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Gravitational wave physics can probe theories that extend beyond general relativity. Motivated by recent
attention on the Kalb-Ramond field as a dark matter candidate, in this work, we study a parity violating
dimension four operator which couples the dual Riemann curvature to the 2-form field. After mapping the
equations of motion for the right- and left-handed gravitational wave amplitudes to the novel para-
metrization recently presented in Jenks et al. [Phys. Rev. D 108, 044023 (2023)], we discuss various
constraints on the model parameters in light of the coincident electromagnetic/gravitational wave signal of
GW170817 and the GWTC-3 dataset.
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I. INTRODUCTION

The advent of gravitational wave (GW) astronomy has
ushered in a new era of modern physics, pioneered by the
growing catalog of observations from the LIGO-Virgo-
Kagra collaboration [1–4] with recent data supporting a
stochastic GW background from the pulsar timing array
collaborations [5–9]. GW signals provide a rich compli-
ment to electromagnetic signals of astrophysical phenom-
ena [10], as well as offering a new arena for testing general
relativity (GR) in strong field regimes [11]. An immense
outstanding question in the field is not if GR will fail to
describe a phenomenon, but when and how. In particular,
observing gravitational parity violation would be a smok-
ing gun for physics beyond GR, as the Einstein-Hilbert
term alone produces no parity violation. Parity violating
gravitational theories have gathered interest in recent
decades for a variety of reasons. Observing parity violation
in CMB polarization measurements was considered as far
back as 1998 [12].
Dynamical Chern-Simons theory (dCS) is likely the

most studied parity violating model for gravity. In addition
to the two usual massless spin-2 degrees of freedom in GR,
dCS includes a pseudoscalar field ϕ with a canonical
kinetic term coupled to the Pontryagin density R̃μνρσRμνρσ,
where R̃μνρσ ¼ 1

2
εμναβRαβ

ρσ is the dual Riemann tensor,
which arises in many contexts [13] (see Ref. [14] and
references therein for a review). Interesting physics follows
if the dCS pseudoscalar acts as the inflaton. This includes a
preheating mechanism [15], leptogenesis [16], as well as
the potential for parity violation to be detected in large-
scale structure via galaxy correlations [17]. Perturbations to
rotating black holes were also studied in dCS theory

recently in [18], and in [19], the propagation of gravita-
tional waves in dCS were compared to standard fðRÞ
modified gravity theories. The dCS coupling was also
studied in the context of the string axiverse in [20], where
the authors considered a late-time scenario where axions
are the dominant dark matter component, and discussed
constraints on the coupling.
There are numerous other parity violating theories on the

market. One such class is the ghost-free higher derivative
models [21,22], which are characterized by Lagrangians of
the form Lðg; ∂g; ∂2gÞ, and individual terms are contrac-
tions of the metric, Riemann, and the Levi-Civita tensors.
Higher derivative theories are generically plagued by
Ostrogradsky instabilities [23], therefore such theories
can at best be valid up to the mass scale of the ghost
degrees of freedom from an effective field theory stand-
point. Adjacent to these are the ghost-free scalar tensor
models, such as those discussed in [24]. Here, derivatives of
a scalar field couple to contractions of the Riemann and
Levi-Civita tensors. As in the higher order derivative
theories, constraints on the Lagrangian coefficients must
be imposed in order to avoid Ostrogradsky ghosts. There is
also a parity violating addition to the Hořava-Lifshitz
approach to quantum gravity [25,26], which was studied
in the context of gravitational wave physics first in [27] and
later in [28]. A different construction was proposed in [29];
here, the authors employed conformal transformations of
the metric where the conformal factor is a function of the
Pontryagin density. This produces a parity violating effect
in the Einstein frame, which was recently used to study
modifications of the Kerr metric [30].
Alternatively, one can relax the standard assumptions of

metricity (the so-called teleparallel gravity theories) and
vanishing torsion [31–36]. In theories of this type, parity
violating couplings between the Levi-Civita and either
nonmetricity or torsion tensors are expected on general
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grounds, which has been known since the late 1970s [37].
The authors of [38] analyzed many of these examples,
notably dynamical Chern-Simons, ghost-free scalar tensor
gravity, (symmetric) teleparallel, and Hořava-Lifshitz.
A common feature of many of these models is that the

parity violating operators have dimension greater than four.
Returning back to dCS, the interaction is a dimension five
operator, and therefore necessitates a mass scale,

LdCS ¼
ϕ

mCS
RR̃; ð1Þ

implying that its potential affect on gravitational parity
violation is suppressed. Moreover, dCS being quadratic in
curvature has the consequence that the field equations are
higher than second order [39]. It is therefore well worth
exploring the possibility of lower dimensional operators
which will not come with an (inverse) mass scale and,
idealistically, be manifestly safe from instabilities arising
from higher derivatives. Studying such an interaction is
precisely the purpose of this note.
The presence of the Levi-Civita symbol contracted with

the Riemann tensor results in an overall sign difference
between the equations of motion for gravitational wave
amplitudes when written in the circular basis. That is, for a
gravitational wave propagating in the z-direction with
polarizations in the xy-plane, we write

hμν ¼
1ffiffiffi
2

p

0
BBB@

0 0 0 0

0 −ðhL þ hRÞ iðhL − hRÞ 0

0 iðhL − hRÞ hL þ hR 0

0 0 0 0

1
CCCA; ð2Þ

where the right- and left-handed strains are related to the
usual þ;× amplitudes by hR;L ¼ 1ffiffi

2
p ðhþ � ih×Þ. Varying

the Einstein-Hilbert Lagrangian with respect to each
amplitude results in simple wave equations for each.
Parity violation will then follow provided an additional
interaction term sources the left- and right-handed ampli-
tudes with a different sign, say

□hL ¼ þΞ;

□hR ¼ −Ξ; ð3Þ

for some Ξ that is an expression involving additional matter
fields and perhaps their derivatives.1 As usual, we define
the graviton as

gμν ¼ ḡμν þ hμν; ð4Þ

where ḡμν in this work will be the flat FLRW metric in
conformal coordinates,

ds̄2 ¼ aðηÞ2ð−dη2 þ dx2 þ dy2 þ dz2Þ: ð5Þ

Parity violating effects in the gravitational sector generi-
cally demand a nonminimal coupling to matter, such as the
pseudoscalar in dCS theory. It is interesting to entertain the
possibility that such matter belongs to a dark sector. Very
recently, the Kalb-Ramond (KR) two-form field Bμν was
studied as a dark matter candidate [41]. The authors showed
that the KR field and Kalb-Ramond-like-particles can be
produced via freeze-in and freeze-out mechanisms and can
account for the relic density of dark matter today. Others
have considered the KR field as a portal between the SM
and dark sectors [42,43]. It has also been studied in the
context of gravitational lensing [44], stellar physics [45],
and more generally in early universe scenarios [46,47]
including leptogenesis [48], as well as late time cosmic
acceleration [49,50].
The KR 2-form is one of three fields in the spectrum of

bosonic string theories [51,52], also arising in a ð1; 0Þ ⊕
ð0; 1Þ representation of the Lorentz group [53]. The KR
field is additionally relevant in the context of axion physics;
in the noninteracting (massless) case, the KR field strength
can be dualized to obtain a pseudoscalar often referred to as
the KR axion [54] (see also [55] for an earlier discussion).
Inspired in particular by the recent attention to the KR

field as a dark matter candidate in models with broken
gauge invariance [41], we consider parity violating effects
due to a coupling between the dual-Riemann tensor and
the KR;

Lint ¼ −
ξ

2
R̃μνρσBμνBρσ: ð6Þ

The KR field carries mass dimension one, therefore in
difference from the dCS coupling, the constant ξ is
dimensionless. This term was written down in [56] in
the context of Lorentz-violating vector and scalar theories,
which we will discuss further in the conclusion. However,
to the best of our knowledge, (6) has not been studied in the
context of parity violation.2

This paper is organized as follows. In Sec. II, we discuss
aspects of the free KR Lagrangian, including a symmetry
breaking process that leads to a simplified scenario where
the field components are constant. In Sec. III, we discuss
properties of the interaction (6) in more detail before
introducing the full theory in Sec. IV. We then focus on1The authors of [40] approached the problem by considering

the right- and left-handed waves as propagating with different
effective Newton constants. This affects the vacuum fluctuations
during inflation and the parity violation would translate into
anomalous CMB polarization.

2In [57], the authors considered couplings between the KR and
Maxwell fields in the context of parity violation, while in [58,59],
a similar construction was explored using the KR axion.
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the perturbations in Sec. V, where we make contact with the
novel, parity violating gravitational wave parametrization
recently presented in [38]. Here we find the solutions to our
model in an arbitrary FLRW cosmology. In Sec. VI, we
discuss constraints on the model parameters from
GW170817 and the GWTC-3 dataset, before concluding
in Sec. VII.

II. FEATURES OF THE KR LAGRANGIAN

The KR field is described by the Lagrangian [51]

LB ¼ 1

12
HμνρHμνρ − VðBÞ; ð7Þ

where

Hμνρ ¼ ∂½μBνρ� ¼ ∂μBνρ þ ∂νBρμ þ ∂ρBμν ð8Þ

is the KR field strength and VðBÞ is some potential. When
V ¼ 0, the theory enjoys a gauge symmetry with trans-
formation3

Bμν → Bμν þ ∂½μAν� ð9Þ

for an arbitrary vector AμðxÞ, corresponding to a shift in B
by an exact 2-form. There is an additional transformation
involving a scalar field,

Aμ → Aμ þ ∂μλ: ð10Þ

Thus although Aμ has four components, only three are
independent. The subsidiary gauge transformation (10) is a
shift involving an exact 1-form. As briefly mentioned in
Sec. I, the gauge invariant theory is dual to the KR axion φ
via ∂μφ ∼ εμνρσHνρσ [54,55] and as is usual in axion
physics, couplings to matter fields are generically parity
violating. The situation is different here, however, due to
presence of the potential and the nonminimal coupling to
the dual Riemann tensor.
The gauge invariance (9), (10) being broken explicitly by

the potential V and the interaction (6) has analogies to the
Proca theory of a massive vector boson, which is known to
be dual to the massive KR field in certain regimes [41,60].
Regarding interactions with the gravitational waves, we
will see that a simple and interesting scenario occurs when
the KR field’s magnitude settles at a nonzero, constant
(classical) value, B2 ¼ B2

ð0Þ. This can be modeled by a

potential of the form

VðBμνBμν − v2Þ: ð11Þ

When the KR field relaxes to the minimum, we have

v2 → ḡμαḡνβBð0Þ
μν B

ð0Þ
αβ ; ð12Þ

where ḡμν is the unperturbed metric. The explicit form of
the potential (11) is not relevant for this work, beyond
requiring that it possesses a nontrivial stable minimum.4 In
theories of this type, such potentials have the consequence
that the physics can display (spontaneous) Lorentz viola-
tion, despite the Lagrange density being Lorentz invari-
ant [56].
The KR field can be parametrized in a particularly simple

form [56,62]. In general, a single KR field in a constant
background value breaks the isotropy of the cosmology
[62], analogous to the case of a single vector field [63].
Global isotropy can be recovered if multiple vector fields
take on constant values of equal magnitude orthogonal to
each other, and we expect a similar story to hold here. We
will save a treatment of such a scenario for future work, and
will solely consider the effect of the interaction on
gravitational waves approximating an isotropic cosmology.
We therefore parametrize the background field as5

Bð0Þ
μν ¼ 1ffiffiffi

2
p

0
BBBBB@

0 −Vea2 0 0

Vea2 0 0 0

0 0 0 Vma2

0 0 −Vma2 0

1
CCCCCA
; ð13Þ

where aðηÞ is the scale factor and Ve, Vm are taken to be
real numbers, and can be thought of as the “electric” and
“magnetic” parts of the KR field, respectively. It then
follows that the minimum of the potential is at

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
m − V2

e

q
; ð14Þ

independent of the background evolution of the spacetime.
It is also natural to expect a mass term for the KR field in
this scenario. For the field to be frozen at the bottom of the
minimum surrounding v, we require the mass to be slightly
smaller than but on the order of v. This will guarantee that
the symmetry breaking minimum exists while simultane-
ously ensuring the field is heavy enough such that no radial
excitations occur, allowing us to treat the field as constant.
However, as we look to make contact with observations in
the late universe with this construction, this is not a
requirement in early universe physics.

3We use the antisymmetrization convention A½μBν� ¼ AμBν −
AνBμ.

4A potential of this form can arise rather naturally. In [61], it
was shown that an effective potential for the KR field possessing
a minimum emerges from quantum corrections following cou-
plings to fermions.

5Note in difference from [56,62], we include the factor of 1ffiffi
2

p
for convenience.
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An alternative justification for considering a frozen KR
background is by simply examining the background
evolution in a flat FLRW spacetime without the interaction
term. The field equation in this case is

B00
μν þ δη½μB00

ν�η þ 2Hδη½μB0
ν�η þ a2

∂V
∂Bμν ¼ 0; ð15Þ

where we have assumed Bμν ¼ BμνðηÞ andH ¼ a0=a is the
Hubble parameter. As is standard in an expanding cosmo-
logical background, the presence of Hubble friction ulti-
mately dampens the evolution of the unperturbed field until
it rests at a constant value. This, of course, will be at the
minimum of the potential where ∂V

∂Bμν ¼ 0.

III. FEATURES OF THE INTERACTION

The interaction (6) is a specific case of a more general
coupling

L ∼ RμνρσPμνρσ; ð16Þ

since here, we can move the Levi-Civita symbol over to one
of the B-fields and equivalently write

Lint ¼ −
ξ

2
RμνρσB̃μνBρσ; ð17Þ

where B̃μν ¼ 1
2
εμναβBαβ. From (16), we see that in consid-

ering equations of motion, we have the derivative

∂L
∂Rμνρσ

¼ Pμνρσ; ð18Þ

which implies that P must inherit all of the symmetries of
the Riemann tensor. That fact is not manifest as it is written
in (17), therefore care must be taken when we derive the
equations of motion covariantly. In particular, we have that

Pμνρσ ¼ 1

3
ðB̃μνBρσ þ BμνB̃ρσÞ

þ 1

6
ðB̃μρBνσ þ BμρB̃νσ þ B̃ρνBμσ þ BρνB̃μσÞ: ð19Þ

It is tedious but straightforward to show that this indeed
possesses all symmetries of the Riemann tensor,

Pμνρσ ¼ −Pνμρσ ¼ −Pμνσρ ¼ Pρσμν; ð20Þ

along with the cyclic property

Pμνρσ þ Pμρσν þ Pμσνρ ¼ 0: ð21Þ

However, when contracted with the Riemann tensor, all of
the terms combine such that

RμνρσPμνρσ ¼ RμνρσB̃μνBρσ: ð22Þ

From an effective field theory standpoint, there are
additional dimension-four operators coupling the KR field
to curvature tensors involving the Levi-Civita symbol that
we could consider at linear order in the curvature;

LBB̃R ¼ ξ2BμλB̃ν
λRμν þ ξ3B̃μνBμνR: ð23Þ

Firstly, these terms are proportional due to the identity
Bμ

λB̃λν ¼ 1
4
gμνBαβB̃αβ, but more relevant for our purposes,

such operators do not contribute to parity violation. In this
work we will therefore focus our attention on (6).

IV. THEORY

We consider the full theory given by

L ¼ LEH þ LB þ Lint þ Lm; ð24Þ

where Lm is any additional matter content and

LEH ¼ m2
p

2
R ð25Þ

is the usual Einstein-Hilbert term, while LB and Lint are
given by (7) and (6), respectively. For an arbitrary back-
ground, the field equations for the B-field and the metric are
given by

∇αHα
μν ¼ −2

∂V
∂Bμν − 2ξR̃μνρσBρσ

m2
pGμν ¼ ξΘμν þ TB

μν þ Tm
μν; ð26Þ

where Tm
μν is the contribution from the additional matter

sector,

TB
μν ¼ −

1

2
Hμ

αβHναβ þ gμν

�
1

12
HαβρHαβρ − VðBÞ

�
ð27Þ

is the stress tensor of the free KR field and

Θμν ¼ ∇α∇βPμανβ −
1

4
gμνR̃αβρσBαβBρσ ð28Þ

stems from the new interaction term, where P is given
by (19).

V. GW SOLUTION IN FLRW BACKGROUND

We will look to make contact with the parametrization
given in [38], where the equations of motion (EOM) for the
left/right helicity amplitudes are written
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h00R;L þ
�
2Hþ λR;L

X∞
n¼1

kn
�

αnðηÞ
ðΛPVaÞn

Hþ βnðηÞ
ðΛPVaÞn−1

��
h0R;L þ k2

�
1þ λR;L

X∞
m¼0

km−1
�

γmðηÞ
ðΛPVaÞm

Hþ δmðηÞ
ðΛPVaÞm−1

��
hR;L ¼ 0;

ð29Þ

where primes denote partial derivatives with respect to conformal time η, H≡ a0=a is the Hubble parameter, λR;L ¼ �1,
and ΛPV is the EFT cutoff. The summation indices are such that n runs over odd integers andm runs over even integers, and
the fαn; βn; γm; δmg functions generically depend on the conformal time and are theory dependent.6 For metric fluctuations
on top of an FLRW cosmology in conformal coordinates, the equations of motion for the gravitational wave amplitudes in
our model become

h00Lþ2Hh0L−∂
2
zhL−

ξ

m2
p

n
2VmVehLð3H2−a00=aÞ− iHðð5V2

mþ3V2
eÞ∂zhLþ2iVmVeh0LÞþ iðV2

mþV2
eÞ∂zh0L

o
¼ 0; ð30Þ

h00Rþ2Hh0R−∂
2
zhR−

ξ

m2
p

n
2VmVehRð3H2−a00=aÞþ iHðð5V2

mþ3V2
eÞ∂zhR−2iVmVeh0RÞ− iðV2

mþV2
eÞ∂zh0R

o
¼ 0: ð31Þ

Due to the presence of the Riemann tensor at linear order, note that a00 appears. In order to cast the (momentum space)
equations in the form of (29), we need to remove the dependence on a00. We can do this by rescaling the amplitudes as
h̃R;L ¼ aphR;L, then solve for p. It is tedious but straightforward to show that p ¼ 2ξVmVe=m2

p, and now writing
h̃R;Lðz; ηÞ ¼ eikzh̄R;LðηÞ, we obtain

h̄00L þ
n
2H − ½AHþ Bk�

o
h̄0L þ

n
k2 − ½CkHþDH2�

o
h̄L ¼ 0; ð32Þ

h̄00R þ
n
2Hþ ½ÃHþ B̃k�

o
h̄0R þ

n
k2 þ ½C̃kHþ D̃H2�

o
h̄R ¼ 0; ð33Þ

where the constants are respectively

A ¼ −6ξṼmṼe;

B ¼ ξðṼ2
m þ Ṽ2

eÞ;
C ¼ 2ξ2ṼmṼeðṼ2

m þ Ṽ2
eÞ − ξð5Ṽ2

m þ 3Ṽ2
eÞ;

D ¼ −8ξṼmṼeð1þ ṼmṼeÞ; ð34Þ

defining dimensionless quantities Ṽm ¼ Vm=mp, Ṽe ¼
Ve=mp, and

Ã ¼ −A; B̃ ¼ B; C̃ ¼ C; D̃ ¼ −D: ð35Þ

From the parametrization (29), two terms can be straight-
forwardly identified:

β1 ¼ B ¼ ξðṼ2
m þ Ṽ2

eÞ;
γ0 ¼ C ¼ 2ξ2ṼmṼeðṼ2

m þ Ṽ2
eÞ − ξð5Ṽ2

m þ 3Ṽ2
eÞ; ð36Þ

however the other two terms, A and D, (a) contribute the
same sign to both helicity amplitudes and (b) do not clearly
fall into the form of (29). For an arbitrary Vm, Ve, we see
that there are parity preserving and parity violating con-
tributions to the EOM.
As is discussed in [56], it is consistent to set the

“electric” part of Bμν equal to zero, which in our notation,
is Ve ¼ 0. In this simplified scenario, the a00 term in (30)
and (31) vanishes, as well as A ¼ Ã ¼ D ¼ D̃ ¼ 0. The
transformation to remove a00 is then trivial (i.e., p ¼ 0), and
the equations of motion become

h̄00R;L þ
n
2Hþ λR;LB̄k

o
h̄0R;L þ

n
k2 þ λR;LC̄kH

o
h̄R;L ¼ 0;

ð37Þ

such that we can easily map our model parameters to those
of [38]

6The parametrization written down in [38] focuses solely on
parity odd effects. Recently, in [64], the parametrization was
extended to include parity even effects, with a focus on Chern-
Simons and the Gauss-Bonnet coupling. Similar models were
also studied in [65,66] in the context of string-inspired infla-
tionary scenarios.
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B̄ ¼ ξṼ2
m ¼ β1; C̄ ¼ −5ξṼ2

m ¼ γ0: ð38Þ

This scenario has the additional interesting feature that the
interaction (6) does not affect the background cosmology.
This is apparent from the form of the interaction’s con-
tribution to the Einstein equations;

Θμν ¼
VeVmða00=a − 4H2Þ

a6

0
BBBBB@

−4a2H2

a00=a−4H2

2

1

1

1
CCCCCA
; ð39Þ

which clearly vanishes when Ve ¼ 0. The cosmological
evolution is thus driven by standard matter and the free
energy of the KR field, with stress tensor

TB
μν ¼ −2V2

mH2

0
BBB@

1

1

−1
−1

1
CCCA

− a2VðBÞ

0
BBB@

−1
1

1

1

1
CCCA; ð40Þ

independent of the value of Ve.
Now, the authors of [38] go on to write down the

solutions for the polarization modes as a function of
redshift z in terms of the parameters of (29), which take
the general form

hR;L ¼ hGRR;L exp

�
∓ ½kð1þ zÞ�n

2

�
αn0
Λn
PV

zn þ
βn0
Λn−1
PV

Dnþ1

��

× exp

�
�i

½kð1þ zÞ�m
2

�
γm0

Λm
PV

zm þ δm0

Λm−1
PV

Dmþ1

��
:

ð41Þ

Here, the summations over m and n are implicit, hGR is the
standard oscillating solution from GR, Dα and zα are
defined as

Dα ¼ ð1þ zÞ1−α
Z ð1þ zÞα−2

HðzÞ dz;

zα ¼ ð1þ zÞ−α
Z

dz
ð1þ zÞ1−α : ð42Þ

The n0, m0 subscript on α, β, γ, δ denote their late time,
slowly varying approximations. Our solution has
β1 ¼ − 1

5
γ0 ¼ ξṼ2

m, thus only m ¼ 0, n ¼ 1 are nontrivial.
In the exponent, we therefore have z0 ¼ lnð1þ zÞ and

D2 ¼ ð1þ zÞ−1DC ≡DA, where DC and DA are respec-
tively the comoving and angular-diameter distances. Our
solution is then

hR;L ¼ hGRR;L exp

�
∓ ξṼ2

m

2
ðkð1þ zÞD2 þ 5iz0Þ

�
: ð43Þ

As we discussed in Sec. I, the interaction being a
dimension-four operator implies that the coupling ξ is
dimensionless, such that there is not a mass scale setting a
clear UV cutoff. This manifests in (43) by way of only
n ¼ 1, m ¼ 0 contributions from (37) along with
αn ¼ δm ¼ 0; no factors of ΛPV survive in the parametri-
zation (29).
The dispersion relation for any parity violating theory

which can be classified by the parametrization (29) is given
by equation (30) in [38]. In our case, this becomes

ω2
R;L ¼ k2f1þ λR;Lk−1γ0Hg

¼ k2f1þ λ̃R;Lk−1g; ð44Þ

defining

λ̃R;L ¼ −λR;Lð5ξṼ2
mHÞ: ð45Þ

From this we easily obtain the phase vp ¼ ω=k and group
vd ¼ dω=dk velocities,

vp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ̃R;Lk−1

q
;

vg ¼
1þ 1

2
λ̃R;Lk−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ λ̃R;Lk−1
q ; ð46Þ

which are clearly different between hR and hL. Taking a
closer look at the group velocity, we have

vg ¼
�
1þ 1

2
λ̃R;Lk−1

��
1 −

1

2
λ̃R;Lk−1 þ

3

8
λ̃2R;Lk

−2 þ � � �
�

≃ 1þ 3

8
λ̃2R;Lk

−2 þOðλ̃3R;Lk−3Þ ð47Þ

for ðξṼ2
mHÞ ≪ 1. Since the correction appears atOðλ̃2Þ, the

sign difference between the left and right handed ampli-
tudes squares away such that they propagate with equal
group velocity to leading order. And because the correction
is non-negative, the model predicts a propagation speed
slightly larger than one. Comparing to the phase velocity,
we see that

vp ≃ 1þ 1

2
λ̃R;Lk−1 −

1

8
λ̃2R;Lk

−2 þOðλ̃3R;Lk−3Þ: ð48Þ

The correction to the phase velocity due to the parity
violating interaction clearly appears at a lower order than
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the group velocity, and the sign difference between hR and
hL survives.

VI. COMMENTS ON CONSTRAINTS

The possibility of parity violation to be observed in
gravitational wave detectors was suggested well over
10 years ago [67,68]. The data currently being gathered
from merger processes [1–4] can in principle constrain
parity violating parameters, although much more progress
on this front will be made from third generation detectors
due to their increased sensitivities [69,70]. Additionally,
very recently, an analysis to constrain parity violation was
carried out in [71] using data from pulsar timing arrays
[5–9]. The two primary effects of interest are velocity
birefringence and amplitude birefringence. The former
refers to right- and left-handed waves propagating with
different frequency dependent phase shifts, the latter
corresponding to an attenuation or amplification of one
polarization over another. It is also the case that modified
theories of gravity generally predict a propagation speed
different from unity. In what follows, we will focus on
propagation speed and amplitude birefringence.

A. Propagation speed

The observation of the coincident gamma ray burst
(GRB)/gravitational wave signal GW170817 has con-
strained the GW propagation speed to be [10]

−3 × 10−15 < cgw − 1 < 7 × 10−16: ð49Þ

The measurement was used to constrain parity violating
effects in ghost-free scalar tensor models in [24] and in
symmetric teleparallel gravity in [31]. Using our result for
the group velocity (47), this translates to a bound on the
parameter Ṽm ¼ Vm=mp. If we take the dimensionless
coupling to be ξ ∼Oð1Þ, and use the upper bound on
(49), then

V4
m

�
H2

k2m4
p

�
< 7 × 10−17: ð50Þ

This can be simplified in terms of the Hubble constant and
proper wave number as

Vm

ffiffiffiffiffiffi
H0

ka

r
≲ 10−4mp: ð51Þ

B. Amplitude birefringence

In [72], the authors studied the GWTC-2 dataset to
construct constraints on amplitude birefringence from
binary black hole merger. They took the ansatz for the
GW amplitudes hR;L ¼ hGRR;Le

λR;LκDC , where κ is referred to
as the opacity parameter and DC is again the coming

distance. They showed that κ ≲ 0.74 Gpc−1, and the
authors of [38] utilized this bound to constrain the
dimensionless parameter β1 to be less than 0.7 × 10−20

at 90% confidence level. More recently, in [73], GWTC-3
data was used to constrain the opacity parameter to be
κ < 0.04 Gpc−1, which is currently the most stringent
bound. Repeating the analysis in [38] with the new bound
on κ results in β1 < 3.8 × 10−22. We can easily translate
this to a bound on the parameter Vm in terms of the Planck
mass. Again setting the coupling as ξ ∼Oð1Þ, since
ξṼ2

m ¼ β1, we find that Vm < 1.9 × 10−11mp, or

Vm ≲ 2.4 × 108 GeV: ð52Þ

That the upper bound on the Vm parameter lies in the
Oð100Þ PeV range is quite interesting. From a purely
theoretical standpoint, it has been known for some time
[74] that the PeV scale is an attractive range for super-
symmetry, admitting unified gauge couplings, disallowing
flavor changing neutral currents, and predicting a Higgs
mass between 125–155 GeV [75]. It has also gained
attention as a candidate energy scale for dark matter
[76], partially motivated by the detection of near-PeV
gamma rays by the Tibet ASγ collaboration [77].
Stringent constraints on PeV scale dark matter were derived
in [78], and future data from Tibet ASγ is expected to
further shed light on the viability of PeV scale dark matter
(see also [79–82] for further relevant discussion of the
gamma ray background).

VII. DISCUSSION

Third generation gravitational wave detectors such as the
Einstein Telescope [69] and Cosmic Explorer [70] are
anticipated to have sensitivities capable of probing beyond
GR effects such as parity violation [83]. Parity violation
may also be observed in large scale structure [17,84]. Any
observation definitively signalling parity violation would
be a smoking gun for gravitational physics beyond general
relativity. It is therefore of great interest to explore various
models which predict gravitational parity violation in
anticipation of such data. In this work, inspired by
recent attention on the Kalb-Ramond field as a dark
matter candidate, we considered parity violation from a
dimension-four operator coupling the dual Riemann tensor
to the KR fields, Lint ¼ − ξ

2
R̃μνρσBμνBρσ. For simplicity, we

constructed a scenario where the KR fields can be treated as
being constant. This will happen provided the KR field
experiences a potential that satisfies ∂V

∂Bμν jBð0Þ
μν

¼ 0 for

Bð0Þ
μν ≠ 0. Two parameters Ve, Vm, characterize the degrees

of freedom of Bμν. After writing down the field equations
for the gravitational waves in the circular basis for arbitrary
Vm, Ve, we restricted to the case Ve ¼ 0 before mapping
the solution to the general parametrization presented
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in [38]. Constraints from the GRB/gravitational wave signal
GW170817 [10] and the GWTC-3 [4] dataset were consid-
ered, and the latter translated to the bound Vm ≲ 108 GeV.
As we discussed in Sec. VI B, this upper bound for dark
matter being near the PeV scale is interesting from theoretical
[74,75] and phenomenological [77,78] standpoints.
We assumed a generic potential was responsible for the

KR field settling into its background value, which triggers
spontaneous Lorentz violation. As a result, (pseudo-)
Nambu-Goldstone modes associated to the field fluctua-
tions along the broken generators emerge [85–88].
Consequences of this spontaneous symmetry breaking
were studied extensively in [56], where the authors derived
reasonable constraints on the Lorentz violating coefficients
present in certain nonminimal curvature couplings (see, e.g.
[89–96]). However, such modes do not play an important
role in our work here.
To get a feel for where the detectability of this model lies,

we can consider the polarization degree

PðkÞ ¼ hhRðkÞh�Rðk0Þ − hLðkÞh�Lðk0Þi
hhRðkÞh�Rðk0Þ þ hLðkÞh�Lðk0Þi

;

where the brackets denote a spatial averaging [97–99]. In our
simplified scenario of a single wave propagating in the
z-direction, we havePðkÞ¼− tanhðξṼ2

mkDC=2Þ. Expanding
the dispersion relation (44) and working to lowest order in
Ṽm, we can write the polarization degree as function of
frequency, PðωÞ ≈ 1

2
ξṼ2

mωDC. Saturating Ṽm at its upper
bound (52) and taking ξ ∼ 1, we find PðωÞ ∼ 10−22ωDC.
Detecting a nonzero polarization degree clearly favors a
higher frequency signal, corresponding to lighter masses
involved in sourcing the gravitational wave emission.
Relatively low mass merger events have been observed
[100] and are expected to have interesting multimessenger
phenomenology [101]. Definitively detecting gravitational
wave birefringence is a formidable task that naturally
depends on the sensitivities of the detectors [102].
Significant efforts have gone into studying detection pros-
pects in the stochastic GW background [71,103–114], in
addition to analysis focusing on late-time merger events. In
the event that a conclusive observation of birefringence is
made in, say, detections from merger processes, we will not
explicitly knowwhich scenariowas responsible provided the
signal’s properties can satisfactorily be described within
known bounds on the model parameters. We expect that
discerning the correct model will only be possible if its
(beyond standard cosmology) predictions are verified at
different scales and in different physical systems. For
example, one would need precision measurements from
next generation CMB observatories, and perhaps primordial
gravitational wave precision properties, to discriminate
between models that in some systems, predict the same
physics.

There are numerous next directions to pursue. On one
hand, couplings to the Riemann tensor contribute non-
trivially to gravitational entropy [115,116]. Many parity
violating theories, such as the interaction we studied in
this work (17) and better studied theories such as
dynamical Chern-Simons gravity, entail couplings to
the Riemann tensor and therefore will modify the Wald
entropy [117]. Entanglement entropy in quantum field
theory was studied in the context of parity violating
theories in [118], where the authors made contact with
gravitational anomalies in flat space. It would be interest-
ing to explore a connection between gravitational entropy
corrections and parity violation in black hole physics.
More generally, black hole solutions with KR hair modify
the shadow and lensing properties in comparison to GR
[119,120]. Repeating such an analysis would offer a
different approach to constraining our model parameters,
as we certainly expect additional modifications as a result
of the interaction (6).
It is of significant importance to consider the conse-

quences of the interaction (6) in early universe physics. The
KR field and more general p-forms in inflationary scenar-
ios have been studied in Starobinsky inflation [121], FðRÞ
theories [122], anisotropic inflation [47], and in general
cosmological backgrounds [46]. Each of these works
assumed even parity and gauge invariance. Gauge invari-
ance being preserved implies the KR field can be described
in terms of one (pseudo)scalar degree of freedom, which is
not an approach that we can take due to the nongauge
invariance of (6). It is therefore interesting to explore the
consequences of (6) in inflationary scenarios, in particular
the deviations from GR for the primordial gravitational
wave spectrum as explored in [97–99], in addition to
consistency with other cosmological observables (for
example, parity violation in the CMB [123]). Allowing
the KR fields to be fully dynamical opposed to frozen in a
constant background value will be relevant in such scenar-
ios. One approach would be to study the interactions with
gravity in their polarization basis, as written in [41]. On the
other hand, as mentioned in Sec. II, genuinely preserving
cosmological isotropy when the KR field is in its back-
ground value should necessitate multiple fields, which may
result in modifications to our results in this paper.
The simplified scenario of Ve ¼ 0 resulted in only

parity-odd contributions to the GW propagation, and
additionally implied the interaction term (6) did not affect
the background evolution of the spacetime, as seen from
(39). The more general case Ve ≠ 0 contributes parity even
and parity odd corrections to the GW propagation, and
therefore can be mapped to the parametrization recently
presented in [64]. It will be interesting to see whether or not
considering constraints from parity-even beyond GR mod-
els can tighten the upper bound on energy scale for the KR
field, v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
m − V2

e

p
. This scenario also nontrivially

affects the background evolution, which, in the context
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of early universe physics, can have a drastic affect
on cosmological observables. A complete analysis will
further shed light on the viability of nonminimal
dimension-four couplings between the Riemann tensor
and the KR field. We leave this and other explorations
to future work.
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