), the photon sphere6 is

located at 2h ¼ r̄h;r̄, i.e.,�
h
r̄2

�
;r̄¼ 0: ð49Þ

FIG. 9. Asymptotic mass as a function of charge q, determined
by fitting the model 1 − 2M=r̄ to the rescaled metric func-
tion hðr̄Þ (see Fig. 5) over an appropriate range of r̄.
Charged Schwarzschild solutions are in blue while charged
Schwarzschild-Bach solutions are in yellow. All solutions make
use of the parameters (45).

FIG. 10. fðr̄Þ for two charged Schwarzschild-Bach solutions
using the parameters (45): one with positive mass, q ¼ 0.5 and
tuned to b ¼ 0.6314924332806 (blue); the other with negative
mass, q ¼ 1 and tuned to b ¼ 1.02395913547716 (red).

FIG. 11. Asymptotic mass of Schwarzschild (blue) and un-
charged Schwarzschild-Bach (yellow) black holes as functions of
the horizon radius r̄h ¼ a0, cf. (43). This figure corresponds to
previously published Fig. 3 of [11].

FIG. 12. Asymptotic mass of charged Schwarzschild (blue) and
Schwarzschild-Bach (yellow) black holes with charge q ¼ 0.5 as
functions of the horizon radius r̄h ¼ a0, cf. (43).

6For the definition of photon spheres for static, spherically
symmetric spacetimes in standard coordinates (8), see [30].
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As pointed out in [22], the Kundt coordinates (9) are more
suitable for the study of photon spheres. In these coor-
dinates, using (13), Eq. (49) reduces to [22]

H;r ðrpsÞ ¼ 0; ð50Þ

provided HðrpsÞ < 0 and Ω;r ðrpsÞ ≠ 0. Photon spheres in
fact correspond to local maxima of the metric function −H,
see Figs. 14 and 15 for charged Schwarzschild and charged
Schwarzschild-Bach black holes with different charges,
respectively.
The shadow of an asymptotically flat, spherically sym-

metric black hole is a disk of a radius r̄sh ¼ r̄psffiffiffiffiffiffiffiffiffi
hðr̄psÞ

p [see

(2.14) of [31] ]. In the Kundt coordinates, this reads

r̄sh ¼
1

σ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijHðrpsÞj

p : ð51Þ

See Fig. 16, for the comparison of photon-sphere and
black-hole-shadow radii, r̄ps and r̄sh, for various charged
Schwarzschild and Schwarzschild-Bach black holes. Note
that for highly charged Schwarzschild-Bach black holes,
r̄sh < r̄ps. This is due to the negative lensing of light caused
by negative mass of these black holes (see also Fig. 19).
Finally, let us discuss the angular radius χO of the black-

hole shadow (see Fig. 17 and review [32]). Following [33],
the angular radius of the black-hole shadow for a static
observer at r̄ ¼ r̄O in the static exterior region reads

cot χO ¼
ffiffiffiffiffiffiffi
gr̄ r̄
gϕϕ

r
dr̄
dϕjr̄¼r̄O

¼ 1

r̄
ffiffiffi
f

p dr̄
dϕjr̄¼r̄O

;

dr̄
dϕ

¼ �r̄
ffiffiffi
f

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̄2hðr̄psÞ
r̄2pshðr̄Þ

− 1

s
: ð52Þ

Thus

sin2χO ¼ 1

1þ cot2χO
¼ r̄2pshðr̄OÞ

r̄2Ohðr̄psÞ
; ð53Þ

which, after using (13), simplifies to (see [22])7

sin2χO ¼ HðrOÞ
HðrpsÞ

: ð54Þ

See Figs. 18 and 19 for numerically integrated null
geodesics for black holes in quadratic gravity with positive
and negative mass, respectively.
Finally, let us show the dependence of the photon-sphere

radius and black-hole shadow radius on asymptotic mass forFIG. 14. −Hðr̄Þ for various charged Schwarzschild black
holes using the parameters (45): blue (q ¼ 0, b ¼ 0), green
(q ¼ 0.5, b ¼ −0.269102353931868), and red (q ¼ 0.9,
b ¼ −0.583718480513498). This functions as an effective po-
tential for null geodesics around the black hole.

FIG. 15. −Hðr̄Þ for various charged Schwarzschild-Bach
black holes using the parameters (45): blue (q ¼ 0, b ¼
0.3633018769168), green (q ¼ 1, b ¼ 1.02395913547716),
and red (q ¼ 2, b ¼ 1.8348341584421). This functions as an
effective potential for null geodesics around the black hole.

FIG. 13. Temperature as a function of charge q for charged
Schwarzschild solutions (blue) and charged Schwarzschild-Bach
solutions (yellow). All solutions make use of the parameters (45).

7Note that in the limit r̄O → ∞ (then sin2 χO ≈ r̄2sh
r̄2O
) using the

gauge such that hðr̄OÞ ¼ r̄2OHðrOÞ → 1, (54) leads to (51).
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uncharged (Figs. 20 and 21) and charged (Figs. 22 and 23)
Schwarzschild and Schwarzschild-Bach black holes.

VI. EXTREMAL CASE [0, 2]

Finally, let us briefly comment on the case [0, 2]
describing geometry in the vicinity of the horizon of an
extremal black hole.
Equation (33) for l ¼ 0 gives

c0 ¼ −1: ð55Þ

FIG. 17. A critical null geodesic entering the photon sphere of a
charged Schwarzschild black hole with the following parameters:
a0 ¼ 1, q ¼ 0.5, b ¼ −0.269102353931868. The black circle
and dashed, red circle indicate the event horizon and photon
sphere, respectively. An observer situated at r̄O will measure χO
as the angular size of the black hole.

FIG. 16. Radii r̄ of photon spheres and black hole shadows as functions of charge q and using the parameters (45). The photon spheres
of charged Schwarzschild and Schwarzschild-Bach black holes correspond to the solid blue and green lines, respectively; similarly, the
solid yellow and red lines correspond to the respective shadows. The dashed lines correspond to the Reissner-Nordström black hole in
contrast to the charged Schwarzschild solutions of quadratic gravity.

FIG. 18. Null geodesics in the vicinity of a charged Schwarzs-
child black hole with the following parameters: a0 ¼ 1, q ¼ 0.5,
b ¼ −0.269102353931868. Each passes through a distant point
(r̄ ≈ 35) where the fine-tuning of b is sufficient to maintain
asymptotic flatness. From this point, the projection of the angular
shadow is indicated by the dashed, blue lines. The black circle
and dashed, red circle indicate the event horizon and photon
sphere, respectively.

FIG. 19. Null geodesics in the vicinity of a charged
Schwarzschild-Bach black hole with the following parameters:
a0 ¼ 1, q ¼ 2, b ¼ 1.8348341584421. Each passes through a
distant point (r̄ ≈ 35) where the fine-tuning of b is sufficient to
maintain asymptotic flatness. From this point, the projection of the
angular shadow is indicated by the dashed, blue lines. The black
circle and dashed, red circle indicate the event horizon and photon
sphere, respectively. It should be noted that the negative lensing of
light not captured by the black hole is due to the negative mass of
the highly charged Schwarzschild-Bach black hole.
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Then Eq. (32) for l ¼ 0 implies

a20 ¼
κ0

2
q2: ð56Þ

Thus this case can occur only for q ≠ 0. This is in
agreement with the results of [13,21] in vacuum, where
the [0, 2] case is not allowed.
Equation (32) for l ¼ 1 implies

a1 ¼
a0c1
2

; ð57Þ

where c1 is an integration constant. Therefore, [0, 2] is
characterized by just two constants: a Bach parameter
b2 ≡ c1 and charge q.
Then combining (31) and (32), for l ≥ 2, we arrive at the

recurrent relations

cl ¼ −6
ðlþ 1ÞYl þ a0ðl − 1ÞX l

ðl − 1Þðlþ 2Þðlþ 1Þ½a20 − 2klðlþ 1Þ� ; ð58Þ

al ¼ −
a0Yl þ 2klðl − 1ÞX l

lðl − 1Þ½a20 − 2klðlþ 1Þ� ; ð59Þ

where

X l ¼
Xl−1
i¼1

cial−i

�
ðl − iÞðlþ 1Þ þ 1

6
ðiþ 2Þðiþ 1Þ

�
; ð60Þ

Yl ¼
Xl−1
i¼1

aial−iðl − iÞðl − 1 − 3iÞ: ð61Þ

Near the extremal horizon, the Bach and Weyl invariants
(15) and (16) take the form

FIG. 21. Radii of black hole shadows for Schwarzschild (blue)
and uncharged Schwarzschild-Bach (yellow) black holes as
functions of asymptotic mass.

FIG. 22. Radii of photon spheres for charged Schwarzschild
(blue) and Schwarzschild-Bach (yellow) black holes with charge
q ¼ 0.5 as functions of asymptotic mass. The radii of Reissner-
Nordström black hole photon spheres are indicated by the dashed
green line.

FIG. 20. Radii of photon spheres for Schwarzschild (blue) and
uncharged Schwarzschild-Bach (yellow) black holes as functions
of asymptotic mass.

FIG. 23. Radii of black hole shadows for charged Schwarzs-
child (blue) and Schwarzschild-Bach (yellow) black holes with
charge q ¼ 0.5 as functions of asymptotic mass. The radii of
Reissner-Nordström black hole shadows are indicated by the
dashed green line.
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BabBabjr¼rh ¼ 2

�
6

κ0ðκ0q2 − 24kÞ
�

2
�
b2Δ
q

�
4

þOðΔ5Þ;

ð62Þ

CabcdCabcdjr¼rh ¼
48b22
κ02q4

Δ2 þOðΔ3Þ; ð63Þ

where Δ ¼ r − rh with rh being the extremal horizon.
Thus, similarly as for the Reissner-Nordström metric and in
contrast with the [0, 1] case, both the Bach and Weyl
invariants vanish on the horizon.
We were not able to fine-tune the [0, 2] case to obtain an

asymptotically flat solution. This might be related to the
fact that the [0, 2] solution has less free parameters than the
[0, 1] black holes.

A. Special cases with c1 = 0

Note that the recurrent expressions (58)–(61) do not
include special cases for which, in addition to (55), c1 ¼ 0

and a20 ¼ κ0
2
q2 ¼ 2klðlþ 1Þ with cp ¼ 0, p ¼ 1;…; l − 1,

and the only nonvanishing coefficients are cl ≠ 0 (l ≥ 2),
clm, and alm, m ¼ 1; 2…. The coefficients clm and alm are
proportional to ðclÞm.
In contrast with the generic [0, 2] solution, near the

horizon, the Bach and Weyl invariants (15), (16) go to
zero as

BabBabjr¼rh ∝
c2l
a80

Δ2l; ð64Þ

CabcdCabcdjr¼rh ∝
c2l
a40

Δ2l: ð65Þ

In physical coordinates, the power-series expansions of
metric functions fðr̄Þ and hðr̄Þ (13) include fractional
powers of Δ̄ ¼ r̄ − a0 since r̄ ¼ Ω ¼ a0 þ alΔl þ � � �
(12) and therefore Δ ∝ ðΔ̄alÞ

1=l.
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APPENDIX: BACH PARAMETERS REQUIRED
FOR ASYPTOTIC FLATNESS

TABLE II. Fine-tuned Bach parameters b resulting in asymp-
totic flatness for a range of charged and uncharged Schwarzschild
and Schwarzschild-Bach solutions. These values reflect the extent
of fine-tuning carried out in this study and each value can undergo
further tuning to achieve flatness at greater distances.

q a0
b (un)charged
Schwarzschild

b (un)charged
Schwarzschild-Bach

0 0.62 0 −0.589993571
0 0.65 0 −0.532684823
0 0.7 0 −0.42996068
0 0.8 0 −0.19860582
0 0.9 0 0.0660741
0 1 0 0.3633018769168
0 1.1 0 0.69267676
0 1.2 0 1.0539754
0 1.3 0 1.4470654
0 1.4 0 1.8718642
0 1.5 0 2.3283181
0.05 1 −0.00462 0.36791
0.1 1 −0.017831007 0.381097084
0.15 1 −0.03810 0.40132
0.2 1 −0.063682753 0.426841089
0.3 1 −0.1252725399 0.488250191
0.4 1 −0.19498743703 0.557709781
0.5 0.7 0.243104319
0.5 0.8 −0.5171222483 0.320022494
0.5 0.9 −0.3780781576 0.444080714
0.5 1 −0.269102353931868 0.6314924332806
0.5 1.1 −0.1939706824 0.885277714
0.5 1.2 −0.1447671171 1.19712757
0.5 1.3 −0.1121881706 1.5575176
0.5 1.4 −0.0898183758 1.95990043
0.5 1.5 −0.0738318916 2.40036761
0.5 1.8 −0.04584801196
0.6 1 −0.345793969 0.7077718847
0.7 1 −0.4241119294 0.7855943886
0.8 1 −0.503525436775 0.86442570416
0.85 1 −0.54353900000085
0.9 1 −0.583718480513498 0.94394733295808
0.91 1 −0.59177226034189
1 1 1.02395913547716
1.2 1 1.18496948744475
1.4 1 1.34682262993053
1.6 1 1.5091937242
1.8 1 1.6719006501
2 1 1.8348341584421
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