
Harmonic analysis for pulsar timing arrays

Jonathan Nay ,1 Kimberly K. Boddy ,1 Tristan L. Smith ,2 and Chiara M. F. Mingarelli 3,4,5

1Texas Center for Cosmology and Astroparticle Physics, Weinberg Institute, Department of Physics,
The University of Texas at Austin, Austin, Texas 78712, USA

2Department of Physics and Astronomy, Swarthmore College, Swarthmore, Pennsylvania 19081, USA
3Department of Physics, University of Connecticut, 196 Auditorium Road, U-3046, Storrs,

Connecticut 06269-3046, USA
4Center for Computational Astrophysics, Flatiron Institute, 162 Fifth Avenue,

New York, New York 10010, USA
5Department of Physics, Yale University, New Haven, Connecticut 06520, USA

(Received 21 June 2023; accepted 18 July 2024; published 28 August 2024)

We investigate the use of harmonic analysis techniques to perform measurements of the angular power
spectrum on mock pulsar timing data for an isotropic stochastic gravitational-wave background (SGWB)
with a dimensionless strain amplitude Agw ¼ 2 × 10−15 and spectral index γgw ¼ 13=3. We examine the
sensitivity of our harmonic analysis to the number of pulsars (50, 100, and 150) and length of pulsar
observation time (10, 20, and 30 years) for an isotropic distribution of pulsars. We account for intrinsic
pulsar red noise and use an average value of white noise of ∼100 ns. We are able to detect the quadrupole
for all our mock harmonic analyses, and for 150 pulsars observed for 30 years we are able to detect up to the
l ¼ 5 multipole. We provide linear scaling relationships for the SGWB amplitude, the quadrupole, and
l ¼ 3 as a function of pulsar observation time and number of pulsars. We estimate the sensitivity of our
harmonic approach to deviations of general relativity that produce subluminal GW propagation speeds.
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I. INTRODUCTION

The direct detection of gravitational waves (GWs) by
LIGO [1] has marked the rise of an exciting new obser-
vational era. Currently, all reported GW measurements are
of individual binary mergers of compact objects, but there
are also ongoing efforts to detect a stochastic GW back-
ground (SGWB) arising from a population of unresolved
binaries.1 In particular, pulsar timing arrays (PTAs) [5–8]
are searching for a SGWB in the nanohertz regime,
generated by mergers of supermassive black hole binaries.
PTAs measure pulses of radio emission from millisecond
pulsars, which serve as precise astronomical clocks due to
their highly stable rotational periods. Intervening GWs
between Earth and a pulsar (typically ∼ a kiloparsec away)
induce small shifts in the pulse times of arrival (TOAs),
and PTA experiments achieve sensitivity to the effects of
GWs by cross-correlating TOA information between pairs
of pulsars.
An isotropic SGWB imprints two main signatures in

TOA data: low-frequency timing shifts common to all
observed pulsars (referred to as “common red noise” or a
“common process”) and an angular correlation of timing
shifts between pulsar pairs, known as the Hellings-Downs

(HD) curve [9]. Thus far, multiple PTA collaborations have
reported an observed common red noise, broadly consistent
with expectations from a SGWB, but have not found
evidence of the HD correlation necessary to claim a
detection [10–13].2
Standard PTA pipelines incorporate a Bayesian analysis

to characterize frequency spectrum information and a
frequentist analysis [14] to assess the evidence of HD
angular correlations (e.g., see Refs. [10–13]). However, an
equivalent way to represent the HD angular correlation
function is through the angular power spectrum, obtained
directly by decomposing the isotropic SGWB into sphe-
rical harmonics [15] with multipole l [16]. The angular
power spectrum for an isotropic SGWB has a domi-
nant quadrupole (l ¼ 2) contribution due to the tensorial
nature of GWs, while higher multipole contributions scale
as ∼l−4 [16,17].
In this paper, we investigate the capabilities of PTAs

to measure the angular power spectrum of an isotropic
SGWB. We perform Bayesian analyses with mock PTA
data and allow the relative amplitudes of the angular power
spectrum multipoles to vary as independent parameters.
This flexibility naturally permits a search of an isotropic
SGWB that incorporates generic modifications of general

1There may also be contributions from a cosmological SGWB,
sourced by exotic processes in the early Universe [2–4]. 2However, see the note added.
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relativity (GR), which may feature GWs with subliminal
speeds and non-Einsteinian polarization modes [16,18–21].
By contrast, standard PTA analyses assume HD correla-
tions, which correspond to an angular power spectrum
with specific fixed values for the multipole amplitudes.
Measuring the shape of the angular power spectrum may
also help readily identify the presence of other correlations,
such as monopolar clock errors and dipolar solar system
ephemeris errors [11], as well as anisotropies in the
SGWB [17,22–24].
In order to assess the ability for PTAs to extract the

angular power spectrum, we analyze various mock real-
izations of PTA data assuming standard GR and an iso-
tropic SGWB with a dimensionless strain amplitude Agw ¼
2 × 10−15 and spectral index γgw ¼ 13=3. We consider
different numbers of observed pulsars (50, 100, and 150)
and lengths of observation time (10, 20, and 30 years) for
an isotropic distribution of pulsars. In addition to the
overall SGWB amplitude, we treat the relative amplitudes
for each multipole from l ¼ 2 to l ¼ 8 as independent
parameters. We also include intrinsic red and white noise
for each pulsar and assume the noise is subdominant (in the
low-frequency regime of interest) to the SGWB signal, with
an average white-noise value of ∼100 ns.
In all our harmonic analyses, we are able to detect the

quadrupole. For our harmonic analysis with 150 pulsars
observed for 30 years, we are able to detect multipoles up to
l ¼ 5. The first four nonzero multipoles in the angular
power spectrum can accurately reconstruct the HD curve
due to the sharp dropoff in angular power strength as l
increases, so our harmonic analysis approach is a promising
tool to help characterize angular correlations present in
pulsar timing data.
For the SGWB amplitude, the quadrupole, and l ¼ 3,

we provide linear scaling relationships as a function of
experiment observation time and as a function of the
number of pulsars in our model. We find that increasing the
observation time has a larger scaling effect than increasing
the number of pulsars. Longer observation times corre-
spond to accessing lower-frequency GWs, where the GW
strain is larger (e.g., for a SGWB arising from supermassive
black hole binaries [25]).
Finally, we give an example of how our harmonic

analysis method enables us to explore deviations from
GR by considering subluminal GW propagation speeds.
For our harmonic analysis with 150 pulsars observed for
30 years, we find the constraints vary by multipole
and range from 0.95c to 0.98c, where c is the speed
of light.
This paper is organized as follows. In Sec. II we review

how PTA timing data are modeled and define the angular
power spectrum. In Sec. III we present our methods for
performing a Bayesian harmonic analysis. We describe
how we generate our mock PTA data and show our results
in Sec. IV. We conclude in Sec. V. We also include various

supplementary material. In Appendix A we demonstrate
our results are not driven by numerical outliers when
generating mock data by performing a realization study
in which we vary the pseudorandom number generator
seeds. In Appendix B we show our method for calculating a
Savage-Dickey Bayes factor as a measure of the evidence
for each multipole in our model. In Appendix C we provide
corner plots showing the marginalized 1D and 2D posterior
distributions for all SGWB model parameters of the
harmonic analyses presented in Sec. IV.

II. PULSAR TIMING RESIDUALS

PTAs time millisecond pulsars by recording pulses over
a window of time of ≲a few days. Within this window,
TOAs are obtained (at multiple radio telescope frequencies)
by integrating the pulses over ∼1 h in order to increase
the signal-to-noise ratio. However, for the purposes of this
paper, we consider a wideband approach [26], for which
there is a single TOA associated with the full window of
time, and we use a single radio telescope frequency, since
we are not considering the effects of the dispersion measure
on the timing signal. A pulsar timing residual is then
obtained by fitting out all known systematic and deter-
ministic processes from the TOA (e.g., see Ref. [27]). PTAs
accumulate many timing residuals over the lifetime of the
experiment (∼10 yr) by observing a given pulsar with a
cadence of 2–3 weeks.
The ith timing residual observed at time tai from pulsar a

located in the n̂a direction can be expressed as [e.g., see
Eq. (23.59) of Ref. [7] ]

raðn̂a; taiÞ ¼ naðtaiÞ þRgwðn̂a; taiÞ þRRN
a ðtaiÞ þRdet

ai ; ð1Þ

where naðtaiÞ is Gaussian white noise, Rgwðn̂a; taiÞ is the
contribution from a SGWB, RRN

a ðtaiÞ is the contribution
from pulsar intrinsic red noise, and Rdet

ai is any left-
over deterministic signal not properly fit out from the
TOA [28,29]. The contribution from Rdet

ai is accounted for
in our analyses but does not otherwise play an important
role for our investigations, so we do not discuss it in detail.
In general, Rgwðn̂a; taiÞ also depends on the distance

from Earth to the pulsar. However, as we discuss below,
we are interested in the two-point correlation function of
Rgwðn̂a; taiÞ between pairs of pulsars, and the terms
involving pulsar distances essentially only contribute for
colocated pulsars, doubling the correlation function at
vanishing separation (see Sec. 23.3 of Ref. [7] for further
discussion). The doubling is commonly referred to as the
“pulsar term,” which does not depend on the pulsar
distances. This approach is consistent with the methodol-
ogy used by PTA collaborations when searching for a
SGWB (e.g., see Ref. [11]) and is justified for actual pulsar
distances observed by PTAs [30].
For the remainder of this section, we discuss our

modeling of the Gaussian white noise, the red-spectrum
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processes stemming from a SGWB and pulsar red noise,
and the angular power spectrum of the SGWB, which is the
foundation of our harmonic analysis approach.

A. Gaussian white noise

The Gaussian white noise naðtaiÞ is taken to have zero
mean with a covariance matrix

Nai;bj ≡ hnaðtaiÞnbðtbjÞi ¼ σ2WN;aiδabδij; ð2Þ

where δab and δij are Kronecker delta functions and the
angle brackets denote an ensemble average. The total
white-noise variance of the ith TOA measurement for
pulsar a is (e.g., see Sec. 3.3 of Ref. [27])

σ2WN;ai ¼ S2aðσ2TOA;ai þQ2
aÞ; ð3Þ

where σTOA;ai is the TOA measurement error, Sa is the
instrument scaling error (also referred to as EFAC), and Qa
is the instrument quadrature error (EQUAD). We assume a
single instrument measures all TOAs for a given pulsar, so
there is only one scaling and one quadrature error per
pulsar.
Since we assume a wideband approach, in which a single

TOA is obtained over a single observation window of a
pulsar, the white noise of different TOA measurements
should not be correlated (e.g., there is no pulse phase
“jitter”). The lack of such a correlated error (ECORR) is
represented by the diagonal nature of Eq. (2).

B. Red-spectrum processes

The red-spectrum processes due to a SGWB and pulsar
intrinsic red noise are assumed to be stationary and
Gaussian (e.g., see Ref. [31]) with zero mean. As with
the Gaussian white noise, these processes are thus fully
characterized by the two-point correlation functions

hRgwðn̂a; taiÞRgwðn̂b; tbjÞi ¼ ξgwðτÞζðcos θabÞ; ð4Þ

hRRN
a ðtaiÞRRN

b ðtbjÞi ¼ ξRNa ðτÞδab; ð5Þ

where τ≡ jtai − tbjj, cos θab ¼ n̂a · n̂b is the pulsar-pair
separation angle, and we have assumed the time depend-
ence and angular dependence of the SGWB correlation
function are separable [e.g., see Eqs. (23.60) and (23.64)
of Ref. [7] ]. Also, since we do not model distances to
the pulsars, the condition θab ¼ 0 is equivalent to a ¼ b.
For an isotropic SGWB, the spatial correlation function
ζðcos θabÞ is the standard HD curve [9]

ζðcos θabÞ ¼
1

2
ð1þ δabÞ −

1

4

�
1 − cos θab

2

�

þ 3

2

�
1 − cos θab

2

�
log

�
1 − cos θab

2

�
; ð6Þ

which has been normalized to 1 for a ¼ b. The factor δab
accounts for an enhancement in the autocorrelation due to
the pulsar term [e.g., see Eq. (23.65) of Ref. [7] ].
From the Wiener-Khinchin theorem, ξgw and ξRNa each

possess a spectral decomposition given by a frequency
power spectrum. We parametrize the frequency power
spectra for the SGWB and the intrinsic pulsar red noise
as power laws of the form [10–13]

PgwðfÞ≡ A2
gw

12π2

�
f
fyr

�
−γgw

f−3yr ; ð7Þ

PRN;aðfÞ≡ A2
RN;a

12π2

�
f
fyr

�
−γRN;a

f−3yr ; ð8Þ

where Agw is the dimensionless strain amplitude of the
SGWB at a reference frequency fyr ¼ 1=yr, ARN;a is an
equivalent dimensionless amplitude for the intrinsic red
noise of pulsar a, and γgw and γRN;a are the corresponding
spectral indices. For a source of inspiraling supermassive
black hole binaries, we expect γgw ≃ 13=3 [25]. We assume
γRN;a and γgw are positive, resulting in red spectra, which
have more power at lower frequencies. The SGWB spec-
trum in Eq. (7) is common to all pulsars and thus does not
carry the pulsar label a.
We use the same method of modeling the autocorrelation

of red-spectrum processes as are used by PTA collabora-
tions to search for a SGWB (e.g., see Ref. [11]). The
difference with our harmonic analysis approach is how we
model the cross-correlations (i.e., the correlations created
from distinct pulsar pairs), which we discuss in the
following section.

C. Angular power spectrum

The spatial correlation function ζðcos θabÞ for distinct
pulsars a and b can be written as a Legendre polynomial
decomposition [17,22,32,33]:

ζðcos θabÞ ¼
X∞
l¼2

clPlðcos θabÞ; ð9Þ

where Plðcos θabÞ are Legendre polynomials and cl are
the associated Legendre coefficients. The first nonzero
Legendre coefficient is the quadrupole (l ¼ 2) term. The
Legendre coefficients that reconstruct the HD curve for an
isotropic SGWB are

cl ¼ 3

2
ð2lþ 1Þ ðl − 2Þ!

ðlþ 2Þ! ; ð10Þ

which exhibit a dominant quadrupolar contribution and a
sharp reduction at higher multipoles. The Legendre coef-
ficients in Eq. (10) assume standard GR. Modifications of
GR require generalized Legendre coefficients, as shown in
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Refs. [16,18–21]. By using a total-angular-momentum
basis [15] for the GW metric perturbation, the generalized
Legendre coefficients can be written as [16,20]

cl ≡ 3ð2lþ 1ÞjFlj2; ð11Þ

where jFlj2 is the detector response function defined by
Eq. (19) of Ref. [16]. From Eqs. (10) and (11), the detector
response function under standard GR is

jFlj2 ¼
1

2

ðl − 2Þ!
ðlþ 2Þ! : ð12Þ

For an isotropic SGWB, the detector response function is
related to the angular power spectrum, ClðτÞ, by3 [16,20]

ClðτÞ ¼ 12πjFlj2 × 2

Z
∞

0

df PgwðfÞ cosð2πfτÞ: ð13Þ

III. HARMONIC ANALYSIS

In this section, we present our analysis method for
measuring the angular power spectrum of an isotropic
SGWB. Standard PTA analyses fix the angular correlations
of timing residuals to follow the HD curve in Eq. (6). We
extend these analysis pipelines by replacing the assumed
HD correlation function with the more general form given
in Eq. (9) and treating the Legendre coefficients cl as
independent parameters. This generalized approach permits
a measurement of the angular power spectrum directly from
data, allowing for a more generic search of a SGWB that is
agnostic to, e.g., possible modifications of GR.
We incorporate a finite number of multipoles as new

parameters, with the general expectation that contributions
from higher multipoles are suppressed and can be
neglected. As we describe in Sec. IVA, we generate mock
data assuming an isotropic SGWB under standard GR, and
we find that including coefficients for multipoles (starting
at l ¼ 2) up to l ¼ 8 is sufficient in our analyses. Note that
we could also include the coefficients for l ¼ 0 and l ¼ 1,
which may arise from clock or solar system ephemeris
errors [11], respectively, or from non-Einsteinian polariza-
tion modes. Monopole and dipole contributions from non-
Einsteinian modes possess their own amplitudes that
generally differ from the quadrupolar contribution from
GR, while clock and ephemeris errors are expected to have
completely different frequency spectra. We leave explora-
tions of monopole and dipole correlations to future work.
For our Bayesian analysis, we consider the likelihood

function (e.g., see Ref. [34])

pðr⃗jη⃗Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð2πCÞp e−

1
2
r⃗TC−1 r⃗; ð14Þ

where r⃗ is a vector of measured timing residuals with
entries represented by Eq. (1), η⃗ represents the model
parameters of interest, and C is an analytically marginalized
covariance matrix. C includes white-noise and red-noise
covariances in Eqs. (2) and (5), as well as the covariance in
Eq. (4) from cross-correlations induced by GWs.
As we describe in Sec. II, the τ-dependent covariance

functions in Eqs. (4) and (5) are related to their corre-
sponding frequency power spectra via the Wiener-Khinchin
theorem [cf. Eq. (7)]. However, in practice, PTA analyses
implement the spectral decomposition using a finite
number of sine and cosine basis functions consisting of
the lowest harmonics of the fundamental frequency
fL ¼ 1=Tobs, where Tobs is the total observation time of
the experiment [31]. Using the same methodology as PTA
collaborations (e.g., see Refs. [10,11]), we use a high-
frequency cutoff of fH;gw ¼ 14=15 yr−1 for the SGWB and
fH;RN ¼ 30=15 yr−1 ¼ 2 yr−1 for the intrinsic red noise.

IV. METHODS AND RESULTS

In order to assess the performance of a harmonic
analysis, we want to understand how well the angular
power spectrum can be reconstructed under various obser-
vational scenarios. In this section, we describe the gen-
eration of mock data, outline our analysis pipeline, and
present our results.

A. Generating mock data

We create nine different mock PTA datasets with varying
observation time Tobs (10, 20, and 30 yr) and number of
pulsarsNp (50, 100, and 150). Our mock data are generated
using a method which is similar to that used in Ref. [35].
We assume all synthetic pulsars have a common obser-

vation start time and are observed at the same cadence. We
randomly populate 150 pulsars isotropically across the full
sky, as shown in Fig. 1. We also show the pulsar locations
from the International PTA (IPTA) data release 2 (DR2)
[36] for comparison. For the 100 (50) pulsar analyses,
we select a random subset of the 150 (100) pulsars. The
locations of these pulsars are fixed for all analyses
involving the same number of pulsars.
We generate the list of TOAs for each pulsar using

TEMPO2 [37] and its PYTHON wrapper libstempo [38]. We
assume an average observation cadence of 14 days (with
small random variations in time for each individual TOA
measurement) to create a set of Tobs=ð14 daysÞ number of
TOAs for each pulsar. The TOAs need to be adjusted to
account for measurement and instrument error, pulsar
intrinsic red noise, and the presence of an isotropic SGWB.
We randomly sample noise parameters from truncated

normal, truncated log-normal, or uniform distributions, as
3In practice, the frequency integral in Eq. (13) employs a lower

and upper frequency cutoff, which we provide in Sec. III.
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listed in Table I. For each pulsar a, we generate values for
instrument errors (Sa andQa) and intrinsic red noise (ARN;a

and γRN;a). Furthermore, the ith TOA receives a measure-
ment error (σTOA;ai). Note that we set the maximum on the
ranges for ARN;a and γRN;a so that there is a high probability
the SGWB signal will dominate the pulsar intrinsic red
noise at lower frequencies where the SGWB is modeled.
These maximum ranges help ensure each synthetic pulsar
contributes to a SGWB signal that is distinguishable from
the noise of that pulsar.
We inject a SGWB signal into the mock TOAs, as

described in Ref. [40] and we briefly summarize in
Appendix A. We use the frequency power spectrum in
Eq. (7) with spectral index γgw ¼ 13=3 and amplitude
Agw ¼ 2 × 10−15, which corresponds to the lower end of
the reported common red-noise process [10–13].
There are additional pulsar properties we must specify

in order to use the full suite of PTA analysis software
(i.e., pulsar spin frequency, spin-down rate, parallax,
and dispersion measure). We populate the values of
these properties by randomly sampling from empirical

distributions that we create using IPTA DR2 pulsar
attributes from Ref. [36]. These additional properties do not
otherwise play a role in or impact our study, so we do not
discuss them further.
Each of our nine mock PTA datasets are generated with

the same set of pseudorandom number generator seeds used
to inject the white-noise, red-noise, and SGWB signals. We
use the same set of seeds in order to focus on differences
arising from varying Tobs and Np, without the confounding
effects of different realizations of pseudorandom number
generation. To ensure the results of our mock datasets
are not driven by outlier seeds, we perform a realization
study, described in Appendix A. Each realization analysis
involves creating mock data with 100 different sets of seeds
to produce 100 different realizations, and all other aspects
of the analysis remain the same. We find that the main
qualitative results of this paper are unchanged with differ-
ent mock PTA dataset realizations.

B. Analysis methods

In order to implement the harmonic analysis presented
in Sec. III, we use ENTERPRISE [41] and ENTERPRISE-

EXTENSIONS [42] to calculate the likelihood in Eq. (14).
We modify ENTERPRISE-EXTENSIONS to include the angular
correlation from Eq. (9) with the Legendre coefficients as
model parameters. We use PTMCMCSampler [43] to perform
Markov chain Monte Carlo (MCMC) sampling to deter-
mine parameter posterior distributions from each of our
nine mock datasets. The parameters and their prior ranges
are listed in Table II. The lower limit of the Legendre
coefficient prior range comes from the requirement that the
angular power spectrum given by Eq. (13) is a strictly
positive quantity. The upper limit of the Legendre coef-
ficient prior range comes from the requirement that the
SGWB two-point correlation function given by Eq. (4)
must be positive definite.

TABLE I. Pulsar white- and red-noise parameters for generat-
ing mock PTA data. The first column denotes the noise parameter
of interest, with units indicated where relevant. In order to
randomly generate values of these parameters for each pulsar
a and/or TOA i, we sample most of the parameters using a
truncated normal distribution with a mean, standard deviation,
and range given in the remaining columns. We sample γRN using
a uniform distribution. The values for σTOA;ai correspond to
optimistic-quality pulsars in Ref. [39].

Noise input Mean Standard deviation Range

σTOA;ai [ns] 100 30 [9, 601]
Sa 1.0 0.05 [0.5, 5.0]
log10ðQa½s�Þ −8.5 0.1 ½−11;−6�
log10 ARN;a −16 1 ½−18;−14.7�
γRN;a Uniform distribution [1, 5]

FIG. 1. Mollweide projection of our 150 synthetic pulsars,
distributed uniformly across the full sky (orange circles). For
comparison, we also show the observed pulsars from IPTA DR2
(blue triangles) [36].

TABLE II. Uniform prior ranges for MCMC single-pulsar and
harmonic analyses. The single-pulsar analysis does not include
angular correlations or the frequency power spectrum for a
SGWB. The white-noise parameters Sa and log10 Qa in the
harmonic analysis are fixed to their maximum-likelihood values
obtained from the single-pulsar analysis.

Parameter

MCMC prior range

Single-pulsar analysis Harmonic analysis

log10 Agw � � � ½−18;−14�
γgw � � � Fixed at 13=3
c2 through c8 � � � [0, 1]

Sa [0.01, 10] Fixed to best fit
log10 Qa ½−12;−5� Fixed to best fit

log10 ARN;a ½−20;−11� ½−20;−11�
γRN;a [0, 7] [0, 7]
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Following standard PTA methods [10–13], we perform a
single-pulsar noise analysis for a given mock PTA dataset
before running the main analysis to extract SGWB proper-
ties. The single-pulsar analysis involves four parameters for
each pulsar: the two white-noise instrument error param-
eters (Sa and Qa) and the two pulsar intrinsic red-noise
parameters (ARN;a and γRN;a). SGWB parameters are not
included: there are no angular correlations for a single
pulsar, and the common red-spectrum process of the
SGWB cannot be distinguished from the pulsar intrinsic
red noise. Thus, the covariance matrix C in Eq. (14) does
not include any cross-correlations between pulsars for the
single-pulsar analysis. Note that we use the same number of
frequency components to analyze the pulsar intrinsic red
noise as those used in the main harmonic analysis.
From the single-pulsar analysis, we obtain maximum-

likelihood values for Sa and Qa. These values for Sa are
generally consistent with their injected values (i.e., the
values we use to generate the signals for our mock data),
while the values for Qa are poorly recovered, because
the injected values of Qa are subdominant to σTOA;ai
[cf. Eq. (3)]. However, in turn, the poorness of the recovery
has little impact on our main analysis.

For the full PTA analyses, we fix the values of Sa andQa
to their maximum-likelihood values obtained from the
single-pulsar analysis. The pulsar intrinsic red-noise para-
meters and the SGWB parameters, including the Legendre
coefficients, are varied according to Table II in the MCMC
analysis.
We run multiple MCMC chains in parallel to reduce

processing time when analyzing a given mock dataset; we
do not employ parallel tempering. We combine sampling
chains after removing a 25% burn-in to create a single final
chain. We use the Gelman-Rubin R statistic [44] as a
measure of chain convergence and require R − 1 < 0.1 for
all SGWB parameters. We also require a minimum com-
bined total of 3.5 × 106 samples prior to removing the
burn-in. The sample chains are thinned by a factor of 10,
which is the default for PTMCMCSampler. The initial values
of the Legendre coefficients, randomly drawn from their
prior ranges, are scaled by the total number of Legendre
coefficients to prevent MCMC from getting stuck at the
initial sample point.
As a point of comparison, we also perform an HD

analysis by fixing the values of the Legendre coefficients to
their theoretical values in Eq. (10). Fixing the coefficients is

FIG. 2. Mean and 68% CI of the marginalized 1D posterior distributions for log10 Agw and Legendre multipole coefficients for l ¼ 2
through l ¼ 8 for all nine harmonic analyses. Each panel separates the analyses for different numbers of pulsars with a vertical dot-
dashed line, and analyses for different observation times are shown in different colors, as indicated in the legend. For multipoles l ¼ 4
through l ¼ 8, we also show the 95% CI as dashed lines. When the parameter is consistent with zero in the 95% CI, we show a line cap
at the upper 95% limit. For each parameter, the injected value is shown as a horizontal dashed, black line. For log10 Agw, the gray points
next to each colored point represent the corresponding HD analyses, in which the Legendre coefficients are fixed to their injected values.
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equivalent to using the HD correlation function given by
Eq. (6), modulo any effects due to truncating the angular
power spectrum at l ¼ 8. The only SGWB parameter in
these HD analyses is log10 Agw, and we use the same prior
range given in Table II for the harmonic analysis.

C. Results

For our nine harmonic analyses, we show the mean and
68% credible interval (CI) of the marginalized 1D posterior
distributions for the SGWB parameters in Fig. 2. We
provide the corner plots for all SGWB parameters of our
nine harmonic analyses in Appendix C. For the SGWB
amplitude, the quadrupole, and multipole l ¼ 3, the
posterior distributions can be accurately characterized by
the mean and 68% CI (as shown in Appendix C). For
multipoles l ¼ 4 through l ¼ 8, we also show in Fig. 2 the
95% CI with dashed error bars. When the multipole’s
posterior distribution cannot be distinguished from zero
with a 95% CI, we place a line cap at the 95% CI upper
limit. The injected value is plotted for each parameter as a
dashed black horizontal line. We also show the results
of our HD analyses, in which the Legendre coefficients
are fixed to their injected values from Eq. (10), for
log10 Agw in Fig. 2. The HD analysis results are plotted
in gray, immediately to the right of the analogous harmonic
analysis.
For detected parameters (i.e., parameters whose 95% CI

does not include zero), Fig. 2 shows the spread of the
posterior distribution decreases and the mean tends toward
the injected value of the parameter as we increase Tobs and
Np, which is intuitively reasonable. For parameters that are
not detected, their 95% CI upper limits decrease. The
relatively large 68% CI that we see with l ¼ 7 for the 50
pulsar analyses is realization dependent and within the
expected range of fluctuations for parameters that are not
detected, as we discuss in Appendix A.
For the 50 pulsar analyses, the posterior of log10 Agw is

biased low relative to the injected value of log10 Agw. The
bias comes from modeling pulsar intrinsic red noise,
which absorbs some of the power from the injected
SGWB signal [45]. The magnitude of this bias decreases
as we increase Tobs and Np, because the SGWB ampli-
tude in the cross-correlations of the timing data helps to
distinguish the SGWB signal from the pulsar intrinsic
red noise.
Figure 2 shows the 68% credible interval of the posterior

distribution for log10 Agw has approximately the same scale
between the harmonic analysis and the corresponding HD
analysis, which means adding multipoles in our harmonic
analysis has a minimal affect on our ability to recover
the SGWB amplitude. However, we observe in Fig. 2 that
the mean of the posterior distribution for log10 Agw in the
harmonic analysis trends toward larger values than the
corresponding HD analysis as we increase Tobs and Np.

This effect is caused by a moderately strong positive
correlation between log10 Agw and c2, which we show in
the corner plot of Fig. 3. We can see in Fig. 2 that c2 is
trending high relative to its injected value as we increase
Tobs and Np, so the positive correlation is causing a similar
trend in log10 Agw for the harmonic analyses. We show in
Appendix A that detected parameters generally recover the
injected value within 1σ, with fluctuations that are reali-
zation dependent and consistent with an ergodic process.
Therefore, the trend we observe for log10 Agw and c2 is
realization dependent.
In Fig. 3 we also observe a weak negative correlation

between c2 and c3. The weak negative correlation between
multipoles is not due to the harmonic mode coupling from a
finite number of pulsars [46], because the correlations get
stronger as the number of pulsars increases, as can be seen
in the corner plots of Appendix C. We expect to observe
some correlations between SGWB parameters because of
their functional relationship in the angular power spectrum.
In Fig. 4 we plot ρx ≡ hxi=σx, where hxi is the mean

of the marginalized 1D posterior distribution and σx is
one-half the width of the 68% credible interval for x∈
fA2

gw; c2; c3g. Our calculated parameter ρx is a measure of
the significance of parameter x relative to its uncertainty
from its posterior distribution. We obtain the distribution for

FIG. 3. Corner plot of the marginalized 1D and 2D posterior
distributions for log10 Agw, c2, and c3 from the harmonic analysis
with 150 pulsars observed for 30 yr. The vertical and horizontal
dashed lines indicate the injected values. There is a moderately
strong positive correlation between log10 Agw and c2 and a weak
negative correlation between c2 and c3. The corner plots for all
SGWB parameters in all nine harmonic analyses are provided in
Appendix C.
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A2
gw by transforming the posterior distribution of log10 Agw.

We choose these three parameters to calculate ρx because
they are detected in all analyses, as shown in Fig. 2.
The top row of Fig. 4 shows the nine harmonic analyses

plotted as a function of Tobs, while the bottom row shows
these same nine analyses plotted as a function of Np. We
include in Fig. 4 the linear scaling relationship between a
change in ρx versus a change in Tobs (top row) or a change
in Np (bottom row), which we obtain by linear regression.
The scaling of Agw with both Tobs and Np roughly matches
the scaling shown in Figs. 9 and 11, respectively, of
Ref. [47] once we rescale ρA2

gw
by a factor of 1=2 to

account for the fact that we are considering A2
gw, whereas

Ref. [47] considers Agw. The difference is largest for the
scaling with Tobs. This difference may be due to the fact our
PTA properties differ and that we perform a full MCMC,
whereas Ref. [47] fixes all other parameters to their
maximum-likelihood value.
Increasing Tobs has a larger affect on ρx than increasing

Np. This effect occurs, because increasing Tobs increases
the number of low-frequency harmonics where the strength
of the SGWB signal in the autocorrelations dominates the
white noise [48,49]. For our Bayesian analysis approach,
we model a finite number of harmonics of fL ¼ 1=Tobs, as

discussed in Sec. III. By using the average value of our
injected white noise, we find for Tobs ¼ 10 yr only the first
few harmonics of fL are in the regime where the SGWB
signal is dominant, while for Tobs ¼ 30 yr the first ten
frequency harmonics are in this regime. So increasing Tobs
provides more frequency bins where the strength of the
SGWB signal dominates the white noise in the autocorre-
lations, thereby reducing the spread of the SGWB ampli-
tude distribution and increasing ρA2

gw
.

We use the Savage-Dickey approach [50] to calculate a
Bayes factor for each multipole in our harmonic analyses,
which is a measure of the evidence for the multipole in
our model. The calculation methodology is provided in
Appendix B. Figure 5 shows the Savage-Dickey Bayes
factors for multipoles up to l ¼ 5 in the nine harmonic
analyses. General trends in Fig. 5 are consistent with basic
expectations; i.e., evidence for including higher multipoles
increases as Tobs and Np increase due to increasing ρA2

gw
.

We see there is decisive evidence for the quadrupole in all
harmonic analyses. As ρA2

gw
increases, evidence for l ¼ 3

and l ¼ 4 becomes decisive; for 150 pulsars observed for
30 years, we see strong evidence for l ¼ 5. Multipoles
l > 5 are not shown in Fig. 5, because they do not show
trending evidence (relative to increasing Tobs and Np) for
being included in the model.

FIG. 4. Ratio of the mean hxi to one-half the width of the 68%
credible interval σx for the marginalized 1D posterior distribution
of the parameter x∈ fA2

gw; c2; c3g, indicated at the top of each
column of panels, for all nine harmonic analyses. We plot the
ratios in the top and bottom rows as a function of observation time
and number of pulsars, respectively.

FIG. 5. Savage-Dickey Bayes factors Bl for l ¼ 2 to l ¼ 5 for
all nine harmonic analyses. The Bayes factor provides a measure
of the evidence for including a Legendre coefficient cl in the
harmonic analysis. The horizontal dashed lines show the com-
monly used separation of the Bayes factor strength of evidence:
log10 Bl > 2 is decisive, 1 < log10 Bl < 2 is strong, 0.5 <
log10 Bl < 1 is substantial, and log10 Bl < 0.5 is no evidence.
Coefficients for l > 5 are not included, since we generally
observe log10 Bl ≪ 0.5 for these multipoles. For well-measured
coefficients, the Bayes factor is very large, which we denote as
log10 Bl ≫ 5. We include a small horizontal offset for a few
points to prevent overlap.
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The left plot in Fig. 6 shows the multipole marginalized
1D posterior distributions from the harmonic analyses that
have the lowest (top) and highest (bottom) overall multi-
pole evidence. These violin plots show the improvement in
both the mean (relative to the injected value) and the spread
of the posterior distributions as we increase Tobs and Np.
The right plot in Fig. 6 shows the reconstructed angular
correlation function from the multipoles shown in the left
plot. The histogram at the top shows the number of pulsar
pairs binned by angular separation. To reconstruct the
angular correlation function, the values of the Legendre
coefficients at each MCMC chain step are inserted into
Eq. (9) at 100 different angular separation bins. The solid
blue and orange curves represent the mean value within
each angular separation bin, and error bars are the 1σ
deviations. The top blue plot shows that even when multi-
poles l > 3 have little-to-no evidence for being included in
the model, the HD angular correlation function can be fairly
accurately reconstructed because of the strong quadrupolar
dependency and the sharp dropoff in the angular power
spectrum as l increases. The bottom orange plot show how
accurately the HD curve can be reconstructed when we
have evidence for multipoles up to l ¼ 5.
Lastly, we provide an example of how our harmonic

analysis formalism can be used to constrain scenarios that
modify GR. We use the harmonic analysis with 150 pulsars
and 30 years of observations to determine the sensitivity to

subluminal GW propagation. The tensor-mode detector
response function Fl from Table I of Ref. [20] is a function
of the GW subluminal group velocity vgw, where we
assume a single GW phase velocity with no frequency
dependence [to ensure the factorization in Eq. (4) holds].
From Eq. (11), we find clþ1=cl as a function of vgw, where
our use of ratios is to ensure scaling of the autocorrelation
cancels. The 95% lower limit of the 1D posterior distri-
butions of c3=c2, c4=c3, and c5=c4 from our harmonic
analysis provides corresponding 95% lower limits on the
GW group velocity of vgw=c ¼ 0.95, vgw=c ¼ 0.98, and
vgw=c ¼ 0.96, respectively. It is interesting to note that, as
the group velocity decreases the power spectrum at l > 2
decreases so that even though the best-measured multipoles
are the quadrupole and octupole, our strongest constraint
on vgw comes from the ratio of the hexadecapole to the
octupole. Note that even though ground-based measure-
ments of GW place tight constraints on the speed of
propagation of GWs [1,51], this speed may be different
in the frequency range accessible to PTAs [52].

V. CONCLUSIONS

In this paper we demonstrate the capabilities and
limitations of a harmonic analysis for mock PTA timing
data that includes an isotropic SGWB. We model the first
seven nonzero multipoles (i.e., l ¼ 2 through l ¼ 8) of the

FIG. 6. Left: violin plots of the marginalized 1D posterior distributions for the Legendre coefficients from the two harmonic analyses
with the lowest (top panel) and highest (bottom panel) overall multipole evidence. We show the mean (black dot) and 68% CI (black
line) for each posterior distribution, along with the injected values of the Legendre coefficients (red stars) from Eq. (10), corresponding
the HD angular correlation function. Right: reconstructed angular correlation function using the multipole coefficients shown in the left
panels, using 100 angular-separation bins. The solid blue and orange curves represent the mean value within each angular-separation
bin, and the error bars show the 1σ deviation of each bin. The dashed black line is the HD curve. At the top of this panel, we show the
histogram of angular separations for the 150 synthetic pulsars we use for our harmonic analyses.
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SGWB angular power spectrum using a Legendre power
series representation of the angular correlation function. We
perform our harmonic analyses on mock PTA datasets with
different numbers of pulsars (50, 100, and 150) and pulsar
observation times (10, 20, and 30 years) for pulsars
uniformly distributed across the sky.
We find decisive evidence of the quadrupole contribution

in the angular power spectrum for all of our harmonic
analyses. For higher multipoles, the general trend we
observe is that for 50 pulsars evidence for l ¼ 3 is strong
to decisive, for 100 pulsars evidence for l ¼ 3 is decisive
and l ¼ 4 is strong to decisive, and for 150 pulsars
evidence for multipoles up to l ¼ 4 is decisive and the
evidence for l ¼ 5 becomes strong when evidence of the
SGWB amplitude is sufficiently high. The first four non-
zero multipoles in the angular power spectrum can accu-
rately reconstruct the HD curve (to within 2% of the spatial
correlations integrated over angular separations) due to the
sharp dropoff in multipole values as l increases. Therefore,
our harmonic analysis approach is a promising tool to help
determine angular correlations present in pulsar timing data
which includes searching for anisotropies in the SGWB as
well as searching for other cosmological and astrophysical
sources of GWs.
For A2

gw, c2, and c3 we provide linear scaling relation-
ships as a function of Tobs and as a function of Np. We find
that increasing Tobs has a larger affect than increasing Np.
We also compare the scaling of A2

gw to previous work and
find that our scaling with Np is consistent with previous
work, but our scaling with Tobs is higher by approximately
a factor of 2, which we suspect is due to different modeling
techniques.
For higher multipoles that are not detected in our model,

we can place upper limits that decrease sharply with
increasing Tobs and Np. We observe that multipoles are
not detected until the theoretical value of the Legendre
coefficient for that multipole is less than the posterior
standard deviation of log10 Agw.
Most analyses of PTA data assume that the angular corre-

lations between pulsars agree with the standard expect-
ations of an isotropic SGWB and GR. As the data improve,
it will be essential to allow for us to test these assumptions
and allow deviations from these standard expectations. The
method we present here provides a flexible parametrization
that enables us to more fully explore the implications of any
future detection of angular correlations in a PTA, giving us
the ability to explore deviations from GR (e.g., Ref. [53]),
anisotropy (e.g., Ref. [22]), and systematic errors which
cause angular correlations, such as clock errors and shifts in
the Solar System barycenter [54].

Note added. Recently, PTA collaborations reported evi-
dence of SGWB spatial correlations consistent with HD
correlations at varying levels of significance [55–58].
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APPENDIX A: REALIZATION STUDY

In this appendix we present the methodology and results
of our realization study in which we vary the pseudoran-
dom number generator seeds. We choose three different
mock PTA datasets to perform these analyses: 50 pulsars
observed for 10 years, 50 pulsars observed for 20 years, and
100 pulsars observed for 20 years. We choose these datasets
so that we can observe the differences in realizations on
datasets that have different values of Tobs and Np. In the
following subsections, we discuss the methodology used to
perform the realization study, provide the realization study
results, and compare the realization variance of the quadru-
pole to predicted variance from Refs. [33,60,61].

1. Realization study methodology

We generate 100 realizations for each of our three
selected mock PTA datasets by varying the pseudorandom
number generator seeds used to inject white noise, pulsar
intrinsic red noise, and the SGWB signal into the timing
data. All other analysis methods are the same as those
discussed in Secs. III and IV. We provide a brief summary of
how pseudorandom number generator seeds inject signals
into the timing data using TEMPO2 and its PYTHON wrapper
libstempo.
For white noise, we first apply TOA measurement

error σTOA;ai to the ith TOA for pulsar a, as we discuss
in Sec. IVA. Instrument errors Sa and Qa, which are the
same for all realization analyses of a given mock PTA
dataset, adjust the total white noise using Eq. (3). To make
these injected white-noise signals Gaussian, Sa and Qa are
scaled by random numbers generated from a standard
normal distribution based on specified pseudorandom
number generator seeds. We use two different pseudoran-
dom number generator seeds to inject the white noise: one
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generator seed for the scaling of Sa and one generator seed
for the scaling of Qa.
We inject intrinsic red noise for pulsar a using the power-

law model given by Eq. (8) with values of ARN;a and γRN;a
which are the same for all realization analyses of a given
mock PTA dataset. The intrinsic red-noise signal is created
in the time domain and added directly to the TOAs. The
first ten harmonics of 1=Tobs are used in a sine-cosine basis
representation of the intrinsic red-noise timing signal, as
described in Sec. III. The amplitudes of the 20 basis
functions (ten sine functions and ten cosine functions)
are independently scaled by random numbers generated
from a standard normal to make the signal Gaussian and
then added to the pulsar TOA. We use a single pseudoran-
dom number generator seed for the scaling applied to the
time-domain sine-cosine basis function amplitudes of the
intrinsic red noise.
The SGWB signal is injected in the frequency domain

using the Fourier transform of Eq. (4) and performing a
Cholesky decomposition of the angular correlation func-
tion, as described in Ref. [40]. The Cholesky decomposi-
tion provides a matrix M with elements satisfying
ðMM†Þab ¼ ζðcos θabÞ, where ζðcos θabÞ is the HD angular
correlation from Eq. (6), which includes the doubling of the
autocorrelation via the “pulsar” term. Note that fixing the
injected angular correlation to Eq. (6) is equivalent to fixed
injected values of each cl, given by Eq. (10), for all
realizations. The SGWB-induced timing residual for pulsar
a can then be expressed in the frequency domain as

R̃gwðn̂a; fÞ ¼ cðfÞ
X
b

MabwbðfÞ; ðA1Þ

where cðfÞ is a frequency-dependent normalization chosen
so that the two-point correlation of R̃gwðn̂a; fÞ gives the
SGWB power spectrum from Eq. (7) and wbðfÞ is a
complex (two-parameter) Gaussian variable for pulsar b at
frequency f. In practice, only a finite number of frequency
components are modeled; the frequency components
range from 0 to the Nyquist sampling frequency based
on a 14-day cadence, in increments of 1=ð10TobsÞ. For each
frequency component, the real and imaginary parts of
wbðfÞ are independently sampled from a standard normal
distribution so that the two-point correlation is given by

hw�
aðfÞwbðf0Þi ¼

2

Tobs
δðf − f0Þδab: ðA2Þ

The SGWB-induced timing residual R̃gwðn̂a; fÞ is trans-
formed back into the time domain, and interpolation is used
to find the value of Rgwðn̂a; taiÞ at observation time tai,
which is then added to the ith TOA for pulsar a.
To summarize, four different pseudorandom number

generator seeds are specified for each mock PTA dataset

realization. To perform realization analyses, we vary the set
of four generator seeds while ensuring the four generator
seeds are all different within a realization.

2. Realization study results

Figure 7 provides a comparison of the multipole
evidence from the realization analyses in this appendix
against the single realization in Sec. IV C. We calculate the
multipole evidence using the Savage-Dickey Bayes factor
as discussed in Appendix B. We see in Fig. 7 that the single
realization in Sec. IV C has either the same evidence or
conservatively low evidence, relative to range of potential
evidence from the realization analyses.
In Fig. 8, we plot the mean and 68% CI of parameters

log10 Agw, c2, c3, and c4 for each individual realization. We
see that the average of the means tends toward the injected
value with increasing Tobs and Np. We can also see the
mean-value fluctuation scale decreases with increasing
Tobs and Np, and we observe that the scale of the mean
fluctuation 1σ error bars (shown as black dashed lines) is
the same scale as the 68% CI (shown as error bars around
each plotted point). In other words, the scale associated
with the spread of a detected parameter’s posterior 68% CI,
which is realization independent, is the same scale as the
fluctuation of the parameter’s posterior mean, which is
realization dependent. Our result is consistent with an
ergodic process for SGWB signal fluctuations and explains
an additional observation we make with the quadrupole

FIG. 7. Savage-Dickey Bayes factors for 100 realizations of
three mock PTA datasets: 50 pulsars observed over 10 years,
50 pulsars observed over 20 years, and 100 pulsars observed over
20 years. The Bayes factors for the realization presented in
Sec. IV C are plotted as black diamonds. For cases in which a
multipole coefficient has a very large Bayes factor for multiple
realizations, we indicate the percentage of realizations with
log10 B ≫ 5. See Fig. 5 for a further explanation of the plot
features.
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posterior distributions from the realization analyses: with
all three datasets, the 68% CI for the quadrupole posterior
distribution contains the injected value of the quadrupole
approximately 68% of the time.
A final result to mention from the realization analyses is

that the realization-averaged standard deviations of the
marginalized 1D posterior distributions for multipoles that
are not detected are all the same for a given dataset:
approximately 0.021, 0.014, and 0.012 for 50 pulsars with
10 years, 50 pulsars with 20 years, and 100 pulsars with
20 years, respectively. These values coincide with the
standard deviations of the posterior distribution for
log10 Agw in each dataset, which means σlog10 Agw

is related
to an inherent harmonic analysis uncertainty for multipoles
that are not detected. The parameter log10 Agw is detected
in all analyses, so the realization-dependent fluctuations of
σlog10 Agw

are small; hence, we can accurately predict this
inherent uncertainty with a single realization. Since
c6;injected ≈ 0.0116 is less than σlog10 Agw

for these analyses,
we can see why multipoles l ≥ 6 are not detected in these
realization analyses. The combination of the spread for
nondetected multipoles being comparable to σlog10 Agw

,
along with an ergodic process for the realization-dependent
fluctuations, explains why we occasionally see large values
for undetected multipoles, such as l ¼ 7 for the 50 pulsar
analyses in Sec. IV C.

3. Distribution of quadrupole realization means

Previous work has shown the spatial correlation function
has a minimum amount of sample variance (i.e., “cosmic
variance”) for a single frequency [33] or an equal-time (i.e.,
zero-lag) autocorrelation function [60,61]. According to
this work, the (noise-free and infinite pulsar) angular power
spectrum is a χ2 distribution with 2ð2lþ 1Þ degrees of
freedom for each multipole [33,60], with standard deviation
cl=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p
, where cl is the value of the multipole co-

efficient from Eq. (10). In particular, the “cosmic variance”
degrees of freedom for the quadrupole χ2 distribution is 10,
corresponding to a quadrupole standard deviation between
realizations of approximately 0.14 for a single frequency.
In Fig. 9, we plot a histogram of the quadrupole posterior

mean values for the three different realization studies.
The orange curves in Fig. 9 show a χ2 distribution with
10 degrees of freedom, which is the expected distribution
from “cosmic variance” of the quadrupole. Each χ2 dis-
tribution has been rescaled so that its mean value is equal to
the injected value of the quadrupole given by Eq. (10). This
comparison shows that our Bayesian harmonic analysis
approach has a narrower distribution than expected from
“cosmic variance”, even with our modeling of noise and a
finite number of pulsars.
A possible explanation for this difference is that our

analysis uses all available data when determining the

FIG. 8. Realization-dependent mean and 68% CI for parameters log10 Agw, c2, c3, and c4. Individual realizations are plotted along the
x axis. The datasets used for the realization analyses are separated by color and by the gray vertical dot-dashed lines. The colored
horizontal solid lines represent the averaged mean of the 1D posterior distributions for all realizations of a given dataset, and the
black horizontal dashed lines show the standard deviation of the realization means. The injected value of each parameter is plotted as a
solid horizontal black line.
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posterior distribution of the covariance matrix, as opposed
to using a single frequency bin or an equal-time estimator.
Since the sources that contribute to different frequencies of
the SGWB are independent, each frequency bin provides an
approximately independent sky map (see discussions in
Sec. 4.3 of Ref. [33], Appendix C.3 of Ref. [60], and
Appendix B.2 of Ref. [62]). Reference [33] suggests that
the degrees of freedom of the multipole χ2 distribution
should scale with the number of frequency bins for a noise-
free infinite pulsar dataset.
Since our analyses include intrinsic noise and use a finite

number of pulsars, we expect only signal-dominated fre-
quency bins to effectively contribute to these degrees of
freedom. To determine the number of frequencies in the
strong-signal regime, Nssr

f , we count the number of frequency
bins where the signal-to-noise ratio is at least 10 (using the
average values of the injected source and noise signals). For
our mock data, Nssr

f ≈ 5 for 10 years of observation, and
Nssr

f ≈ 10 for 20 years of observation. Using a lower signal-
to-noise ratio cutoff does not change these results appreciably.
The dashed blue curves in Fig. 9 show a χ2 distribution

with 10 · Nssr
f degrees of freedom. We can see that our

realization study results are much more consistent with this
distribution than with the orange, “cosmic variance”, distri-
bution. A similar result has been found in Ref. [63], where
it was observed that the “cosmic variance” is consistent
with a single-frequency model of the data, but combining
multiple frequencies reduces the total variance (e.g., see
Fig. 8 of Ref. [63]). We leave further investigations into this
topic to future work.

APPENDIX B: SAVAGE-DICKEY MULTIPOLE
EVIDENCE

We use the Savage-Dickey approach [50] to calculate
a Bayes factor for each multipole in our harmonic analyses,
which is a measure of the evidence for the multipole in
our model. We calculate a Bayes factor by comparing
the hypotheses H1;l∶ cl ≠ 0 against the hypothesis
H2;l∶ cl ¼ 0. Our hypotheses are nested, H2;l ⊂ H1;l,
because the prior for cl includes 0. Moreover, since the
prior for cl is uniform on its range, the prior probability
distribution is pðclÞ ¼ 1 for all prior values of cl. The
Savage-Dickey Bayes factor for multipole l is therefore
given by

FIG. 9. Comparison of distribution of quadrupole realization-dependent means to a χ2 distribution. Each of the three plots shows the
results for a different realization study as indicated in the plot title. The less peaked χ2 distribution (orange curves in each plot) shows the
“cosmic variance” for a single frequency bin [33,60,61]. The “cosmic variance” degrees of freedom is 10 for the quadrupole χ2

distribution, which we explain in the main text. The more sharply peaked χ2 distribution (blue dashed curves) is obtained when the
degrees of freedom scale linearly with the number of frequency bins in the strong-signal regime, Nssr

f . The signal-dominated frequency
bins are determined by counting the number of frequency bins in our mock data where the signal-to-noise ratio is at least 10 (using the
average values of the injected source and noise signals). Each χ2 distribution has been rescaled so that its mean value equals the value of
the quadrupole coefficient from Eq. (10).
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Bl ¼ pðcl ¼ 0Þ
pðcl ¼ 0jd;H1;lÞ

¼ 1

pðcl ¼ 0jd;H1;lÞ
; ðB1Þ

where d is the data and pðcl ¼ 0jd;H1;lÞ is the margin-
alized 1D posterior distribution for parameter cl evaluated
at cl ¼ 0.

APPENDIX C: CORNER PLOTS

In this appendix we present the corner plots for the nine
harmonic analyses discussed in Sec. IV C. Figures 10–12
show the results of the harmonic analyses for 50, 100,
and 150 pulsars, respectively. In each figure we overlay the
contours for 10, 20, and 30 years of observation time.

FIG. 10. Corner plots for harmonic analyses of mock PTA datasets involving 50 pulsars. The 68% and 95% CIs of the marginalized
posteriors of log10 Agw and Legendre coefficients cl for total observation times of 10, 20, and 30 years are shown in gray, red, and blue,
respectively. The injected values of the parameters are indicated by gray, dotted lines.
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FIG. 11. The same as Fig. 10, except with 100 pulsars.
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