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In this work, we study the gravitational backreaction (i.e., the “self-force”) of a point mass moving
around a nonrotating, compact star on a circular orbit. We find that the additional self-force, comparing
with the case with a point mass orbiting around a Schwarzschild black hole, can be well characterized by a
universal frequency-dependent function multiplied by the (dynamical) tidal deformability of the compact
star. This finding provides the foundation for building the waveform model for an extreme mass-ratio
inspiral system around a starlike black hole mimicker, which is relevant for testing general relativity and
exotic compact objects with space-borne gravitational-wave detectors.
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I. INTRODUCTION

Extreme mass-ratio inspirals (EMRIs) are one of the
two primary extragalactic sources of space-borne gravi-
tational-wave detectors, such as the Laser Interferometer
Space Antenna, TianQin, and Taiji [1–3]. The dominant
formation channels include scattering process in nuclear
star clusters [4] and migration of stellar-mass black
holes in active Galactic nuclei according to the rate
calculations [5–7]. There are recent rate estimates about
accelerated EMRI formation around supermassive black
hole binaries [8], but the rate is still rather uncertain [9,10]
because of the unknown population of close supermassive
black hole binaries, the efficiency of sustaining the
Kozai-Lidov mechanism, and replenishing stellar-mass
black hole supplies in the nuclear cluster. It is also
interesting to characterize the EMRI properties (e.g., mass
and spins [11]) in various formation channels to help
distinguish them in future detection.
Because of the large number of cycles (104–105) in the

detection band, EMRIs are very sensitive probes of small
environmental forces [12–14], possible superradiantly
excited axion clouds [15–17], multipole moments of the
background spacetime [18–21], and the black hole nature
of the central massive object (see the review article [22] for
various classes of black hole mimickers). These are all
important science goals of space-borne gravitational-wave
missions [23–25]. In particular, in order to test the nature of
the central object it is necessary to build a more complete

description for the dynamics and waveform of a stellar-
mass object moving around a massive black hole mimicker
in the strong-gravity regime. Because of the large number
of black hole mimicker options, it is also beneficial if the
waveform of mimickers only (approximately) depends on a
few parameters, e.g., the tidal deformability and “horizon
reflectivity” [26], similar to the problem of modeling
compact stellar-mass binaries in the post-Newtonian
regime, without using fine structure or composition details
of the mimickers. This is also one of the primary motiva-
tions of this work.
We consider a model problem with a point mass moving

along a circular trajectory around a central compact star.
The unperturbed configuration of the star is constructed
using the Tolman-Oppenheimer-Volkoff equation with a set
of equations of state. With the presence of the point mass,
the exterior metric perturbation (outside the star) is solved
using the Regge-Wheeler-Zerilli formalism and the inner
matter and metric perturbations are solved following
similar exercises in [27–31]. The metric perturbations
are matched on the star surface.
With the metric perturbations, we are able to compute

gravitational-wave flux radiated at infinity. In particular, we
are interested in comparing this flux to the one generated by a
point mass circulating around a Schwarzschild black hole
(the masses are the same) with the same orbital frequency.
The flux deviation is dominated by the l ¼ 2, m ¼ 2
component, as expected, which is well fitted by the dynami-
cal tidal deformability of the star times a function of orbital
frequency. The higher-ordermode contributes roughlybelow
a fewpercent of the tidal flux of thel ¼ m ¼ 2mode, except
near the resonant frequency of some particular modes.
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We have chosen several polytropic equations of state (EOS)
for the star and find this tidal flux relation approximately
universal among different EOS. Interestingly, as we extrapo-
late the flux deviation in the limit that the tidal Love number
is zero, we find the flux from a compact star is indistinguish-
able from the infinity flux of the black hole case within the
numerical precision of our implementation. Similar obser-
vations were made in [32–34] using ad hoc reflection
conditions in a Teukolsky solver.
With the metric perturbations, we also compute the

gravitational self-force acting on the point mass.
Regularization is not necessary in this case as we are
interested in the difference of self-force between the
compact star scenario and the black hole scenario. We
find that the t component of the self-force is equal to the
flux radiated at infinity and the ϕ component of the self-
force can be obtained by using ΩFϕ ¼ mFt, where m is
the azimuthal number and Ω is the orbital frequency.
The r-component self-force satisfies a rather linear relation
with the dynamical tidal deformability, which is also
universal for the EOS we have checked. As a result, both
the conservative and dissipative part of the self-force, as
deviated from the black hole case, can be characterized by
the dynamical tidal deformability of the central body and a
function of orbital frequency that we fit through our
numerical calculations. We can then construct an EMRI
waveform model for general starlike black hole mimickers
that contains two free parameters for their finite-size effects:
the tidal deformability and the f-mode frequency. It is
actually interesting to explore other types of mimickers,
such as a boson star, to see whether the universal relation
found here still applies. Indeed, for a black hole mimicker
with size smaller than the radius of the innermost stable
orbit, we show that the tide-induced phase modulation can
reach the level of Oð102Þ–Oð103Þ rad for a typical EMRI
around a 106M⊙ massive black hole. Therefore, such a
waveform model is crucial for the search and identification
of black hole mimickers using EMRI systems.
This article is organized as follows. In Sec. II, we present

an introduction to the equilibrium stellar model obtained by
solving the Tolman-Oppenheimer-Volkoff equations.
Section III is dedicated to deriving the exterior and interior
perturbation equations for both metric and fluid perturba-
tions. In Sec. IV, we explicitly compute the tide-induced
gravitational-wave flux and derive the universal gravita-
tional self-force for a compact star with an orbiting point
mass. Finally, we summarize in Sec. V. Throughout this
paper, except in Sec. IV D, where physical units are used to
construct stellar-mass stars, we adopt geometrical units,
G ¼ c ¼ 1, where G denotes the gravitational constant and
c the speed of light, respectively.

II. EQUILIBRIUM CONFIGURATION

In this section, we briefly explain the construction of the
equilibrium stellar model. The geometry of the star can be

characterized by a static spherically symmetric metric,
which takes the form [27]

ds20 ¼ −eνdt2 þ eλdr2 þ r2ðdθ2 þ sin2θdφ2Þ; ð1Þ

where

eλ ¼
�
1 −

2M
r

�
−1
:

The function ν depends solely on r, while the mass function
MðrÞ represents the gravitational mass enclosed within a
radius r. This mass function must vanish at the center,
Mð0Þ ¼ 0, and the total mass of the star is MðRÞ ¼ M,
where R denotes the star’s radius. Outside the star, r ≥ R,
the metric becomes

eν ¼ e−λ ¼ 1 −
2M
r

: ð2Þ

The state of hydrostatic equilibrium is governed by the
Tolman-Oppenheimer-Volkoff equations [35],

dp
dr

¼ −
ðρþ pÞðMþ 4πr3pÞeλ

r2
; ð3Þ

dν
dr

¼ 2ðMþ 4πr3pÞeλ
r2

; ð4Þ

dM
dr

¼ 4πr2ρ; ð5Þ

where ρ and p are the total energy density and pressure,
respectively. In this work, we use a set of polytropic
equations of state as follows:

FIG. 1. The relationship between the central density ρc of a
stellar-mass compact star and the radius Rc of the star. These
explicit equations of state of the stars are selected from Fig. 3.
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p ¼ κρ1þ1=n; ð6Þ

where κ is the adiabatic constant and n is the polytropic
index. In Fig. 1 we show a set of star configurations with
star mass in the solar-mass range (relevant for ground-
based detectors and the studies in [36]) and parameters used
for later figures except Fig. 14. For EMRI types of
problems, the mass will be orders of magnitude larger
and the central density will be much smaller (see the related
construction in Sec. IV D).
The adiabatic index γ, which dictates the response of

stellar material to pulsational compressions, is expressed as

γ ¼ ρþ p
p

dp
dρ

: ð7Þ

This index will be used in Sec. III A.

III. GRAVITATIONAL PERTURBATION

Given the star equilibrium configuration and the back-
ground spacetime, we now discuss the gravitational per-
turbations generated by an orbiting point mass. In principle,

the calculation can be divided into two separate regimes:
the star interior and the star exterior. Within the star, we
need to account for both the fluid and gravitational
perturbations, where outside the star only gravitational
perturbations need to be considered. The basis strategy of
solving the even-parity perturbation equations is outlined in
Fig. 2, with details presented in Sec. III A (interior
perturbation) and Sec. III B (exterior perturbation),
respectively.

A. Perturbations inside the star

In order to determine the radiation generated by a
massive point particle orbiting around a compact star, it
is natural to consider perturbations inside and outside the
star separately. For the metric perturbations, we follow the
formalism in [27–31] in the Regge-Wheeler gauge

ds2 ¼ ds20 þ ds2odd þ ds2even; ð8Þ

where ds20 is given by Eq. (1), and the odd-/even-parity
parts are

FIG. 2. An illustration plot that shows how even-parity perturbations are solved with corresponding wave equations and boundary
conditions (B.C.). Here the relevant perturbative quantities inside the star are uðrÞ ¼ fH1ðrÞ; KðrÞ;WðrÞ; XðrÞg. To more efficiently
solve the system, we further divide the star interior into two domains: r ≤ R=2 and R=2 ≤ r ≤ R. At the surface of a compact star, we
require that XðRÞ ¼ 0 so that H1ðRÞ, KðRÞ, and WðRÞ can be chosen freely. This means that there are three linearly independent
solutions u1ðrÞ, u2ðrÞ, and u3ðrÞ with coefficients to be determined in the domain R=2 ≤ r ≤ R. Note that inside the star the evolution
equations are Eqs. (19)–(22). At the center of a compact star, given regular boundary conditions (26) and (27) we have two independent
solutions u4 and u5, which can be integrated outward using the evolution equations. On the r ¼ R=2 surface the continuity of
perturbative variables requires α1u1 þ α2u2 þ α3u3 ¼ α4u4 þ α5u5. These four equations may be solved for the five independent
constants αi, leave one free parameter to be determined by using the perturbations outside the star. In the star exterior there are, in
principle, two free parameters for the Zerilli variables and its derivative. However, the outgoing condition at spatial infinity eliminates
one free parameter, with the second free parameter determined by the matching conditions at the star surface.
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ds2odd¼ 2h0

�
−

1

sinθ
∂Ylm

∂φ
dtdθþ sinθ

∂Ylm

∂θ
dtdφ

�
e−iωt

þ2h1

�
−

1

sinθ
∂Ylm

∂φ
drdθþ sinθ

∂Ylm

∂θ
drdφ

�
e−iωt;

ð9Þ

ds2even ¼ eνζlH0Ylme−iωtdt2 þ 2iωrζlH1Ylme−iωtdtdr

þ ζlH0Ylme−iωtdr2

þ r2ζlKYlme−iωtðdθ2 þ sin2θdφ2Þ; ð10Þ

with

ζ ¼
�
r=R 0 ≤ r < R

1 r ≥ R;
ð11Þ

the functions H0, H1, and K are functions of only r and
Ylmðθ;φÞ are the spherical harmonics.
The metric perturbations give rise to the perturbation of

the Einstein tensor δGμν according to

−2δGμν ¼ hμν;α;α − ðfμ;ν þ fν;μÞ þ 2Rρ
μ
α
νhρα

þ hαα;μ;ν − ðRρ
νhμρ þ Rρ

μhνρÞ
þ gμνðfλ;λ − hαα;λ;λÞ þ hμνR

− gμνhαβRαβ; ð12Þ

fμ ¼ hμα;α; ð13Þ

where Rμν and R are the background Ricci curvature and
scalar curvature. Einstein’s equation requires that
δGμν ¼ 8πδTμν, where the fluid perturbations of the star
determines δTμν.

1. Even parity

The perturbations of the fluid variables in the stellar
model are described with the fluid dislocation vector field
ξa. In the appropriate gauge ξt ¼ 0, and the relevant
components are given by

ξr ¼ ζlr−1e−λ=2WYlme−iωt; ð14Þ

ξθ ¼ −ζlr−2Vð∂θYlmÞe−iωt; ð15Þ

ξφ ¼ −
ζl

r2 sin2 θ
Vð∂φYlmÞe−iωt; ð16Þ

where W and V are functions of only r. Given the fluid
displacement mentioned above, the fluid four-velocity can
be given by [37]

uμ ¼ ðut; ur; uθ; uϕÞ

¼
�
−eν=2

�
1 −

1

2
H0Ylme−iωt

�
;

× e−ν=2
�
−
iω
r2

Weλ=2 þH1

�
Ylme−iωt;

× iωe−ν=2Vð∂θYlmÞe−iωt; iωe−ν=2Vð∂φYlmÞe−iωt
�
:

ð17Þ

Then the energy-momentum tensor of a perfect fluid can be
written as

Tμν ¼ ðρþ pÞuμuν þ pgμν: ð18Þ

With the stress-energy perturbations of the fluid and after
plugging the perturbed metrics of Eq. (10) into Eq. (12), the
system of equations can be obtained,

H0
1 ¼ −

1

r

�
lþ 1þ 2Meλ

r
þ 4πr2eλðp − ρÞ

�
H1

þ 1

r
eλ½H0 þ K − 16πðρþ pÞV�; ð19Þ

K0 ¼ 1

r
H0 þ

lðlþ 1Þ
2r

H1 −
�
lþ 1

r
−
1

2
ν0
�
K

−
8πðρþ pÞeλ=2

r
W; ð20Þ

W0 ¼−
lþ1

r
Wþ reλ=2

�
e−ν=2X
γp

−
lðlþ1Þ

r2
Vþ1

2
H0þK

�
;

ð21Þ

X0 ¼−
lX
r
þðρþpÞeν=2

�
1

2

�
1

r
−
1

2
ν0
�
H0−

lðlþ1Þ
2r2

ν0V

þ1

2

�
rω2e−νþlðlþ1Þ

2r

�
H1þ

1

2

�
3

2
ν0−

1

r

�
K

−
1

r

�
4πðρþpÞeλ=2þω2eλ=2−ν−

1

2
r2
�
e−λ=2

r2
ν0
�0�

W

�
;

ð22Þ

where the functions V and H0 can be obtained by the
following relations as a consequence of Einstein’s equations:

X ¼ ω2ðρþ pÞe−ν=2V −
p0eðν−λÞ=2

r
W

þ 1

2
ðρþ pÞeν=2H0: ð23Þ

HereXðRÞ ¼ 0must be satisfied as the pressure must vanish
at the star surfaces. In addition, H0; H1; X; K are related by
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�
3M þ 1

2
ðlþ 2Þðl − 1Þrþ 4πr3p

�
H0

¼ 8πr3e−ν=2X −
�
1

2
lðlþ 1ÞðM þ 4πr3pÞ − ω2r3

eλþν

�
H1

þ
�
1

2
ðlþ 2Þðl − 1Þr − ω2r3e−ν

þ 1

r
eλðM þ 4πr3pÞð3M − rþ 4πr3pÞ

�
K: ð24Þ

The original set of perturbation equations was derived by
Thorne and Campolattaro in [27]. They were later obtained
by many authors [28,29,31,38] in various conventions. It is
important to note that Eqs. (19)–(22) are singular near the
center r ¼ 0 since 1=r is not analytic in the neighborhood
of the center. As a result, we assume that the solutions are
represented by power series expansions near the center
r ¼ 0, which are given by

H1ðrÞ ¼ y0 þ
1

2
y2r2 þ � � � ;

KðrÞ ¼ k0 þ
1

2
k2r2 þ � � � ;

WðrÞ ¼ w0 þ
1

2
w2r2 þ � � � ;

XðrÞ ¼ x0 þ
1

2
x2r2 þ � � � : ð25Þ

If we substitute Eq. (25) into Eqs. (19)–(22) and solve the
equations order by order, we can obtain the first-order
constraints Oðr0Þ and the second-order constraints Oðr2Þ.
In particular, the first-order constraints Oðr0Þ, following
these relations, can be written as

x0 ¼ ðρ0 þ p0Þeν0=2
��

4π

3
ðρ0 þ 3p0Þ

− ω2e−ν0=l
�
w0 þ

1

2
k0

�
; ð26Þ

y0 ¼
2lk0 þ 16πðρ0 þ p0Þw0

lðlþ 1Þ ; ð27Þ

where ρ0, p0, and ν0 are constants defined in the power
series as

ρ ¼ ρ0 þ
1

2
ρ2r2 þ � � � ; ð28Þ

p ¼ p0 þ
1

2
p2r2 þ

1

4
p4r4 þ � � � ; ð29Þ

ν ¼ ν0 þ
1

2
ν2r2 þ

1

4
ν4r4 þ � � � : ð30Þ

The constants p2, p4, etc., are obtained from the series
expansion of Eqs. (3)–(5). They are

p2 ¼ −
4π

3
ðρ0 þ p0Þðρ0 þ 3p0Þ; ð31Þ

ρ2 ¼
p2ðρ0 þ p0Þ

γ0p0

; ð32Þ

ν2 ¼
8π

3
ðρ0 þ 3p0Þ; ð33Þ

p4 ¼ −
2π

5
ðρ0 þ p0Þðρ2 þ 5p2Þ−

2π

3
ðρ2 þ p2Þðρ0 þ 3p0Þ

−
32π2

9
ρ0ðρ0 þ p0Þðρ0 þ 3p0Þ; ð34Þ

and

ν4 ¼
4π

5
ðρ2 þ 5p2Þ þ

64π2

9
ρ0ðρ0 þ 3p0Þ: ð35Þ

The second-order constraints Oðr2Þ imposed on these
functions h2, k2, w2, and x2 are

−
1

4
ðρ0 þ p0Þk2 þ

1

2

�
p2 þ ðρ0 þ p0Þ

ω2ðlþ 3Þ
lðlþ 1Þ e−ν0

�
w2 þ

1

2
e−ν0=2x2

¼ 1

4
ν2e−ν0=2x0 þ

1

4
ðρ2 þ p2Þk0 þ

1

4
ðρ0 þ p0ÞQ0 þ

1

2
ω2ðρ0 þ p0Þe−ν0Q1

−
�
p4 −

4π

3
ρ0p2 þ

ω2

2l
½ρ2 þ p2 − ðρ0 þ p0Þν2�e−ν0

�
w0; ð36Þ

1

2
ðlþ 2Þk2 −

1

4
lðlþ 1Þy2 þ 4πðρ0 þ p0Þw2 ¼

4π

3
ðρ0 þ 3p0Þk0 þ

1

2
Q0 − 4π

�
ρ2 þ p2 þ

8π

3
ρ0ðρ0 þ p0Þ

�
w0; ð37Þ
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1

2
ðlþ3Þy2−k2−8πðρ0þp0Þ

lþ3

lðlþ1Þw2¼ 4π

�
1

3
ð2lþ3Þρ0−p0

�
y0þ

8π

l
ðρ2þp2Þw0−8πðρ0þp0ÞQ1þ

1

2
Q0; ð38Þ

1

2
ðlþ 2Þx2 −

1

8
lðlþ 1Þðρ0 þ p0Þeν0=2y2 − ðρ0 þ p0Þe−ν0=2

�
1

4
ðlþ 2Þν2 − 2πðρ0 þ p0Þ −

1

2
ω2e−ν0

�
w2

¼ 1

2

�
ρ2 þ p2 þ

1

2
ðρ0 þ p0Þν2

�
lx0

ρ0 þ p0

þ ðρ0 þ p0Þeν0=2
�
1

2
ν2k0 þ

1

4
Q0 þ

1

2
ω2e−ν0y0 −

1

4
lðlþ 1Þν2Q1

þ
�
1

2
ðlþ 1Þν4 − 2πðρ2 þ p2Þ −

16π2

3
ρ0ðρ0 þ p0Þ þ

1

2

�
ν4 −

4π

3
ρ0ν2

�
þ 1

2
ω2e−ν0

�
ν2 −

8π

3
ρ0

��
w0

�
; ð39Þ

where

Q0 ¼
4

ðlþ 2Þðl − 1Þ
�
8πe−ν0=2x0 −

�
8π

3
ρ0 þ ω2e−ν0

�
k0

−
�
2π

3
lðlþ 1Þðρ0 þ 3p0Þ − ω2e−ν0

�
y0

�
; ð40Þ

Q1¼
2

lðlþ1Þ
�

x0
γ0p0

e−ν0=2þ3

2
k0þ

4π

3
ðlþ1Þρ0w0

�
: ð41Þ

In summary, for the even-parity modes, we have four
equations, (19)–(22), governing the “evolution” of four
physically independent perturbative variables H1; K;W; X
in the radial direction. To obtain physically relevant
solutions, we also need to specify relevant boundary
conditions. For example, XðRÞ ¼ 0 must be satisfied
because the pressure must vanish on the surfaces. In
addition, we have two regular boundary conditions,
Eqs. (26) and (27), to be satisfied at the center of the star.
Therefore, there are in total three boundary conditions at
the star center and the star surface. As a result, the four free
variables can be constrained leaving one free parameter,
which should be determined by using the information of
perturbations outside the star.

2. Odd parity

In the interior region of a star, the odd-parity modes are
described by a single wave equation for gravitational
perturbations. The odd-parity modes cannot couple to
the pulsation of the star [27]. The master wave variable
Xint is related to the functions h1 and h0 by [37]

h1 ¼ eλrXint; ð42Þ

h0 ¼
i
ω
e−λ

d
dr

ðrXintÞ: ð43Þ

The equation governing the wave function X is derived
from the linearized Einstein equation for odd parity,

d2Xint

dr�2
þ ðω2 − VintÞXint ¼ 0; ð44Þ

where

r� ¼
Z

r

0

e−ðν−λÞ=2dr;

V int ¼ eν
�
lðlþ 1Þ

r2
−
6MðrÞ
r3

− 4πðp − ρÞ
�
:

B. Perturbations outside the star

Outside the star, only gravitational perturbations are
relevant, which are described by a second-order wave
equation and a master variable Zeven;odd for the even-
and odd-parity case, respectively,

�
d2

dr�2 þ ω2 − Veven;odd

�
Zeven;odd ¼ Seven;odd; ð45Þ

where V is an effective potential defined as

Veven¼
e−λ½2n2ðnþ1Þr3þ6n2Mr2þ18nM2rþ18M3�

r3ðnrþ3MÞ2 ;

ð46Þ

Vodd ¼ eλ
�
lðlþ 1Þ

r2
−
6M
r3

�
: ð47Þ

Here, S is the source term for the wave equations. In this
work, they are obtained by using the test particle trajectory
orbiting around a massive star. The detailed expression is
given in the Appendix.
The master variable Z (for even and odd parity, respec-

tively, subscript abridged) must match with internal metric
perturbation quantities at the star surface r ¼ R. For the
even parity, the Zerilli function Z is related to interior
perturbation functions at the surface as

Zðr�Þ ¼ −
r2e−λ

nrþ 3M
H1 þ

r2

nrþ 3M
K; ð48Þ
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dZðr�Þ
dr�

¼ nðnþ 1Þr2 þ 3nMrþ 6M2

ðnrþ 3MÞ2 e−λH1

−
nr2 − 3nMr − 3M2

ðnrþ 3MÞ2 K; ð49Þ

which is evaluated at r ¼ R.
For the odd parity, metric perturbations h1 and h0 are

related to the single wave variable Z through

h1 ¼ eλrZ; ð50Þ

h0 ¼
i
ω
e−λ

d
dr

ðrZÞ − 8πi
ω

r2e−λffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nðnþ 1Þp Dðω; rÞ; ð51Þ

where Dðω; rÞ is one of the source terms, as detailed in
the Appendix. This expression should also be evaluated
at r ¼ R.
Away from the star surface, in order to solve Eq. (45)

with boundary conditions (48) and (49), we apply the
Green’s function approach. We first consider the homo-
geneous solution of Eq. (45),

�
d2

dr�2
þ ω2 − V

�
Zhom ¼ 0; ð52Þ

with the same boundary conditions. There are two inde-
pendent solutions Zhom

out and Zhom
in that correspond to out-

going and incoming waves at infinity, respectively,

Zhom
out → eiωr

�
; ð53Þ

Zhom
in → e−iωr

�
; ð54Þ

as r → ∞. Therefore, the exact solution of Eq. (52) can be
expressed as

Zhom ¼ αZhom
out þ βZhom

in ; ð55Þ

where α and β should be compatible with the boundary
conditions (48) and (49).
With the homogeneous solutions and the boundary

conditions (48) and (49), the solution of the wave equa-
tion (45) is given by [39]

Zðr�Þ ¼ αZhom
out ðr�Þ þ βZhom

in ðr�Þ þ
Z

∞

R�
Gðr�; s�ÞSðs�Þds�;

ð56Þ

where Gðr�; s�Þ is Green’s function

Gðr�; s�Þ ¼ 1

W

�
−Zhom

out ðr�ÞZhom
in ðs�Þ

þ Zhom
in ðr�ÞZhom

out ðs�Þ
�
Θðr� − s�Þ: ð57Þ

Here W is the Wronskian and ΘðxÞ is the Heaviside
function. This Green’s function corresponds to the inho-
mogeneous equation (45) with a δ function source and the
boundary conditions

ZðRÞ ¼ 0; ð58Þ

dZ
dr�

ðRÞ ¼ 0: ð59Þ

At spatial infinity, the solution Zðr�Þ is

Zðr� → ∞Þ ¼ ðαþ τÞeiωr� þ ðβ þ σÞe−iωr� ; ð60Þ

where

τ ¼ −
1

W

Z
∞

R
Zhom
in ðs�ÞSðs�Þds�; ð61Þ

σ ¼ 1

W

Z
∞

R
Zhom
out ðs�ÞSðs�Þds�: ð62Þ

Since the wave at infinity must be outgoing, we have

β þ σ ¼ 0: ð63Þ

Therefore, at infinity, the asymptotic behavior of Zðr�Þ is
given by

Zðr�Þ → Aeiωr
�
; for r → ∞; ð64Þ

where the amplitude Alm is

A ¼ αþ τ ¼ −
1

β
ð−βτ þ ασÞ

¼ −
1

β

1

W

Z
∞

R
ðαuhomout þ βuhomin ÞSðs�Þds�

¼ −
1

β

1

W

Z
∞

R�
Zhomðs�ÞSðs�Þds�

¼ −
1

W

Z
∞

R�

�
α

β
Zhom
out þ Zhom

in

�
Sðs�Þds�: ð65Þ

Notice that the ratio α=β is fully determined by requiring
Zhom to satisfy the boundary conditions (48) and (49).

IV. GRAVITATIONAL SELF-FORCE

In order to determine the long-term evolution of a
particle moving around a central body, it is necessary to
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understand the radiation reaction, i.e., the gravitational self-
force. The force includes both the conservative part and the
dissipative part, where the conservative part is relevant for
the self-force modified energy and angular momentum, and
the dissipative part is related to the gravitational-wave flux.
In this work, we only consider circular orbits, so that the
dissipative effect only affects Ft; Fφ, and the conservative
part is characterized by Fr [40]. To address the finite-size
effect of the central body, we use various star models to
evaluate the self-force. One interesting observation we have
made is that there are universal relations for the self-force
quantities, which to the leading order only depend on the
dynamical tidal deformability. This is convenient as we can
use only two numbers to summarize the finite-size effect:
the equilibrium tidal Love deformability and the f-mode
frequency. We start with tide-induced gravitational-wave
flux for l ¼ 2, including both m ¼ �2 modes, and then
discuss gravitational self-force Ft and Fr for l ¼ 2
perturbations, including the demonstration of universal
relations. In Sec. IV C we also discuss higher-order con-
tributions with l ≥ 3 to the gravitational self-force.

A. Tide-induced gravitational-wave flux

In this section, we consider the tide-induced gravita-
tional-wave flux Ptide. We are interested in computing the
difference between the energy flux generated by a point
mass circulating around a compact star and the one
generated by a point mass circulating around a
Schwarzschild black hole (the masses are the same) at
infinity with the same orbital frequency, which is defined as
the tidal-induced gravitational-wave flux.
As the central compact star can vary in size, internal

structure, and equation of state, it is important to efficiently
characterize the tidal-induced flux for various compact
stars, especially for the waveform model construction
purpose. Intuitively, the deformed star produces additional
radiative moments in the radiative zone, which superposes
on the radiative moments due to the moving point mass and
affects the total flux. It is also reasonable to expect that the
star deformation and the resulting radiative moments are
related to the dynamical tidal deformability of the star. At
the quadrupole order, the star deformation (in the static
limit) can be described as

Qij ¼ −λ̃2Eij; ð66Þ

where Qij is the quadrupole moment of the star, and Eij is
the external quadrupole tidal field. The l ¼ 2 static
dimensionless Love number is given by

k2 ¼
3

2
λ̃2R−5 ¼ 3

2
λ2

�
M
R

�
5

; ð67Þ

where λ2 ¼ λ̃2M−5 is the dimensionless tidal deformability.

Therefore, for weak perturbations of any compact star,
we first propose an ansatz for the tide-induced flux as

PtideðωÞ ¼ λdyn2 P0ðωÞ; ð68Þ

where P0ðωÞ is a function of the frequency ω ¼ mΩ. On
the other hand, the dynamic (dimensionless) tidal deform-
ability is given by [41,42]

λdyn2 ¼ λ2
ω2
f

ω2
f − ω2

; ð69Þ

where λ2 ¼ 2
3
k2R5=M5 is the dimensionless equilibrium

tidal deformability and ωf is the f-mode frequency of the
compact star. By examining the flux for different star
configurations, we find that the finite-size effect of the
star is nicely encoded in λdyn2 , leaving an approximately
universal P0ðωÞ for various stars. This property is very
important for constructing an efficient waveform model for
various kinds of black hole mimickers, as they may be quite
different in nature. Another interesting fact we find is that
the linear dependence in λdyn2 may not be fully accurate (i.e.,
see Fig. 3) whenω increases relative to intrinsic frequencies
of the star, possibly due to the breakdown of the single-
mode approximation in characterizing the star deformation.
Nevertheless, we find a power-law expansion in λdyn2 gives
rise to a decent universal description as well.
In order to determine the f-mode frequency of a neutron

star, we apply the approximate relationship between the
f-mode frequency and the tidal deformability as provided
in [43,44]. The explicit relationship is given by

Mωf ¼ Σiaiðλ2Þi; ð70Þ

where

a0 ¼ 1.442 × 10−1; a1 ¼ 3.005 × 10−2;

a2 ¼ −1.607 × 10−2; a3 ¼ 2.092 × 10−3;

a4 ¼ −9.247 × 10−5:

It is worth noting that the f-mode frequency calculated
using Eq. (70) typically has an error of approximately
1% [43,44]. This error becomes significantly amplified
when it is applied in Eq. (69) near resonance. As a result,
we numerically refine the values obtained from Eq. (70) by
numerically searching for the resonant frequency, using
Eq. (69) to compute the initial values of the searching
algorithm.
In order to test the universal relations between tidal-

induced flux and the dynamic tidal Love number, we need
to explore different star EOS. For simplicity, we pick the
polytropic equation of state
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p ¼ κρ1þ1=n; ð71Þ

where κ is the polytropic constant and n is the polytropic
index. In this work we have chosen four different poly-
tropic indexes: n ¼ 1.0, n ¼ 0.6, n ¼ 0.9, and n ¼ 1.2. For
each n, we vary the values of κ and central density ρc of the
neutron star to obtain different values of λdyn2 .
Now we are ready to explore the tide-induced flux for

various types of central stars and at different orbit frequen-
cies of the point mass. We first fix the orbital frequency Ω,
and compute the tide-induced gravitational-wave flux
Ptide l ¼ 2, including both m ¼ �2 modes at infinity as
shown in Fig. 3. We pick different polytropic parameters n,
κ but vary the central density to make sure star mass
remains constant. For all the frequencies we have explored,
the tide-induced gravitational flux Ptide varies on a single
curve as a function of the dynamic tide deformability. This
is nontrivial, as different points lying on the curve may
belong to different star EOS, as shown explicitly in Fig. 3

for four representative frequencies. The curve may deviate
from linearity for large λdyn2 . We suspect that this nonlinear
behavior may come from the additional contribution from
higher-order p modes, which generally have higher reso-
nant frequency that the f-mode. As the ratio between the
orbital frequencyΩ and the f-mode frequency ωf increases,
the higher-order modes may also be increasingly excited.
Therefore, for the same Ω but larger λdyn2 (so that the star
size is larger and ωf is smaller), the nonlinear effect
becomes larger. On the other hand, in a recent work by
Pitre and Poisson [45], the time-domain tidal response of a
star is compared to a mode decomposition picture. Their
results show that the dynamical tides approximately match
that of the f-mode description in the mode representation.
The relative error is about 5%. In Fig. 4, we show the
relationship between the dynamical tidal deformability and
frequency ω ¼ mΩ for four different equations of state.
The dynamical tidal deformability increases as the orbital
frequency approaches the f-mode resonance.

FIG. 3. The tide-induced gravitational-wave flux for l ¼ 2, including both m ¼ �2 modes, denoted as Ptide, are illustrated for various
dynamical Love numbers across four distinct panels. Each panel corresponds to a specific orbital frequency MΩ, namely, 0.0516,
0.0413, 0.032, and 0.0237. The range of dynamical deformability for the plots is chosen to show a certain level of nonlinearity. The
results indicate that, for a given orbital frequency, the tide-induced gravitational-wave flux can be universally characterized by the
(dynamical) tidal Love number of the compact star. For these plots, we have chosen EOS with four different polytropic indexes, n ¼ 1.0,
n ¼ 0.6, n ¼ 0.9, and n ¼ 1.2. These stars have the same mass 1.4M⊙.
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With the observation of universality shown in Fig. 3, it is
natural to expect that tide-induced gravitational-wave flux
is well characterized by the dynamic tidal deformability of
the compact star and orbital frequency. Therefore, the next
step is to obtain a mathematical description for the
universal relation between tide-induced gravitational-wave
flux and tidal deformability, regardless of equation of state.
Based on the discussion of nonlinearity, we further assume
the following fitting formula:

Ptide ¼ ðλdyn2 Þ2aðMΩÞ þ λdyn2 bðMΩÞ; ð72Þ

with the functions aðMΩÞ; bðMΩÞ to be determined by the
numerical data with different λdyn2 and Ω.

For simplicity, we choose a n ¼ 0.6 type of star with
various central density and fixed orbital frequency, similar
to Fig. 3. After applying to linear þ quadratic fit for λdyn2 ,
we can obtain aðMΩÞ; bðMΩÞ for that particular frequency.
After that, we vary the orbital frequency to compute
frequency-dependent data points for aðMΩÞ and bðMΩÞ,
which are shown in Fig. 5. We can fit these data points
using rather simple fitting formulas as

aðMΩÞ ¼ 32

5
ðMΩÞ30=3	3.648e40.48ðMΩÞ þ 6.737



; ð73Þ

bðMΩÞ ¼ 32

5
ðMΩÞ20=3	1.405e30.63ðMΩÞ þ 4.614



: ð74Þ

In order to assess the accuracy of these fitting formulas,
we pick a star with a different EOS, e.g., n ¼ 1.5, that has
not been previously considered in this study. The detailed
parameter of the star and the tide-induced energy flux
produced by an orbiting point mass with various frequen-
cies are shown in Fig. 6. These data points are also
compared with the fitting formula in Eq. (73). It is evident
that, throughout most of the inspiral process, the relative
error is bounded below 3%, even up to an angular
frequency of Mω ¼ 0.1267 that is close to the f-mode
frequency ðMωf ¼ 0.1271Þ. We have tested several star
configurations with various polytropic EOS and the per-
formance of the fitting formula is similar. In the future it
may be worthwhile to further test this with more general
star EOS and different kinds of central objects, such as
boson stars.
There is another intriguing observation associated with

the mathematical form of Eq. (72), that we have not

FIG. 4. The relationship (69) between dynamical tidal deform-
ability and frequency ω ¼ mΩ for four different equations of
state, but with the same mass 1.4M⊙. The closer to the f-mode
frequency, the greater the dynamical tidal deformability.

FIG. 5. Data values a, b and the corresponding fitting functions aðMΩÞ, bðMΩÞ are shown. We use several stars with polytropic
equations of state n ¼ 0.6. For different values of angular frequency Ω, the associated values of a, b can be similarly obtained.
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included a term that does not depend on λdyn2 . The physical
meaning of this term would be the tide-induced flux in the
limit that the dynamical tidal deformability approaches
zero. Numerically, in such limit the data points suggest that
the tide-induced flux actually decreases to zero within the
numerical precision of our implementation. Consequently,
in this extreme scenario, the energy flux radiated to infinity
is the same for the case with a point particle orbiting around
a compact star (with λdyn2 approaching zero) and that with a
point particle orbiting a black hole. This point is rather
surprising as intuitively the compact star does not have a
horizon, so the ingoing gravitational wave should even-
tually come out and superpose on the original outgoing
gravitational waves, modifying the total outgoing flux.
Indeed, this point should be further tested in the future with
higher numerical precision.
This finding is actually consistent with the result

presented in [32], where a Teukolsky equation is solved
with modified boundary condition near the horizon. It is
demonstrated that the energy flux at infinity remains
unchanged irrespective of the value of R, which includes
the black hole case ðR ¼ 0Þ. Here R denotes the ad hoc
reflection coefficient defined on the inner surface.

B. Gravitational self-force for l= 2 perturbations

We have shown that the tide-induced modification of the
gravitational-wave flux radiated to infinity satisfies a
universal relation with the dynamic (dimensionless) tidal
deformability of the central object. In this section, we
switch the focus from the field at infinity to the field near
the orbiting point mass, although they are related by the
wave equation, and show that a similar universal relation
also holds for the tide-induced gravitational self-force.

We only consider the l ¼ 2 piece of the perturbation here
because it is the dominant part of the flux, and that we only
use k2 to describe the dynamic tide.
Gravitational self-force is the necessary ingredient to

build the waveform of EMRIs. Before showing the calcu-
lation details, we first briefly review the basic strategy of
evaluating the gravitational self-force for a point particle μ
in a circular orbit around Schwarzschild black holeM, with
μ=M ≪ 1. The spacetime metric with a moving point mass
can be written as

gab ¼ g0ab þ hab; ð75Þ

where g0ab is the Schwarzschild metric, and hab is a metric
perturbation. Based on the formalism in [46], we can write
down the general gravitational self-force as

Fa ¼ −
1

2
μðgab0 þ ũaũbÞð2∇dhbc −∇bhcdÞũcũd; ð76Þ

where ũa is a smooth extension of the four-velocity off of
the particle’s worldline. As the gravitational self-force
formally diverges near the point mass, the metric pertur-
bation into a singular piece and a regular piece [47]

hab ¼ hSab þ hRab; ð77Þ

where

−2δGab½hS� ¼ −16πTab; −2δGab½hR� ¼ 0:

In the above equation, hSab is singular at the location of
particle, but does not contribute to the gravitational self-
force. On the other hand, hRab is regular on the worldline and
can be used to compute the self-force

Fa
self ¼ −

1

2
μðgab0 þ uaubÞð2∇dhRbc −∇bhRcdÞucud: ð78Þ

The equation of motion of a particle μ is given by

μ
D2xa

Dτ2
¼ μ

Dua

Dτ
¼ Fa; ð79Þ

where the covariant derivatives are taken with respect to the
background Schwarzschild spacetime. Then we define E
and L as follows:

E ¼ −ut; L ¼ uφ: ð80Þ

If we only consider a circular orbit, by combining Eq. (79)
and the normalized condition uaua ¼ −1, we have through
OðμÞ [40]

E ¼ E0

�
1 −

�
r0
2μ

�
Fr

�
; ð81Þ

FIG. 6. Comparison between the fitting formula (72) of tide-
induced energy flux Ptide at infinity and that produced by a point
particle orbiting around a compact star with polytropic equation
of state n ¼ 1.5, ρc ¼ 5 × 1015 g=cm3, and κ ¼ 12.445425 km2.
In the most range of inspiral process, the error is less than 3%.
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L ¼ L0

�
1 −

�
r20

2Mμ

�
Fr

�
; ð82Þ

where E0 and L0 are the energy and angular momentum of
circular geodesic, which are given by

E0 ¼
1 − 2M=r0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3M=r0

p ; ð83Þ

L0 ¼
ffiffiffiffiffiffiffiffiffi
Mr0

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3M=r0

p : ð84Þ

In addition, in the circular-orbit case, Faua ¼ 0 implies that

Fφ ¼ E0

L0

Ft: ð85Þ

Therefore,Ft;ϕ are related, so that in this sectionwe focus on
the tide-induced gravitational self-force Ft;tide and Fr;tide.
As mentioned above, the gravitational self-force of a

point particle orbiting around a Schwarzschild black hole
needs to be regularized to remove the formula divergence.
This often requires the computation of the singular field hS.
However, in our work we only consider the difference of
the self-force between a compact star (CS) scenario and a
black hole (BH) scenario, for a point mass moving with the
same orbital frequency. As we are only interested in the
leading-order contribution in the mass ratio, the point mass
can be assumed to follow a geodesic of the background
spacetime. That means the singular field in both cases can
be chosen to be the same, so that

hRCS − hRBH ¼ ðhRCS þ hSCSÞ − ðhRBH þ hSBHÞ
¼ hCS − hBH: ð86Þ

We can just use the hBH; hCS obtained from the solver
described in Sec. III and evaluate the difference at each
mode, which should be the mode decomposition of the
difference in the regular field hR at the location of the
point mass.
We can now compute the gravitational-wave self-force as

contributed by the tidal deformation of the star using the
local field near the point mass. The “t” component is
dissipative, in the sense that it will flip sign with the time
reversal operation. In addition, based on the energy balance
equation, the rate of change of the (specific) energy
parameter E is

dE
dt

¼ −
1

μut0
Ft: ð87Þ

It also is balanced by the flux of gravitational-wave energy
radiated to infinity and through the horizon (if it exists),
averaged over the orbital timescale. Then we have the

following energy-balance relation (hĖ∞i and hĖEHi are
both positive, where the angular bracket stands for the
averaging procedure over multiple wavelengths):

hĖtotali ¼ hĖ∞i þ hĖEHi ¼ −μĖ ¼ Ft

ut0
ð88Þ

for a black hole and

hĖtotali ¼ hĖ∞i ¼
Ft

ut0
ð89Þ

for a compact star.
Notice that the energy flux can be computed using the

field at infinity and horizon and the self-force can be
computed using the local field near the point mass. We can
then subtract Eqs. (88) and (89) to obtain the tide-induced
flux difference and the tide-induced self-force difference.
Their values should equal each other according to the
energy balance law, which can serve as a test of our
calculation. The values obtained for the total tide-induced
energy flux Ėtide

total and tide-induced self-force Ft;tide for the
l ¼ 2, including both m ¼ �2 modes, are listed in Table I.
In this particular case, the equation of state of the central
compact star is p ¼ κρΓ, with Γ ¼ 2, κ ¼ 107.32848 km2

and mass 1.4M⊙. We can find that the fractional differences
between the values for various orbital frequencies are less
than 2 × 10−5, providing a confirmation of our numerical
results.

TABLE I. The difference between tide-induced total energy
flux and tidal-induced gravitational self-force Ft;tide as a function
of the orbital frequency. The first column represents the orbital
frequency of a point particle orbiting around a compact star or a
black hole. The second and third columns show the comparison
between the tide-induced self-force Ft;tide and the total tide-
induced energy flux Ėtide

total times Δ0 ¼ −ð1 − 2M=r0Þ−1ut0. We
find that the fractional difference is less than 10−4 in all cases,
providing a quantitative check of our results.

MΩ ðM=μÞ2Ft;tide ðM=μÞ2Δ0Ėtide
total

0.008 −1.33889763 × 10−12 −1.33888687 × 10−12

0.010 −7.68532994 × 10−12 −7.68523929 × 10−12

0.015 −1.68805373 × 10−10 −1.68804446 × 10−10

0.020 −1.50618037 × 10−9 −1.50618782 × 10−9

0.025 −8.44664208 × 10−9 −8.44672287 × 10−9

0.030 −3.57858966 × 10−8 −3.57854450 × 10−8

0.035 −1.26088661 × 10−7 −1.26088515 × 10−7

0.040 −3.91539506 × 10−7 −3.91539645 × 10−7

0.045 −1.11445651 × 10−6 −1.11445725 × 10−6

0.050 −2.99573226 × 10−6 −2.99573072 × 10−6

0.055 −7.81094805 × 10−6 −7.81094974 × 10−6

0.060 −2.03461381 × 10−5 −2.03461419 × 10−5

0.065 −5.53372737 × 10−5 −5.53372615 × 10−5

0.070 −1.73091728 × 10−4 −1.73091727 × 10−4
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The radial component of the gravitational self-force is
conservative for a point mass following a circular motion
we are considering. Similar to the evaluation of Ft;tide, we
can similarly compute Fr;tide using the local fields. The
numerical values for the l ¼ 2, including both m ¼ �2
modes are shown in Figs. 7 and 8. We can find that tide-
induced gravitational self-force Fr;tide follows a rather

linear relation to the dynamic tidal deformability for the
dynamical range considered. On the other hand, there is a
visible nonlinear trend for Ft;tide, which shows up for
sufficiently large λdyn2 . As discussed in the flux section, this
is probably due to the excitation of other modes of the star.
Nevertheless, both Ft;tide and Fr;tide show rather decent
universal behavior with the dynamic tidal deformability.

FIG. 7. Tide-induced gravitational self-force Ft;tide for l ¼ 2, including both m ¼ �2 modes. This is the difference between the
gravitational self-force produced by a point particle in a circular orbit around a compact star and a black hole with the same orbital
frequencyMΩ ¼ 0.0516. We can find that Ft;tide is proportional to dynamic tidal deformability λdyn2 when λdyn2 is small, but with a small

deviation toward nonlinearity can be seen as λdyn2 increases. Nevertheless, the data points from different EOS all approximately lie on the
same line. On the other hand, the universal relation is broken if we switch from λdyn2 to λ2, the equilibrium tidal deformability.

FIG. 8. Tide-induced gravitational self-force Fr;tide for l ¼ 2, including both m ¼ �2 modes. This is the difference between
gravitational self-force produced by a point particle in a circular orbit around a compact star and a black hole with the same orbital
frequencyMΩ ¼ 0.0516. For the dynamical range considered, we find that Fr;tide is proportional to the dynamic tidal deformability. The
universal relation is also broken if we switch from λdyn2 to λ2.
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Notice that, if we use the equilibrium tidal deformability
instead of the dynamic tidal deformability, the universal
relations are clearly broken as shown in the right panels of
Figs. 7 and 8.
Therefore, similar to the previous section, we can estab-

lish universal relations between the tide-induced gravita-
tional self-force Ft;tide, Fr;tide and the dynamic tidal
deformability λdyn2 . The fitting formula for Ft;tide can be
derived straightforwardly from the formula for the tide-
induced energy flux at infinity as discussed in the previous
section. Consequently, we only need to find a fitting formula
for Fr;tide for the l ¼ 2, including both m ¼ �2 modes.
We assume the following form for the fitting formula of

Fr;tide by

Fr;tide ¼ λdyn2 cðMΩÞ; ð90Þ

where by fitting with numerical data cðMΩÞ is well
approximated by (see Fig. 9)

cðMΩÞ¼ ðMΩÞ14=3	−7.6023−3.66723ðMΩÞ2
þ1.10716ðMΩÞ4−1.1531×107ðMΩÞ5
: ð91Þ

Similar to the comparison of tide-induced gravitational flux
Ptide in the last section, we compare the tide-induced self-
force Fr;tide obtained by our fitting formula (90) and that
produced by a point particle orbiting around a neutron star
with polytropic equation of state n ¼ 1.5. The detailed
parameter of the star and comparison results are shown in
Fig. 10. Our analysis reveals that, across the majority of the
inspiral process, the discrepancy remains below 5%, except
in regions very close to the f-mode frequency.

C. Higher-order contributions

At this point, it is also instructive to also check high-
order contributions in the spherical modes decomposition.
Just like k2 describes the tidal response of the star to the
quadrupole tidal field, kl (with l ≥ 3) is needed to describe
the response to higher-order tidal fields, which is necessary
to obtain a complete understanding of the star’s deforma-
tion. On the other hand, in the waveform construction
perspective, it is advantageous to include fewer modes to
reduce the number of parameters. In this section, we first
numerically check how well the l ¼ 2 component repre-
sents the total flux, i.e., the Ft component of the self-force.
In other words, we compare the total flux with only l ¼ 2
modes included and all l ≤ 6 modes included. Notice that
the orbital frequency that resonantly excites the l ≥ 3 f
mode is lower than that needed to excite the l ¼ 2 f mode.
Therefore, for a certain orbital frequency, the tide-induced
energy flux Ptide at infinity for l ¼ 2 is positive, while Ptide

at infinity for l ≥ 3 may be either positive or negative. The
higher-order contributions do not always increase the tide-
induced energy flux.
In Figs. 11 and 12, we show higher-order contributions

of tide-induced gravitational flux at infinity at two different
orbital frequencies MΩ ¼ 0.0516 and MΩ ¼ 0.0392. We
choose a series of star configurations as in the last section.
In the case of MΩ ¼ 0.0392, it is clear that higher-order
contributions with l ≥ 3 have a negligible impact on the
value of the energy flux compared with the flux for l ¼ 2,
resulting in a variation of less than 3%. Furthermore, it is
noteworthy that f modes with l ¼ 2, 3, 4 are not resonantly
excited in this case, while for certain star configurations,
f modes with l ¼ 5, 6 are resonantly excited but the impact
on the flux is small.

FIG. 9. Data values −c and the corresponding fitting functions
−cðMΩÞ are shown. We use several compact stars with poly-
tropic equations of state n ¼ 0.6 to generate the numerical data.

FIG. 10. Comparison between our fitting formula (90) of tide-
induced self-force and that produced by a point particle orbiting
around a neutron star with polytropic equation of state n ¼ 1.5,
ρc ¼ 5 × 1015 g=cm3, and κ ¼ 12.445425 km2. In the most
range of inspiral process, the error is less than 5% unless very
near the f-mode frequency, which we do not show in this figure.
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On the other hand, forMΩ ¼ 0.0516, we still find that in
most ranges of the dynamical tidal deformability, higher-
order contributions have negligible effects on the value of
the total energy flux compared with the l ¼ 2 flux,
contributing to less than about 3% variation. However, it
is also observed that, for some certain values of λdyn2 ,
significant flux variations are present due to the l ¼ 3
resonance. Therefore, the universal relation may only be a
reasonable approximation away from the resonances and
the resonance crossing may also be a necessary ingredient
in constructing the waveform for a point mass moving
around a compact star, in addition to the self-force
resonance [48] and/or the tidal resonance [12].
In fact, for modes with different l, the impact of

resonance is quite different. Pons et al. [49] have shown
that the peaks corresponding to higher l modes display
narrower widths relative to the orbital frequency, but have
higher values. Indeed, we also find that the resonance peaks
for l > 4 are numerically difficult to locate. Nevertheless,
transient crossing through resonances associated with
higher-order modes should matter less than that with
lower-order modes.
For the radial component of the self-force Fr, the higher

l component is not necessarily negligible. In this case, one
may need to extend the universal description to include
higher-order tidal deformations

Fr;tide ¼
X
l≥2

λdynl clðΩÞ ð92Þ

if nonlinearity in λdynl remains small. Here λdynl is defined as

λdynl ¼ λl
ω2
l;f

ω2
l;f − ω2

; ð93Þ

where ωl;f is the f-mode frequency of the l mode, which
can be approximately obtained in [43]. The dimensionless
tidal deformability λl is related to the tidal deformability as
λl ¼ λ̃lM−l, which relates the l-order multiple moment
Qha1;…;ali and tidal tensor Eha1;…;ali,

Qha1;…;ali ¼ λlEha1;…;ali; ð94Þ

where h…i is the symmetric and trace-free operation for the
indices.
Indeed, we compute Fr;tide for higher multipoles and

show its dependence on λdynl for various equations of state
in Fig. 13. For the case of l ¼ 3, 4 and the parameter range
investigated here, linearity in λdynl remains a decent
approximation and we find that the universal relation still
holds, i.e., points from different equations of state still lie
on the same line. It is also interesting to check the relation
with additional star equations of state and higher l.

FIG. 11. Higher-order contributions of tide-induced gravita-
tional flux Ptide at infinity at orbital frequency MΩ ¼ 0.0516. In
the majority of cases regarding dynamical tidal deformability, it is
evident that higher-order l ≥ 3 contributions have minimal
impact on the value of the l ¼ 2 energy flux, resulting in a
variation of less than 3%. However, for certain values of the
dynamical tidal deformability λdyn2 , notable contributions are
observed for l ≥ 3. In the plots, there are several peaks
corresponding to the excitation of the f mode for l ¼ 3–6,
respectively, although we cannot distinguish them accurately.

FIG. 12. Higher-order contributions of tide-induced gravita-
tional flux at infinity at orbital frequency MΩ ¼ 0.0392. In this
case, it is evident that higher-order l ≥ 3 contributions have
minimal impact on the value of the l ¼ 2 energy flux, resulting in
a variation of less than 3%. Here l ¼ 2–4 f-mode resonances are
not excited, while l ¼ 5, 6 are resonantly excited.
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D. Tidal correction to the orbital phase

We are now ready to compute the tidal correction to the
orbital phase, which is directly related to the waveform
phase. The orbital phase, as a function of the orbital
frequency, is given by

dϕ
dΩ

¼ Ω
dE=dΩ

P
: ð95Þ

As we are interested in the tidal correction, we perturb the
right-hand side of the above equation to the linear order in
the tidal perturbation in energy Etide and tidal perturbation
to the flux Ptide,

dϕtide

dΩ
¼ Ω

�
dEtide=dΩ

Ppm − Ptide dE
pm=dΩ

ðPpmÞ2
�
: ð96Þ

Here Epm, Ppm correspond to the limit that the tidal Love
number is zero, i.e., the limit that is satisfied by a black
hole. However, since the compact star considered here is
not dissipative and it does not have a horizon, the horizon
flux component is not included in Ppm.
In the mass-ratio expansion perspective, the first term on

the right-hand side is proportional to λOðM=μÞ0 and the
second term is proportional to λOðM=μÞ1. Therefore, in the
extreme mass-ratio limit, the second term dominates over
the first term in the orbital and gravitational phase.
Therefore, we only consider the second term as the leading
order tidal correction to the phase. It is also noteworthy
that, if this result is extended to the comparable mass-ratio
binaries for characterizing the tidal effects in the strong-
gravity regime, the subleading terms in the mass ratio may

also be important to compute, including the subleading
order term in Ptide.
To illustrate the tidal correction to the phase, we consider

a system corresponding to the 4-yr inspiral evolution of
an EMRI, plunging into the central object at the end
of the observation. The system has component masses
ðM; μÞ ¼ ð106; 10ÞM⊙. The EMRI starts from a certain
orbital frequency and ends at the location of innermost stable
circular orbits (ISCOs), assuming a 4-yr observation time.
The initial orbital frequency is about MΩ ¼ 0.0239. The
central object is chosen as supermassive compact with a

FIG. 13. Higher-order contributions of the tide-induced gravitational self-force Fr;tide for the l ¼ 3 and l ¼ 4 modes. Left: all modes
with jmj ≤ 3 are included, with an orbital frequency being MΩ ¼ 0.0468. Right: all modes with jmj ≤ 4 are included, with an orbital
frequency of MΩ ¼ 0.0206. Notably, for both l ¼ 3 and l ¼ 4 modes, a linear universal relationship reasonably holds with respect to
the l-mode dynamic tidal deformability.

FIG. 14. Tidal phase correction to the waveform of the EMRI
system which has masses ðM; μÞ ¼ ð106; 10ÞM⊙. This range of
orbital frequency corresponds to the 4-yr inspiral evolution of an
EMRI stopping at the frequency of the innermost stable orbit
(6M). The central object is a supermassive compact object, which
can be considered as a black hole mimicker.
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central density ρc ¼ 1.4×106 g=cm3, κ¼ 1.608×109 km2,
and n ¼ 1.5. This set of parameters gives rise to a star mass
at about 106M⊙ and the radius at about 8 × 106 km,which is
smaller than the radius of the ISCO.We plot the tidal orbital
phase correction as a function in Fig. 14, using Eq. (96).
Notice that, at the end of the evolution, the tide-induced
phase shift has already reached the level of ∼4.5 × 103 rad.
Although this phase shift is a function of all the system
parameters assumed, it already illustrates the importance of
including the tide-induced phase shift in the construction of
waveforms for black hole mimickers. Fortunately, with the
universal relation between the flux and the dynamic tidal
deformability, this effect can be efficiently characterized
by the equilibrium tidal deformability and the f-mode
frequency.

V. CONCLUSION

It is known that, for a static vacuum spacetime, the
asymptotic multipole moments defined at spatial infinity
uniquely determine the spacetime metric in the vacuum
regime [50]. Given the moments, the explicit reconstruction
procedure for the metric is discussed in [51], which has
been used to compute the corresponding EMRI waveform
in [20]. In the dynamic setting, it is also possible that a
similar uniqueness theorem also exists for the radiative
moments, which indicates that the particle experiences the
same dissipative and conservative self-force given the same
radiative moments, regardless of the nature of the central
engine. In the case that the radiative moments and the
deformation of the central object aremainly contributed by a
single mode, which is true for the particle þ star scenario
studied in this work, the gravitational self-force exerted on
the particle can be efficiently described by a few parameters
related to the tidal deformability of the star, without the need
for specifying the structure of the central object. It will be
interesting to extend the analysis presented in this work to
other types of compact objects, i.e., boson stars [22,52–54],
wormholes [55–58], gravastars/AdS bubbles [59–62], etc.,
and check the validity of the universal description of the
gravitational self-force (away frommode resonances). It will
also be important to extend the parameter regime of the orbit,
e.g., including eccentric orbits.
We have shown the tidal deformation of the central

object may greatly impact the EMRI waveform through the
modification of the gravitational-wave flux. Therefore, it is
necessary to incorporate the finite-size effect in searching
waveform models for black hole mimickers using EMRI
observation. On the other hand, if a universal description
holds for most of the compact black hole mimickers, the
corresponding search waveform will be generally appli-
cable and computationally efficient, as only a few more
parameters are required to characterize the finite-size
effects. The treatment of resonant mode crossing will be
similar to those for the transient self-force resonance [48]

and tidal resonance [12,63], where a finite “jump” of
conserved quantities are expected across the resonances.
In [36] we have used a black hole perturbation perspec-

tive to study the tidal effect of comparable mass-ratio
binaries containing neutron stars. The advantage of this
approach is that it naturally captures the tidal effects in the
strong-gravity regime without performing post-Newtonian
expansions, but it requires a separate expansion in the mass
ratio. In [36] we have argued that two model problems are
useful for building the tidal waveform using black hole
perturbation theory. The first model problem is to consider
a compact star moving in a black hole spacetime, as already
studied in [36]. The second model problem is to consider a
point mass orbiting around a star, as considered in this
work. In a future work we will discuss how to utilize these
two calculations to build a better tidal waveform for double
neutron star and black hole–neutron star binaries, with
comparisons to numerical simulations.
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APPENDIX: SOURCE TERMS

We consider the perturbing matter to be a particle of
mass μð≤ MÞ moving on a geodesic [64],

Sodd ¼ 8π

�
e−2λffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p Qþ re−λffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nðnþ 1Þp dðe−λDÞ

dr

�
; ðA1Þ

Seven ¼ 8πe−λ
�
d
dr

�
r2e−λ

ωðnrþ 3MÞ
�
Að1Þffiffiffi
2

p þ Bð0Þffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
��

−
nr2e−λAð1Þffiffiffi
2

p
ωðnrþ 3MÞ2 þ

r2e−λ

nrþ 3M

�
Aþ Bffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p

�

−
nðnþ 1Þr2 þ 3nMrþ 6M2ffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p

ωðnrþ 3MÞ2 Bð0Þ

−
2rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2nðnþ 1Þp F

�
; ðA2Þ

where

Q ¼ μγeλ

r
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p δ
	
r − RðtÞ
 dR

dt

�
1

sinΘ
∂Y�

lm

∂φ

dΘ
dt

− sinΘ
∂Y�

lm

∂θ

dΦ
dt

�
; ðA3Þ
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D ¼ −
μγδðr − RðtÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2nðnþ 1Þp
�
1

2

��
dΘ
dt

�
2

− sin2
�
dΦ
dt

�
2
�

×
1

sinΘ
X�
lm − sinΘ

dΦ
dt

dΘ
dt

W�
lm

�
; ðA4Þ

A ¼ μγ

�
dR
dt

�
2 e2λ

r2
δ
	
r − RðtÞ
Y�

lmðΩÞ; ðA5Þ

Að1Þ ¼
ffiffiffi
2

p
iμγ

dR
dt

r−2δ
	
r − RðtÞ
Y�

lmðΩÞ; ðA6Þ

Bð0Þ ¼ iμffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p γr−1e−λδ
	
r − RðtÞ
 dY�

lm

dt
; ðA7Þ

B ¼ μffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p γr−1eλ
dR
dt

δ
	
r − RðtÞ
 dY�

lm

dt
; ðA8Þ

F ¼ μffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nðnþ 1Þp γδ

	
r − RðtÞ


�
dΘ
dt

dΦ
dt

X�
lmðΩÞ

þ 1

2

��
dΘ
dt

�
2

− ðsinΘÞ2
�
dΦ
dt

��
W�

lmðΩÞ
�
; ðA9Þ

with

Ω ¼ ðΘ;ΦÞ; γ ¼ dT
dt

; ðA10Þ

Xlm ¼ 2
∂

∂φ

�
∂

∂θ
− cot θ

�
Ylm; ðA11Þ

Wlm ¼
�
∂
2

∂θ2
− cot θ

∂

∂θ
−

1

sin2 θ
∂
2

∂φ2

�
Ylm: ðA12Þ
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