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Avenida Ejército Libertador 441, Santiago, Chile

Jeffrey Winicour
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA

(Received 29 May 2024; accepted 31 July 2024; published 28 August 2024)

Choptuik’s critical phenomena in general relativity is revisited in the affine-null metric formulation of
Einstein’s equations for a massless scalar field in spherical symmetry. Numerical solutions are obtained
by evolution of initial data using pseudospectral methods. The underlying system consists of differential
equations along the outgoing null rays which can be solved in sequential form. A new two-parameter
family of initial data is presented for which these equations can be integrated analytically. Specific
choices of the initial data parameters correspond to either an asymptotically flat null cone, a black hole
event horizon or the singular interior of a black hole. Our main focus is on the interior features of a black
hole, for which the affine-null system is especially well adapted. We present both analytic and numerical
results describing the geometric properties of the apparent horizon and final singularity. Using a
regridding technique for the affine parameter, numerical evolution of initially asymptotically flat
supercritical data can be continued inside the event horizon and track the apparent horizon up to the
formation of the final singularity.
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I. INTRODUCTION

Choptuik’s [1] discovery of critical phenomena in gen-
eral relativity is one of the first major results of the
numerical investigation of the Einstein equations. At its
heart is the discretely self-similar critical solution of the
Einstein equations for a spherical symmetric massless-
scalar field which evolves to form a naked singularity with
zero mass. The scalar field is periodic with respect to a
timescale adapted to the discrete conformal symmetry, with
twice the echoing period Δ ≈ 3.44 of the corresponding
conformal metric [1–4]. Until recently, the existence of the
critical solution and its properties have only been inferred
by numerical evolution. However, the existence of this
critical discretely self-similar solution has been established
and its properties studied by purely analytic methods [5].
By calculating the inverse of an elliptic operator, the

authors of [5] provide a value for Δ with an accuracy
of 10−80.
Choptuik observed that a one parameter family of

asymptotically flat initial data, with parameter p, evolves
to either a flat space-time or to a black hole, with the
two alternatives intermediated by a critical value p�. Here
p < p� for subcritical (weak) initial data and p > p�, for
supercritical (strong) initial data. For supercritical evolu-
tion, he found that the mass m of the black hole obeys a
universal scaling relation m ∼ jp − p�jγ , with γ ≈ 0.37,
independent of the particular form of the initial data.
Further analysis [6,7] revealed a modified scaling law
lnðmÞ ¼ γ ln jp� − pj þ Fðp − p�Þ, where F is a periodic
function of lnðp − p�Þ with period ðΔ=2γÞ ≈ 4.61. (See [8]
for a review.)
For the critical case p ¼ p�, there is a value τ ¼ τ� of the

proper time along the central geodesic for formation of the
final singularity, with τ� dependent upon the particular
initial data. For supercritical initial data, the evolution leads
to a black hole for p > p�. Several studies, e.g. [3,4,9],
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indicate that the echoing period Δ is adapted to the
“logarithmic time” coordinate ξ ¼ − logðτ� − τÞ, i.e. the
metric satisfies e−2Δgabðξþ ΔÞ ¼ gabðξÞ and the scalar
field satisfies Φðξþ ΔÞ ¼ −ΦðξÞ.
The resolution of the critical behavior is numerically

challenging. Because the echoing occurs with respect to the
logarithmic time ξ, the timeΔτ between subsequent periods
decreases exponentially on approach to τ�. In addition, the
spatial structure appears on ever smaller scales. As a result,
a fixed spatial grid eventually does not include enough
points near the central worldline to resolve the region of
interest [10,11].
In this work, we extend the investigation [12] of

critical collapse in affine null coordinates ðu; λ; xAÞ, where
u measures the proper time along the central timelike
geodesic and λ is an affine parameter along the spherical
congruence of outgoing null rays, which are labeled by
angular coordinates xA. We present the underlying formal-
ism in Sec. II. We modify the evolution algorithm in [12] to
allow tracking of the apparent horizon. See [13] for a
Cauchy evolution study with comparable tracking of the
apparent horizon. We also introduce a novel two-parameter
set of initial data for which the null hypersurface equations
can be integrated analytically. Specific choices of the initial
data parameters correspond to either an asymptotically flat
null cone, a black hole event horizon or the singular interior
of a black hole.
As opposed to the numerical investigation of the

Choptuik problem in [11,14] using Bondi null coordinates
based upon a surface area radius r, the affine null system
allows evolution inside the event horizon where the r
coordinate is singular at the apparent horizon. By contrast,
the evolution inside the event horizon breaks down in
Bondi coordinates (see [15] for further discussion). For the
choice of black hole initial data, the affinely parametrized
null cones extend smoothly across the apparent horizon,
where the expansion of the outgoing null cones vanishes,
and up to the final singularity, where the null cones
reconverge to a point. This allows a combination of analytic
and numerical methods to investigate the interior of the
black hole.
In comparison with [12], we use a single domain

spectral method based on the standard Chebysheff poly-
nomials, combined with the grid compactification of null
infinity described in [16] and used in several other
characteristic codes [17,18]. Accuracy near the central
worldline is increased by filling a local set of collocation
points with values obtained from a Taylor series about the
origin. Further details of the numerical techniques are
given in Sec. V.
Our main purpose is not to redo the results of [12] on

critical phenomena but rather to extend that work by
showing how the affine-null formulation can be used to
track the evolution of supercritical initial data across the

event horizon and excise the final singularity. For super-
critical initial data our results confirm the well-known
results that the apparent horizon and final singularity are
both spacelike hypersurfaces, as schematically represented
for the compactified spacetime in Fig. 1.
We use geometric units in which c¼8πG¼1. Covariant

derivatives are denoted by ∇ and partial derivatives are
often used in comma notation, i.e. ∂f=∂xa ¼ f;a.

II. AFFINE NULL-METRIC FORMALISM FOR
THE EINSTEIN-SCALAR FIELD EQUATIONS

IN SPHERICAL SYMMETRY

The spherically symmetric metric in affine-null coordi-
nates u; λ; xA is given by [12,15,19–21]

ds2 ¼ −Vðu; λÞdu2 − 2dudλþ r2ðu; λÞqABðxCÞdxAdxB;
ð2:1Þ

where the outgoing null cones are labeled by the proper
time u along the central worldline, λ is an affine parameter
along the spherical congruence of outgoing null rays,
which are labeled by angular coordinates xA. Here qAB
is the unit sphere metric.
We require regularity along the central wordline, where

we use the affine freedom λ → Aλþ B to set λ ¼ 0 and

FIG. 1. Conformal diagram of a supercritical evolution. The
outgoing null hypersurface u ¼ 0 is the initial data surface
extending to null infinity Iþ. EH is the future event horizon
Hþ which extends to timelike infinity iþ. The hypersurface AH is
the apparent horizon. The individual outgoing null cones re-
converge to point caustics whose locus traces out the final
curvature singularity at r ¼ 0.
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r;λ ¼ 1 on the central worldline. This gives rise to the local
Minkowski coordinate conditions

rðu; 0Þ ¼ 0; r;λðu; 0Þ ¼ 1;

Vðu; 0Þ ¼ 1; V;λðu; 0Þ ¼ 0: ð2:2Þ
(For discussion of these coordinate conditions for the
Bondi-Sachs formalism, see e.g. [22]).
The Einstein equations for a massless scalar field Φ are

given in terms of the Ricci tensor Rab by

Eab ≔ Rab −Φ;aΦ;b ¼ 0; ð2:3Þ
with components

Euu∶ 0 ¼ −
2

r
r;uu þ

V
2r2

ðr2V;λÞ;λ þ
r;λV;u

r
−
r;uV;λ

r
−Φ2

;u;

ð2:4aÞ

Euλ∶ 0 ¼ 1

2r2
ðr2V;λÞ;λ −

2r;uλ
r

−Φ;uΦ;λ; ð2:4bÞ

Eλλ∶ 0 ¼ −
2

r
r;λλ − ðΦ;λÞ2; ð2:4cÞ

qABEAB∶ 0 ¼ −½Vðr2Þ;λ − 2λ − 2ðr2Þ;u�;λ; ð2:4dÞ

and the wave equation ∇a∇aΦ ¼ 0, which takes the form

0 ¼ ðr2Φ;uÞ;λ þ ðr2Φ;λÞ;u − ðr2VΦ;λÞ;λ: ð2:5Þ

Equation (2.4) have a scale symmetry: If Φðu; λÞ, Vðu; λÞ,
rðu; λÞ is a solution then so is Φ̂ðu; λÞ ¼ Φðû; λ̂Þ, V̂ðu; λÞ ¼
Vðû; λ̂Þ and r̂ðu; λÞ ¼ α−1rðû; λ̂Þ, where ðû; λ̂Þ ¼ ðαu; αλÞ.
If Eλλ, qABEAB and ∇a∇aΦ ¼ 0 hold everywhere,

then the Bianchi identities imply that (i) Euλ holds trivially
and (ii)

0 ¼ ðr2EuuÞ;λ ð2:6Þ
so that if r2Euu holds for one value λ, it holds everywhere.
Therefore, since regularity requires r2Euu to vanish at the
central word line where r ¼ 0, we need only enforce the
three main equations Eλλ, qABEAB and ∇a∇aΦ ¼ 0 in a
numerical simulation.
The Einstein equation (2.4d) can readily be integrated to

find

V ¼ CðuÞ þ 2λþ 2ðr2Þ;u
ðr2Þ;λ

; ð2:7Þ

where the coordinate conditions (2.2) require that the
function of integration CðuÞ ¼ 0. Consequently,

V ¼ λ

rr;λ
þ 2

r;u
r;λ

: ð2:8Þ

For future reference, the Ricci scalar, R ¼ gabRab is
given by

r2R ¼ 4r;λr;u þ 8rr;uλ − 4rðr;λVÞ;λ
− 2ðr;λÞ2V − r2V;λλ þ 2; ð2:9Þ

which according to (2.8) reduces to

R ¼ 2λr;λ
r3

− V;λλ −
2

r2
: ð2:10Þ

Using (2.8), the line element for the affine null metric
with regular origin becomes

ds2¼−
�
λþ2rr;u
rr;λ

�
du2−2dλduþr2qABdxAdxB; ð2:11Þ

which shows that the metric is entirely determined once r is
known. Given regular initial data r ¼ rðu0; λÞ on the null
hypersurface u ¼ u0, integration of (2.4c) then determines
the initial value of the scalar field according to

Φðu0; λÞ ¼
Z

λ

0

dλ̃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
2r;λ̃ λ̃ðu0; λ̃Þ
rðu0; λ̃Þ

s
: ð2:12Þ

We use this procedure for construction of initial data
in Sec. III.

A. Some general physical properties

In spherical symmetry the Misner-Sharp mass

m ¼ r
2
ð1 − gabr;ar;bÞ ¼

1

2
ðr − λr;λÞ; ð2:13Þ

where the second equality results from using (2.8) to
replace r;u. This provides an invariant quasilocal definition
of mass, which is related to the Bondi mass MB of an
asymptotically flat null cone by

MB ¼ lim
λ→∞

m: ð2:14Þ

Asymptotic flatness also implies

Φðu; λÞ ¼ Φ½1�ðuÞ
λ

þΦ½2�ðuÞ
λ2

þOðλ3Þ ð2:15Þ

where the gauge freedom Φ → Φþ const is used to set
Φðu; λÞ → 0 as λ → ∞. Then (2.4c) implies

rðu; λÞ ¼ HðuÞλþ 2MBðuÞ þOðλ−1Þ; ð2:16Þ
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where H ¼ limλ→∞ r;λ is a function of integration. The
Bondi time uB for an inertial observer at infinity is related
to the proper time u at the origin by

uB;u ¼
1

H
: ð2:17Þ

For H < 1, the Bondi time for an observer at infinity runs
faster and it takes an infinite Bondi time to reach the event
horizon but only a finite central time. Consequently, an
infinite observer is red shifted with respect to a freely
falling observer at the origin. An event horizon forms at a
time uE when

lim
u→uE

H ¼ 0; ð2:18Þ

i.e. when the redshift becomes infinite and a black hole
forms. Thus H monitors the communication between an
observer at the central world and an inertial observer at null
infinity. When H ¼ 0 such communication is not possible
and the central world line enters an event horizon. At that
time (2.16) shows that limu→uE;λ→∞ r;λ ¼ 0. Here r;λ is
related to the expansion Θþ of the outgoing null cones by

Θþ ¼ 2r;λ
r

: ð2:19Þ

Upon further evolution, when the central worldline
enters the black hole, the null cones form an apparent
horizon where r;λðu; λAÞ ¼ 0 and the expansion vanishes
at a finite affine value λA. Indeed, (2.4c) shows that r;λ is a
monotonically decreasing function of λ so that the
expansion becomes negative and the λAðuÞ 2-spheres
are trapped for λ > λA. Each individual outgoing null
cone then reconverges to a point caustic at some finite
affine value λC > λA, where Θþ → −∞. The final curva-
ture singularity traced out by the locus of these caustics is
spacelike.
According to (2.13), the mass of the apparent horizon

is given by mðuÞ ¼ rðu; λAÞ=2. Also, the regularity of
the metric component guu at the apparent horizon implies,
via (2.8), that

λAðuÞ ¼ −2rðu; λAÞr;uðu; λAÞ: ð2:20Þ
The normal vector to the apparent horizon r;λðu; λAÞ ¼ 0

has the norm

gab∇ar;λ∇br;λjλ¼λA
¼ r;λλðVr;λλ − 2r;λuÞjλ¼λA

: ð2:21Þ
But (2.8) implies

rr;λV ¼ λþ 2rr;u; ð2:22Þ
so that

rr;λλVjλA ¼ 1þ 2rr;λujλA : ð2:23Þ

Thus the norm is given by

gab∇ar;λ∇br;λ

����
λA

¼ r;λλ
r

����
λA

¼ −
Φ2

;λ

2

����
λA

< 0 ð2:24Þ

so that the apparent horizon is a spacelike hypersurface, as
expected from the general theory.
The numerical algorithm is designed to evolve in a

timelike direction, which requires that the metric variable
V > 0. Thus the sign of V is important. In Sec. II C we show
that V > 0 in the region where r > λ [see (2.40)]. Near the
origin, r ≈ λ and r;λ ≈ 1. Furthermore, throughout a region
containing the apparent horizon, where r attains its maxi-
mum value, r is a monotonically increasing function of λ.
Thus r > λ and V > 0 throughout the exterior asymptoti-
cally flat region and in a region inside the event horizon
0 ≤ λ < λA < λV , which contains the apparent horizon.
At the apparent horizon, (2.23) implies

1þ 2rr;λujλA < 0: ð2:25Þ
The value λV where V ¼ 0 satisfies

ðλþ 2rr;uÞjλV ¼ 0: ð2:26Þ
Thus λþ 2rr;u must have a maximum between λA
and λV . On the assumption that the gradient r;a remains
finite at the final singularity as r → 0, (2.8) implies
V → λ=ðrr;λÞ → −∞ as λ → λC, so that the u direction
eventually becomes spacelike. This issue is discussed
further in Sec. III A.
The norm of the r ¼ const hypersurfaces is given by

gab∇ar∇br ¼ Vr;λr;λ − 2r;λr;u ¼
λr;λ
2r

: ð2:27Þ

Since r;λ is a monotonically decreasing function of λ these
hypersurfaces are timelike inside the apparent horizon,
null at the apparent horizon and spacelike past the apparent
horizon. In particular, the final singularity at λ ¼ λC is
spacelike.

B. Main equations as a hierarchy

Because of the appearance of r;u in (2.4d), the main
equations (2.4c), (2.4d), and (2.5) do not have the hierar-
chical structure of the Bondi-Sachs equations which can be
integrated in sequential order [23–25]. A method to restore
a hierarchy was presented in [12]. Introduction of the term

K ≔ 2r;λΦ;u − 2r;uΦ;λ ð2:28Þ
allows the wave equation (2.5) to be written as the null
hypersurface equation

r

�
rK
r;λ

�
;λ
¼

�
rλΦ;λ

r;λ

�
;λ
: ð2:29Þ
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The u derivative of Φ is then determined from K,

Φ;u ¼
K
2r;λ

þ r;u
r;λ

Φ;λ: ð2:30Þ

Next, the hypersurface equation for r;u results from the u
derivative of (2.4c). This leads to three ordinary differential
equations for r, K and r;u,

r;λλ ¼ −
r
2
Φ2

;λ; ð2:31aÞ
�
rK
r;λ

�
;λ
¼ 1

r

�
rλΦ;λ

r;λ

�
;λ
; ð2:31bÞ

�
r;u
r;λ

�
;λλ

¼ −
rΦ;λ

2r;λ

�
K
r;λ

�
;λ
; ð2:31cÞ

which can be integrated in sequential order, with Φ;u then
determined from (2.30).

C. Regularized version of the equations

In the exterior asymptotically flat region, where
r;λ ≠ 0, (2.31) and (2.30) provides a well-defined evolution
algorithm. However, for evolution inside a black hole, a
regularization scheme is necessary to remove singular 1=r;λ
terms in (2.31). Such terms are not due to coordinate
singularities but seem to be an artifact of the affine-null
equations. Here we present a brief account of the regulari-
zation procedure in [12].
Introduction of the variable

L ¼ rK − λΦ;λ

r;λ
¼ 2rΦ;u − rVΦ;λ ð2:32Þ

allows us replace (2.31b) by

L;λ ¼
λ

r
Φ;λ; ð2:33Þ

which can be integrated from λ ¼ 0 using the regularity
condition Lðu; 0Þ ¼ 0 at the origin. Here the Ricci
scalar (2.10) has a simple expression in terms of the
new variable,

R ¼ −
LΦ;λ

r
: ð2:34Þ

For the regularization of (2.31c), we introduce the
variable

Q ¼ V − 1

λ
¼ 2rr;u þ λ − rr;λ

λrr;λ
; ð2:35Þ

which satisfies

Q;λ ¼
1

λ2
−

1

r2
þ 1

2

�
L
λ

�
2

: ð2:36Þ

This equation can be integrated from λ ¼ 0 using the
regularity condition Qðu; 0Þ ¼ 0. Note that the right-hand
side of (2.36) contains the terms 1=λ2 and 1=r2 which
are singular at the origin but combine to form a regular
function. This is handled by numerical techniques
in Sec. V.
In summary, the hierarchical evolution system (2.31)

takes the regularized form

r;λλ ¼ −
r
2
Φ2

;λ; ð2:37aÞ

L;λ ¼
λ

r
Φ;λ; ð2:37bÞ

Q;λ ¼
1

λ2
−

1

r2
þ 1

2

�
L
λ

�
2

; ð2:37cÞ

Φ;u ¼
1þ λQ

2
Φ;λ þ

L
2r

: ð2:37dÞ

The right-hand sides of these equations remain regular up
to the formation of the final singularity at λ ¼ λC, where
r ¼ 0. However, numerical treatment of the right-hand side
of (2.37c) requires special attention near the origin, where
cancellations lead to

Q;λðu; λÞ ¼
2

3
Φ2

;λðu; 0Þ þOðλÞ: ð2:38Þ

Given initial dataΦðu0; λÞ on a null cone u0, a numerical
evolution scheme proceeds by integrating (2.37a)–(2.37c)
sequentially. Then (2.37d) provides a finite difference
approximation to update Φðu0 þ Δu; λÞ. This procedure
is then be iterated into the future.
In an exterior asymptotically flat region, the hypersur-

face integrations proceed from λ ¼ 0 to λ ¼ ∞. However,
inside a black hole, the final singularity is formed at a finite
value λ ¼ λC. We can rewrite (2.37d) as the transport
equation

Φ;u −
V
2
Φ;λ ¼

L
2r

: ð2:39Þ

Consequently, for a timelike outer boundary with V > 0,
the transport would be in the inward λ direction so that
an outer boundary condition would be necessary. In the
exterior, the compactified outer boundary at infinity is null
so that no boundary condition is necessary.
In the black hole interior, in order to avoid introducing

spurious outer boundary data we set the outer boundary at
the apparent horizon, λ ¼ λA, which is spacelike so that no
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outer boundary condition is needed. In order to see that
V > 0 inside the apparent horizon so that the evolution
proceeds in a timelike direction we refer back to Sec. II A to
note r > λ for 0 ≤ λ ≤ λV, where Vðu; λVÞ ¼ 0. Thus (2.36)
implies Q;λ ≥ 0 in that region and, since Qðu; 0Þ ¼ 0, it
follows that Q ≥ 0. Thus, according to (2.35),

V ¼ 1þ λQ > 0; 0 < λA < λV ð2:40Þ

so that V > 0 inside the apparent horizon.

III. INITIAL DATA

We recall from Sec. II that all metric functions can be
determined from r. We introduce the initial data

rðu ¼ 0; λÞ ¼ λ −
b2λ3

ðaþ λÞ2 ¼ λ

�ðaþ λÞ2 − b2λ2

ðaþ λÞ2
�

ð3:1Þ

depending on two positive parameters a and b for which all
the hypersurface equations can be integrated to determine
V, Φ and Φ;u analytically. This data satisfies the local
Minkowski conditions (2.2) for r at the origin.

From the corresponding derivative,

r;λð0; λ; a; bÞ ¼
ð1 − b2Þðλ3 þ 3aλ2Þ þ 3a2λþ a3

ðaþ λÞ3 ; ð3:2Þ

the hypersurface equation (2.31a) gives the derivative of the
initial scalar field

Φ;λð0; λÞ ¼
ab

ffiffiffiffiffi
12

p

ðaþ λÞ½ðaþ λÞ2 − b2λ2�1=2 ; ð3:3Þ

whose integral determines the initial scalar field

Φð0; λÞ ¼
ffiffiffiffiffi
12

p �
sin−1

�
bλ

aþ λ

�
− sin−1b

�
: ð3:4Þ

[Here we have chosen the integration constant such that
limλ¼∞Φ ¼ 0 for asymptotically flat initial data. For initial
data on a null hypersurface inside a black hole, where
b > 1, we use the gauge freedom to drop the sin−1 b term so
that Φð0; λÞ remains a well-defined real function.]
The L, Q and Φ;u hypersurface equations together

with (2.35) give

Lð0; λÞ ¼
ffiffiffiffiffi
12

p
bλffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðaþ λÞ2 − b2λ2
p ; ð3:5aÞ

Vð0; λÞ ¼ 1þ λ

2
649b
4a

ln

�
1þ ð1þ bÞ λ

a

1þ ð1 − bÞ λ
a

�
−
1

2

b2

a2
λð1þ λ

aÞh�
1þ λ

a

	
2 − b2ðλaÞ2

i
3
75; ð3:5bÞ

Φ;uð0; λÞ ¼
b

ffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþ λÞ2 − b2λ2Þ

p



9bλ
4ðaþ λÞ ln

�
aþ ð1þ bÞλ
aþ ð1 − bÞλ

�
þ 1

2
þ a
aþ λ

þ ðaþ λÞ2
2½ðaþ λÞ2 − b2λ2�

�
; ð3:5cÞ

which also determine the Ricci scalar R and r;u.

Rð0; λÞ ¼ −
12b2

�
1þ λ

a

	
h�
1þ λ

a

	
2 − b2ðλaÞ2

i
2
; ð3:5dÞ

r;uð0; λÞ ¼ −
9bλr;λ
8a

ln
�
aþ ð1þ bÞλ
aþ ð1 − bÞλ

�
−
b2λ2ð3aþ λÞ2
4aðaþ λÞ3 :

ð3:5eÞ
These explicit values of the fields facilitate measuring

the convergence and accuracy of the numerical integrators
for the hypersurface equations.

A. Properties of the initial data

The initial data have the general scaling behavior
discussed in Sec. II, e.g. rðαλ; a; bÞ ¼ αrðλ; aα ; bÞ

and similarly Vðαλ;a; bÞ ¼ Vðλ; aα ; bÞ. In principle,
one can set a ¼ 1 without loss of generality, but other
choices are beneficial for numerical purposes, as seen
in Sec. V.
The choice of b determines the nature of the initial null

hypersurface:
(1) b ¼ 0 determines a flat space null cone.
(2) b < 1 determines an asymptotically flat null hyper-

surface.
(3) b ¼ 1 determines an event horizon.
(4) b > 1 determines a null hypersurface inside a

black hole.
This nature can be inferred from calculating the asymp-

totic expansion (2.16) of (3.1) which gives

H ¼ 1 − b2; MB ¼ 2ab2: ð3:6Þ
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The three roots of the cubic equation obtained by setting
r ¼ 0 in (3.1), are

λ0 ¼ 0; λ1 ¼ −
a

bþ 1
; λ2 ¼

a
b − 1

: ð3:7Þ

Here λ0 is the known caustic at the vertex of the nullcone.
Next, λ1 is unphysical, i.e. it is negative, so it is outside
the physical domain. The third root λ2 is only physical for
b > 1 and represents the caustic

λC ¼ a
b − 1

;

at the final singularity of the black hole. From (2.13), the
Misner-Sharp mass of the singular caustic is mðλCÞ ¼ a=b.
The local behavior off the Ricci scalar R and V near the

vertex λ0 is given by the expansion

Rð0; λÞ ¼ −12b2

a2
þOðλ − λ0Þ; ð3:8Þ

Vð0; λÞ ¼ 1þO½ðλ − λ0Þ2�; ð3:9Þ

and near the caustic λC by the expansion

Rð0; λÞ ¼ −
3b

b − 1
ðλ − λCÞ−2 þO½ðλ − λCÞ−1�; ð3:10Þ

Vð0; λÞ ¼ −
ab2

4ðb − 1Þ3 ðλ − λCÞ−1 þOð1Þ: ð3:11Þ

The behavior near λ0 reflects the regularity of the vertex. As
anticipated by the discussion in Sec. II A, V → −∞ at λC
and the Ricci scalar is singular. At the apparent horizon
VðλAÞ > 0 and the u direction is timelike. At a value
λV > λA, V changes sign and the u direction becomes
spacelike. See Fig. 2, which displays the behavior of
Vðu; λÞ on null hypersurfaces inside an event horizon.
Figure 2 also shows that r;λ is finite at the caustic, while the
Ricci scalar gabRab and V go to negative infinity.

B. Location of the apparent horizon

For the black hole data, between the two caustics at
λ ¼ 0 and λC, r attains a maximum at the apparent horizon
where r;λðλAÞ ¼ 0. The location of the apparent horizon
is found by setting r;λðλAÞ ¼ 0, which leads to the cubic
equation

0 ¼ ð1 − b2Þðλ3A þ 3aλ2AÞ þ 3a2λA þ a3: ð3:12Þ

Setting λA¼a=ðyA−1Þ, the cubic takes the reduced form

PðyÞ¼y3−3b2yþ2b2¼0: ð3:13Þ

The three roots are given by

yk ¼ 2b cos

�
ψ

3
þ 2πk

3

�
; k ¼ 0; 1; 2; ð3:14Þ

where cosψ ¼ −1=b. A physical root must satisfy 0 <
λA < λC ¼ a=ðb − 1Þ or yA > b > 1. Since Pð0Þ¼2b2>0
and PðyÞ has a maximum at y ¼ −b and a minimum
at y ¼ þb, where PðþbÞ ¼ −2b2ðb − 1Þ < 0, there is
only one real root with y > b > 1. This corresponds to
yk¼0 so that

yA ¼ 2b cosðψ=3Þ ¼ 2b cos

�
1

3
arccos

�
−
1

b

��
: ð3:15Þ

The cubic has a particularly simple solution for b2 ¼ 2,
where PðyÞ ¼ ðy − 2Þðy2 þ 2y − 2Þ. The relevant root is
yA ¼ 2 and λA ¼ a. For this case,

VðλAÞ ¼
9

ffiffiffi
2

p

4
ln

�
2þ ffiffiffi

2
p Þ

2 −
ffiffiffi
2

p Þ

�
> 0 ð3:16Þ

and

r;uðλAÞ ¼ −1: ð3:17Þ

IV. FROMTHE PHYSICAL FIELD EQUATIONS TO
THEIR REPRESENTATION ON A COMPUTER

A. A generalized spatial grid

For the numerical simulations, we represent the affine
parameter by a grid coordinate x∈ ½−1; 1� so that λ ¼ λðxÞ,

FIG. 2. Inside event horizon initial data for a ¼ 2.5ð ffiffiffi
2

p
− 1Þ

and b ¼ ffiffiffi
2

p
. The singular caustic is at λC ¼ 2.5 and the apparent

horizon is at λA ¼ 2.5ð ffiffiffi
2

p
− 1Þ ≈ 1.04.
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while requiring λð−1Þ ¼ 0 and λ0ð−1Þ ≠ 0. With respect to
the new grid variable (2.37) becomes

0 ¼ r;xx − ðln jλ0jÞ0r;x þ
r
2
Φ2

;x; ð4:1aÞ

L;x ¼
λ

r
Φ;x; ð4:1bÞ

Q;x

λ0
¼ 1

λ2
−

1

r2
þ 1

2

�
L
λ

�
2

; ð4:1cÞ

Φ;u ¼
1þ λQ
2λ0

Φ;x þ
L
2r

: ð4:1dÞ

Two grid functions λðxÞ are employed: (i) a linear grid
function covering the finite λ domain inside a black hole,
and (ii) a compactified grid function covering the infinite λ
domain on an asymptotically flat null hypersurface.

1. Linear grid function—interior region

The linear grid function

λIðxÞ ¼ Aðxþ 1Þ; ð4:2Þ

with A > 0, allows us to determine the fields for λ∈ ½0; 2A�,
The hierarchy (4.1) then becomes

0 ¼ r;xx þ
r
2
Φ2

;x; ð4:3aÞ

L;x ¼
Aðxþ 1Þ

r
Φ;x; ð4:3bÞ

Q;x ¼
1

Að1þ xÞ2 −
A
r2

þ 1

2A

�
L

ð1þ xÞ
�
2

; ð4:3cÞ

Φ;u ¼
1

2A
½1þ Að1þ xÞQ�Φ;x þ

L
2r

: ð4:3dÞ

The inner boundary conditions for the fields are

rð−1Þ ¼ 0; r;xð−1Þ ¼ A; Lð−1Þ ¼ Qð−1Þ ¼ 0;

Φ;uð−1Þ ¼
1

A
Φ;xð−1Þ: ð4:4Þ

In terms of the x coordinate, r;λ ¼ r;x=A and

r;u ¼
1

2

�
Að1þ xÞ

r
þ r;x

A
½1þ Að1þ xÞQ�

�
:

In order to start up the integration at x ¼ −1 and enforce
regularity at the origin, we numerically determine the
derivative Φð1ÞðuÞ ¼ Φ;xðu;−1Þ of the data at the origin.
Then the right-hand sides of (4.3b)–(4.3d) have the
boundary values

L;xjx¼−1 ¼ Φð1ÞðuÞ; ð4:5Þ

Q;xjx¼−1 ¼
1

3
Φ2

ð1ÞðuÞ; ð4:6Þ

Φ;ujx¼−1 ¼
1

A
Φð1ÞðuÞ: ð4:7Þ

2. Compactified grid function—exterior region

For the compactified grid function, we set

λIIðxÞ ≔ λðxÞ ¼ 2A
1þ x
1 − x

; ð4:8Þ

with λ0 ¼ 4Að1 − xÞ−2, which maps the infinite λ domain
into ð−1 ≤ x ≤ þ1Þ.
In order to regularize terms in (4.1) of the form

1=ð1 − xÞk which are singular at x ¼ 1 we introduce the
auxiliary variable

R ¼ ð1 − xÞr; ð4:9Þ

with boundary values

rðu; λ ¼ 0Þ ¼ 0 → Rðu; x ¼ −1Þ ¼ 0; ð4:10Þ

r;λðu; λ ¼ 0Þ ¼ 1 → R;xðu; x ¼ −1Þ ¼ 2A: ð4:11Þ

The derivatives of r then transform into

r;λ ¼
ð1 − xÞR;x þ R

4A
; ð4:12Þ

ð1−xÞr;u¼
1

2



1

2A
½ð1−xÞR;xþR�−Að1−x2Þ

R

�
: ð4:13Þ

With these transformations, (4.1) becomes

0 ¼ R;xx þ
Φ2

;x

2
R; ð4:14aÞ

L;x ¼
2Að1þ xÞ

R
Φ;x; ð4:14bÞ

Q;x ¼
1

Að1þ xÞ2 −
4A
R2

þ 1

2A

�
L

ð1þ xÞ
�
2

; ð4:14cÞ

Φ;u¼
ð1−xÞ

2



½1−xþ2Að1þxÞQ�Φ;x

4A
þL
R

�
: ð4:14dÞ

The right-hand sides of (4.14b)–(4.14d) have finite values
at x ¼ −1,

L;xjx¼−1 ¼ Φð1ÞðuÞ; ð4:15Þ
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Q;xjx¼−1 ¼
4

3
Φ2

ð1ÞðuÞ; ð4:16Þ

Φ;ujx¼−1 ¼
Φð1ÞðuÞ

A
: ð4:17Þ

V. SOME DETAILS ON THE NUMERICAL
IMPLEMENTATION

We solve the set of hypersurface-evolution equations
using a pseudospectral method coupled with either an
explicit second or third order scheme for the time evolution.
We discretize the interval −1 ≤ x ≤ þ1 into N þ 1 Gauss-
Lobatto points

xi ¼ − cos

�
iπ
N

�
; i ¼ 0; 1;…; N: ð5:1Þ

The central time at the origin is discretized according to

un ¼ uinit þ nΔu; ð5:2Þ

where uinit is the initial time and the time step Δu is
given by

Δu ¼ ufin − uinit
ðN − 1Þ2 ; ð5:3Þ

where ufin is the final evolution time. For spectral methods,
note that stability requires the time step be OðN−2Þ [26], as
opposed to OðN−1Þ for finite difference methods.1 The
scalar field Φ as well as

f∈ fr; L;Q;Φ;ug ð5:4Þ

at a given time un are represented by N þ 1 discrete values
on the collocation points xi,

fni ≔ fðun; xiÞ ¼
XN
k¼0

fkðunÞTkðxiÞ; ð5:5Þ

where TiðxÞ are Chebysheff polynomials of the first kind.
In comparison to previous affine-null implementations

[12] we use only one spatial domain of Gauss-Lobatto
points and functions are expanded in Chebysheff poly-
nomials of the first kind. Reference [12] used a two domain
spectral decomposition of the λ axis and expanded fields in
rational Chebysheff polynomials. Our approach uses half
the number of fast Fourier transforms and matrix multi-
plications needed for the mapping between the Chebysheff
coefficients and the functions evaluated at the collocation
points. Another variation from [12] is the compactifiation

of null infinity, as implemented in other characteristic
codes [11,14], the Pitt code[16] or the SpEC code [17,18].
The code is written in Python, in the framework of the

ANACONDA package [27]. Python performance is improved
by employing the NUMBA library [28] and the BLAS/
LAPACK wrappers of SciPy [29].
The implementation of the spectral method follows the

review of [30,31]. The initial null data forΦ are represented
on the appropriate grid function (4.2) (for the interior of
the event horizon) or (4.8) (for the exterior). We then solve
the hypersurface equations (4.3) using (4.2) for the interior
or (4.14) for the exterior using (4.8).
In order to regularize the right hand sides of (4.3)

and (4.14), in particular (4.3c) and (4.14c), near the origin
x ¼ −1, we use a fifth order Taylor series to fill the
values of the Gauss-Lobatto points inside a word tube
½−1 ≤ x ≤ −1þ Δx�. The Taylor series coefficients were
determined by successively applying a first order derivative
operator to the data Φðun; xiÞ on the complete u ¼ un null
cones. This spectral operator D is the Chebysheff first
derivative using a fast Fourier transform, as described
in [32]. The pth order derivative DðpÞ of a function f is
then given by

DðpÞfðxiÞ ¼ D � � �D|fflfflffl{zfflfflffl}
p times

fðxiÞ: ð5:6Þ

An optimum value Δx ≈ 10−2 was found by numerical
measurement of the L2 error norms given by (5.7)

L2ðfÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ

1

−1
jfnumðxÞ − fanaj2dx

s
ð5:7Þ

FIG. 3. L2 error norms with respect to analytic initial data for
the fields f at different resolutions N.

1The collocation points are closest spaced near the edge of the
grid, i.e. x1 − x0 ¼ − cosðπ=NÞ þ 1 ∝ N−2.
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of the fields f defined in (5.4) between their numerical
values, fnum, and their analytic expressions, fana, as given
in (3.1), (3.4), and (3.5) with a ¼ ffiffiffi

3
p

=2 and b ¼ 1=4.
Figure 3 displays exponential convergence of the L2 error
norms for the fields f. The error in Φ;u, saturates at round-
off error ≈2 × 10−14.
As a time integrator for the evolution we use either

second or third order Runge-Kutta schemes, in particular
the (also known as the Shu-Osher scheme [33]) strong
stability conserving Runge-Kutta methods SSPRK22 and
SSPRK33 as presented in [26]. Aliasing errors arising from
high frequency pseudospectral modes are controlled by a
classical 2=3 filter. The convergence of the time integrators
is displayed in Figs. 4 and 5, for which we chose initial data
parameters ða; bÞ ¼ ð1; 0.94Þ. The critical time for this
initial model is u� ≈ 3. For these runs we fixed the spatial
resolution to 21 collocation points and ran the simulation
up until u ¼ 2.975 while using the compactified grid
function (4.8). Given the spatial resolution, stability
requires the time step to be Δu ≤ Δu0 ¼ 1=202. Figure 4
displays the error in the final profiles of Φ for simulations
with time steps Δu∈ f2−kΔu0∶ k ¼ 0…7g using the
second order Runge-Kutta integrator (RK2, upper panel)
and the third order integrator (RK3, lower panel). The error
profiles are the local error between the final profiles
using Δu∈ fΔu0;…; du0=64g and the smallest time step
Δu0=128. The decay rates of the local errors are consistent
with second order (a factor 22 ¼ 4) and third order (a factor
23 ¼ 8). This is also seen in the corresponding L2 norms of
those profiles as seen in Fig. 5. For reference to the
expected behavior of the temporal discretization error,
we plotted the green dotted line and red dashed line in

Fig. 5, which are proportional to ðΔuÞ2 and ðΔuÞ3,
respectively. We observe in the lower panel of Fig. 4 and
in Fig. 5 that the error for resolution Δu0=64 ≈ 4 × 10−5

saturates consistent with the maximum error ≲10−12 of the
hypersurface integrator in Fig. 3.
An additional feature is the ability to track the position

λA of the apparent horizon. If at time u½r;λ¼0�, r;λ changes
sign, i.e. r;λðu½r;λ¼0�; λAÞ ¼ 0, then the λ grid can be
automatically adopted such that λA corresponds to the
outer boundary x ¼ 1 of the computational domain. For
that purpose, the value of λA is determined by a standard
Newton-Raphson method using the λ position of the
midpoint between the maximum and minimum of r;λ as
initial guesses. We then choose AλA ¼ λA=2 as the new
parameter in the grid function (4.2).
Inside the event horizon, the spectral coordinate x obeys

λ ¼ Aðxþ 1Þ, where the outer boundary is at λ ¼ 2A. Here
A must be chosen so that 2A < λC so that the singularity is
excised from the computational domain. For this purpose, at
each time step un we choose the value A ¼ An such that
2An ¼ λAðunÞ, i.e. we locate the outer boundary at the
apparent horizon. We then integrate the hypersurface equa-
tions at time un. This determines Φ;uðunÞ, which allows the
update to time step unþ1. This is carried out with the value of
A ¼ An fixed at time step un. We could, for some time,
continue to evolve with this value A ¼ An since λAðuÞ is a
decreasing function and the outer boundary would remain
outside the apparent horizon. However, eventually the outer
boundary would approach the singularity. In order to avoid
this, after updatingΦðunþ1Þ and integrating the hypersurface
equations, we find λAðunþ1Þ and determine the correspond-
ing value of Anþ1. This value is then used to set the outer
boundary for evolution to the next time step. Note that A is
set to the constant value An in the evolution from un to unþ1.
Thus the time dependence of A does not enter the integration
of the evolution scheme. In turn, the data ΦðxiÞ on the grid
determined by An are mapped to the grid determined by
Anþ1 using a cubic spline.

FIG. 4. Absolute errors of the profiles ofΦðu ¼ 2.975; xÞwhen
comparing low temporal resolution runs with Δu∈ fΔu0;…;
Δu0=64g to the high temporal resolution run with Δu0=128.

FIG. 5. L2 norm of Φ as function of Δu at the final time
u ¼ 2.975.
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Our numerical implementation reproduces the standard
features of the critical solution such as the universality and
echoing (Fig. 6), scalar field dispersion (Fig. 7) and scalar
field collapse (Fig. 8). In these figures, we used a ¼ 0.7 for
the initial data (3.4), for which u� ≈ 2.1.

VI. NEW RESULTS

A. Analytic initial data

The 2-parameter set ða; bÞ of initial null data (3.4) allows
analytic integration of the set of hypersurface equations to
determine all the initial metric variables, as well as the time

derivative Φ;u. This facilitates convergence studies of the
numerical integration scheme, see e.g. Fig. 3. The value
of the parameter b determines a priori specification of
either supercritical or subcritical initial data. The scaling
of the initial data with respect to the parameter a is
consistent with overall scale symmetry of the evolution
system (2.4). As a result, the value of a sets an overall
length scale for the solution, e.g. the critical time u�
depends linearly on a. Numerical evolution determines
the value u� ≈ 3a. This explicit knowledge allows an
estimate of the number of time steps needed to study
critical collapse. We also find that the critical parameter
b� ≈ 0.947202 for all values of a.

B. Tracking the apparent horizon

To demonstrate that the system (2.37) can track the
position of the apparent horizon, we use inside event
horizon data with b > 1. Because the position λA of the
apparent horizon moves inward towards the central geo-
desic and because the λ domain shrinks in the process, we
adaptively remap λA to the outer boundary x ¼ 1 by
adjusting the grid parameter A. This remapping is done
after every time step and allows us to follow the motion of
the apparent horizon close to the central world line.
Figure 9 shows temporal snapshots of radial profiles
of r, the Misner-Sharp mass m, r;λ and the negative
Ricci scalar for the evolution of the same inside event
horizon initial data presented in Fig. 2. The apparent
horizon is initially at λAðu ¼ 0Þ ¼ 2.5ð ffiffiffi

2
p

− 1Þ ≈ 1.04.
We follow the motion of the apparent horizon up until
λAðu ¼ 0.67Þ ¼ 0.05. At this final time, the absolute value
of the Ricci scalar jgabRabj has risen by an order of
magnitude over its value on the initial slice.

FIG. 6. The echoing and universality shown for two different
initial datasets: The black line corresponds to the initial data of
[12], i.e. Φ½12�ð0; λÞ ¼ ϵð1þ λ2Þ−1 with ϵ ¼ 2.2731644. The
cyan dashed line corresponds the initial data (3.4) with a ¼
0.7 and b ¼ 0.947201675. The echoing period is consistent with
the Choptuik value Δ ¼ 3.44, while the critical times are u�½12� ¼
2.2039 and u�ð3.4Þ ¼ 2.165067.

FIG. 7. Standard behavior of the critical solution: Subcritical
initial data evolve toward the Minkowski value limλ→∞ r;λ ¼
H → 1 and the scalar field disperses, Φ → 0, at time u > u� ≈
2.1 (vertical dotted line).

FIG. 8. Standard behavior of the critical solutions: For super-
critical initial data, the Bondi mass decays to a finite value and H
goes to zero for u → u� ≈ 2.1 (vertical dotted line).
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As λAðuÞ approaches the central world line, we confirm
that the area of the apparent horizon decays. As expected
from the relation rðu; λAÞ ¼ 2mðu; λAÞ, which follows
from (2.13), the Misner-Sharp mass of the apparent horizon
mAðuÞ also decays as the apparent horizon approaches the
central worldline. For simulations run successively with
101, 201, 401, and 801 grid points, numerical convergence
was measured by comparing the positions λAðunÞ of the low
resolution runs (N ∈ f101; 201; 401g) with the highest
resolution runN ¼ 801. As shown in Fig. 10, the respective
errors differ by a factor of 4 throughout the evolution,
which confirms the convergence of the second order time
integrator.
In Fig. 11, the position of the apparent horizon λA can be

read off from where r;λ ¼ 0. Figure 11 also shows that the
profiles of r and 2m intersect at the origin and then again at
the position of apparent horizon.

C. Evolution across the event horizon

For asymptotically flat supercritical initial data with
a ¼ 1 and b ¼ 0.95, we are able to continue the evolution
of asymptotically flat data across the event horizon up to
the final collapse of the apparent horizon to the central
worldline. For these simulations, we use the compactified
grid function (4.8) with A ¼ 1 in the exterior region, where
the λ domain extends from the central world line to null

FIG. 10. Comparison of the absolute error of the position of the
apparent horizon λAðuÞ between low resolution runs
(N ∈ f101; 201; 401g) and the high resolution run with N ¼
801 grid points.

FIG. 9. Snapshots of profiles of areal distance r (upper left),
Misner-Sharp mass m (upper right), r;λ (lower left) and negative
Ricci scalar (lower right) for inside event horizon initial data.
Values at the end points of the curves correspond to values at the
apparent horizon at the time indicated by the color in the legend.

FIG. 11. Snapshots of profiles of areal distance r (solid lines),
r;λ (dashed lines) and twice the Misner-Sharp mass 2m (dotted
lines) between the origin and the apparent horizon. The profiles
of r and 2m intersect at the apparent horizon. The colors indicate
the times of the snapshots as indicated in the legend.

FIG. 12. The red line indicates the use of the compactified grid
function in the exterior of the event horizon and the black line the
use of a linear grid function in the interior of the event horizon,
during a supercritical run when the event horizon forms at
uH ≈ 2.027. The magenta line indicates the change of the grid
parameter A from its initial value A ¼ 1 for u < uH and its decay
towards zero for u > uH due to the remapping of the apparent
horizon.
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infinity Iþ. At central time uH, the time when the event
horizon forms, r approaches 2MB as λ goes to infinity.
We determine uH ≈ 2.027 from the average of the time we
detect a singular caustic on an outgoing null cone
(uC ¼ 2.02813) and the time of the last null cone that
extends to Iþ (u ¼ 2.02687). For times u > uH, we excise
the singular caustic and follow the motion of the apparent
horizon using the linear grid function (4.2). Figure 12
shows this adaptation of the grid function and grid
parameter A during the evolution of supercritical data.
Figure 13 shows snapshots of the evolution in the

domain 0 ≤ λ ≤ 0.8. The upper panel shows profiles of
r;λ before and after event horizon formation at uH. In the
lower panel, for cleaner visualization of the snapshots of

rðu; λÞ, we instead plot uþ rðu; λÞ before and after event
horizon formation. (Snapshots of uþ r rather than r
separate the profiles near the origin.) In both panels of
Fig. 13, the solid lines are profiles in the exterior of the
event horizon and the dashed lines in the interior, while the
same colors correspond to profiles at the same times.
In the upper panel, r;λ decays for u < uH, consistent with

the increasing redshift between an exterior observer and the
central worldline. For values u → uH in Fig. 13, we see an
inward motion of the positions on the λ axis where r;λ ¼ 0,
i.e. the positions λAðuÞ of the apparent horizon. In the lower
panel of Fig. 13, the corresponding values of uþ rðu; λAÞ
are depicted by red squares. The dashed-dotted line
connecting these squares indicate the locus of the
apparent horizon. The blue dashed-dotted line Fig. 13 at
ðλ; uþ rÞ ≈ ð0.31; 2.29Þ is the tangent to the ingoing null
ray emanating from the position of the first detected
apparent horizon. The locus of the apparent horizon lies
below this ingoing null direction, consistent with the
spacelike nature of the apparent horizon hypersurface.
In the lower panel of Fig. 13, all profiles of uþ r

start from the center with the same slope r;λðu; 0Þ ¼ 1, as
required by the local Minkowski coordinate conditions at
the origin. As λ increases, the profiles deviate from straight
lines and become concave due to the focusing of the null
rays by the scalar field.

VII. SUMMARY

The Choptuik critical phenomena is a pristine problem in
dynamic black hole formation. Here, we reinvestigated the
gravitational collapse of a massless scalar field in spherical
symmetry using a characteristic formulation. In comparison
with other studies [11,14], which used the Bondi-Sachs
metric [34], we employed an affine-null metric. This allows
numerical evolution beyond the formation of an event
horizon where the areal coordinate r in the Bondi-Sachs
formalism becomes singular. An obstacle in implementing
the affine-null formulation is that the main equations do not
form a simple hierarchical scheme, as in the Bondi-Sachs
formalism. However, the hierarchical structure has been
restored for the general vacuum Einstein equations using a
change in evolution variables [15,19], and this has been
applied to the spherically symmetric Einstein-scalar field
equations [12]. We adopted these variables here in the
hierarchical system (2.31). However, although the affine-
null coordinates remain nonsingular up to the formation
of physical singularities, there are individual terms in the
system (2.31) which are infinite at the location of an
apparent horizon, where 1=r;λ → ∞. This is a limitation for
applications of (2.31) to evolution in the interior of a black
hole (as studied in [15,19]).
However, as shown in [12], in spherical symmetry it is

possible to regularize the system (2.31) such that it is free
of the troublesome 1=r;λ terms. This allows simulations
of gravitational collapse to penetrate the event horizon.

FIG. 13. Temporal snapshots for supercritical initial data
showing r;λ (top panel) and uþ rðu; λAÞ (bottom panel) before
and after event horizon formation at uH ≈ 2.027. In the lower
panel, the locus of the apparent horizon (red dash dotted curve)
lies below the tangent (blue dashed-dotted line) to the ingoing
null ray at the position of the first detected apparent horizon. This
is consistent with the spacelike nature of the apparent horizon.
The color coded times in the legend apply to both panels.
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Here we took further advantage of this approach to
implement an independent version of this regularized
hierarchical system to explore the dynamics of the apparent
horizon.
We verified the main results of [12] using a different

pseudospectral method. In addition, we have shown that
supercritical initial data could be evolved beyond the event
horizon to the interior of the black hole (see Fig. 13). This
evolution could be followed almost to the final singularity
when the area of the apparent horizon approaches zero.
The evolution of supercritical data demonstrated that the
apparent horizon is a spacelike hypersurface, in accord with
analytic results. Analytic results using the affine-null
system also showed that the final singularity is a spacelike
hypersurface. Our results led to the space-time picture
Fig. 1 of supercritical gravitational collapse.

We also presented new null cone initial data (3.4) which
is well suited for investigating both subcritical and super-
critical evolutions. For this initial data the hierarchy of
hypersurface equations could be integrated to yield all
metric and auxiliary functions in closed analytic form
[see (3.5)]. It is natural to ask if a regularized hierarchy
such as (2.37) can be found for systems with less symmetry
or different matter sources. A conclusive answer to this
question is not in sight but under investigation.
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