
New search pipeline for gravitational waves with higher-order modes
using mode-by-mode filtering

Digvijay Wadekar ,1,* Tejaswi Venumadhav ,2,3 Javier Roulet ,4 Ajit Kumar Mehta ,2 Barak Zackay ,5

Jonathan Mushkin ,5 and Matias Zaldarriaga1
1School of Natural Sciences, Institute for Advanced Study, 1 Einstein Drive, Princeton, New Jersey 08540, USA

2Department of Physics, University of California at Santa Barbara, Santa Barbara, California 93106, USA
3International Centre for Theoretical Sciences,

Tata Institute of Fundamental Research, Bangalore 560089, India
4TAPIR, Walter Burke Institute for Theoretical Physics,

California Institute of Technology, Pasadena, California 91125, USA
5Department of Particle Physics & Astrophysics, Weizmann Institute of Science, Rehovot 76100, Israel

(Received 7 July 2024; accepted 6 August 2024; published 28 August 2024)

Nearly all template-based gravitational wave (GW) searches only include the quasicircular quadrupolar
modes of the signals in their templates. Including additional degrees of freedom in the GW templates
corresponding to higher-order harmonics, orbital precession, or eccentricity is challenging because: (i) the
size of template banks and the matched-filtering cost increases significantly with the number of degrees of
freedom, (ii) if these additional degrees are not included properly, the search can lose sensitivity overall (due
to an increase in the rate of background triggers). Here, we focus on including aligned-spin higher harmonics
in GW search templates. We use a new mode-by-mode filtering approach, where we separately filter GW
strain data with three harmonics [namely ðl; jmjÞ ¼ ð2; 2Þ, (3, 3) and (4, 4)]. This results in an increase in the
matched-filtering cost by only a factor of 3 compared to that of a (2, 2)-only search. We develop
computationally cheap trigger-ranking statistics to optimally combine the different signal-to-noise ratios
(SNR) time series from different harmonics, which ensure only physically allowed combinations of the
different harmonics are triggered on. We use an empirical template-dependent background model in our
ranking statistic to account for non-Gaussian transients. In addition, we develop a tool called band eraser
which specifically excises narrow time-varying noisy bands in time-frequency space (without having to
excise entire time chunks in the data). New GW candidate events that we detect using our IAS-HM search
pipeline and the details of our template banks are discussed in accompanying papers [D. Wadekar et al.,
arXiv:2312.06631] and [D. Wadekar et al., arXiv:2310.15233], respectively. Apart from higher harmonics,
we expect our methodology to also be useful for cheap and optimal searches including orbital precession
and eccentricity in GW waveforms.
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I. INTRODUCTION

Most of the gravitational wave mergers reported until
now have been detected by searches which use GW
template waveforms [1–20]. In such searches, first a
template bank is constructed containing GW waveforms
corresponding to different binary parameters. The tem-
plates are then filtered with the data and triggers with
relatively high signal-to-noise ratio (SNR) are saved.
There is an important trade-off to consider when

designing template-based searches. On one hand, we want
to include as many physical effects in the templates
as possible. On the other hand, as we allow more degrees
of freedom for waveforms in the template bank, the size of

the template bank (and the cost of the search) can increase
by multiple orders of magnitude. This is the primary
reason why nearly all current templated searches only use
simple quasicircular quadrupole mode waveforms and
neglect higher-order harmonics, spin-orbit precession
or orbital eccentricity (with only a handful of exceptions,
e.g., [21–25]).
In this paper, we focus on including aligned-spin higher-

order modes (HM) in an efficient way in the templates.
Unlike (2, 2)-only searches, one needs to take into account
variation in inclination and the initial orbital phase (ι, ϕinitial)
while searching for HM as changing these parameters leads
to a relative change in the amplitude or phases of higher
harmonics compared to that of the (2, 2) mode. A brute-
force approach would involve sampling over both intrinsic
ðm1; m2; χ1z; χ2zÞ and extrinsic parameters (ι, ϕinitial) to*Contact author: jayw@ias.edu
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create template bank waveforms. However, this can lead to
size of the template bank to increase by ∼100× compared to
the (2, 2)-only case [21,26,27].
There is another potential problem with introducing new

degrees of freedom in the templates. If these new degrees of
freedom are not properly treated, it will lead to loss of
sensitivity of the search [22,28,29]. For example, if we
sample over the binary inclination to create template bank
waveforms, we would need to add smaller weights to the
edge-on configurations instead of face-on configuration
(due to a difference in their observable volume), otherwise
sensitivity of the search can be reduced.
We overcome the above issues by using a new mode-by-

mode filtering approach to search with HM in this paper
and our companion papers [30] and [31] (see Fig. 1). We
first generate normalized templates for three different
harmonics [namely (2, 2), (3, 3) and (4, 4)] by sampling
only over intrinsic binary parameters [31]. We then filter
the GW strain data separately with these harmonics and
collect the three SNR timeseries. This results in an increase
in the matched-filtering cost by only a factor of 3 with
respect to that of a (2, 2)-only search.
In this paper, we develop computationally cheap detec-

tion statistics for optimally combining the different signal-
to-noise ratios (SNR) time series from each harmonic. We
only allow physical combinations of the different harmonics
(corresponding to physical configurations of ι and ϕinitial and
intrinsic binary parameters) and appropriately penalize the
unphysical combinations. Thus, apart from a reduction in
the matched-filtering cost in our method, the methodology
that we develop here also helps us prevent a loss in

sensitivity. It is worth noting that our statistics enable
optimal marginalization over ι and ϕinitial, which is difficult
to do if ι and ϕinitial are explicitly encoded in the templates.
Other than improving the IAS pipeline by adding

HM, we also develop new methods to downweight/
remove triggers originating from non-Gaussian noise.
This becomes especially important when the duration of
the waveform in detector band is small (for high-mass
binaries which merge at low frequencies) and short-dura-
tion instrumental transients (glitches) can mimic real
signals [32]. This is also the region where HM have a
large contribution to SNR as the bulk of the (2, 2) signal is
downweighted due to increase in the noise power spectral
density at low frequencies [21,27,28,31–39]. We ran the
IAS-HM pipeline described here on the public LIGO-Virgo
data from the third observing run (O3). In a companion
paper [30], we report new candidate events that we discover
as well as previously known events which we recover. In
particular, we find new candidate events at high masses and
high redshifts as the relative contribution of HM to SNR
becomes larger for such systems.
We first provide a brief outline of our template banks in

Sec. II. We then derive our trigger-ranking statistics in
Sec. III, where we first derive our marginalized statistic
under the assumption of Gaussian noise in Sec. III A (for
collecting triggers before ranking them, we use a different
statistic which is cheaper to compute and is derived in
Appendix). We then derive the correction factor in our
ranking statistics due to non-Gaussian background in
Sec. III B. We discuss improvements to our data pre-
processing techniques and introduce a new tool called band

FIG. 1. We exploit the fact that the inner product of the data with the full waveform can be written down as a linear combination of the
inner product with the separate harmonics. In our template banks, for each set of intrinsic parameters (i.e., masses and spins),
we generate and store the normalized waveforms (h22, h33, h44) separately (see Sec. II). We then filter the data with the individual
modes (which results in a cost increase of just 3× instead of 100×) and store the output SNR timeseries of each (ρlm ¼ hhlmjdatai). In
Sec. III A and Appendix, we discuss methods to combine the three SNR timeseries by marginalizing over inclination and the initial
phase of the binary (ι;ϕ0). This figure was originally presented in our companion paper for HM template banks [31] and is provided here
for completeness.
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eraser in Sec. IV. We discuss compatibility of our techniques
with other searches in the literature and also dependence
on assumed astrophysical prior in Sec. V and we conclude
in Sec. VI.

II. TEMPLATE BANKS

We discuss in detail our Fourier-space HM bank con-
struction in a companion paper, [31]. Here, we briefly
summarize the important details and reiterate the formalism
which we will use later in Sec. III for deriving our trigger-
ranking statistics. To calculate the overlap of two wave-
forms when we construct the template bank, we use

hhijhji ¼ 4

Z
∞

0

df
h�i ðfÞhjðfÞ

SnðfÞ
; ð1Þ

where SnðfÞ is the one-sided power spectral density (PSD).
We search over the following parameter space

3M⊙ < mdet
2 < mdet

1 < 400M⊙

1=18 < q < 1

jχ1j; jχ2j < 0.99 ð2Þ

and we divide it into 17 banks based on the normalized
amplitude shape of the (2, 2) waveform (see Fig. 3 of [31]).
Our (2, 2) template bank construction is based on the
geometric placement methodology of [40], but with a
notable improvement that we compress the dimensionality
of our banks using a machine learning method (as we will
describe later in this section).
Our template bank construction is motivated by the

stationary phase approximation (SPA) based results from
Ref. [41]. At the lowest order, the PN expansion for the
frequency-domain amplitudes of HM gives [31]

����h33ð3fÞh22ð2fÞ
����≃ 3

ffiffiffi
5

p

2
ffiffiffi
7

p
�
1−q
1þq

�
ð2πMtotfÞ1=3 sinðιÞ����h44ð4fÞh22ð2fÞ

����≃ 8
ffiffiffiffiffi
10

p

9
ffiffiffi
7

p
�
1−

3q
ð1þqÞ2

�
ð2πMtotfÞ2=3sin2ðιÞ; ð3Þ

where q is the mass ratio (m2=m1) and ι is the binary
inclination.
The phases of the harmonics follow a simple relation

1
mΨ

SPA
lm ðmfÞ ¼ 1

2
ΨSPA

22 ð2fÞ [41]. However, these SPA-
based formulas can have significant deviations for high-
mass binaries, for which the nonlinear regime is within the
band of the detectors. We thus use the waveform approx-
imant IMRPhenomXHM instead of Eq. (3) to construct our
templates [42]. Note that we do not consider the modes
beyond (4, 4) as the SNR in these modes progressively
decreases, and also because they are not currently modeled
in the IMRPhenomXHM approximant [42].

We separately store normalized templates for individual
harmonics, which are given by

hlmðfÞ≡ Abank
lm ðfÞeiΨmodel

lm ðfÞ; ð4Þ

where Abank
lm ðfÞ corresponds to the average of normalized

waveforms (i.e., hAbank
lm ðfÞjAbank

lm ðfÞi ¼ 1) over the param-
eter range corresponding to each bank. We model the
phases of the templates as,

Ψmodel
22 ðfÞ≡ hΨ22isubbankðfÞ þ

X10
i¼0

cð22Þi ΨSVD
i ðfÞ; ð5Þ

where Ψi corresponds to the orthonormal basis functions
from the singular value decomposition (SVD), and
hΨisubbank denotes the average over physical waveforms
in the particular subbank.We use the random forest regressor

(RF) to model: fcð22Þ2 ;…; cð22Þ10 g ¼ RFðcð22Þ0 ; cð22Þ1 Þ. Thus,
all our template waveforms correspond to grid points in a

two dimensional space of ðcð22Þ0 ; cð22Þ1 Þ. We use the imple-
mentation of the RF regressor from the scikit-learn
package [43]. We use the following model for the (3,3)
phases:

Ψmodel
33 ðfÞ≡ 3

2
Ψ22

�
2f
3

�
þ hΔΨ33ibankðfÞ

þ
X2
i¼0

RFiðcð22Þ0 ; cð22Þ1 ÞΨSVD
i ðfÞ ð6Þ

and a similar one for (4,4). The first term on the RHS
corresponds to the SPA relation, while the others are
obtained by decomposing the residuals obtained from
IMRPhenomXHM into a mean term and modeling the
remaining variation using a few leading SVD vectors as

ΨXHM
33 ðfÞ − 3

2
ΨXHM

22

�
2f
3

�

≃ hΔΨ33ibankðfÞ þ
X2
i¼0

cð33Þi ΨSVD
i ðfÞ. ð7Þ

We could have added all the cð33Þ dimensions to our template
grid, however, this can lead to a large increase in the number

of templates. We therefore use RF to model the leading cð33Þi
as a function of the leading (2,2) coefficients in Eq. (6).
As we use normalized amplitudes for each harmonic

template, we need extra factors to account for the relative
amplitudes of the harmonics. For example, we expect high-
mass and asymmetric mass-ratio binaries to emit relatively
higher amplitudes of HM and vice versa. We therefore
include samples of physically possible fractional SNR
ratios in HM given by
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Rlm ≡ hhXHMlm ðfÞjhXHMlm ðfÞi1=2
hhXHM22 ðfÞjhXHM22 ðfÞi1=2 ð8Þ

which are calculated at ι ¼ π=2. We also include a weight
for each sample corresponding to observable volume at a
reference binary inclination (w ∝ hhXHMjhXHMi3=2, where
hXHM has all the modes included in it). For example,
we give a larger weight to systems with large masses
and symmetric mass ratios, as they are observable to a
larger distance, and vice versa. We also normalize the
weights such that

P
i wi ¼ 1. Rlm are scalars which vary

with masses and spins of waveforms.

In an individual detector, a physical waveform (with an
arbitrary overall normalization) can thus be written as a
linear combination of our templates as

hðfÞ¼ei2ϕ0h22þR33 sin ιei3ϕ0h33þR44 sin2 ιei4ϕ0h44; ð9Þ

where again ι is the inclination of the binary, and ϕ0 is the
initial reference phase. For each bank, we store a separate
set of Rlm samples (for reference, see the blue points in the
left panel of Fig. 2), which we will later use in Sec. III as
our prior expectation for physically possible SNRs in
different modes for a given inclination.

FIG. 2. Top left: we matched-filter the strain in a particular O3a file with normalized and orthogonalized templates corresponding to
different modes and show SNR ratios of the resulting triggers as orange points. Most of these triggers are expected to be due to Gaussian
noise (which can have arbitrarily large values of jρ⊥33=ρ⊥22j and jρ⊥44=ρ⊥22j). We also show in blue points the SNR ratios for physical
injections within the parameter range of our lowest mass bank. As the parameter space covered by the two sets is vastly different, we
devise trigger collection and ranking statistics in Appendix and Sec. III Awhich penalize triggers based on their distance from the blue
points. Top right: number of triggers collected using different statistics. Collecting the triggers naively using ρ2 ≡ jρ⊥22j2 þ jρ⊥33j2 þ
jρ⊥44j2 (orange) will allow many more background triggers as compared to only using ρ2 ≡ jρ22j2 (green). If we penalize a trigger based
only on the distance from the nearest physical injection, we get the blue curve. However, in the red curve, we show the result from an
optimal statistic, where we effectively marginalize over the overlap with all the physical injections shown in the left panel. See Eq. (A5)
for the single-detector marginalized-score that we use to collect triggers (which is an approximate version of the full ranking statistic
derived in Sec. III A). Using the marginalized ranking-statistic not only helps in preserving the sensitivity of our HM pipeline and also
decreases our overall search cost (as the number of triggers collected and processed is significantly reduced). Bottom panels: Same as the
top panels except for a high mass bank, where relatively higher values of mode SNR ratios are physically possible (https://github.com/
JayWadekar/GW_higher_harmonics_search/tree/main/Pipeline_modules_arXiv_2405.1740).
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A. Matched filtering procedure

In principle, we can filter the data separately with each
of our harmonic templates from Eq. (4) and collect the
complex SNR timeseries given by

ρllðtÞ≡ hhllðfÞjdðfÞei2πfti. ð10Þ

A slight complication in such an analysis is that the
harmonics are not exactly orthogonal. The off-diagonal
terms of their covariance matrix Cll0 ≡ hhllðfÞjhl0l0 ðfÞi
are typically ≲0.1, but at times can be larger (e.g., in the
case of short duration waveforms for particular cases of
PSD profiles). Their inner product to calculate log like-
lihood is given by ðPll0 ρ

�
ll½C−1�ll0ρl0l0 Þ1=2.

We however choose an alternative path to simplify our
calculation during the matched-filtering stage. We orthogon-
alize the harmonics using the Gram-Schmidt method: we
keep (2, 2) fixed and orthogonalize (3, 3) with respect to
(2, 2), and then orthogonalize (4,4) with respect to (2, 2) and
the orthogonalized (3, 3). We then normalize the harmonics
such that hh⊥llðfÞjh⊥l0l0 ðfÞi ¼ δKll0 , where δK is the
Kronecker delta function and record the SNR timeseries as

ρ⊥llðtÞ ¼ hh⊥llðfÞjdðfÞei2πfti. ð11Þ

Note that ρ⊥22 ¼ ρ22 by construction. The waveforms in the
two cases are related as h⊥ll ¼ Lll0hl0l0 , where L is the
lower triangular matrix obtained using Cholesky decom-
position of the inverse of the mode covariance matrix
C−1 ¼ LL†. The SNR amplitudes are also similarly related
as ρ⊥ll ¼ Lll0ρl0l0 and we use these two cases in different
scenarios in this paper.

III. TRIGGER-RANKING STATISTICS WITH HM

In this section, we derive ways to optimally combine the
SNR timeseries from different modes. In a (2, 2)-only
search, we require jρ22j2 to be above a certain threshold in
order to collect triggers in individual detectors. Naively,
one could use the following detection statistic in the case
with HM

ρ2HM ¼ jρ⊥22j2 þ jρ⊥33j2 þ jρ⊥44j2. ð12Þ

Under the Gaussian noise hypothesis, this will follow a
χ2-distribution with 6 degrees of freedom (corresponding
to the real and imaginary parts of each of the modes).
We show in orange points in Fig. 2 the triggers (mostly
contributed by Gaussian noise) which are allowed upon
making a cut with jρ⊥22j2 þ jρ⊥33j2 þ jρ⊥44j2 > 25 (a minor
detail to note is that we show triggers maximized over
intervals of 0.01 s, to avoid showing correlated triggers at
very small time separations). We also show as blue points
the parameter space covered by physical injections from
IMRPhenomXHM. We can immediately see that only a
small subset of the mode ratio parameter space is popu-
lated by physical injections. This is because the (3, 3) and
(4, 4) SNR amplitudes are strongly correlated as they both
peak for edge-on asymmetric mass-ratio systems. The
statistic ρ2HM in Eq. (12) allows for triggers with arbitrarily
large mode ratios, and thus using a simple cut on its value
will generate many unphysical triggers. Notice that ρ2HM
was motivated entirely for the case of the noise hypothesis,
but we will therefore construct a more optimal detection
statistic that uses the knowledge of both the signal and
noise hypothesis.
We start with Neyman–Pearson lemma [44], which states

that the optimal detection statistic is the ratio of evidence
under the signal (S) and the noise (N ) hypothesis:

exp

�
ρ2detection

2

�
≡ PðdjSÞ

PðdjN Þ ¼
PðdjSÞ
PðdjGNÞ

PðdjGNÞ
PðdjN Þ . ð13Þ

We deliberately break the statistic into two parts and denote
the hypothesis when the noise is Gaussian by GN. We
denote the data in detector k by dk and our model waveform
by hk. hk is a function of the intrinsic binary parameters
θint ∈ fm1; m2; s1z; s2zg (we have assumed only the aligned
spin components in our search) and extrinsic parameters
θext ∈ fι;ϕ0; D;ψ ; n̂g, which correspond to inclination,
initial orbital phase, luminosity distance polarization and
sky position (right ascension and declination) respectively.
The first term corresponding to Gaussian noise can be
written as

PðdjSÞ
PðdjGNÞ ¼

Z
dΠðθint; θextÞ exp

" X
k∈ detectors

1

2
hdkjdki −

1

2
hdk − hkjdk − hki

#

¼
Z

dΠðθint; θextÞ exp
" X
k∈ detectors

ReðhhkjdkiÞ −
1

2
hhkjhki

#

¼
X

α∈ templates

PðαjSÞ
(Z

dΠðR33; R44; θextjαÞ exp
" X
k∈ detectors

ReðhhkjdkiÞ −
1

2
hhkjhki

#)

≡ X
α∈ templates

PðαjSÞeρ2coherentðαÞ=2; ð14Þ
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where we sum over the contribution from different tem-
plates. PðαjSÞ is the astrophysical prior corresponding to
the template α, Π is the prior density over mode amplitude
ratios and extrinsic parameters. Rlm are the physical mode
SNR ratios defined in Eq. (8). We denote the logarithm
of the expression in the curly brackets as our Gaussian
coherent score ðρ2coherentÞ corresponding to a given template.
This is calculated using the marginalization algorithm
implemented in the publicly available cogwheel1 pack-
age [45,46] (see the subsection III A below for details). We
calculate the second quantity in the RHS of Eq. (13) related
to the non-Gaussian correction as

PðdjGN;αÞ
PðdjN ;αÞ ≃ exp

" X
k∈detectors

−
jρkj2
2

− logðPðjρkj2jα;N ÞÞ
#

≡ e−
P

k
Δρ2kðαÞ=2; ð15Þ

where the probability Pðjρkj2jα;N Þ is computed using the
empirical distribution of triggers obtained from timeslides
for a given template α, and we use jρj2 ≡ ρllC−1

ll0ρl0l0 is the
effective SNR after taking into account the relative covari-
ance between modes. Our final trigger-ranking statistic is
given by

exp

�
ρ2ranking

2

�
¼

X
α∈ templates

PðαjSÞe1
2
ρ2coherentðαÞ−1

2

P
k
Δρ2kðαÞ

≃PðαmaxjSÞe
1
2
ρ2coherentðαmaxÞ−1

2

P
k
Δρ2kðαmaxÞ. ð16Þ

Ideally, one should marginalize over both intrinsic and
extrinsic parameters, however this becomes too expensive
to perform. Therefore, in the current version, we use an
approximation which maximizes over intrinsic parameters.
This corresponds to picking the (2,2) template (αmax)
which gives the maximum value inside the sum in
Eq. (16). In the future, we hope to relax this assumption
and calculate the integral over also the intrinsic parameters.
We discuss the calculation of the Gaussian coherent score

and the non-Gaussian correction separately in the follow-
ing two subsections.

A. Coherent score in Gaussian noise

Using the formula in Eq. (9) for a particular template
from the template bank, the predicted waveform hk of the
signal in detector k becomes

hkðfÞ ≃
D0

D

�
Fþ;k

1þ cos2ι
2

− i cos ιF×;k

�h
e2iϕ0h22ðfÞ

þ e3iϕ0R33ðM; qÞ sin ιh33ðfÞ
þ e4iϕ0R44ðM; qÞsin2ιh44ðfÞ

i
; ð17Þ

where h corresponds to complexified unit templates
(SNR ¼ 1) for different modes and D0 is the distance
where SNR ¼ 1 for the (2,2) mode. Fp;k are the antenna
response of the detector to polarization p∈ fþ;×g and is
dependent on the polarization angle (ψ) and sky location
ðn̂Þ. Rlm samples correspond to variation of the ratio of the
SNR in the ðl; mÞ mode to that in (2,2) at ι ¼ π=2 over
intrinsic parameters in the subbank, see Eq. (8).
In our analysis, we only consider the l ¼ m modes, for

which the factorization of the polarization terms in Eq. (17)
is possible [38]. Let us now calculate the inner products
hhjdi and hhjhi used in Eq. (14). For hhjhi,

hhðfÞjhðfÞi
¼

X
l;l0

hhllðfÞjhl0l0 ðfÞi

¼
X
l;l0

D2
0

D2

����Fþ
1þ cos2ι

2
− i cos ιF×

����2eiϕ0ðl0−lÞCl;l0 ;

ð18Þ

where the covariance matrix between the modes is given by

C ¼

2
64
1 R33 sin ιhh22ðfÞjh33ðfÞi R44 sin2 ιhh22ðfÞjh44ðfÞi
− R2

33 sin
2 ι R33R44 sin3 ιhh33ðfÞjh44ðfÞi

− − R2
44 sin

4 ι

3
75 ð19Þ

(the lower-triangular elements are not shown but can be obtained by Hermitian conjugation). For hhjdi,

hhðfÞjdkðfÞei2πfti ¼
X
l

hhllðfÞjdkðfÞei2πfti

¼D0

D

�
Fþ;k

1þ cos2ι
2

þ icos ιF×;k

�h
e2iϕ0ρ22;kðtÞþ e3iϕ0R33 sin ιρ33;kðtÞþ e4iϕ0R44sin2ιρ44;kðtÞ

i
; ð20Þ

1https://github.com/jroulet/cogwheel/tree/v1.2.1.
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where we have denoted the complex inner product of
the data with the unit template in detector k as ρll;kðtÞ.
The expected time of arrival of signal in each detector
is given by tk ≡ t⊕ þ rk · n̂=c, which is the arrival time
at the geocenter plus a correction depending on the
location of detector rd. We compute Eq. (14) for given a
template α as

eρ
2
coherent=2

≃
X
i

wðiÞ
Z

dΠðι;ϕ0;D;ψ ;n̂Þ

×exp

" X
k∈detectors

lnLkðtk;RðiÞ
33 ;R

ðiÞ
44 ; ι;ϕ0;D;ψ ;n̂Þ

#
; ð21Þ

where the log-likelihood is lnLk ≡ ReðhhkjdkiÞ−
1
2
hhkjhki, and we calculate the marginalization over

D;ϕ0, n̂;ψ ; t⊕ and Rlm. Let us first focus on calculating
the integral over mode amplitude ratios. As we show in
Eq. (21), we use Monte Carlo integration using the pre-
generated Rlm samples in Eq. (8). w is again the weight of
each sample corresponding to its observable volume.
Currently, we assume each template in a given subbank
has the same set of mode ratio samples. One could however
use template-dependent mode ratio samples by generating
them using normalizing flows, we leave this approach to an
upcoming work.
Algorithms to calculate each of the remaining integrals are

discussed in detail in [46]. We integrate over D by
interpolating a precomputed table, over ϕ0 by trapezoid
quadrature, and over the remaining extrinsic parameters
ι; n̂;ψ using adaptive importance sampling. Overall, given a
multidetector trigger, our pipeline currently need ∼200 ms
for calculating the full marginalization integral. We provide
an example of the marginalized integral calculation in a jup-
yter notebook https://github.com/JayWadekar/GW_higher_
harmonics_search/tree/main/Pipeline_modules_arXiv_2405
.1740.
It is worth noting that in a search pipeline, before we

rank the triggers to calculate their false alarm rate, we
need to first collect triggers by filtering the templates
with strain from individual detectors. However, in that
stage, we do not have information on the triggers in the
other detectors, and cannot directly use Eq. (21). We
therefore generalize the results in this section in
Appendix and use Eq. (A5) for collecting triggers from
individual detectors.
Note that in the IAS (2,2)-only search, our coherent score

was also computed as the integral over the extrinsic
parameters (see Appendix D of [13]). Here we presented
a generalized version of the formalism for the case of
aligned-spin HM.

B. Non-Gaussian noise correction
to the detection statistic

Previously, in Eqs. (15) and (16), we had introduced a
term e

1
2
Δρ2ðαÞ to account for the correction due to non-

Gaussian nature of noise in a particular detector. In our
case of combining scores from the three (orthogonalized)
modes:

e−
1
2
Δρ2ðαÞ ≃ exp

�
−
jρ⊥22j2 þ jρ⊥33j2 þ jρ⊥44j2

2

− log½Pαðjρ⊥22j2; jρ⊥33j2; jρ⊥44j2jN Þ�
�
; ð22Þ

where Pαðjρ⊥22j2; jρ⊥33j2; jρ⊥44j2jN Þ is the probability of
getting a set of fρ⊥22; ρ⊥33; ρ⊥44g from a noise trigger for a
template α. Note that under Gaussian noise, e−Δρ

2ðαÞ should
be ∼1. However, in a realistic scenario, its value can be
lower by multiple orders of magnitude. We currently do not
have a good theoretical model for the distribution of the
non-Gaussian noise, hence we need to empirically estimate
Pα using the histogram of the number of background
triggers (obtained from timeslides) caught by a template α:

Pαðjρ⊥22j2; jρ⊥33j2; jρ⊥44j2jN Þ

∝
�

dNα

dðjρ⊥22j2Þdðjρ⊥33j2Þdðjρ⊥44j2Þ
�
−1
. ð23Þ

It is worth noting for reference that, in previous (2,2)-only
IAS pipeline papers, the quantity −2 logP was termed as
the “rank function” (cf. section J of Ref. [11]).
Estimating the three-dimensional Pα distribution from a

finite number of timeslides can lead into sparsity issues
especially at high SNR values. However, we cannot
arbitrarily increase the number of timeslides as the cost
of search also increases. Therefore, to ameliorate the
sparsity issue, instead of making a 3D histogram, we
will construct a 1D histogram of the quantity ρ2sum ≡
jρ⊥22j2 þ jρ⊥33j2 þ jρ⊥44j2 using background triggers. We then
use the approximation

P3D
α ðjρ⊥22j2; jρ⊥33j2; jρ⊥44j2jN Þ ≃ 16

ρ4sum
P1D
α ðρ2sumjN Þ. ð24Þ

The constant of proportionality in the above equation is
based on the following behavior in the case of Gaussian
noise. ρ2sum follows a χ2-distribution with 6 degrees of
freedom (corresponding to the real and imaginary parts of

each modes) and Pχ2ðρ2; 6Þ ¼ ρ4

16
e−ρ

2

. On the other hand,
Pαðjρ⊥22j2; jρ⊥33j2; jρ⊥44j2jN Þ is the product of three indepen-
dent χ2-distributions each with 2 degrees of freedom
and Pχ2ðρ2; 2Þ ¼ e−ρ

2

.
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Another possibility to simplify the calculation of Pα in
Eq. (22) would have been to assume independent SNR
distributions of the modes: Pαðjρ⊥22j2; jρ⊥33j2; jρ⊥44j2jN Þ ∝
Pαðjρ⊥22j2jN ÞPαðjρ⊥33j2jN ÞPαðjρ⊥44j2jN Þ. However, this
approximation may be inaccurate as glitches can trigger
multiple modes at once and correlate their SNRs.
We show the 1D probability function from Eq. (24)

for different banks in Fig. 3. The bank number roughly
increases with the total binary mass. The high mass banks
have short duration template waveforms and are thus
more susceptible to short-duration transients produced

by instrumental glitches [47–50]. The overall normalization
of all the curves has been arbitrarily adjusted so that they
match at ρ2 ¼ 20.
In the previous IAS studies, we used the same proba-

bility function Pαðjρ⊥22j2Þ for triggers from all templates in a
subbank. However, even within a particular bank, different
templates can have significantly different susceptibility to
glitches (especially in the high mass case). To showcase
this effect, we empirically divide the templates into differ-
ent groups based on the fraction of triggers above a certain
reference SNR: Nðρ2 > ρ2refÞ=Nðρ2 ≤ ρ2refÞ. We pick a high
reference SNR (typically ρ2 ≳ 60) such that it is beyond the
Gaussian dominated regime for the particular subbank. We
show the 1D probability function for different template
groups in a particular high mass bank (Mtot ≳ 200M⊙) in
the lower panel of Fig. 3. We can infer that using the same
probability function for all templates is less optimal as
different templates tend to catch significantly different
number of glitches (and hence there should be a difference
in the significance of the triggers obtained from different
templates). A minor detail to note is that we make template
groups such that each group has ≳500 background triggers
to avoid the problem of sparsity in our construction of the
probability function.

IV. DATA PREPROCESSING

Before we collect triggers by matched-filtering templates
against the strain data, we identify and excise bad data
segments localized in time (i.e., make “holes”) and then
inpaint these segments (see sections C and D of [11] and
also [49,51]). For a particular time-segment to be excised,
we use the criterion that the power registered in certain pre-
defined time-frequency regions (e.g., ½20–50� Hz × 1 s)
exceeds particular thresholds. To determine the threshold
corresponding to a particular time-frequency region, we
choose a few reference templates in the bank, rescale them
to a high SNR value (in our case, SNR ¼ 20) and then
calculate the power falling inside that time-frequency
region. We store the highest registered power value as
the threshold power for that particular time-frequency
region and remove transients in real data which cross this
threshold. In this way, we aim to guarantee that astro-
physical signals with SNR below 20 are preserved.
Note that the thresholds are calculated corresponding to

the reference bank templates and are thus different for
different banks. In the earlier IAS pipeline papers, we only
used (2, 2) templates to calculate this threshold. However, if
there is a high SNR physical signal which includes HM,
there is a possibility we could excise that signal if we only
use (2, 2) templates. Hence, we now use the full templates
including HM [from Eq. (9)] to calculate the threshold
more accurately.

FIG. 3. In our trigger-ranking statistic, we incorporate the
probability of a trigger with a given SNR occurring under the
noise hypothesis [see Eq. (15)]. To infer this, we construct
empirical probability functions using the histogram of back-
ground triggers obtained from timeslides. Top: for our banks,
mass of the binary roughly increases with bank # and vice versa
for the waveform duration. Our higher banks are indeed relatively
much more dominated by short-duration non-Gaussian transients
(glitches). For the very high mass banks (Mtot > 200M⊙) we see
non-Gaussianity dominating even at low SNRs (ρ2 ∼ 40). Bot-
tom: Instead of using a common Pðρ2;N Þ curve for all templates
in a subbank, we construct separate probability functions for
different groups of templates (shown as colored lines). For one of
the very high-mass banks (BBH-14,0), we clearly see that high-
SNR triggers have a very different chance of occurring due to
noise for different templates and we exploit this fact in our
trigger-ranking statistic.
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A. Erasing time-varying noisy bands with band eraser

One of the downsides of excising entire time chunks of
data is that information is removed from all frequency
bands. Sometimes, however, the noise transients are only
localized to specific frequency bands (particularly the low-
frequency end ≲100 Hz) and do not affect astrophysical
signals which dominantly have power in a different
frequency band. We show two examples of such cases
in the upper panel of Fig. 4. These examples produced the
largest number of background triggers in our high-mass
banks (where the templates have a large power at low
frequencies) during testing phase of our pipeline. In
numerous other cases also we noticed that the noisy regions
were localized to low frequencies, some of which can be
attributed to known disturbances like scattered light [52].
We therefore develop a new tool, “band eraser”, to

smoothly remove bad time-frequency regions (or bands) in

the spectrogram. We first divide the short-time Fourier
transform (obtained using scipy.signal.stft) of
whitened data into “bands”, i.e., segments with dimensions
64 s × 2 Hz. We further split each band into chunks of size
2 s × 0.5 Hz and calculate the number of chunks in each
band with power greater than a reference threshold. We
remove the entire band from our analysis if the number of
chunks is above a certain safety threshold (we calculate the
safety threshold using Poisson statistics, making sure that,
on average, in Gaussian noise, one band is removed per
∼4 × 104 s). The removal of noise is done by multiplying
the signal in the flagged time-frequency band by zeros and
then using scipy.signal.istft to obtain the cleaned
time-domain strain. In the middle panel of Fig. 4, we show
spectrograms of the same files as the top panels but with the
band eraser applied (the dark stripes correspond to flagged
time-frequency bands which were zeroed out). In the

FIG. 4. Top: we show two examples of the worst Hanford and Livingston unprocessed O3a files in terms of the number of glitches
caught by one of our high mass banks in our pipeline testing phase. Middle: we therefore develop a tool called “band-eraser” which we
use to remove time-varying bands with excess power in spectrograms (see section IVA). Application of the tool to the files gives the
cleaned spectrogram shown. Bottom: we show the relative improvement in the number of background triggers from individual files.
Note also that the band eraser also prevents unnecessary excision of entire time-chunks if the disturbances are localized to a small range
of frequencies. The improvement in the overall sensitive volume-time due to band eraser will be explored in a future paper. A test to
measure the safety of the band eraser using a low-mass physical injection in these files is shown in Fig. 5 (https://github.com/
JayWadekar/GW_higher_harmonics_search/tree/main/Pipeline_modules_arXiv_2405.1740).
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bottom panel, we show the histogram of the triggers
registered from the unprocessed and cleaned files and
we see a significant reduction in the number of non-
Gaussian triggers (the expected histogram from Gaussian
noise is shown in the dashed black line corresponding to
6 degrees of freedom, corresponding to real and imaginary
part of the three harmonics).
After the band eraser is applied, we perform the

operations mentioned earlier: make holes to remove the
remaining disturbances in the data and then inpaint
the holes.
We also checked that physical injections corresponding to

binary black holes are not removed due to the band eraser.
We inject a particular low-mass waveform in the files shown
in Fig. 4 and then show the result from using band eraser
close to the injection in Fig. 5. We plan to do injections in
the entire O3 run to measure the sensitivity of our pipeline in
a future study. The sensitive volume time VT could slightly
increase upon using the band eraser due to two effects:
reduction in the noise background, and salvaging of the data
in regions cleaned by the band eraser (as there is no more
need to excise entire time chunks). Erasing noisy bands
could potentially also improve the stability of the parameter
estimation runs [53]. We also provide an example jupyter
notebook for the band eraser code https://github.com/

JayWadekar/GW_higher_harmonics_search/tree/main/Pip-
eline_modules_arXiv_2405.1740.

V. DISCUSSION

A. Applicability of the mode-by-mode filtering
method to other search pipelines

We implemented the mode-by-mode filtering method in
the IAS pipeline, but we believe the formalism that we
develop in this paper is general and can be implemented to
search for HM in other template-based pipelines in the
literature, e.g., [8–10,17]. For using the mode-by-mode
filtering method, all one needs is normalized templates for
different harmonics (h22, h33, h44) and samples for physical

mode SNR ratios (RðiÞ
33 ; R

ðiÞ
44 ) associated with the templates.

In section II, we gave an overview of adding HM templates
to a (2, 2)-only bank constructed using geometric place-
ment. We discuss in our companion paper [31] methods to
add HM templates to banks constructed using stochastic
placement. It is also worth mentioning a different example
where mode-by-mode filtering was applied in a (2, 2)-only
search to reduce the matched-filtering cost: [54] (where
filtering with data was done separately with different SVD
components of the (2, 2) waveform).

FIG. 5. In the noisy data file shown in the top panel of Fig. 4, we inject a low-mass merger waveform (½m1; m2; χ1z; χ2z� ¼
½5.23; 4.32;−0.21; 0.08�) and show the spectrogram close to the merger in the top panels. We then apply the band eraser on these files
and show the cleaned spectrogram in the bottom panels. We see that most of the power in the signal is recovered while the noisy bands
are selectively removed. For reference, we only lose ∼2% (9%) SNR of the injection in the left (right) panel due to overlap with the noisy
bands and the rest is recovered.
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B. Dependence on astrophysical prior

Similar to the (2, 2)-only search, we assume an
astrophysical prior to construct template banks for our
search. The search including HM can lose sensitivity if the
assumed astrophysical distribution is different from the
true one. One option to overcome this issue is to reweight
the results from the search (IFAR and pastro values
of triggers) in a hierarchical population analysis, see,
e.g., [55]. Note that a better knowledge of the distribution
of masses and mass ratios upon detecting more events with
future observatories ([56–62]) will also reduce the sensi-
tivity loss in the search resulting from a wrong assumption
of the astrophysical prior. To estimate how much exactly is
the gain or loss in our overall volume-time (VT) sensitivity
due to addition of HM in templates, we aim to perform an
injection study in an upcoming paper.

C. Reducing background

In Sec. III B, we discussed template-dependent reweight-
ing of triggers under the noise hypothesis. Note that
reweighting the background differently for triggers from
different (2, 2) templates was already introduced by
Ref. [48]. The difference of our approach is that we do
not assume a parametric model for the background dis-
tribution (e.g., an exponential curve). Instead, we directly
use a smoothed version of the trigger histogram. Another
promising avenue to more optimally reweight the back-
ground, especially in the high mass case, is using machine
learning techniques (see, e.g., [32]). We leave exploring
this approach to an upcoming work. Note that in our
ranking statistic, we do not include information from
signal-consistency checks (we currently use signal-consis-
tency checks only to veto triggers [11]). We also leave
incorporating the signal-consistency calculations in our
ranking statistic to a future work.
Apart from the techniques discussed till now, for further

reducing the background, we also additionally correct for
nonstationarity of PSD and veto noisy triggers. For these,
we follow methodology similar to that developed for our
(2, 2)-only searches. For the vetoes, we currently first
subtract our best-fit (3, 3) and (4, 4) waveforms from data
and then run the same (2, 2) signal consistency tests as
earlier on the residual data (see section F of [11]). This is of
course an approximation and we aim to modify our
procedure to also separately check the consistency of the
(3, 3) and (4, 4) parts of the signals in the future.
To account for the nonstationarity of the PSD we

use a similar correction factor as in our (2, 2)-only search
(see [49]). We first convolve a reference (2, 2)-only
template from our banks with the data and register its
SNR ρðtÞ. We then average the power hρ2i within rolling
windows of length ∼15 s and use this factor to account for
the variation in the PSD as a function of time in a particular

bank. In the limit when the fluctuations of the PSD over all
frequencies are described by a single scalar, this procedure
returns an unbiased estimate of the variation of the PSD.
Note that we have not currently included (3, 3) or (4, 4)
waveforms in estimating the PSD correction and leave this
direction to future work.

VI. CONCLUSIONS

Nearly all templated gravitational wave (GW) searches
only include the quasicircular quadrupole mode in their
templates. We showed that a mode-by-mode filtering
method can be used to efficiently and cheaply introduce
higher-order harmonics in a templated search. In this
method, we first create templates separately for different
harmonics (see Sec. II and our companion paper [31]). We
then filter each harmonic separately with the data and
combine the resulting timeseries using the trigger-ranking
statistics derived in section III (see Fig. 1). Compared to the
brute force method of making templates which have a
combination of harmonics, our method has a two-fold
advantage: (i) the computational cost of our method is
relatively much lower (only a factor of 3 times that of the
(2, 2)-only search). (ii) our method enables efficient
marginalization over inclination and initial orbital phase
of the binary, and penalizes unphysical degrees of freedom,
thereby preventing a degradation in the overall sensitivity of
the search (see Sec. III A and Fig. 2). We also include a
correction corresponding to non-Gaussian noise to our
ranking-statistic (see Sec. III B and Fig. 3).
We run our pipeline on the O3 LIGO-Virgo data and

report the detections of new candidate events in our
companion paper [30]. We plan to quantify gain/loss in
sensitive volume-time upon adding higher modes in differ-
ent regions of the parameter space in an upcoming
injection study.
The mode-by-mode filtering method and ranking-

statistics that we develop could also be useful for including
additional degrees of freedom in templates in other scenar-
ios (e.g., to include orbital eccentricity or precession in
templates). The only requirement is that the waveform
should be linearly decomposable into the aligned-spin
quasi-circular (2, 2) mode and other components. While
this decomposition is more straightforward for the cases of
higher harmonics and eccentricity, it is worth mentioning
that recent papers have also explored a similar decompo-
sition for precession [22,63,64]. We plan to explore searches
including eccentricity and/or precession in future studies.
Specific code modules associated with computing the
HM marginalized statistics, and implementing the band
eraser are available at https://github.com/JayWadekar/
GW_higher_harmonics_search/tree/main/Pipeline_modules_
arXiv_2405.1740. Codes and tutorials for running the IAS-
HM search pipeline on raw GW strain data are available at
https://github.com/JayWadekar/gwIAS-HM.
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APPENDIX: TRIGGER-COLLECTION
STATISTICS WITH HM

In Sec. III A, we derived the marginalized statistic for
ranking multidetector triggers. In our pipeline, we first
collect triggers from individual detectors. We then form a
group of triggers with their counterparts in other detectors
(we discard triggers which do not have a counterpart). In
this Appendix, we derive a single-detector statistic which is
quick to compute and allows for triggers with physical
combinations of HM. We then generalize our result to
quickly identify which multidetector trigger groups to
select for further analysis.

1. Motivation

One option to collect single-detector triggers is to
naively use the incoherent squared SNR: jρ⊥22j2 þ jρ⊥33j2 þ

jρ⊥44j2 > ρ2threshold and leave the work of up-weighting
triggers with physical combination of HM to our ranking
statistic in Eq. (21). While this would not lead to a loss in
the search sensitivity, it will impose a heavy burden on the
coincidence section of our pipeline and also increase our
memory requirements manyfold.
The reason for this can be inferred from Fig. 2, where we

see that naively collecting triggers using jρ⊥22j2 þ jρ⊥33j2 þ
jρ⊥44j2 but using the same value of ρthreshold as the (2,2)-only
case, the number of collected triggers increases by a factor
of over 100. The value of this squared-sum statistic in the
absence of a signal will be the sum of 6 Gaussian random
variables following a χ2-distribution with 6 degrees of
freedom (corresponding to the real and imaginary parts
of each modes). Increasing the number of degrees of
freedom quickly increases the number of triggers at a
fixed collection threshold, e.g., under Gaussian noise,
Pðχ26 d:o:f: > 30Þ=Pðχ22 d:o:f: > 30Þ ∼ 128. This can lead to
a significant increase in both the time and memory cost of
the search. One alternative is to use a higher threshold for
ρ2threshold in the case of HM, but this can lead to losing out
less-bright (2,2)-dominated physical signals below this
threshold.

2. Derivation

To collect individual detector triggers, let us start with
the following approximate version of the multidetector
statistic given in Eq. (14),

e
1
2
ρ2single- det ¼ PðαjSÞ

Z
dΠðR33; R44; ι;ϕ0; D;ψ jαÞ

× exp

�
Ndet

�
Refhdjhig − 1

2
hhjhi

��
; ðA1Þ

where Ndet will the effective number of detectors later used
in the coincidence step of our analysis. Π is again the prior
over extrinsic parameters and HM mode ratios.
We need the single-detector statistic to be quick to

compute as it will be applied to a large number of low
SNRGaussian noise triggers. To speed up our computation,
we maximize (instead of marginalizing) over the extrinsic
paramters ϕ0; D;ψ ; n̂, but we retain the marginalization
over the amplitudes of HM relative to (2,2) (i.e., over ι and
Rlm). The job of the statistic derived in this section is to
downweight triggers with unphysical mode ratios at the
single detector stage.
We also use the orthogonalized templates h⊥ll in this

subsection to simplify our calculation (see Eq. (11) for their
definition). The expected ratios of SNRs for the orthogon-
alized modes can be precalculated using IMRPhenomXHM
waveforms [similar to the case of unorthogonalized wave-
forms in Eq. (8)] as
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r33 ≡ jhh⊥33;XHMjh⊥33;XHMij
jhh⊥22;XHMjh⊥22;XHMij

r44 ≡ jhh⊥44;XHMjh⊥44;XHMij
jhh⊥22;XHMjh⊥22;XHMij

w ∝ hhXHMjhXHMi3=2. ðA2Þ

We calculate and store fr33; r44; wg samples for each
subbank separately. We sample over waveforms hXHM
corresponding to the intrinsic parameter space associated
with each subbank. Note that we also sample uniformly
over ι in hXHM in Eq. (A2) whereas, in Eq. (8), we had
fixed ι ¼ π=2 (we now intend to calculate the integral over

both ι and Rlm at the same time using the rii samples). wðiÞ
is the weight of each sample corresponding to its observ-
able distance (e.g., we give a larger weight to a low
inclination system with large M and symmetric q as it is
observable to a larger distance, and vice versa). We will use
these samples below in Eq. (A5) for marginalizing over
the r33, r44 parameter space. Note that r33, r44 are funct-
ions of R33; R44; sin ι (under the approximation that
R33hh22jh33i ≪ 1 and R44hh22jh44i ≪ 1, we recover
r33 ≃ R33 sin ι and r44 ≃ R44 sin2 ι). Upon rewriting the
likelihood terms from Eqs. (18) and (20) for the case of
orthogonalized modes, we get the right-hand side (rhs) of
Eq. (A1) to be

Z
dΠðr33; r44;ϕ0; D;ψ jαÞ exp

�
Ndet½RefF �ðρ⊥22 þ eiϕ0r33ρ⊥33 þ e2iϕ0r44ρ⊥44Þg −

1

2
jF j2ð1þ r233 þ r244Þ�

�
; ðA3Þ

where we used the notation F � ≡ D0

D ½Fþ 1þcos2ι
2

− i cos ιF×�e2iϕ0 . Upon maximizing with respect to the complex number
F �, we get Fmax ¼ ðρ⊥22 þ eiϕ0r33ρ⊥33 þ e2iϕ0r44ρ⊥44Þ=ð1þ r233 þ r244Þ. Note that this is roughly equivalent to maximizing
over D; n̂ and ψ . Substituting Fmax in Eq. (A1) gives

e
1
2
ρ2single- det ≃ PðαjSÞ

Z
dΠðr33; r44;ϕ0jαÞ exp

�
Ndet

2ð1þ r233 þ r244Þ
jρ⊥22 þ eiϕ0r33ρ⊥33 þ e2iϕ0r44ρ⊥44j2

�
. ðA4Þ

The next step is to explicitly maximize over ϕ0 (earlier, ϕ0

was degenerate with the phase of the response factor of the
detector and only their combination was maximized). In a
general case, this maximization depends on the relative
amplitudes of the different modes. Note that one could also
marginalize of ϕ0 using trapezoid quadrature in a similar
manner to Ref. [46] but we leave this to future work. We

approximately do the ϕ0 maximization in two regimes.
First when the (4,4) mode is weaker than (2,2) and (3,3),
i.e., r44jρ⊥44j ≪ jρ⊥22j and r44jρ⊥44j ≪ r33jρ⊥33j, in which case
ϕmax
0 ¼ −ðarg ρ⊥33 − arg ρ⊥22Þ; similarly for the second case

when (3,3) mode is weaker than (2,2) and (4,4). The first
case is encountered more often and the corresponding
single detector score upon substituting ϕmax

0 becomes

e
1
2
ρ2single- det ≃ PðαjSÞ

X
i

wðiÞ exp

"
Ndet

2ð1þ ½rðiÞ33 �2 þ ½rðiÞ44 �2Þ
���jρ⊥22j þ rðiÞ33 jρ⊥33j þ rðiÞ44 jρ⊥44jei½argðρ

⊥
22
Þþargðρ⊥

44
Þ−2 argðρ⊥

33
Þ�
���2
#
; ðA5Þ

where we perform the last remaining integral over mode
amplitude ratios using Monte Carlo integration over the
samples we generated. Therefore, we can use the time-
series data of ρii to construct an approximate score which is
very quick to compute. We provide an example of the
marginalized score calculation in a jupyter notebook
https://github.com/JayWadekar/GW_higher_harmonics_
search/tree/main/Pipeline_modules_arXiv_2405.1740.
We first apply a cut on ρsingle- det from Eq. (A5) to

collect triggers from a single detector. Note that we

collect triggers from different templates in the same
time window. The next step is to identify triggers
among the collected ones that share the same template
in multiple detectors and have a time-lag difference that
is less than the light crossing time (see section G
of [11]). Typically, we encounter multiple such triggers
in the same time window. We therefore need a criterion
to pick the best multidetector trigger among these for
further analysis. One option is to use the coherent score
given in Eq. (21). But this can be expensive to compute

NEW SEARCH PIPELINE FOR GRAVITATIONAL WAVES … PHYS. REV. D 110, 044063 (2024)

044063-13

https://github.com/JayWadekar/GW_higher_harmonics_search/tree/main/Pipeline_modules_arXiv_2405.1740
https://github.com/JayWadekar/GW_higher_harmonics_search/tree/main/Pipeline_modules_arXiv_2405.1740
https://github.com/JayWadekar/GW_higher_harmonics_search/tree/main/Pipeline_modules_arXiv_2405.1740
https://github.com/JayWadekar/GW_higher_harmonics_search/tree/main/Pipeline_modules_arXiv_2405.1740


for a large number of multidetector triggers, thus we use an approximate score by generalizing Eq. (A5) for the
multidetector case as

e
1
2
ρ2multidet ≃PðαjSÞ

X
i

wðiÞ exp

"
1

2ð1þ½rðiÞ33 �2þ½rðiÞ44 �2Þ
X

k∈detectors

���jρ⊥22;kj þ rðiÞ33 jρ⊥33;kj þ rðiÞ44 jρ⊥44;kjei½argðρ
⊥
22;kÞþargðρ⊥

44;kÞ−2argðρ⊥33;kÞ�
���2
#
.

ðA6Þ

After this step, we are left with only a single multidetector trigger in a 0.1 s bucket (we also follow the same procedure on
triggers from timeslides). We then use our ranking-statistic in Eq. (16) to rank the collected multidetectors triggers and
calculate their false alarm rates.
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