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We study observational signatures of nonsingular ultracompact objects regularized by nonlinear
electrodynamics. The phenomenon of birefringence causes photons of different polarizations to propagate
with respect to two distinct metrics, which manifests itself in the appearance of additional light rings
surrounding the ultracompact object. We analyze the observational consequences of this result and
illustrate our findings based on three regular black hole models commonly considered in the literature. We
find that nonsingular horizonless ultracompact objects sourced by nonlinear electrodynamics possess an
odd number of light rings and discuss the viability of this model as an effective description of their
properties. In addition, we compare the phase velocities of polarized light rays propagating in nonsingular
geometries sourced by nonlinear electrodynamics to the corresponding phase velocity in the Schwarzschild
spacetime and demonstrate that regularizing the singularity by means of a theory that does not adhere to the
Maxwell weak-field limit may lead to the emergence of acausal regions.
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I. INTRODUCTION

Nonlinear theories of electrodynamics were initially
conceived with the intent to cure the divergences associated
with the electric field self-energy of charged particles
present in the linear Maxwell theory [1–3]. Shortly after
the 1933–1934 articles by Born and Infeld, Heisenberg and
Euler devised a nonperturbative one-loop effective action
that describes nonlinear corrections to Maxwell electrody-
namics arising from quantum electrodynamical vacuum
polarization effects (i.e., interactions of virtual electrons
and positrons at the one-loop level without radiative
corrections) [4]. In addition to quantum field effects such
as vacuum polarization, the exploration of nonlinear
electrodynamics (NED) is also interesting from a general
relativistic perspective since the Einstein field equations
predict nonlinearities due to the gravitational coupling of
electromagnetic fields [5]. Elements of NED (most notably
the nonlinear Born-Infeld action and its generalizations)
also feature in different formulations of string theory/M-
theory [6–11], where in some instances NED appears as a
low-energy effective field theory, which is at least partially
responsible for its revival after a prolonged period of
dormancy. Since then, possible applications of NED
have grown significantly, reaching far beyond string

theory.1 Interestingly, NED theories coupled to gravity
have proven extremely fruitful in the construction of new
black hole solutions without singularities, so-called regular
black holes (RBHs) [13–26]. This particular application of
NED theories is the focus of the present article.
While the existence of dark massive ultracompact

objects (UCOs) has been established beyond reasonable
doubt, the question of whether or not the observed
astrophysical black hole candidates possess defining black
hole features such as singularities and horizons is still open
[27–30]. This motivates the study of observational signa-
tures (such as those presented in Tables I and II and of this
article) that can distinguish between
(1) singular vs. nonsingular (“regular”)
(2) “horizonful” vs. horizonless

UCOs. In conjunction with gravitational wave detections
and properties of accretion disks, optical signatures of the
photon sphere such as light rings and shadows are among the
principal observational tools expected to provide insights
regarding the true physical nature of the observed astro-
physical black hole candidates [28,31–33]. In this article, we
analyze the physical properties of RBH solutions and closely
related nonsingular horizonless UCO geometries arising
from general relativity (GR) coupled to NED, focusing
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1Reference [12] provides a short summary including recent
developments.

PHYSICAL REVIEW D 110, 044064 (2024)

2470-0010=2024=110(4)=044064(20) 044064-1 © 2024 American Physical Society

https://orcid.org/0000-0001-7296-0420
https://orcid.org/0000-0002-8652-9874
https://ror.org/02qg15b79
https://ror.org/01sf06y89
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.110.044064&domain=pdf&date_stamp=2024-08-29
https://doi.org/10.1103/PhysRevD.110.044064
https://doi.org/10.1103/PhysRevD.110.044064
https://doi.org/10.1103/PhysRevD.110.044064
https://doi.org/10.1103/PhysRevD.110.044064


specifically on features that may lead to potentially meas-
urable differences in their observational signatures.
The remainder of this article is organized as follows: In

Sec. II, we briefly review the relevant properties of NED
theories. In Sec. III, we introduce the necessary ingredients
needed to describe the purelymagnetic NED solutionswhose
observational properties we investigate. In Sec. IV, we
summarize the properties of three regular UCO models
commonly considered in the literature and derive explicit
expressions for their respective effective geometries when the
singularity resolution is achieved bymeans ofNED. InSec.V,
we determine the location of light rings in both the back-
ground and the effective geometries of these models, discuss
their dynamical behavior and stability, and compare charac-
teristic observational features. In Sec. VI, we derive the phase
velocity of photons moving in the effective geometry for
different propagation directions and compare them to the
Schwarzschild case. Lastly, in Sec. VII, we summarize our
results and outline their physical implications. For conven-
ience, we review the phenomenon of birefringence in
Appendix A. In Appendix B, we briefly comment on the
singular behavior of the effective geometry. Throughout this
article, we use the metric signature ð−;þ;þ;þÞ and work in
dimensionless units such that c ¼ G ¼ ℏ ¼ kB ¼ 1.

II. GENERAL RELATIVITY COUPLED TO
NONLINEAR ELECTRODYNAMICS

The electromagnetic field tensor is defined in terms of
the electromagnetic four-vector potential Aμ as

Fμν ≔ ∂μAν − ∂νAμ: ð2:1Þ
Assuming a symmetric metric tensor gμν, only two inde-
pendent algebraic invariants can be formed from an
antisymmetric tensor Fμν [5], namely

F ¼ FμνFμν; G ¼ Fμνð⋆FμνÞ; ð2:2Þ

where F denotes the electromagnetic field strength and ⋆

the Hodge star operator, i.e., ⋆Fμν ≔ 1
2
εμνρσFρσ with εμνρσ

the Levi-Civita symbol. We restrict our considerations to
theories in which the effective action involves a one-
parameter Lagrangian density that is a local function of
F , i.e., LðF ;GÞ≡ LðF Þ. In this case, the most general
Lorentz-invariant action for GR coupled to NED in four
dimensions without cosmological constant term is given by

S ¼ 1

16π

Z ffiffiffiffiffiffi
−g

p ½R − LðF Þ�d4x; ð2:3Þ

where g≡ detðgμνÞ denotes the determinant of the metric
tensor and R ¼ gμνRμν the Ricci curvature scalar.2 The

generalized NED field equations obtained from the prin-
ciple of least action and the Bianchi identities are given by

∇μðLFFμνÞ ¼ 0; ∇μð⋆FμνÞ ¼ 0; ð2:4Þ

respectively, where LF ≔ ∂L=∂F denotes the first-order
derivative of the Lagrangian density with respect to the
electromagnetic field strength. The coupled Einstein equa-
tions corresponding to the action of Eq. (2.3) are given by

Gμν ≔ Rμν −
1

2
Rgμν ¼ 8πTμν; ð2:5Þ

where the nonlinearities associated with the NED field
enter via the energy-momentum tensor (EMT)

Tμν ¼
1

4π

�
LFFμρFρ

ν −
1

4
gμνL

�
: ð2:6Þ

If the linear Maxwell theory is to be recovered in the weak-
field limit (i.e., at small F ), then

lim
F→0

L ≃ F ; lim
F→0

LF ≃ 1; ð2:7Þ

must hold. It is worth mentioning that there exists an
alternative but formally equivalent description of NED
theories based on a dual representation that is obtained by
means of a Legendre transformation [34]. However, for the
purposes of our analysis in this article, it suffices to work in
the Lagrangian formalism introduced above.
A static spherically symmetric metric is described by the

line element

ds2¼gμνdxμdxν¼−fðrÞdt2þfðrÞ−1dr2þr2dΩ2; ð2:8Þ

where r denotes the areal radius and dΩ2 the normalized
spherically symmetric Riemannian metric on the 2-sphere
S2, which is given in terms of angular coordinates ðθ;ϕÞ by
dΩ2 ≡ dθ2 þ sin2 θdϕ2. In spherical symmetry, the only
nonvanishing components of the electromagnetic field
tensor are Ftr ¼ −Frt (corresponding to a radial electric
field) and Fθϕ ¼ −Fϕθ (corresponding to a radial magnetic
field). From Eq. (2.4), the electric and magnetic charge are
then identified as

Qe ¼ −r2LFFtr; Qm ¼ −
Fθϕ

sin θ
; ð2:9Þ

respectively. One of the properties that make NED coupled
to gravity an appealing candidate field theory for the
construction of nonsingular spacetimes is that the EMT
associated with the gauge-invariant Lagrangian density
LðF Þ [cf. Eq. (2.6)] describes the spherically symmetric
vacuum due to the symmetries Tt

t ¼ Tr
r (invariance under

2Derivatives of Fμν are usually not considered in the action in
order to avoid ghosts [12].
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boosts in the radial direction) and Tθ
θ ¼ Tϕ

ϕ (spherical
symmetry) [35].
With the exception of Maxwell and Born-Infeld theories,

a salient feature of NED theories is birefringence [36–38],
i.e., the phenomenon that the two photon modes/polar-
izations associated with the two degrees of freedom
encoded in the field effectively propagate with respect to
two distinct metrics (see Appendix A for details). In the
case L ¼ LðF Þ that we consider, one of them coincides
with the background metric gμν of Eq. (2.8) which solves
the field equations of GR coupled to NED [Eq. (2.5) with
the EMT of Eq. (2.6)], and the other—referred to as
effective metric in what follows—is given by

ḡμν ¼ gμν − 4
LFF

LF
Fμ

ρFρν; ð2:10Þ

with the deviation from the background metric arising from
the nonlinearity of the electromagnetic field, where LFF ≔
∂LF=∂F denotes the second-order derivative of LðF Þ with
respect to the field strength F , and the bar label is used to
distinguish physical quantities associated with the effective
geometry from those of the background geometry here and
in what follows. In the linear Maxwell theory ḡμν ≡ gμν due
to LF ¼ const and LFF ¼ 0, and thus there is no
birefringence.
Lastly, we note that solutions with an electric charge

Qe ≠ 0 (including dyonic solutions where bothQe ≠ 0 and
Qm ≠ 0) generally require a non-Maxwell behavior of the
Lagrangian density LðF Þ at small F in order to maintain a
regular center [14,19,24], i.e., in this case the Lagrangian
density does not conform to the weak-field limit of
Eq. (2.7). Although purely electric solutions (Qe ≠ 0 and
Qm ¼ 0) with a regular center have been proposed in
Refs. [15–17], any such solution inevitably requires a
Lagrangian density that behaves nonlocally in the sense
that different functions LðF Þ are required in different
spacetime domains (specifically at small and large r with
the former behaving non-Maxwellian in the limit F → 0)
as pointed out in Refs. [18,19].3 We therefore restrict our
considerations to purely magnetic solutions (Qe ¼ 0 and
Qm ≠ 0) in what follows. Prototypical examples of such
solutions are the RBH models proposed by Bardeen [39]
and Hayward [40].

III. MAGNETIC SOLUTIONS IN NONLINEAR
ELECTRODYNAMICS

As motivated in the previous section, we restrict our
considerations to purely magnetic solutions, i.e., Qe ¼ 0

and Qm ≠ 0 (cf. Sec. III in Ref. [23]). In this case, the
generic form of the Lagrangian density that solves the
Einstein equations of GR coupled to NED [Eqs. (2.5) and
(2.6)] in spherical symmetry [Eq. (2.8)] is given by

LðrÞ ¼ −2
�
f0ðrÞ
r

þ fðrÞ − 1

r2

�
: ð3:1Þ

Using the identification fðrÞ≡ 1–2mðrÞ=r, one further
obtains

LðrÞ ¼ 4m0ðrÞ
r2

: ð3:2Þ

The four-potential, magnetic charge, and electromagnetic
field strength are given by

Aμ¼ð0;0;0;QmcosθÞ; Qm¼ q2ffiffiffiffiffiffi
2α

p ; F ¼2Q2
m

r4
; ð3:3Þ

respectively, where the parameter α > 0 has dimensions
of length squared and q denotes a free integration
constant with dimensions of length. The precise form of
the Lagrangian density depends on the choice of the
mass function mðrÞ. We proceed with the generic form
proposed by Fan and Wang [cf. Eq. (26) in Ref. [23]],
namely

LðF Þ ¼ 4μðαF Þνþ3
4

α½1þ ðαF Þν4�1þμ
ν

; ð3:4Þ

where μ ≥ 3, ν > 0 are dimensionless constants and the
choices ðμ; νÞ ¼ ð3; 2Þ, ðμ; νÞ ¼ ð3; 3Þ, and ðμ; νÞ ¼ ð3; 1Þ
correspond to the Bardeen [39], Hayward [40], and the
Maxwellian [23] RBH solutions, respectively. The geom-
etry is specified in terms of μ, ν, α, and q by the metric
function

fðrÞ ¼ 1 −
2Mrμ−1

ðrν þ qνÞμ=ν ; ð3:5Þ

where M ≡ q3=α corresponds to the gravitational mass
(which in this case coincides with the electromagnetically
induced mass, cf. Eqs. (8) and (9) of Ref. [25] and the
discussion therein). In spherical symmetry, the effective
metric according to which photons with one of the two
possible polarizations move along null geodesics is given
by [cf. Eq. (2.10)]4

ḡtt ¼ gtt; ḡrr ¼ grr; ð3:6Þ
3We also note the proposal of hybrid solutions which can

circumvent the no-go theorem for solutions with an electric
charge [14] by means of a phase transition to a dual magnetic
phase near the core such that the electric field does not extend all
the way to the center of the solution [20].

4The covariant effective metric tensor components ḡμν are
identified via the relation ḡμρḡρν ¼ δμν.
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ḡθθ ¼ gθθ

�
1þ 2FLFF

LF

�
−1
; ð3:7Þ

ḡϕϕ ¼ gϕϕ

�
1þ 2FLFF

LF

�
−1
; ð3:8Þ

where the first line follows from Ftr ∝ Qe ¼ 0 as we
consider purely magnetic solutions with no electric charge.
Since Fθϕ ∝ Qm and F ∝ Q2

m [cf. Eq. (3.3)], one would
naively expect that in the absence of magnetic charge
(Qm ¼ 0) the angular effective metric tensor components of
Eqs. (3.7) and (3.8) reduce to those of the background
metric as well, that is ḡθθ ¼ gθθ and ḡϕϕ ¼ gϕϕ. However,
this is not always the case. This peculiar behavior is linked
to the weak-field limit of the corresponding NED
Lagrangian density LðF Þ. As we shall see in what follows,
the quantity FLFF=LF does not vanish in the limit
Qm → 0 in some RBH models.

IV. REGULAR BLACK HOLES AND
NONSINGULAR HORIZONLESS
ULTRACOMPACT OBJECTS

While keeping our analysis generic, we illustrate our
results based on the RBH models proposed by Bardeen
[39], Hayward [40], and Cadoni et al. [41] in what follows.
These models are characterized by the strength of their
respective deformations from the Schwarzschild geometry
(with the model by Cadoni et al. corresponding to the
strongest possible deformation) and exhibit different weak-
field limits. Using the generic form of the Lagrangian
density introduced in Eq. (3.4) of the previous section [or,
equivalently, the generic form of the metric function fðrÞ in
Eq. (3.5)], each model is described by a distinct choice of
the parameters α > 0, q > 0, and ν > 0.
We note here that in the original formulation of non-

singular RBH geometries the regularization of spacetime is
achieved by means of a minimal length scale l that appears
in the metric function [cf. Eqs. (4.1), (4.11), and (4.21)] and
acts as a Planckian cutoff beyond which GR is no longer
valid. An alternative interpretation is to consider these
metrics as a solution of the Einstein field equations with an
EMT sourced by NED, cf. Eqs. (2.5) and (2.6) [19,23–25].
In the purely magnetic case that we consider due to the
arguments laid out in the last paragraph of Sec. II, these
types of solutions describe the gravitational field of a
magnetic monopole. The difference in the interpretation of
l as a Planckian cutoff vs. l arising from NED effects is
that in the latter case macroscopic values are permissible
[see Sec. V B, Table I]. Other ways of regularizing the
black hole spacetime singularity have also been proposed in
the literature, e.g., in 4D Einstein-Gauß-Bonnet theories
[42], loop quantum gravity [43], and higher-dimensional
approaches [44]. As we shall see in Sec. V, the precise
quantification and comparison of light ring signatures may

allow us to distinguish between nonsingular geometries
obtained via different regularization methods and ulti-
mately identify the underlying effective theory describing
regular UCOs.
Depending on the minimal length scale l and mass M,

the geometry specified by the metric of Eq. (2.8) with fðrÞ
given by Eq. (3.5) can represent different types of UCOs.
SettingM ≡ 1 and focusing on the case where the roots are
real and positive [r∈R>0], solving the equation fðrÞ ¼ 0
may result in either of the following distinct outcomes:

(I) Two roots [l < lc], which corresponds to
an RBH with an inner and an outer horizon.

(II) One root [l ¼ lc], which corresponds to
an extremal RBH with one degenerate horizon.

(III) No roots [l > lc], which corresponds to
a nonsingular horizonless UCO.

Here, lc denotes the critical length at which the outer and
inner horizon coalesce, rþðlcÞ≡ r−ðlcÞ.

A. Bardeen model

The Bardeen RBH [39] is described by the metric
function

fBðrÞ ¼ 1 −
2Mr2

ðr2 þ l2Þ3=2 ; ð4:1Þ

where l denotes the aforementioned minimal length scale
introduced to regularize the black hole spacetime.
Comparison with the generic metric function of Eq. (3.5)
identifies the coefficients as μB ¼ 3, νB ¼ 2, and we can
rewrite Eq. (4.1) as

fBðrÞ ¼ 1 −
2q3r2

αðr2 þ q2Þ3=2 : ð4:2Þ

This implies q ¼ l (note that q ∝ l is always expected
based on our argumentation in the previous section) and
[using Eq. (3.3)]

α ¼ l3

M
; Qm ¼

ffiffiffiffiffiffiffiffi
Ml
2

r
: ð4:3Þ

The NED Lagrangian density is given by

LBðF Þ ¼ 12ðαF Þ5=4
α½1þ ðαF Þ1=2�5=2 ; ð4:4Þ

and expanding about the pointF ¼ 0 reveals that the weak-
field behavior of the NED Bardeen RBH is ∼OðF 5=4Þ, i.e.,
stronger than that of the linear Maxwell theory.
Solving the equation fBðrÞ ¼ 0 allows us to determine

the roots representing the locations of the outer rðBÞþ and
inner rðBÞ− horizon. Since the exact expressions are quite
lengthy, we provide the leading-order terms in the series
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expansion of small l instead:

rðBÞþ ¼ 2M −
3l2

4M
þOðl4Þ; ð4:5Þ

rðBÞ− ¼ l3=2ffiffiffiffiffiffiffi
2M

p þ 3l5=2

8
ffiffiffi
2

p
M3=2

þOðl7=2Þ: ð4:6Þ

The critical length at which the two horizons coincide

describes an extremal black hole. Solving rðBÞþ ¼ rðBÞ− leads
to

lðBÞ
c ¼ 4M

3
ffiffiffi
3

p : ð4:7Þ

For the Bardeen NED Lagrangian density Eq. (4.4), the
effective metric tensor components are given explicitly by

ḡtt ¼ −fBðrÞ; ḡrr ¼ fBðrÞ−1; ð4:8Þ

ḡθθ ¼ gθθ

�
3

2
−

7l2

2ðr2 þ l2Þ
�−1

; ð4:9Þ

ḡϕϕ ¼ gϕϕ

�
3

2
−

7l2

2ðr2 þ l2Þ
�−1

; ð4:10Þ

where we observe that for vanishing magnetic charge
Qm ¼ 0 [or, equivalently, vanishing minimal length l ¼ 0
by virtue of Eq. (4.3)], the angular effective metric
components do not coincide with those of the background
metric tensor. The same behavior is exhibited in the
asymptotic limit r → ∞. The individual components of
the term FLFF=LF conspire in such a way so as to not
yield the correct asymptotic behavior, which is an unavoid-
able by-product of the non-Maxwellian weak-field limit
behavior.

B. Hayward model

The Hayward RBH [40] is described by the metric
function

fHðrÞ ¼ 1 −
2Mr2

r3 þ 2Ml2
: ð4:11Þ

Comparison with the generic metric function of Eq. (3.5)
identifies the coefficients as μH ¼ 3, νH ¼ 3, and we can
rewrite Eq. (4.11) as

fHðrÞ ¼ 1 −
2q3r2

αðr3 þ q3Þ : ð4:12Þ

This implies q ¼ ð2Ml2Þ1=3 and [again using Eq. (3.3)]

α ¼ 2l2; Qm ¼ M2=3l1=3

21=3
: ð4:13Þ

The NED Lagrangian density is given by

LHðF Þ ¼ 12ðαF Þ3=2
α½1þ ðαF Þ3=4�2 ; ð4:14Þ

and expanding about the pointF ¼ 0 reveals that the weak-
field behavior of the NED Hayward RBH is ∼OðF 3=2Þ,
which is stronger compared to both the linear Maxwell
theory and the NED Bardeen RBH discussed in Sec. IVA.
Analogous to the previous subsection, we solve the

equation fHðrÞ ¼ 0 to determine the roots corresponding

to the outer rðHÞ
þ and inner rðHÞ

− horizon locations of the
Hayward model. Once again, the exact expressions are
rather lengthy, and thus we provide the leading terms in
their series expansions for small l instead:

rðHÞ
þ ¼ 2M −

l2

2M
þOðl4Þ; ð4:15Þ

rðHÞ
− ¼ lþ l2

4M
þOðl3Þ: ð4:16Þ

The critical length at which the two horizons coincide and
the Hayward RBH becomes extremal is given by

rðHÞ
þ ¼ rðHÞ

− ⇒ lðHÞ
c ¼ 4M

3
ffiffiffi
3

p ; ð4:17Þ

which coincides with the expression obtained for the
Bardeen RBH [cf. Eq. (4.7)]. For the Hayward NED
Lagrangian density Eq. (4.14), the effective metric tensor
components are given explicitly by

ḡtt ¼ −fHðrÞ; ḡrr ¼ fHðrÞ−1; ð4:18Þ

ḡθθ ¼ gθθ

�
2 −

9Ml2

r3 þ 2Ml2

�−1
; ð4:19Þ

ḡϕϕ ¼ gϕϕ

�
2 −

9Ml2

r3 þ 2Ml2

�−1
: ð4:20Þ

As in the Bardeen model, the angular effective metric
tensor components do not exhibit the correct limiting
behaviors, neither for vanishing magnetic charge Qm ¼ 0
[l ¼ 0] nor in the asymptotic regime r → ∞. In contrast to
the Bardeen case where the relation between Qm and M
[cf. Eq. (4.3)] leads to exact cancelations in the FLFF=LF
term, the effective metric tensor components arising from
the Hayward NED Lagrangian density [Eq. (4.14)] depend
explicitly on the gravitational mass M.
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C. Cadoni et al. model

The model considered by Cadoni et al. in Ref. [41]
belongs to the Maxwellian class of solutions first described
in Sec. III C of Ref. [23]. Its metric function is given by

fCðrÞ ¼ 1 −
2Mr2

ðrþ lÞ3 : ð4:21Þ

Comparison with the generic metric function of Eq. (3.5)
identifies the coefficients as μC ¼ 3, νC ¼ 1, and Eq. (4.21)
can be rewritten as

fCðrÞ ¼ 1 −
2q3r2

αðrþ qÞ3 : ð4:22Þ

This implies q ¼ l and

α ¼ l3

M
; Qm ¼

ffiffiffiffiffiffiffiffi
Ml
2

r
; ð4:23Þ

analogous to the relations obtained for the Bardeen RBH
described in Sec. IVA [cf. Eq. (4.3)]. The NED Lagrangian
density is given by

LCðF Þ ¼ 12F
½1þ ðαF Þ1=4�4 ; ð4:24Þ

and expanding about the pointF ¼ 0 reveals that the weak-
field behavior of the NED Cadoni et al. RBH is ∼OðF Þ,
i.e., it reduces to the linear Maxwell theory.
Analogous to the previous two subsections, we solve the

equation fCðrÞ ¼ 0 to determine the roots corresponding to

the outer rðCÞþ and inner rðCÞ− horizon locations of the Cadoni
et al. model. Once again, the exact expressions are rather
lengthy, and thus we provide the leading terms in their
series expansions for small l instead:

rðCÞþ ¼ 2M − 3l −
3l2

2M
þOðl3Þ; ð4:25Þ

rðCÞ− ¼ l3=2ffiffiffiffiffiffiffi
2M

p þ 3l2

4M
þOðl5=2Þ: ð4:26Þ

The critical length at which the two horizons coincide and
the RBH considered by Cadoni et al. becomes extremal is
given by

rðCÞþ ¼ rðCÞ− ⇒ lðCÞ
c ¼ 8M

27
; ð4:27Þ

which is smaller compared to the critical lengths of the

Bardeen and Hayward RBH lðBÞ
c ¼ lðHÞ

c ¼ 4M=ð3 ffiffiffi
3

p Þ
[cf. Eqs. (4.7) and (4.17)].
For the Cadoni et al. NED Lagrangian density

Eq. (4.24), the effective metric tensor components are

given explicitly by

ḡtt ¼ −fCðrÞ; ḡrr ¼ fCðrÞ−1; ð4:28Þ

ḡθθ ¼ gθθ

�
1 −

5l
2ðrþ lÞ

�
−1
; ð4:29Þ

ḡϕϕ ¼ gϕϕ

�
1 −

5l
2ðrþ lÞ

�
−1
: ð4:30Þ

It is evident from these relations that the effective
metric tensor components of the NED Cadoni et al.
RBH admit the correct limiting behaviors for vanishing
minimal length and in the asymptotic regime, in contrast to
those of the Bardeen [cf. Eqs. (4.8)–(4.10)] and Hayward
[cf. Eqs. (4.18)–(4.20)] RBH models. This desirable
property is inherently linked to the Maxwellian behavior
∼OðF Þ of the Cadoni et al. NED Lagrangian density
[Eq. (4.24)] for small field strengths F . Since the relation
between Qm and M in the model considered by Cadoni
et al. is the same as that of the Bardeen RBH [cf. Eqs. (4.3)
and (4.23)], the effective metric tensor components have
once again no explicit dependence on the gravitational
mass M, unlike those of the Hayward RBH.

V. LIGHT RINGS

A. Mathematical prerequisites

The Lagrangian for the motion of a free particle in a
curved spacetime is given by

Lp ¼ 1

2
gμνẋμẋν; ð5:1Þ

where the dot denotes a derivative with respect to an
appropriately chosen affine parameter (e.g., the proper time
τ for timelike geodesics) characterizing the trajectory. Due
to the spherical symmetry imposed by Eq. (2.8), we can
limit our considerations to trajectories in the equatorial
plane [θ ¼ π=2, θ̇ ¼ 0] without loss of generality in what
follows. Denoting the four-velocity uμ ¼ ðṫ; ṙ; 0; ϕ̇Þ, we
have

Lp ¼ u2

2
¼ 1

2
ðgttṫ2 þ grrṙ2 þ gϕϕϕ̇

2Þ; ð5:2Þ

where u2 ≔ uμuμ. Using the corresponding Euler-Lagrange
equations, it is straightforward to confirm that t and ϕ are
cyclic variables,5 resulting by virtue of Noether’s theorem
[45] in the conservation of their associated conjugate
variables, namely the energy E and angular momentum
L, i.e.,

5Recall that the metric of Eq. (2.8) is spherically symmetric
and static, and thus gμν is independent of these coordinates.
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∂Lp

∂ṫ
¼ gttṫ ¼ −E;

∂Lp

∂ϕ̇
¼ gϕϕϕ̇ ¼ L: ð5:3Þ

As our interest lies in studying light rings formed by the
null geodesics of photons, we substitute ṫ and ϕ̇ from
Eq. (5.3) into

gμνẋμẋν ¼ 0 ð5:4Þ

to obtain

ṙ2 þ VðrÞ ¼ 0; VðrÞ ≔ E2

gttgrr
þ L2

grrgϕϕ
: ð5:5Þ

The location of the light rings is determined by the
conditions ṙ ¼ 0 and ̈r ¼ 0, which imply VðrÞ ¼ 0 and
V 0ðrÞ ¼ 0, respectively [46,47]. Solving these equations for
r yields the radius of the light ring and the impact
parameter b ≔ L=E.
As alluded to previously (see Sec. II), UCOs sourced by

NED will in general (i.e., with the exception of Maxwell
and Born-Infeld theories) exhibit birefringence, and thus
the two possible photon polarization propagate with respect
to two different metrics and at different velocities.6

Analogous to the derivation for the background metric
above, photons propagating on null geodesics with respect
to the effective metric [cf. Eqs. (2.10) and (3.6)–(3.8)]
satisfy

ḡμνẋμẋν ¼ 0; ð5:6Þ

and we obtain

ṙ2 þ V̄ðrÞ ¼ 0; V̄ðrÞ ≔ Ē2

ḡttḡrr
þ L̄2

ḡrrḡϕϕ
; ð5:7Þ

with the light ring locations equivalently specified by the
conditions V̄ðrÞ ¼ 0 and V̄ 0ðrÞ ¼ 0. An alternative method
to identify the light ring locations is to determine the critical
points of the function (see Ref. [46] for a detailed
derivation)

H ¼ −gtϕ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffigtϕ − gttgϕϕ
p
gϕϕ

¼ð2.8Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi−gttgϕϕ

p
gϕϕ

; ð5:8Þ

which simplifies to the rightmost expression for static
spherically symmetric metrics of the form of Eq. (2.8).
The advantage of this approach is that it implicitly
incorporates the condition VðrÞ ¼ 0, thereby allowing
one to disregard the conserved variables E and L. The
same line of thought applies for the effective metric. We

now proceed with the identification of light ring locations
for the three RBH models described in Sec. IV.

B. Light ring locations

The methodology of our calculation can be applied
analogously for the three RBH models described in
Sec. IV [and any other RBH geometry whose metric can
be cast into a formanalogous toEqs. (4.2), (4.12), and (4.22)].
For the threemodels considered inSec. IV, the explicit formof
the potentials in Eqs. (5.5) and (5.7) are given by

VBðrÞ ¼ −E2 þ L2

�
1

r2
−

2M

ðr2 þ l2Þ3=2
�
; ð5:9Þ

VHðrÞ ¼ −E2 þ L2

�
1

r2
−

2M
r3 þ 2Ml2

�
; ð5:10Þ

VCðrÞ ¼ −E2 þ L2

�
1

r2
−

2M
ðrþ lÞ3

�
; ð5:11Þ

and

V̄BðrÞ ¼ −Ē2 þ L̄2ð3r2 − 4l2Þ�ðr2 þ l2Þ3=2 − 2Mr2
�

2r2ðr2 þ l2Þ5=2 ;

ð5:12Þ

V̄HðrÞ ¼ −Ē2 þ L̄2ð2r3 − 5Ml2Þ�r3 þ 2Mðl2 − r2Þ�
ðr4 þ 2Ml2Þ2 ;

ð5:13Þ

V̄CðrÞ ¼ −Ē2 þ L̄2ð2r − 3lÞ�ðrþ lÞ3 − 2Mr2
�

2r2ðrþ lÞ4 ; ð5:14Þ

respectively. The light ring locations in the background and in
the effective geometry are determined by solving the equa-
tionsV 0ðrÞ ¼ 0 and V̄ 0ðrÞ ¼ 0 for r. Inwhat follows,weuse a
superscript “þ” (“−”) to label the outer (inner) light ring rþp
(r−p) and a subscript “p” for “photon sphere” to unambigu-
ously distinguish the locations of the light rings from those of
the outer and inner horizon rþ and r−, respectively. Once
again, many of the exact expressions are quite lengthy and
somewhat cumbersome to deal with by hand, and thus we do
not provide them here. For the interested reader, all explicit
expressions are provided in the Github repository linked as
Ref. [49].7 Since the procedure is analogous for the back-
ground and the effective geometry and follows the same steps
for each RBH model, we do not repeat them explicitly here.
The inner and outer horizons as well as the inner and outer
light rings in the background [Eq. (2.8)] and effective
[Eq. (2.10)] geometry for the three UCO models considered6It is worth noting that Lagrangian densities based on the

Born-Infeld nonlinearity cannot give rise to nonsingular black
hole solutions in spherically symmetric settings [48]. 7The code in this repository is written inMathematica 12 [50].
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in Sec. IV are illustrated in Fig. 1 for the mass param-
eter M ¼ 1.
For illustrative purposes, we focus on the model by

Cadoni et al. in what follows since it is the only one out of
the three models that exhibits the correct limiting behaviors
(see last paragraph of Sec. IV C). The leading terms in the

series expansions of the outer and inner light ring in the
background geometry of this model about the point l ¼ 0
are given by

rþp ¼ 3M − 4l −
2l2

M
þOðl3Þ; ð5:15Þ

FIG. 1. Horizons, critical lengths, and light rings for the three nonsingular UCOmodels discussed in Sec. IV. In (a)–(c), the solid (dashed)
black line represents the outer (inner) horizon rþ (r−), the solid (dashed) blue line represents the outer (inner) light ring rþp (r−p) in the
background geometry [Eq. (2.8)], and the solid (dashed) red line represents the outer (inner) light ring r̄þp (r̄−p) in the effective geometry
[Eq. (2.10)], which harbors a third light ring r̄0p situated between the two whose location is indicated by the dashed orange line. The critical

lengthslc,l
ðpÞ
c , andlðpÞ

c at which the horizons [Eqs. (4.7), (4.17), and (4.27)], the two innermost light rings in the effective geometry, and the
inner and outer light ring in the background geometry merge are indicated by the thin vertical black, thin vertical dashed orange, and thin
vertical dashed blue line, respectively. The regularization parameter domain 0 < l ⩽ lc (l > lc) describes an RBH (a nonsingular

horizonlessUCO). Theminimal length intervallc < l < lðpÞ
c (lðpÞ

c < l < lðpÞ
c ) is indicated by the region shaded in light orange (light blue)

and corresponds to the second (third) column in Table II. The outer light ring in the effective geometry of the Bardeen (Hayward) [Cadoni

et al.] model has a global minimum at ðr;lþðBÞ
min Þ ¼ ð2.3251; 1.0766Þ ððr;lþðHÞ

min Þ ¼ ð2.8355; 1.1004ÞÞ ½ðr;lþðCÞ
min Þ ¼ ð1.0834; 0.3991Þ�.

In (d), the Bardeen (Hayward) [Cadoni et al.] model is represented by the gray (blue) [red] color scheme. In each of the color schemes, the
outer (inner) horizons are represented by the solid (dashed) line in the darkest hue, the outer (inner) light ring in the background geometry by
the solid (dashed) line in the medium hue, the two innermost light rings in the effective geometry by the dotted lines in the two lightest hues,
and the outer light ring in the effective geometry by the solid line in the lightest hue. Differences in the critical horizon and light ring length
scales of the threemodels (see alsoTable I) are attributable to their different deformation strengths from theSchwarzschild geometry.The inset
in the bottom right-hand side corner of (d) serves as a comparison of the outer light rings in the effective geometry of the three models,
illustrating their characteristic behavior for varying minimal length l in the interval 0 < l ⩽ 3.
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r−p ¼ l4=3

ð3MÞ1=3 þ
4l5=3

35=3M2=3 þ
2l2

3M
þOðl7=3Þ; ð5:16Þ

respectively. Based on these expressions, we can ascertain
that the outer light ring is situated closer to the black hole
than in the Schwarzschild geometry, where it is located at
r ¼ 3M. As one would expect, the limit of vanishing
minimal length liml→0 rþp ¼ 3M reduces to this expression.
The inner light ring on the other hand vanishes in this limit,
liml→0 r−p ¼ 0. The models proposed by Bardeen and
Hayward exhibit the same qualitative behavior, which
can be verified by examining their exact expressions
and/or confirmed graphically as in Fig. 1. Similar to the
critical length lc at which the inner and outer horizon

merge, there is a critical length lðpÞ
c , rþp ðlðpÞ

c Þ≡ r−pðlðpÞ
c Þ, at

which the inner and outer light rings merge (and then
disappear) in the background geometry. This is in line with
the analyses of Refs. [51,52] which examine properties of
the EMTand quasinormal mode spectra for geometries that
smoothly interpolate between RBHs and nonsingular
horizonless UCOs based on the value of the regularization
parameter l. However, the light ring signature in the
effective geometry significantly differs from that of the
background geometry. As depicted in Fig. 1, there are
generally three distinct light rings in the effective geometry.
The outermost light ring [indicated by the solid red line in
Figs. 1(a)–1(c)] persists and never disappears (in contrast to
the behavior of the outer light ring in the background
geometry indicated by the solid blue line), whereas the
middle (dashed orange line) and innermost (dashed red

line) light rings are present up to some critical length lðpÞ
c

indicated by the thin vertical dashed orange line in
Figs. 1(a)–1(c). These characteristics are consistent across
all three UCO models. Interestingly, the radius of the outer
light ring in the effective geometry gradually decreases
with increasing minimal length l until it reaches a global

minimum value at some lþ
min > lðpÞ

c from which point
onward its radius starts to continuously increase with
increasing l. We also note that for each model there is a

small minimal length scale interval lc < l < lðpÞ
c

[indicated by the region shaded in light orange that is
enclosed by the thin vertical solid black line signifying lc

and the thin vertical dashed orange line signifying lðpÞ
c in

Figs. 1(a)–1(c)] in which the two innermost light rings of
the effective geometry are no longer obscured by the
horizons (as the UCO is no longer an RBH but a non-
singular horizonless UCO at length scales l > lc) and
become visible to external observers. Similarly, there is a

small minimal length interval lc < l < lðpÞ
c [indicated by

the union of the aforementioned interval lc < l < lðpÞ
c

shaded in light orange and the region shaded in light blue
that is enclosed by the thin vertical dashed orange line

signifying lðpÞ
c and the thin vertical dashed blue line

signifying lðpÞ
c in Figs. 1(a)–1(c)], in which the inner light

ring of the background geometry becomes visible.
Table I provides an overview of the relevant critical

lengths for the three RBH models considered in Sec. IV. A
universal result is that the outer light ring in the effective geo-
metry [represented by the solid red line in Figs. 1(a)–1(c)] is
located further away from the nonsingular UCO compared
to the outer light ring in the background geometry [repre-
sented by the solid blue line in Figs. 1(a)–1(c)]. Since this
result has observational relevance, we illustrate the differ-
ence r̄þp − rþp for the three RBH models in Fig. 2.
Another noteworthy feature is that in each geometry

(background and effective), there is precisely one observ-
able light ring if the nonsingular UCO is an RBH
[0 < l < lc]. In the interval lc < l < lðpÞ

c on the other
hand, there are three observable light rings in the effective
geometry and two in the background geometry as the inner
light rings become visible [region shaded in light orange in

Figs. 1(a)–1(c).] In the interval lðpÞ
c < l < lðpÞ

c , the inner-
most light rings in the effective geometry have disappeared
and only the outermost light ring remains visible, while in
the background geometry both the inner and outer light
ring are still visible [region shaded in light blue in

Figs. 1(a)–1(c)]. Lastly, in the interval l > lðpÞ
c only the

outer light ring in the effective geometry remains visible.
Table II summarizes the number of observable light rings in
different domains of the minimal length scale parameter l
in theories with and without birefringence.
According to a well-established theorem nonsingular

horizonless UCOs have at least two light rings (with one of
them being stable) provided that the metric is a regular
stationary solution of the Einstein field equations and the
spacetime can be continuously deformed into a flat
Minkowski spacetime [46].8 However, the effective metric
[Eq. (2.10)] is singular (see Appendix B for details) and

TABLE I. Critical lengths lc, lðpÞ
c , and lðpÞ

c at which the
horizons, the two innermost light rings in the effective geometry,
and the inner and outer light ring in the background geometry
merge, respectively. The value lþ

min corresponds to the global
minimum of the outer light ring in the effective geometry.

RBH model lc lðpÞ
c lðpÞ

c lþ
min

Bardeen 0.7698M 0.7811M 0.8587M 1.0766M
Hayward 0.7698M 0.7836M 0.9509M 1.1004M
Cadoni et al. 0.2963M 0.3016M 0.3164M 0.3991M

8An alternative approach is considered in Ref. [53], which
derives the stability of the inner light ring of nonsingular
horizonless UCOs based on the assumption that their outer
light ring has the same properties as that of the Kerr geometry,
but without invoking assumptions about the status of energy
conditions.
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thus the theorem does not apply.9 In fact, we find that
theories with birefringence predict an odd number of light
rings for l > lc (i.e., in the parameter domain where the
nonsingular UCO is a horizonless UCO rather than an
RBH) and a single light ring remains in the effective

geometry for l > lðpÞ
c , see Table II. This indicates that the

number of light rings on its own may not always serve as a
definitive indicator in determining the identity of UCOs
without knowledge of the underlying theory as both
horizonful and horizonless objects may possess the same
number of light rings.

In the effective geometry, the outermost light ring of the
Hayward model is located the furthest away from the UCO
for small values of the regularization parameter l, followed

FIG. 2. Difference r̄þp − rþp between the outer light ring (LR) in the effective geometry r̄þp [corresponding to the solid red line in
Figs. 1(a)–1(c)] and the outer light ring in the background geometry rþp [corresponding to the solid blue line in Figs. 1(a)–1(c)] for the
three nonsingular UCO models considered in Sec. IV. For the models proposed by Bardeen and Hayward, the scaling behavior in the
regime of small l is quadratic, whereas for the Cadoni et al. model it is linear. Consequently, the outer light rings are more easily
distinguished in the Cadoni et al. model for very small regularization parameter values l. In all three models, the difference between the

outer light rings becomes maximal as the critical light ring length lðpÞ
c of the background geometry (indicated by the vertical dashed blue

line) is approached.

TABLE II. Number of observable light rings (LRs) for different
domains of the regularization parameter l (corresponding to
different types of nonsingular UCOs) in effective theories with

and without birefringence. The parameter domains lc < l < lðpÞ
c

and lðpÞ
c < l < lðpÞ

c correspond to the regions shaded in light
orange and light blue in Figs. 1(a)–1(c) and 2(a)–2(c), respectively.

0 < l < lc lc < l < lðpÞ
c lðpÞ

c < l < lðpÞ
c l > lðpÞ

c

Nonsingular
UCO type RBH Horizonless Horizonless Horizonless

LRs without
birefringence 1 2 2 0

LRs with
birefringence 2 5 3 1

9On the other hand, if the polarization mode that is null in the
effective geometry is considered in the background geometry,
then the corresponding photon trajectories are no longer null
geodesics, and again the theorem does not apply.
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by those of the Bardeen and Cadoni et al. model. However,
with increasing l this behavior changes, and the outermost
light ring in the Cadoni et al. first surpasses that of the
Bardeen model and ultimately that of the Hayward model
in terms of its distance from the nonsingular UCO, as
illustrated by the inset located in the bottom right-hand side
corner of Fig. 1(d). The outermost light ring in the effective
Hayward geometry is eventually surpassed by that of the
Bardeen model as well. These differences in the locations
of the outer light ring in the effective geometry for varying
l are attributable to the different strengths of deformation
from the Schwarzschild geometry exhibited by each
model.10 The different deformation strengths of the three
models are also responsible for the different sizes of the

intervals lc < l < lðpÞ
c and lðpÞ

c < l < lðpÞ
c correspond-

ing to the regions shaded in light orange and light blue in
Figs. 1(a)–1(c) and 2(a)–2(c), respectively. More precisely:
the stronger the deformation from the Schwarzschild
geometry, the smaller the size of the critical length scale
intervals, as can be verified from the values provided in
Table I. Lastly, we remind the reader that the strength of the
deformation is also intimately related to the weak-field
limit behavior. Ordering the models we consider in this
article in terms of their respective deformation strengths,
i.e., C > B > H, we observe that the stronger the defor-
mation, the closer the behavior to the Maxwellian weak-
field limit, and the smaller the relevant critical length scale
intervals.

C. Dynamical stability

The dynamical behavior of light rings is determined by
the second-order derivatives of the potential with respect to
r. For the three UCO models discussed in Sec. IV, we find

V 00ðrþp Þ < 0; V 00ðr−pÞ > 0; ð5:17Þ

V̄ 00ðr̄þp Þ < 0; V̄ 00ðr̄0pÞ > 0; V̄ 00ðr̄−pÞ < 0: ð5:18Þ

This implies that in the background metric the inner light
ring r−p is stable, while the outer light ring rþp is unstable.
The outermost light ring r̄þp in the effective geometry
exhibits the same instability, but here the innermost light
ring r̄−p is also unstable. This is in stark contrast to the non-

NED case. Interestingly, the light ring r̄ð0Þp situated between
the inner and outer light ring in the effective geometry is
stable.
While even in the effective geometry nonsingular UCOs

typically possess a stable light ring leading to well-known
spacetime instabilities, this stable light ring is absent

beyond a certain minimal length scale, namely l > lðpÞ
c .

The fact that the outermost light ring r̄þp remains (unlike in
the background geometry) suggests that—if the effective
description of nonsingular horizonless UCOs sourced by
NED is valid—they may possess only one unstable light
ring, thus presenting a viable alternative to the standard
paradigm used to explain observations of astrophysical
black hole candidates. Of course, another possibility is that
NED theories simply do not provide a viable effective
description of nonsingular horizonless UCOs.
Lastly, we note that various models for gravitational

collapse resulting in nonsingular UCOs violate the null
energy condition (NEC), e.g., Friedmann-Robertson-
Walker (FRW) collapse models that incorporate repulsive
effects to halt the collapse [56,57] or thin-shell collapse
models where the backreaction of Hawking radiation is
described as a trace anomaly [58]. The emission of
Hawking radiation [59,60] is also known to violate several
energy conditions including the NEC, and a violation of the
latter is a necessary requirement for the formation of a
regular (in the sense of finite curvature scalars) apparent
horizon in finite time according to the clock of a distant
observer [61–63].

VI. CAUSALITY AND PHASE VELOCITIES

A. Generic expressions

In this section, we focus on the phase velocities of
different photon polarizations and the resulting causal
structure of their associated light cones. We begin by
computing the phase velocity, utilizing the fact that light
propagates along null geodesics. Recall that one photon
polarization travels on the background metric, while the
other travels on the effective metric. For our analysis, which
we once again restrict to the equatorial plane without loss of
generality (cf. Sec. VA), we proceed with a propagation
wave vector kμ of the form

kμ ¼ ð−ω; ffiffiffiffiffiffi
grr

p jk⃗j cos η; 0; ffiffiffiffiffiffiffi
gϕϕ

p jk⃗j sin ηÞ; ð6:1Þ

where jk⃗j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
gijkikj

q
, with indices i, j running from 1 to 3,

and η∈ ½0; π� representing an angle introduced to conven-
iently specify the propagation direction in what follows.
Radial light rays are described by η ¼ 0, whereas η ¼ π=2
for circular trajectories. The phase velocity is defined as
ω=jk⃗j. For the background geometry, the null condition
gμνkμkν ¼ 0 [cf. Eq. (5.4)] and Eq. (6.1) lead to

vph ¼
ffiffiffiffiffiffiffiffi
−gtt

p ¼ð2.8Þ
ffiffiffiffiffiffiffiffiffi
fðrÞ

p
: ð6:2Þ

Since this expression is independent of η, the phase velocity
is the same in any direction of the photon propagation.
Similarly, using Eqs. (2.10) and (5.6) for the effective
metric, we find

10A similar feature appears in black hole thermodynamics,
where the deviation of the mean-field theory critical ratio
also depends on the strength of the deformation from the
Schwarzschild geometry [54,55].
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gμνkμkν − 4
LFF

LF
gρσðFμρkμÞðFνσkνÞ ¼ 0; ð6:3Þ

and the phase velocity is given by

v̄phðηÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞ

�
1þ 2FLFF

LF
sin2 η

�s
: ð6:4Þ

Unlike the phase velocity in the background geometry
given by Eq. (6.2), the phase velocity in the effective
geometry Eq. (6.4) depends on the photon’s direction of
travel. Consequently, due to the fact that one photon
polarization mode moves according to the background
geometry while the other moves according to the effective
geometry, their respective phase velocities will differ,
signifying the presence of birefringence. It is worth
emphasizing that this phenomenon does not affect radial
light rays described by a propagation vector with η ¼ 0
[cf. Eq. (6.1)]. In this case, vph ¼ v̄phð0Þ, and thus radial
light rays propagate with the same phase velocity.
As discussed in Secs. IVA and IV B, the effective metric

tensor components of the Bardeen and Hayward models do
not conform to the proper Schwarzschild limit in the case of
vanishing minimal length. This property prevents a direct
comparison of the phase velocity in these spacetimes to that
of the singular Schwarzschild geometry. In the subsequent
analysis, we therefore mainly focus on the model by
Cadoni et al. (cf. Sec. IV C).

B. Phase velocities in the Cadoni et al. model

In this model, the first and second derivative of the
Lagrangian density LCðF Þ [Eq. (4.24)] with respect to F
are given as functions of the radial coordinate r by

L0
CðF Þ ¼ 12r5

ðrþ lÞ5 ; L00
CðF Þ ¼ −

15r9

Mðrþ lÞ6 ; ð6:5Þ

where we have substituted the corresponding values of the
parameters α and Qm given by Eq. (4.23) after taking the
derivatives. Via Eq. (6.2) the phase velocity in the back-
ground geometry of the Cadoni et al. model is given by

vðCÞph ¼
ffiffiffiffiffiffiffiffiffiffiffi
fCðrÞ

p
: ð6:6Þ

Using Eqs. (3.3), (4.23), and (6.5) in Eq. (6.4) it follows
that the phase velocity in the effective geometry of the
Cadoni et al. model is given by

v̄ðCÞph ðηÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fCðrÞ

�
1 −

5l
2ðrþ lÞ sin

2 η

�s
: ð6:7Þ

Figure 3 depicts its dependence on the propagation angle η.

The following two comments are in order: First, as
r → ∞, the influence of the magnetic charge Qm or,
equivalently [via Eq. (4.23)], the minimal length scale l,
diminishes, as one would expect intuitively, and the
effective phase velocity reduces to that of the background
geometry (which coincides with that of the Schwarzschild
geometry in this limit), demonstrating the consistency
of the calculation. Second, in the limit of vanishing
minimal length, the Cadoni et al. model reduces to the
Schwarzschild limit for every direction of motion, in
contrast to the models by Bardeen and Hayward (see
Sec. VI C).
For radial trajectories described by η ¼ 0, the phase

velocity of the Cadoni et al. model surpasses that in
the Schwarzschild geometry, which can be attributed to
the presence of a minimal length scale and consequently the
absence of a singularity. The velocities coincide only in the
asymptotic regime where the presence of a nonvanishing l
becomes insignificant.
Nonradial light rays with η ≠ 0 propagating in the

effective geometry exhibit an intriguing behavior illustrated
in Fig. 4: such rays possess a higher phase velocity
compared to those of the Schwarzschild geometry, but
only up to a certain critical radius rcrit which increases with
increasingM and decreasing l. Beyond this critical radius,
their phase velocity is smaller compared to the
Schwarzschild case.11 In addition, it is evident from
Eqs. (6.6) and (6.7) that

FIG. 3. Illustration of the dependence of the phase velocity
v̄CphðηÞ in the effective metric of the Cadoni et al. model
[Eq. (6.7)] on the propagation angle η∈ ½0; π� for M ¼ 1 and
l ¼ 0.2. From the darkest to the lightest hue, the lines correspond
to the values η ¼ f0; π

6
; π
3
; π
2
g.

11We emphasize that, when we are concerned with circular
light trajectories, the phase velocity as a function of r is only
meaningful if such trajectories exist. As can be seen in Fig. 1,
light rings may be located at distances greater than the location of
the Schwarzschild light ring, and therefore it is still meaningful to
consider their phase velocity in this regime of r.
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vðCÞph > v̄ðCÞph ; ð6:8Þ

indicating that the wavefronts associated with the
background geometry always propagate faster than those
of the effective geometry. Moreover, they also always
propagate faster than those in the Schwarzschild geometry,
cf. Fig. 4.
Nevertheless, the phase velocity never becomes super-

luminal for any propagation direction, a property that is
intimately related to the fact that L00

CðF Þ < 0 for the Cadoni
et al. model. As demonstrated in Sec. VI C, this feature is
not shared by the Bardeen and Hayward models. The
significance of the signature of L00ðF Þ becomes clear when
examining the light cone structure. It is important to note
that the wavevector kμ is a 1-form (covariant vector), while
the photon momentum, i.e., the tangent vector to the photon
trajectory, is a contravariant vector [64]. In the linear
Maxwell theory, this distinction is unnecessary, but it is
necessary in NED theories with both a background and an
effective metric. To accurately determine the nature of a
null trajectory in the effective geometry with respect to the
background geometry, we must start with the covariant
form of the effective metric and the contravariant momen-
tum vector:

ḡμνkμkν ¼ 0: ð6:9Þ
Using the covariant components of the effective metric
given by Eqs. (3.6)–(3.8), we have

k2 ¼ −gtt
2FLFF

LF
ðktÞ2; ð6:10Þ

where k2 ¼ gμνkμkν. Since both −gtt and ðktÞ2 are positive
and LF > 0 for all UCO models considered in this article
(see Sec. VI C), the nature of a trajectory that is null in the
effective geometry propagating within the background
geometry is determined by the sign of LFF . Specifically,
for LFF < 0 the vector kμ that is null in the effective
geometry is timelike in the background geometry, thereby
preserving the causal character of the theory.
Alternatively, one can start with the null condition

parsed in terms of the contravariant effective metric
components,

ḡμνkμkν ¼ 0: ð6:11Þ
An explicit calculation then leads to the expression

k2 ¼ −gϕϕ
2FLFF

LF
ðkϕÞ2: ð6:12Þ

While this appears to contradict the argumentation follow-
ing Eq. (6.10), in this case the vector kμ is spacelike in the
background metric for LFF < 0, and the light cone of the
background geometry lies entirely within the light cone of
the effective geometry, indicating superluminal propagation
velocities. The observation that the nesting of light cones
reverses when transitioning from the contravariant metric to
the covariant metric is a well-known result [11]. Hence,
these two approaches of addressing causality are indeed
equivalent, and it is ultimately the signature of LFF that
plays a crucial role.

C. Phase velocities in the Bardeen and Hayward models

Following the methodology of Sec. VI A, we calculate
the phase velocities in the UCO models by Bardeen
[Sec. IVA] and Hayward [Sec. IV B] based on Eqs. (6.2)
and (6.4) for the background and effective geometries,
respectively.
The derivatives of the NED Bardeen Lagrangian density

[Eq. (4.4)] with respect to F are given by

L0
BðF Þ ¼ 15lr6

ðr2 þ l2Þ7=2 ; ð6:13Þ

L00
BðF Þ ¼ 15r10ðr2 − 6l2Þ

4Mðr2 þ l2Þ9=2 ; ð6:14Þ

where we have substituted the parameters α and Qm from
Eq. (4.3). The corresponding phase velocities in the back-
ground and effective geometry are

vðBÞph ¼
ffiffiffiffiffiffiffiffiffiffiffi
fBðrÞ

p
; ð6:15Þ

v̄ðBÞph ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fBðrÞ

�
1þ ðr2 − 6l2Þ

2ðr2 þ l2Þ sin
2 η

�s
; ð6:16Þ

FIG. 4. Comparison of the phase velocities in the background
vCph (blue) and effective v̄Cph (red) geometries of the nonsingular

Cadoni et al. model at its critical length l ¼ lC
c to the phase

velocity vSph in the singular Schwarzschild geometry for M ¼ 1

and η ¼ π=2. For these parameter choices, the critical radius
which signifies the point beyond which the phase velocity in the
Schwarzschild geometry exceeds that in the effective geometry is
given by rcrit ¼ 3.8313.
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respectively. For the NED Hayward Lagrangian density
[Eq. (4.14)], the analogous expressions are given by

L0
HðF Þ ¼ 18ð2Ml2Þ2=3r7

ðr3 þ 2Ml2Þ3 ; ð6:17Þ

L00
HðF Þ ¼ 9 · 21=3l2=3ðr3 − 7Ml2Þr11

M2=3ðr3 þ 2Ml2Þ4 ; ð6:18Þ

where we have substituted the parameters α and Qm from
Eq. (4.13). The phase velocities in the background and
effective geometry are given by

vðHÞ
ph ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
fHðrÞ

p
; ð6:19Þ

v̄ðHÞ
ph ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fHðrÞ

�
1þ r3 − 7Ml2

r3 þ 2Ml2
sin2 η

�s
: ð6:20Þ

Based on the relations given in Eqs. (6.16) and (6.20), we
can conclude that the Schwarzschild phase velocity is
recovered in the limit l → 0 only for radial null rays
described by η ¼ 0. This demonstrates once again that for
radial null rays the phase velocities in the background and
effective geometries coincide, and therefore they do not
experience birefringence. Nonradially propagating null
rays on the other hand experience birefringence, as illus-
trated in Figs. 3 and 4 for the Cadoni et al. model.
Lastly, it is worth pointing out a distinctive behavior that

occurs in the models by Bardeen and Hayward but is absent
in the Cadoni et al. model. In the latter, L00

CðF Þ < 0,
ensuring a phase velocity less than one describing a
propagation that is causal. However, this is not the case
for polarized light moving in the effective geometries of the
Bardeen and Hayward models. Specifically, there exists a
radial distance r⋆ that leads to a signature change in L00

BðF Þ
andL00

HðF Þ. From Eqs. (6.14) and (6.18), these critical radii
are identified as

rðBÞ⋆ ¼
ffiffiffi
6

p
l; rðHÞ

⋆ ¼ ð7Ml2Þ1=3; ð6:21Þ

respectively. According to Eq. (6.10), this implies that a
null trajectory in the effective metric behaves spacelike in

the background metric for r > rðBÞ⋆ and r > rðHÞ
⋆ , indicating

regions of superluminal propagation (provided that physi-
cally relevant trajectories exist in these regions, which
depends on the value of the minimal length scale l). To
verify if superluminal signalling is possible in practice
requires an examination of the group velocity of the
associated light pulses [65], which may be discussed
further in future works.

VII. DISCUSSION AND CONCLUSIONS

NED theories possess many intriguing features and the
possibility of regularizing black hole geometries by cou-
pling them to gravity remains an interesting proposal. Their
nonlinearity results in the violation of the superposition
principle, causing propagating light rays to be affected by
electromagnetic background fields [66]. This phenomenon,
known as “light-by-light scattering,” has been experimen-
tally observed [67]. Vacuum birefringence is another
interesting effect, according to which different photon
polarizations propagate with different phase velocities.
Therefore, if a light ray propagates through a region
pervaded by a strong electromagnetic field, it will effec-
tively be separated into two distinct rays. Although this
phenomenon has not yet been definitively observed in
nature, there is compelling evidence from studies of light
rays passing by magnetars—neutron stars with extremely
powerful magnetic fields ranging from 109 to 1011 T [68].
Due to the difficulties in maintaining regularity at the

center while simultaneously conforming to the Maxwell
weak-field limit [Eq. (2.7)] inherent to solutions with an
electric charge (cf. Sec III), our analysis focuses on the
geometries of purely magnetic nonsingular UCOs sourced
by NED. We examine their observational properties such as
light ring signatures and phase velocities. Our analysis
illustrates that the phenomenon of birefringence may
manifest itself through the presence of additional light
rings surrounding the nonsingular UCO (cf. Sec. V, Fig. 1).
On the other hand, the number of light rings on its own is
insufficient to distinguish RBHs from nonsingular horizon-
less UCOs as both models may possess either one or two
light rings depending on the minimal length scale and the
presence or absence of birefringence (cf. Sec. V, Table II).
Interestingly, our analysis reveals that there are narrow

intervals in the minimal length scale parameter, namely

lc < l < lðpÞ
c [corresponding to the union of the regions

shaded in light orange and light blue in Figs. 1(a)–1(c) and
2(a)–2(c)] and lc < l < lðpÞ

c [corresponding to the region
shaded in light orange in Figs. 1(a)–1(c) and 2(a)–2(c)], in
which the inner light ring in the background geometry and
the two innermost light rings in the effective geometry,
respectively, become visible to external observers. Another
notable result is that the outer light ring in the effective

geometry persists beyond the critical light ring length lðpÞ
c

of the background geometry, as illustrated in Fig. 1.
While our procedure is generic based on the general form

of the NED Lagrangian density proposed by Fan and Wang
[Ref. [23], Eq. (26)], we explicitly consider three popular
nonsingular UCO models characterized by the strength of
their respective deviations from the singular Schwarzschild
geometry. Only one of these models, namely that consid-
ered by Cadoni et al. in Ref. [41], possesses an effective
NEDmetric that exhibits the desired behavior in the limit of
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vanishing minimal length and in the asymptotic regime
(Sec. IV C). For this particular model, the minimal length
parameter is bounded from above by l≲ 0.47M via
observations of the S2 star orbiting Sagittarius A�, the
black hole candidate located at the center of the Milky Way
Galaxy [41]. However, since the critical light ring lengths
of this model sit far below this value (cf. last row in Table I),
the current bound is insufficient to

(i) distinguish between an RBH and a nonsingular
horizonless UCO; and

(ii) either exclude or confirm the presence of bire-
fringence;

based on the number of light rings surrounding the UCO.
Testing the existence of additional light rings is only

possible if the resolution achieved in our astrophysical
observations is sufficient to distinguish them. To determine
the required resolution for nonsingular UCOs sourced by
NED, we compute the light ring locations and compare
their differences. A universal result is that the outermost
light ring in the effective geometry is always situated at
larger radii compared to the outer light ring of the back-
ground geometry. As illustrated in Fig. 2, the separation
between these two light rings increases with the minimal
length scale, reaching its maximum at lðpÞ

c , the critical light
ring length where the inner and outer light ring of the
background geometry merge and disappear. While the
minimal length scale need not be Planckian, it is typically
assumed to be small. It is therefore useful to examine how
the light ring separation behaves in this regime. We find
that in the model by Cadoni et al., the separation scales with
∼l, whereas in the Bardeen and Hayward models it scales
with ∼l2. This characteristic behavior can be attributed to
the stronger deformation of the Cadoni et al. model from
the Schwarzschild geometry compared to the other two
models. As a result, detecting both light rings individually
is a more feasible task for the Cadoni et al. model at small
length scales.
A different interpretation for the light rings in NED

geometries is offered in Ref. [69], according to which
photons move exclusively in what we refer to as the
effective geometry. Complementary analyses related to
our interpretation according to which one of the two
effective geometries coincides with the background geom-
etry are given in Refs. [70,71] for electrically charged
solutions in the class of regularized Maxwell (RegMax)
theories and dyonic solutions in ModMax theories, respec-
tively. The light rings, shadows, and gravitational lensing
effects of the electrically charged Dymnikova RBH [35]
with an NED source are studied in Ref. [72].
In addition to light ring signatures, we analyzed the

phase velocities for different photon polarizations and
examined the corresponding causal structure for the three
nonsingular UCO models considered in this article. Our
results indicate that there are no acausal spacetime regions
when the NED theory adheres to the Maxwell weak-field

limit as in the Cadoni et al. model. On the other hand, in
models where this is not the case such as those proposed by
Bardeen and Hayward, the light cone of the background
geometry is fully contained within the light cone of the
effective geometry, which indicates the presence of space-
time regions where superluminal motion is possible,
provided that the relevant trajectories exist.
The limiting behavior of the Cadoni et al.model allows for

comparisons to the Schwarzschild geometry. We find that the
phasevelocity in the backgroundgeometry exceeds that of the
effective geometry as well as that of the Schwarzschild
geometry. Interestingly, the phase velocity in the effective
geometry exceeds the Schwarzschild phase velocity only up
to some critical radius, beyondwhich it is smaller, as depicted
in Fig. 4. Measuring these phase velocities in experiments
could provide an alternative way of establishing bounds on
the minimal length scale parameter.
Astrophysical observations of black hole candidates are

typically modeled using the Kerr paradigm since realistic
UCOs are expected to possess angular momentum and
rotate. In particular, the emission of gravitational waves
requires at least a mass quadrupole structure and thus
cannot be modeled in spherically symmetric settings.
On the other hand, a recent study indicates that spherically
symmetric solutions in semiclassical gravity can
mimic signatures of axially symmetric geometries [73].
Nonetheless, to comprehensively test the validity of NED
theories as an effective description of nonsingular UCOs
requires an extension to axial symmetry. However, attempts
to provide such an extension using the Newman-Janis
formalism have not been successful thus far. Fully analytic
solutions remain unknown, and only solutions for the case
of slowly rotating objects are currently available [74,75].
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APPENDIX A: BIREFRINGENCE

Following the argumentation of Ref. [36], we rederive the
phenomenon of birefringence for convenience. As in Sec. II,
we restrict our considerations to NED Langrangian densities
LðF ;GÞ≡ LðF Þ. The derivation is based on the assumption
that the electromagnetic field F̃μν of the UCO is much
stronger than that of photonsΦμν. For simplicity, we work in
Minkowski spacetime here, but an analogous derivation can
be performed in generic curved spacetimes by considering
covariant derivatives instead of partial derivatives in what
follows. The total electromagnetic field is given by
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Fμν ¼ F̃μν þΦμν: ðA1Þ

Defining

hμν ≔ LFFμν; ðA2Þ

the leading terms in the series expansion about Φμν are

hμν ¼ hμνjΦ¼0 þ
∂hμν

∂Fρσ

����
F¼F̃

Φρσ þOðΦ2Þ; ðA3Þ

where indices have been omitted in the j• subscripts and
order Oð•Þ here and in what follows to avoid clutter.
Substituting Eq. (A3) into Eq. (A2) results in the linearized
equations

∂μhμν ¼
∂hμν

∂Fρσ

����
F¼F̃

∂μΦρσ þOðΦÞ ¼ 0: ðA4Þ

We are looking for solutions Φρσ of the form

ΦρσðxÞ ¼ ϵρσðkÞe−ikx; ðA5Þ

where

ϵρσ ≔ kρϵσðkÞ − kσϵρðkÞ ðA6Þ

denotes the antisymmetric polarization tensor, kρ the propa-
gation vector, and ϵρ the polarization vector [76].
Substituting the partial derivative

∂μΦρσ ¼ −ikμϵρσðkÞe−ikx ðA7Þ

into Eq. (A4) results in

∂hμν

∂Fρσ

����
F¼F̃

ð−ikμϵρσðkÞe−ikxÞ ¼ 0; ðA8Þ

and using the definition of the antisymmetric polarization
tensor Eq. (A6), we have

∂hμν

∂Fρσ

����
F¼F̃

kμðkρϵσ − kσϵρÞ ¼ 0: ðA9Þ

Finally, using the antisymmetry of the electromagnetic field
tensor Fρσ [cf. Eq. (2.1)], we arrive at the relation

∂hμν

∂Fρσ

����
F¼F̃

kμkρϵσ ¼ 0: ðA10Þ

The partial derivative is calculated as

∂hμν

∂Fρσ
¼ðA2Þ ∂

∂Fρσ
ðLFFμνÞ¼LFF

∂F
∂Fρσ

FμνþLF
∂Fμν

∂Fρσ
; ðA11Þ

where

∂Fμν

∂Fρσ
¼ 1

2
ðημρηνσ − ηνρημσÞ ðA12Þ

due to the antisymmetry property [cf. Eq. (2.1)]. The
derivative of the field strength F with respect to Fρσ is
calculated using this relation and results in

∂F
∂Fρσ

¼ ∂

∂Fρσ
ðFαβFαβÞ

¼ ∂

∂Fρσ
ðηαχηβλFαβFχλÞ ¼ 2Fρσ: ðA13Þ

Substitution of Eqs. (A12) and (A13) into Eq. (A11) and
subsequently into Eq. (A10) results in

2LFF ðFρσkρÞðFμνkμÞϵσ þ
1

2
LF ðηνσk2 − kνkσÞϵσ ¼ 0:

ðA14Þ

It is useful to define the four-vectors

aμ ≔ Fμνkν; ⋆aμ ≔ ⋆Fμνkν; bμ ≔ Fμνaν: ðA15Þ

Equation (A14) can then be rewritten as

½LF ðηνσk2 − kνkσÞ þ 4LFFaνaσ�ϵσ ¼ 0: ðA16Þ

Defining

Mνσ ≔ LF ðηνσk2 − kνkσÞ þ 4LFFaνaσ; ðA17Þ

Equation (A16) is given by

Mνσϵσ ¼ 0: ðA18Þ

To determine the polarization vector ϵσ, we express it in
terms of four linearly independent vectors aμ, ⋆aμ, kμ, and
bμ, i.e.,

ϵσ ¼ c1aσ þ c2⋆aσ þ c3kσ þ c4bσ: ðA19Þ

Equation (A18) is then given by

c1Mνσaσþc2Mνσ⋆aσþc3Mνσkσþc4Mνσbσ ¼0: ðA20Þ

Using kσaσ ¼ kσFσαkα ¼ 0 (due to antisymmetry), the first
term is given by

Mνσaσ ¼ ðLFk2 þ 4LFFa2Þaν; ðA21Þ

where a2 ≔ aμaμ. Similarly, kσ⋆aσ ¼ kσ⋆Fσνkν ¼ 0 (due to
antisymmetry), and the second term is given by
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Mνσ⋆aσ ¼ LFk2⋆aν þ 4LFF ðaσ⋆aσÞaν: ðA22Þ
Analogously, the third and fourth term are given by

Mνσkσ ¼ LF ðk2kν − k2kνÞ þ 4LFF ðaσkσÞaν ¼ 0; ðA23Þ

Mνσbσ ¼ LFk2bν − LF ðkσbσÞkν; ðA24Þ

respectively, where we have used aσkσ ¼ 0 and aσbσ ¼
aσFσαaα ¼ 0 (due to antisymmetry). Substitution of
Eqs. (A21)–(A24) into Eq. (A20) yields

½c1ðLFk2 þ 4LFFa2Þ þ c24LFF ðaσ⋆aσÞ�aν
þ c2ðLFk2Þ⋆aν − c4½LF ðkσbσÞ�kν þ c4ðLFk2Þbν ¼ 0:

ðA25Þ

Since the four-vectors aμ, ⋆aμ, kμ, and bμ are linearly
independent, the vanishing of Mνσϵσ implies that the
coefficients must vanish. We note that

kσbσ ¼ kσFσαaα ¼ −ðFασkσÞaα ¼ −aαaα ¼ −a2; ðA26Þ

and

aσ⋆aσ ¼ Fσβkβ⋆Fσαkα ¼ ηαλð−GηβαÞkβkλ
¼ −Gηβλkσkλ ¼ −Gk2; ðA27Þ

where we have used the property Fσβ⋆Fσα ¼ −Gηβα with G
as defined in Eq. (2.2).
Since the last two terms in Eq. (A25) cannot vanish

simultaneously unless c4 ¼ 0, we are left with a system of
equations for the coefficients c1 andc2.

12 Fork2 ¼ 0, we have

c1ð4LFFa2Þ ¼ 0; ðA28Þ

and an arbitrary c2, which necessarily leads to c1 ¼ 0, and
thus the polarization vector is

ϵμ ¼ c2⋆aμ: ðA29Þ
This corresponds to the photon polarizationmode that moves
on null geodesics in the background geometry. For k2 ≠ 0 on
the other hand, we find

c1ðLFk2 þ 4LFFa2Þ ¼ 0: ðA30Þ
To find a nontrivial (i.e., c1 ≠ 0) solution to the eigenvalue
problem Mνσϵσ ¼ 0, we solve

LFk2 þ 4LFFa2 ¼ 0 ⇒ k2 þ 4LFF

LF
a2 ¼ 0: ðA31Þ

Using the definition of the four-vector aμ, this equation can be
rewritten as

k2 þ 4LFF

LF
ημνFμαkαFνβkβ ¼ 0 ðA32Þ

⇒ ηαβkαkβ þ
4LFF

LF
ημνFμαFνβkαkβ ¼ 0 ðA33Þ

⇒

�
ηαβ þ 4LFF

LF
ημνFμαFνβ

�
kαkβ ¼ 0: ðA34Þ

Consequently, the effective metric tensor is given by

ḡαβ ¼ ηαβ þ 4LFF

LF
ημνFμαFνβ: ðA35Þ

Using antisymmetry of the electromagnetic field tensor
Fνβ ¼ −Fβν and contracting ημνFβν results in

ḡαβ ¼ ηαβ −
4LFF

LF
Fα

μFμβ; ðA36Þ

which is equivalent to Eq. (2.10). Thus the polarizationvector

ϵμ ¼ c1aμ ðA37Þ

corresponds to the photon polarization mode that moves on
null geodesics in the effective geometry.

1. Examples

In what follows, we consider circular trajectories. As in
Sec. V, we restrict our considerations to the equatorial plane
without loss of generality, and thus the wave vector can be
written as kμ ¼ ð−ω; 0; 0; kϕÞ.

a. Magnetic solutions

For purely magnetic solutions [Qe ¼ 0 ⇒ Ftr ¼ 0], the
polarization vector that is null in the background geometry
[Eq. (A29)] is given explicitly by

ϵμ ¼ c2⋆aμ ¼
c2
2

⋆Fμνkν ¼
c2
2
εμνρσFρσkν

¼ c2εμνθϕFθϕkν ¼ ð0; c2ωFθϕ; 0; 0Þ; ðA38Þ
corresponding to a polarization in the radial direction and a
propagation in the ϕ direction.
For the polarization vector that is null in the effective

geometry [Eq. (A37)], we have

ϵ̄μ ¼ c1aμ ¼ c1Fμνkν ¼ c1Fθϕkϕ

¼ ð0; 0; c1Fθϕkϕ; 0Þ; ðA39Þ

12Note that the coefficient c3 does not contribute to the
polarization as evident from Eq. (A25). This may also be seen
from Eqs. (A5) and (A6): if ϵμ ∝ kμ, then the polarization tensor
ϵρσ and its corresponding field vanishes. Physically, this implies
that the polarization vector is always perpendicular to the
propagation direction. Hence no part of the polarization vector
lies in the propagation direction and thus c3 does not contribute.
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corresponding to a polarization in the θ direction and a
propagation in the ϕ direction.

b. Electric solutions

For purely electric solutions [Qm ¼ 0 ⇒ Fθϕ ¼ 0], we
find

ϵμ ¼ c2
2
εμνρσFρσkν ¼ c2εμνtrFtrkν

¼ ð0; 0; c2Ftrkϕ; 0Þ; ðA40Þ

and

ϵ̄μ ¼ c1Fμνkν ¼ ð0; c1ωFtr; 0; 0Þ; ðA41Þ

respectively.

APPENDIX B: SINGULARITY OF THE
EFFECTIVE METRIC

The line element described by the covariant effective
metric tensor components of Eqs. (3.6)–(3.8) is given by

ds2 ¼ −fiðrÞdt2 þ
dr2

fiðrÞ
þ r2

h̄iðrÞ
dΩ2; ðB1Þ

where the subscript i∈ fB;H; Cg labels functions associ-
ated with the Bardeen [Eq. (4.2)], Hayward [Eq. (4.12)],
and Cadoni et al. [Eq. (4.22)] model, respectively, and

h̄iðrÞ ≔ 1þ 2FLFF

LF
; ðB2Þ

with LðF Þ given by Eqs. (4.4), (4.14), and (4.24),
respectively. Explicit evaluation yields [cf. Eqs. (4.9),
(4.10), (4.19), (4.20), (4.29), and (4.30)]

h̄BðrÞ ¼
3

2
−

7l2

2ðr2 þ l2Þ ; ðB3Þ

h̄HðrÞ ¼ 2 −
9Ml2

r3 þ 2Ml2
; ðB4Þ

h̄CðrÞ ¼ 1 −
5l

2ðrþ lÞ : ðB5Þ

Based on these explicit expressions, the equation h̄iðrÞ ¼ 0
admits real positive solutions for r, indicating a divergence
of the effective metric tensor components ḡθθ and ḡϕϕ. The
existence of a curvature singularity may also be confirmed
via examination of the Ricci (or Kretschmann) scalar
corresponding to Eq. (B1), i.e.,

R̄iðrÞ ¼
2h̄i

�
2h̄2i þ 2r2f0ih̄

0
i − rh̄ið4f0i þ rf00i Þ

�
2r2h̄2i

þ fi
�
4rh̄ið3h̄0i þ rh̄00i Þ − 4h̄2i − 7r2ðh̄0iÞ2

�
2r2h̄2i

; ðB6Þ

where primes denote differentiation with respect to r and
explicit dependencies of the functions fiðrÞ and h̄iðrÞ on r
have been omitted for the sake of simplicity. Evaluating
Eq. (B6) for each of the three models yields

R̄BðrÞ ¼
ABðrÞ

ðr2 þ l2Þ7=2ð3r3 − 4rl2Þ2 ; ðB7Þ

R̄HðrÞ ¼
AHðrÞ

2ðr3 þ 2Ml2Þ3ð2r4 − 5Mrl2Þ2 ; ðB8Þ

R̄CðrÞ ¼
ACðrÞ

2r2ð2r − 3lÞ2ðrþ lÞ5 ; ðB9Þ

which diverge at rB ¼ 2lffiffi
3

p , rH ¼ ð5
2
Þ1=3M1=3l2=3, and

rC ¼ 3l
2
, respectively, and the numerators are given explic-

itly by

ABðrÞ ¼ ðr2 þ l2Þ3=2ð9r8 − 69r6l2 − 268r4l4 − 384r2l6 − 96l8Þ þ 2Mð57r8l2 þ 250r6l4 þ 336r4l6 þ 192r2l8Þ;
ðB10Þ

AHðrÞ ¼ 16r15 þ 8Mð84M − 43rÞr11l2 þM2ð3726M − 2879rÞr8l4 þ 2M3ð5040M − 4517rÞr5l6

þ 80M4ð60M − 137rÞr2l8 − 2800M5l10; ðB11Þ

ACðrÞ ¼ l2

�
−5ðrþ lÞ3ð7r2 þ 30rlþ 18l2Þ þ 2Mr2ð71r2 þ 12rlþ 216l2Þ

�
: ðB12Þ
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