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Using numerical methods, we examine, under a Gowdy symmetry assumption, the dynamics of
nonlinearly perturbed Friedmann-Lemaître-Robertson-Walker (FLRW) fluid solutions of the Einstein-
Euler-scalar field equations in the contracting direction for linear equations of state p ¼ Kρ and sound
speeds 0 ≤ K < 1=3. This article builds upon the numerical work from Beyer et al. [Phys. Rev. D 107,
104030 (2023)] in which perturbations of FLRW solutions to the Einstein-Euler equations with positive
cosmological constant in the expanding time direction were studied. The numerical results presented here
confirm that the instabilities observed in previous work [Phys. Rev. D 107, 104030 (2023), Lett. Math.
Phys. 113, 102 (2023).] for 1=3 < K < 1, first conjectured to occur in the expanding direction by Rendall
[Ann. Henri Poincaré 5, 1041 (2004)], are also present in the contracting direction over the complementary
parameter range 0 ≤ K < 1=3. Our numerical solutions show that the fractional density gradient of the
nonlinear perturbations develop steep gradients near a finite number of spatial points and become
unbounded toward the big bang. This behavior, and in particular the characteristic profile of the fractional
density gradient near the big bang, is strikingly similar to what was observed in the expanding direction
near timelike infinity by Beyer et al. [Phys. Rev. D 107, 104030 (2023)].
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I. INTRODUCTION

Perturbed Friedmann-Lemaître-Robertson-Walker (FLRW)
spacetimes form the basis of modern cosmology and play a
distinguished role in general relativity. In particular, much
research has been devoted to understanding the dynamical
behavior of these spacetimes near big bang singularities.
Because of the Hawking-Penrose singularity theorems [1],
it is known that cosmological spacetimes without any
symmetries are geodesically incomplete to the past (con-
tracting direction) for a large class of matter models.
However, it has only been recently established that the past
geodesic incompleteness of perturbed Einstein-scalar field
FLRW spacetimes, possibly coupled with other matter
fields, is due to the formation of quiescent, spacelike big
bang singularities where the curvature becomes unbounded
[2–9], which is referred to as “FLRW big bang stability.”
More generally, the stability of big bang singularities in
the Kasner family of solutions to the Einstein-scalar field

equations has been established in [4,5] for the expected
range of quiescent Kasner exponents.
Scalar fields are thought to play an important role during

the evolution of the early Universe [10,11]. So, while
quiescent big bang singularities are not expected to be
generic for most matter models, and indeed this is the view
put forward by the Belinskii-Khalatnikov-Lifshitz conjec-
ture [12,13], the presence of scalar fields in the early
Universe imply that quiescent big bang singularities are
physically relevant because nonlinear perturbations of
FLRW solutions to the Einstein-scalar field system termi-
nate in the past at such singularities. In addition to scalar
fields, fluids and, in particular, radiation fluids, must also
be considered as matter models of the early Universe. First
steps in this direction were taken in the articles [7] (K ¼ 1
and no scalar field) and [14] (1=3 < K < 1), where the
stability of FLRW big bang singularities for solutions of the
Einstein-Euler-scalar field equations with linear equations
of state p ¼ Kρ was established. While these stability
results go some way toward understanding the behavior of
fluids near FLRW big bang singularities, they do not apply
to radiation fluids K ¼ 1=3 or to the case K < 1=3. As
discussed in [14], see also Sec. IV B 1, it is expected that
over the range of sounds speeds 0 ≤ K ≤ 1=3 fluids will
behave significantly differently compared to 1=3 < K < 1.
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The aim of this article is to numerically investigate the
behavior toward the past of nonlinear perturbations of
FLRW solutions to the Einstein-Euler-scalar field equations
for the range of sound speeds 0 ≤ K ≤ 1=3. Of particular
interest is to resolve the behavior of the gravitational and
matter fields near big bang singularities that form in these
perturbed solutions. In order to simplify the problem, we
restrict our attention to spatial T 3-topologies and numeri-
cally solve the Einstein-Euler-scalar field equations under a
Gowdy symmetry assumption (see Sec. II A). The advan-
tage of considering Gowdy spacetimes is that the presence
of two Killing fields allows us to reduce the Einstein-Euler-
scalar field equations to a (1þ 1)-dimensional problem
with periodic boundary conditions. This type of simplifi-
cation has been exploited both analytically and numerically
many times in previous studies of the Einstein equations
[15–27].
The numerical simulations we perform reveal that non-

linear Gowdy-symmetric perturbations of FLRW solutions
to the Einstein-Euler-scalar field equations display the
following behavior:
(a) For all sounds speeds K ¼ c2s ∈ ½0; 1� and all suffi-

ciently small perturbations of FLRW initial data, a
spacelike big bang singularity forms in areal coordi-
nates [see (2.4)] at t̄ ¼ 0 and the Ricci scalar blows
up there.

(b) For K ∈ ½0; 1=3Þ and initial data that are sufficiently
close to FLRW initial data and for which the spatial
velocity vanishes somewhere on the initial hypersur-
face, the “fractional density gradient” ∂θρ

ρ develops
steep gradients and blows up at finitely many spatial
points at t̄ ¼ 0. These blowup points coincide with the
vanishing of the spatial velocity at t̄ ¼ 0. We refer to
the sharp features that form near t̄ ¼ 0 in the fractional
density gradient as “spikes.” Moreover, at the spatial
points where the spatial fluid velocity vanishes at
t̄ ¼ 0, the fluid behaves asymptotically as t̄↘0 like an
“orthogonal fluid,” while away from these points it
behaves asymptotically like a “tilted fluid.”

(c) At K ¼ 1=3 and for initial data that are sufficiently
close to FLRW initial data, we observe no blowup of
the fractional density gradient and it appears that all
the (suitably renormalized) fluid and gravitational
variables are converging as t̄↘0. However, as the
blowup of the fractional density that occurs for 0 ≤
K < 1=3 takes longer and longer to set in as K
approaches 1=3, it could be the case that the pertur-
bations are also unstable for K ¼ 1=3 and we are not
observing it numerically because we are simply not
evolving long enough to see the instability.

(d) For K ∈ ð1=3; 1� and initial data that are sufficiently
close to FLRW initial data, all of the (suitably
renormalized) gravitational and matter variables con-
verge at t̄↘0 monotonically to limits in accordance
with the stability results [7,14].

(e) For initial data that are sufficiently far away from
FLRW initial data and K ∈ ½0; 1�, spikes form in both
fluid and metric functions. Intriguingly, the spikes in
the fractional density gradient form first and are
followed by gravitational spikes that develop in nearly
the same location.

These results can be understood by a simple heuristic
argument. First suppose that, as the big bang is approached,
the dynamics of the Einstein-Euler-scalar field system can
be approximated by solutions of the Euler equations on a
fixed FLRW-scalar field background and that spatial
derivatives are negligible. Then, as we show in Sec. IVB 1,
the relation

βð1 − β2Þ−ð1−KÞ=2 ¼ ct̄ð3K−1Þ=2 ð1:1Þ

holds at each spatial point where c is a constant and the fluid
velocity field is determined in terms of β and a natural
orthonormal frame fe0; e1g by

v ¼ e0 þ βe1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p :

The function β, which represents the spatial part of the
fluid velocity, takes values in ð−1; 1Þ. In particular, (1.1)
implies that the asymptotic behavior of the fluid at each
spatial point is determined by the constants c and K. This
leads to the following classification of the asymptotic
behavior:

(i) Orthogonal fluid: c ¼ 0, K ∈ ½0; 1�.
(ii) Asymptotically orthogonal fluid: c≠0, K ∈ ð1=3; 1�.
(iii) Tilted fluid: c ≠ 0, K ¼ 1=3.
(iv) Asymptotically extremely tilted fluid1: c ≠ 0, K ∈

½0; 1=3Þ.
The instability described above for K ∈ ½0; 1=3Þ is
thus driven by the dramatically different behavior
of the orthogonal and asymptotically extremely tilted
fluids.
Interestingly (1.1) also reveals that the opposite

dichotomy occurs in the future (expanding) direction
corresponding to the limit t̄ → ∞ interchanging the
sound speed parameter K range. In fact, FLRW
fluid stability for 0 ≤ K ≤ 1=3 has been established
in [28–35] and instability for 1=3 < K ≤ 1 in [36,37].
The FLRW fluid instabilities that were observed
numerically in Gowdy-symmetric solutions for 1=3 <
K < 1 in [36] were predicted by Rendall [38] and are
driven by the blowup of the fractional density gradient
∂θρ
ρ . Indeed, it was observed in [36] that, for all
K ∈ ð1=3; 1Þ and all choices of initial data sufficiently

1A fluid is described as having an “extreme tilt” if the leading
order behavior of the fluid, as the singularity is approached, is a
null vector.
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close to FLRW initial data, the fractional density
gradient develops steep gradients and blows up at
finitely many spatial points at future timelike infinity.2

It is also interesting to note that the blowup profiles of
the fractional density gradient near future timelike
infinity observed in [36] are remarkably similar to
the blowup profiles of the fractional density gradient
near the big bang singularity at t̄ ¼ 0 in the numerical
simulations presented here.

A. Prior and related results

The fluid instability described above in points (b) and
(e) is referred to as a “tilt instability” in [40]. In that
article and also [41,42], the authors construct analytic
and numerical solutions of the Einstein-Euler equations
with a G2 symmetry3 that exhibit spikes in both the fluid
and gravitational fields and are clearly related to what
we observe numerically in this article, see point
(e) above. In contrast, the stability dichotomy, see points
(b)–(d) above, that we observe in this article for
sufficiently small perturbations of FLRW solutions of
the Einstein-Euler-scalar field equations is new, as is the
clear characterization of the fluid instability for 0 ≤ K <
1=3 as blowup of the fractional density gradient ∂θρρ at the

big bang singularity located at t̄ ¼ 0 and the identifica-
tion of the fluid spikes as large gradients that develop in
the fractional density gradient near t̄ ¼ 0. It would be
interesting to understand if a similar behavior occurs for
small perturbations of the Kasner family of solutions to
the Einstein-Euler-scalar field equations for all expo-
nents that lie in the quiescent range.

B. Overview

The article is organized as follows: the derivation of a
first order formulation of the Gowdy-symmetric Einstein-
Euler-scalar field equations that is suitable for numerical
implementation and constructing solutions globally to the
future is carried out in Sec. II. In Sec. III, we derive the
FLRW background solutions that we perturb and in Sec. IV
we discuss our numerical setup and results for small
perturbations of the FLRW solution. Finally, in Sec. V
we investigate large perturbations and the interactions
between gravitational spikes and spikes in the fractional
density gradient.

II. EINSTEIN-EULER-SCALAR FIELD
EQUATIONS

A. Einstein-Euler-scalar field equations
with Gowdy symmetry

The Einstein-Euler-scalar field equations4 for a perfect
fluid and minimally coupled scalar field are given by5

Gij ¼ Tfl
ij þ Tϕ

ij; ð2:1Þ

∇iTfl
ij ¼ 0; ð2:2Þ

∇iTϕ
ij ¼ 0; ð2:3Þ

where

Tϕ
ij ¼ ∇iϕ∇jϕ −

1

2
gij∇aϕ∇aϕ

is the scalar field stress-energy tensor and

Tfl
ij ¼ ðρþ pÞvivj þ pgij

is the perfect fluid stress-energy tensor. Here, vi is the fluid
four-velocity normalized by vivi ¼ −1, and we assume that
the fluid’s proper energy density ρ and pressure p are
related via the linear equation of state

p ¼ Kρ;

where the constant parameter K ≥ 0 is the square of the
sound speed. In the following, we assume that 0 ≤ K ≤ 1
so that the speed of sound is less than or equal to the speed
of light.
As discussed in the Introduction, we restrict our attention

to solutions of the Einstein-Euler-scalar field equations
with a Gowdy symmetry [22,44] by considering Gowdy
metrics in areal coordinates on R>0 × T 3 of the form

g ¼ e2ðη−UÞð−e2ᾱdt̄ ⊗ dt̄þ dθ ⊗ dθÞ þ e2Uðdyþ AdzÞ
⊗ ðdyþ AdzÞ þ e−2Ut̄2dz ⊗ dz: ð2:4Þ

Here, the functions η, U, ᾱ, and A depend only on
ðt̄; θÞ∈R>0 × R and are 2π-periodic in θ. Since our spatial
slices are T 3, the metric is periodic and compact in y and z
as well, however, these coordinates play no role due to the
symmetry condition. For an in-depth discussion of space-
times with Uð1Þ ×Uð1Þ symmetry and compact spatial
slices see [22]. Following previous numerical studies of the

2See [39] for a rigorous analysis of this instability in the
simplified setting where coupling to Einstein’s equations is
ignored.

3G2 models include Gowdy spacetimes as a special case,
see [43].

4Our indexing conventions are as follows: lowercase Latin
letters, e.g., i, j, k, will label spacetime coordinate indices that run
from 0 to 3, while uppercase Latin letters, e.g., I, J, K, will label
spatial coordinate indices that run from 1 to 3.

5Here, we use units where c ¼ 1 and G ¼ 1
8π.
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initial singularity in Gowdy symmetry [17,45,46], we
introduce a new time t and metric function α via

t̄ ¼ e−t; ᾱ ¼ αþ t; ð2:5Þ
which allows us to express the Gowdy metric (2.4) as

g ¼ e2ðη−UÞð−e2αdt ⊗ dtþ dθ ⊗ dθÞ þ e2Uðdyþ AdzÞ
⊗ ðdyþ AdzÞ þ e−2U−2tdz ⊗ dz; ð2:6Þ

where the big bang singularity is now located at t ¼ ∞. We
are only interested in solutions in the contracting direction,
i.e., toward the past, and consequently, we consider time
intervals of the form t∈ ½t0;∞Þ for some t0 ∈R.
Next, we turn to expressing the Einstein-Euler-scalar

field system (2.1)–(2.3) in a Gowdy-symmetric form
suitable for numerical implementation. This involves
expressing the Einstein and scalar field equations in first
order form and choosing appropriate variables to formulate
the Euler equations. The details of the derivation are
presented in the following two sections.

B. A first order formulation of the Einstein
equations

In Gowdy symmetry, the fluid four-velocity only has
two nonzero components6 and can be expressed as

v ¼ v0dtþ v1dθ; ð2:7Þ

where the functions v0 and v1 depend on ðt; θÞ∈R ×R and
are 2π-periodic in θ. Because of the normalization
vivi ¼ −1, only one of these functions is independent
and we take v1 as our primary fluid velocity variable.
Furthermore, the scalar field in Gowdy symmetry also
depends on ðt; θÞ∈R ×R and is 2π-periodic in θ. With
these choices, the nonzero components of the total stress-
energy tensor

Tij ¼ Tfl
ij þ Tϕ

ij

are given by

T00 ¼ −e2ðαþη−UÞKρþ ð1þKÞρv20 þ ð∂tϕÞ2 þ
1

2
e2ðαþη−UÞ

�
e2ðU−ηÞð∂θϕÞ2 − e−2ðαþη−UÞð∂tϕÞ2

�
;

T01 ¼ ð1þKÞρv0v1 þ ∂tϕ∂θϕ; T11 ¼ e2ðη−UÞKρþ ð1þKÞρv21 þ ð∂θϕÞ2 −
1

2
e2ðη−UÞ

�
e2ðU−ηÞð∂θϕÞ2 − e−2ðαþη−UÞð∂tϕÞ2

�
;

T22 ¼ e2UKρ−
1

2
e2U
�
e2ðU−ηÞð∂θϕÞ2 − e−2ð−UþαþηÞð∂tϕÞ2

�
;

T23 ¼ e2UKρA−
1

2
e2UA

�
e2ðU−ηÞð∂θϕÞ2 − e−2ðαþη−UÞð∂tϕÞ2

�
;

T33 ¼ ðe2UA2 þ e−2U−2tÞ
�
Kρ−

1

2

�
e2ðU−ηÞð∂θϕÞ2 − e−2ðαþη−UÞð∂tϕÞ2

��
:

Using these expressions and the Gowdy metric (2.6), a
straightforward calculation shows that the Einstein equa-
tion (2.1) in Gowdy symmetry consists of the following
three wave equations:

∂ttA ¼ e2α
�
∂θAð4∂θU þ ∂θαÞ þ ∂θθA

�
þ ∂tAð−1 − 4∂tU þ ∂tαÞ; ð2:8Þ

∂ttU ¼ 1

2
þ 1

2
e2tþ4U

�
ð∂tAÞ2 − e2αð∂θAÞ2

�
þ e2α∂θU∂θα

þ e2α∂θθU þ ∂tU þ 1

2
∂tαþ ∂tU∂tα; ð2:9Þ

∂ttη¼−
1

4
e−2U

�
4e2αþ2ηKρþe2tþ6Uþ2αð∂θAÞ2

−4e2Uþ2αð∂θUÞ2−4e2Uþ2αð∂θαÞ2
−4e2Uþ2α

∂θα∂θη−2e2Uþ2αð∂θϕÞ2−4e2Uþ2α
∂θθα

−4e2Uð∂tUÞ2−4e2U∂tα∂tηþ2e2Uð∂tϕÞ2
�
; ð2:10Þ

and three first order equations

∂tα ¼ −1 − 2e2ðαþη−UÞKρþ ð1þ KÞρv20 − e2αð1þ KÞρv21;
ð2:11Þ

∂tη ¼ −
1

4
e−2U

�
−4e2ðαþηÞKρþ 4e2Uρv20 þ 4e2UKρv20

þ e2tþ6Uþ2αð∂θAÞ2 þ 4e2ðUþαÞð∂θUÞ2
þ 2e2Uþ2αð∂θϕÞ2 þ e2tþ6Uð∂tAÞ2

þ 4e2Uð∂tUÞ2 þ 2e2Uð∂tϕÞ2
�
; ð2:12Þ

∂θη ¼
1

2

�
−2ρv0v1 − 2Kρv0v1 − 2∂θα − e2tþ4U

∂θA∂tA

− 4∂θU∂tU − 2∂θϕ∂tϕ
�
; ð2:13Þ

6This follows from choosing coordinates where the two Killing
vectors are given by ∂y and ∂z, see [25].
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where we note that (2.12) and (2.13) are the Hamiltonian
and momentum constraints, respectively.
Either of (2.10) or (2.12) can be used to evolve the metric

variable η. Following our previous numerical study of the
Gowdy-symmetric Einstein-Euler equations in the expand-
ing direction [36], we use (2.12) to evolve η. This choice, as
discussed in [36], has the benefit of enforcing the
Hamiltonian constraint7 at every time step and involves
solving a first order equation for η rather than a second
order one. Moreover, because we use (2.12) to evolve η, we
can view (2.10) as a constraint equation that can be used to
verify our numerical results.
Next, introducing the first order variables

A0 ¼ ∂tA; A1¼ eα∂θA; U0¼ ∂tU; U1¼ eα∂θU;

ð2:14Þ

we can express the wave equations (2.8) and (2.9) for A and
U in first order form as

∂t

�
A0

A1

�
þ
�

0 −eα

−eα 0

�
∂θ

�
A0

A1

�
− α0

�
A0

A1

�

¼
�−A0 − 4A0U0 þ 4A1U1

0

�
; ð2:15Þ

∂t

�
U0

U1

�
þ
�

0 −eα

−eα 0

�
∂θ

�
U0

U1

�
− α0

�
U0

U1

�

¼
� 1

2
þ 1

2
e4UðA2

0 − A2
1Þ þ U0 þ 1

2
α0

0

�
: ð2:16Þ

C. A first order formulation of the scalar field equation

The equation of motion (2.3) for the scalar field is
equivalent to the wave equation gab∇a∇bϕ ¼ 0 which,
using the Gowdy metric (2.6), can be expressed as

∂ttϕ ¼ ðe2α∂θα∂θϕþ e2α∂θθϕþ ∂tϕþ ∂tϕ∂tαÞ:

Introducing the variables

ϕ0 ¼ ∂tϕ; ϕ1 ¼ eα∂θϕ ð2:17Þ

allows us to write the scalar field equation in the first order
form as

∂t

�
ϕ0

ϕ1

�
þ
�

0 −eα

−eα 0

�
∂θ

�
ϕ0

ϕ1

�
− α0

�
ϕ0

ϕ1

�
¼
�
ϕ0

0

�
:

ð2:18Þ

D. Euler equations

Following [36], the Euler equations (2.2) can be
expressed in Gowdy symmetry as

B0
∂0V þ B1

∂1V ¼ F; ð2:19Þ

where

V ¼
�

ρ

v1

�
;

B0 ¼
� K

ρþKρ ðg11 þ ðv1Þ2Þ Kv1

Kv1 ρþ Kρ

�
;

B1 ¼ ð−v0Þ
� K

ρþKρ v1 K

K ðρþ KρÞ v1
g11þðv1Þ2

�
;

and

F ¼ 1

2
ð−v0Þ

0
B@ Kð2g11∂1g11 − gab∂1gabÞv1

ðρþ KρÞ
�

ðv1Þ2
g11þðv1Þ2 g

11
∂1g11 − g00∂1g00

�
1
CA

þ K
2

� ðv1Þ2g11∂0g11 − ðg11 þ ðv1Þ2ÞgIK∂0gIK
0

�
:

To facilitate the study of the fluid near the big bang
singularity, which is now located at t ¼ ∞, we remove
the leading order behavior in t from the fluid density ρ by
employing a renormalized density ρ̃ defined by

ρ ¼ e
3ð1þKÞ

2
tρ̃: ð2:20Þ

Next, we differentiate ðρ; v1Þ to obtain the identities

∂t

�
ρ

v1

�
¼ P∂t

�
ρ̃

v1

�
þ Z and ∂θ

�
ρ

v1

�
¼ P∂θ

�
ρ̃

v1

�
;

where

P ¼
�
e
3ð1þKÞ

2
t 0

0 1

�
and Z ¼

� 3ð1þKÞ
2

e
3ð1þKÞ

2
tρ̃

0

�
:

Using these identities, we can express the Euler equa-
tions (2.19) as

B̃0
∂tṼ þ B̃1

∂θṼ ¼ FṼ; ð2:21Þ

where

Ṽ ¼ ðρ̃; v1ÞT

and B̃0 ≔ PTB0P, B̃1 ≔ PTB0P, and FṼ ≔ PTðF − B0ZÞ
take the form

7The importance of enforcing the Hamiltonian constraint for
numerical simulations is further discussed in [47].
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B̃0 ¼
 

Kðe2ηþe2Uðv1Þ2Þ
e2Uð1þKÞρ̃ Kv1

Kv1 ð1þ KÞρ̃

!
;

B̃1 ¼

0
B@ − Kv1ðe2αðe−2Uþ2ηþðv1Þ2ÞÞ1=2

ð1þKÞρ̃ −Kðe2αðe−2Uþ2η þ ðv1Þ2ÞÞ1=2

−Kðe2αðe−2Uþ2η þ ðv1Þ2ÞÞ1=2 − e2αð1þKÞρ̃v1
ðe2αðe−2Uþ2ηþðv1Þ2ÞÞ1=2

1
CA;

and

FṼ ¼

0
B@ − Kðe2Uðv1Þ2−2e2Uv1ðe2αðe−2Uþ2ηþðv1Þ2ÞÞ1=2∂θαþe2ηð1−2∂tUþ2∂tηÞÞ

2e2U

1
2
ð1þ KÞρ̃ð−3Kv1 þ 2ðe2αðe−2Uþ2ηþðv1Þ2ÞÞ1=2ðe2Uðv1Þ2∂θαþe2ηð−∂θUþ∂θαþ∂θηÞÞ

e2ηþe2Uðv1Þ2 Þ

1
CA;

respectively.

E. The complete evolution system

Combining (2.11), (2.12), (2.15), (2.16), (2.18), and
(2.21) gives the system of equations which we solve
numerically. These equations can be expressed in matrix
form as

0
BBBBB@

I 0 0 0

0 I 0 0

0 0 B̃0 0

0 0 0 B̊0

1
CCCCCA∂t

0
BBB@

A

U

Ṽ

ϕ

1
CCCAþ

0
BBBBB@

B̄1 0 0 0

0 B̄1 0 0

0 0 B̃1 0

0 0 0 B̊1

1
CCCCCA∂θ

×

0
BBB@

A

U

Ṽ

ϕ

1
CCCA ¼

0
BBB@

α0 0 0 0

0 α0 0 0

0 0 0 0

0 0 0 α0

�0BBB@
A

U

Ṽ

ϕ

1
CCCAþ

0
BBB@

FA

FU

FṼ

Fϕ

1
CCCA;

ð2:22Þ

∂t

0
BBBBBB@

α

η

A

U

ϕ

1
CCCCCCA

¼

0
BBBBBB@

Fα

Fη

A0

U0

ϕ0

1
CCCCCCA
; ð2:23Þ

where

A¼ðA0;A1ÞT; U¼ðU0;U1ÞT; ϕ¼ðϕ0;ϕ1ÞT;

B̄1¼
�

0 −eα

−eα 0

�
; B̊0¼

�
1 0

0 1

�
;

B̊1¼
�

0 −eα

−eα 0

�
;

FA¼ð−A0−4A0U0þ4A1U1;0ÞT;

FU¼
�
1

2
þ1

2
e4UðA2

0−A2
1ÞþU0þ

1

2
α0;0

�
T
;

Fϕ¼ðϕ0;0ÞT; Fα¼−1−e
3ð1þKÞ

2
t−2Uþ2αþ2ηðK−1Þρ̃;

Fη¼−e
3ð1þKÞ

2
t−2Uþ2αþ2ηρ̃−

1

4
e2tþ4UðA2

1þA2
0Þ

þ1

2

�
−2e

3ð1þKÞ
2

tþ2αð1þKÞρ̃v21−2U2
1−ϕ2

1

�
−U2

0−
1

2
ϕ2
0;

and Ṽ, B̃0, B̃1, and FṼ are as defined above in the preceding
section. Furthermore, we note that the momentum con-
straint (2.13) takes the form

∂θη¼−e3=2ð1þKÞtð1þKÞρ̃v1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2αðe−2Uþ2ηþðv1Þ2Þ

q
−∂θα

−
1

2
e2tþ4UA0∂θA−2U0∂θU−ϕ0∂θϕ: ð2:24Þ

III. FLRW SOLUTIONS

As discussed in the Introduction, the main aim of this
article is to study Gowdy-symmetric perturbations of
FLRW solutions (i.e., spatially homogeneous and isotropic)
to the Einstein-Euler-scalar field equations. This requires us
to first identify the FLRW solutions. To this end, we
observe that a FLRW metric can be recovered from the
Gowdy metric (2.6) by setting η ¼ −t, U ¼ − 1

2
t, and A ¼

0 and assuming that the remaining metric function α
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depends only on t. This gives a metric of the form

g ¼ e−tðe2αðtÞdt2 þ dθ2 þ dy2 þ dz2Þ:

Clearly, this metric ansatz is both spatially homogeneous
and isotropic, and hence, if we can find a solution to the
Einstein-Euler-scalar field equations of this form it must,
by definition, be a FLRW solution. For matter variables ρ̃,
v1, and ϕ, spatial homogeneity and isotropy requires that
v1 ¼ 0 and that ρ̃ and ϕ depend only on t. For these
choices, the Gowdy-symmetric Einstein-Euler-scalar field
equations (2.23) simplify to

∂tρ̃ ¼ 0; ð3:1Þ

∂tαþ e
1
2
ð3Kþ1Þtþ2αðK − 1Þρ̃þ 1 ¼ 0; ð3:2Þ

2ϕ2
0 þ 4e

1
2
ð3Kþ1Þtþ2αρ̃ − 3 ¼ 0; ð3:3Þ

2ϕ2
0 þ 4∂tαþ 1þ 4e

1
2
ð3Kþ1Þtþ2αKρ̃þ 1 ¼ 0; ð3:4Þ

∂tϕ0 − ϕ0∂tα − ϕ0 ¼ 0; ð3:5Þ

∂tϕ ¼ ϕ0: ð3:6Þ

We begin solving the above system by first noting that
(3.1) implies

ρ̃ ¼ 1

c̃ð1þ KÞ

where the constant c̃ > 0 can be freely chosen. Next, we
integrate (3.2) to obtain

α ¼ −
1

2
log

�
4

3
e
3ðK−1Þ

2
t 1

c̃ðK þ 1Þ − 2c1

�
− t

where c1 is freely specifiable integration constant.
Substituting this into (3.3) and setting c1 ¼ −1, we solve
for ϕ0 ¼ ∂tϕ and integrate the resulting expression while
enforcing the initial condition8 ϕjt¼0 ¼ 0 to get

ϕ ¼ 2
ffiffiffi
2

pffiffiffi
3

p ð1 − KÞ

 
sinh−1

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
c̃ð1þ KÞ

r
e
3ð1−KÞ

4
t

!

− sinh−1
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3

2
c̃ð1þ KÞ

r !!
:

It is then straightforward to check that the above expressions
for ρ̃, α, and ϕ also satisfy the remaining Eqs. (3.4)–(3.6).

From this, we conclude that for each choice of constant
c̃ > 0, the following defines a FLRW solution of the
Einstein-Euler-scalar field equations,

g ¼ e−t
�

−3c̃e−2tð1þ KÞ
4e

3ðK−1Þ
2

t þ 6c̃ð1þ KÞ
dt2 þ dθ2 þ dy2 þ dz2

�
;

ρ ¼ 1

c̃ð1þ KÞ e
3ð1þKÞ

2
t;

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3c̃e−3tð1þ KÞ
4e

3ðK−1Þ
2

t þ 6c̃ð1þ KÞ

s
dt;

ϕ ¼ 2
ffiffiffi
2

pffiffiffi
3

p ð1 − KÞ

 
sinh−1

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
c̃ð1þ KÞ

r
e
3ð1−KÞ

4
t

!

− sinh−1
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3

2
c̃ð1þ KÞ

r
Þ
!
: ð3:7Þ

Remark 3.1. The Einstein-Euler-scalar field FLRW
solution has no closed solution in terms of the standard
FLRW coordinates9 for arbitrary values of K [48]. This can
be seen by changing our areal time coordinate to the
standard FLRW time, which yields an expression in terms
of a hypergeometric function,

T ¼
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3c̃e−3tð1þ KÞ
4e

3ðK−1Þ
2

t þ 6c̃ð1þ KÞ

s
dt

¼ −

ffiffi
2
3

q
e−3t2F1

�
1; 1

2
þ 1

1−K ;
2−K
1−K ;−

2e
3
2
ðK−1Þt

3c̃ðKþ1Þ

�

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c̃ðKþ1Þe−3t

3c̃ðKþ1Þþ2e
3
2
ðK−1Þt

r :

In particular, this expression cannot be analytically inverted
to obtain a closed solution t ¼ tðTÞ.

IV. NUMERICAL RESULTS NEAR FLRW

A. Numerical setup

The numerical method we employ to solve (2.22) and
(2.23) in this article is closely related to the one we used in
[36] to solve the Gowdy-symmetric Einstein-Euler equa-
tions in the expanding direction. Specifically, we use a
½0; 2π� spatial computational spatial domain that is dis-
cretized with an equidistant grid consisting of N grid
points, and we employ periodic boundary conditions to
enforce the 2π-periodicity of the gravitational and matter
fields. Spatial derivatives are discretized using second order
central finite differences and time integration is performed
using a standard fourth order Runge-Kutta method. As a
consequence, our code is second order accurate.

8Only derivatives of ϕ appear in the field equations, hence
there is no loss of generality from using this condition to choose
our integration constant.

9By standard FLRW coordinates, we mean metrics of the form
g ¼ −dT2 þ aðTÞ2ðdx2 þ dy2 þ dz2Þ.
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1. Initial data

Since we are using the Hamiltonian constraint (2.12) to
evolve η, the constraints that our initial data for the system
(2.22) and (2.23) must satisfy consist of the momentum
constraint (2.24) and the constraints (2.14) and (2.17)
that arise from the definition of the first order variables
A1, U1, and ϕ1. The choice of initial data (4.1) below
ensures all these constraints are satisfied initially at t ¼ 0.
Additionally, we choose the fluid’s initial spatial velocity
v1 so that it vanishes at least one point on the initial
hypersurface at t ¼ 0. This is necessary to generate the tilt
instability that leads to the formation of spikes in the
fractional density contrast ∂θρρ and ultimately blow up on the
big bang singularity at t ¼ ∞. Following [36,49], we
ensure that the spatial fluid velocity v1 vanishes at t ¼ 0
by setting it equal to a sinusoidal function with a small
amplitude parameter a. For the remainder of this section,
we employ initial data of the form10

α̊¼ − log

 
−acosðθÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

3ðKþ 1Þ þ 2

s !
;

a <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

3ðKþ 1Þ þ 2

s
;

v̊1 ¼ a sinðθÞ;
̊ρ̃¼ 1

ðKþ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2ðη−UÞ þ v21

q ;

η̊¼ −ð2f − 1Þc sinðθÞ− d

 
3
ffiffiffiffiffiffiffiffiffiffiffiffi
1þK

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 6ð1þKÞp þ b

!
sinðθÞ;

Ů ¼ c sinðθÞ;

Ů0 ¼ −
1

2
þ f;

ϕ̊0 ¼
3
ffiffiffiffiffiffiffiffiffiffiffiffi
1þK

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 6ð1þKÞp þ b;

ϕ̊¼ d sinðθÞ;
Å0 ¼ 0;

Å¼ k sinðθÞ þ b;

Å1 ¼ eα∂θA;

Ů1 ¼ eα∂θU;

ϕ̊1 ¼ eα∂θϕ; ð4:1Þ

where a, b, c, d, f, and k are constants to be specified.
Initial data of this form can be considered as a perturbation
of FLRW initial data provided that the constants a, b, c, d,

f, and k are chosen sufficiently close to zero. This follows
from the fact that setting a ¼ b ¼ c ¼ d ¼ f ¼ k ¼ 0 in
(4.1) produces homogeneous and isotropic (i.e., FLRW)
initial data. If the size of the parameters a, b, c, d, f, and k
are too large the system is found to become unstable almost
immediately. That is, within a small amount of time steps
the variables develop steep gradients and produce numeri-
cal errors. Throughout this section, we focus exclusively on
initial data with small amplitudes. In particular, all the plots
in this section have been generated with a ¼ b ¼ c ¼
d ¼ f ¼ k ¼ 0.01, with the exception of Sec. IVA 3 where
we set a ¼ b ¼ c ¼ d ¼ f ¼ k ¼ 0.

2. Code tests

The second order accuracy of our code has been verified
with convergence tests involving perturbations of FLRW
solutions using resolutions of N ¼ 200, 400, 800, 1600,
3200, and 6400 grid points. Following [36], we have
estimated the numerical discretization error Δ by taking
the log2 of the absolute value of the difference between
each simulation and the highest resolution run. The results
for v1 and ϕ are shown11 in Figs. 1(a) and 1(b) from which
the second order convergence is clear.
We can use a similar procedure to measure the level of

constraint violation during the evolution of the system.
Beginning with the momentum constraint (2.24), we define
the quantity

C1 ¼ −∂θη − e3=2ð1þKÞtð1þ KÞρ̃v1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2αðe−2Uþ2η þ ðv1Þ2Þ

q
− ∂θα −

1

2
e2tþ4UA0∂θA − 2U0∂θU − ϕ0∂θϕ: ð4:2Þ

Clearly, C1 ¼ 0 means that the momentum constraint is
identically satisfied. The quantity log2 kC1k2 can therefore
be understood as the violation error of the momentum
constraint as a function of time. In a similar manner, we can
also define constraint violation quantities from the defi-
nitions of our first order variables A1 and U1, and from the
wave equation (2.10) for η as follows:

C2 ¼ A1 − eα∂θA;

C3 ¼ U1 − eα∂θU;

C4 ¼ ϕ1 − eα∂θϕ;

C5 ¼ −∂ttη −
1

4
e−2U

�
4e2αþ2ηþ3ð1þKÞ

2
tKρ̃þ e2tþ6Uþ2αð∂θAÞ2

− 4e2Uþ2αð∂θUÞ2 − 4e2Uþ2αð∂θαÞ2
− 4e2Uþ2α

∂θα∂θη − 2e2Uþ2αð∂θϕÞ2 − 4e2Uþ2α
∂θθα

− 4e2Uð∂tUÞ2 − 4e2U∂tα∂tηþ 2e2Uð∂tϕÞ2
�
:

10Here we have set the constant c̃ ¼ 1.

11We have performed convergence tests for all other variables
and confirmed second order convergence. These plots are omitted
here for brevity.
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The second time derivative of η for C5 is calculated
numerically using a fourth order finite difference stencil
for the second derivative

ð∂ttηÞi;j ¼
−ηi−2;j þ 16ηi−1;j − 30ηi;j þ 16ηiþ1;j − ηiþ2;j

12ðΔtÞ2 ;

ð4:3Þ
where ηi;j denotes the value of η at the ith time step and jth
spatial grid point and Δt is the time step size, while the first
time derivatives of α and η in C5 are calculated using their
evolution equations (2.11) and (2.12), respectively. We
observe the expected second order convergence for the
quantities log2ðkC1k2 þ kC2k2 þ kC3k2 þ kC4k2Þ, shown
in Fig. 2(a). It should be noted that we have been unable
to achieve convergence for the constraint quantity
log2ðkC5k2Þ, plotted in Fig. 2(b). Although this constraint
does not converge, the overall constraint violation becomes
small and approaches the limit of numerical accuracy for a
scheme using second order finite difference stencil (approx-
imately 10−13). Even though the constraints are satisfied at
the initial time by virtue of our choice of initial data (4.1) so
that C1 ¼ C2 ¼ C3 ¼ C4 ¼ 0, we note the numerical
values are not exactly zero, even at the initial time

t ¼ 0, as the derivatives in C1, C2, C3, and C4 are
approximated by finite differences. It should also be noted
that, due to our use of the stencil (4.3), the first and last two
time steps in calculating C5 have been removed from
Fig. 2(b).
As a further check on the accuracy of the code, we have

also compared the size of each individual term in a
constraint with the total constraint violation. From this
we can conclude that the actual constraint violation is small
(as opposed to each individual term being small). To this
end we consider C1 and separate it into five terms as
follows:

T1 ¼ −∂θη; ð4:4Þ

T2 ¼ −e3=2ð1þKÞtð1þ KÞρ̃v1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2αðe−2Uþ2η þ ðv1Þ2Þ

q
;

ð4:5Þ

T3 ¼ −∂θα; ð4:6Þ

T4 ¼ −
1

2
e2tþ4UA0∂θA; ð4:7Þ

FIG. 2. Convergence plots of the constraint quantities, K ¼ 0.1. (a) log2ðkC1k2 þ kC2k2 þ kC3k2 þ kC4k2Þ. (b) log2ðkC5k2Þ.
The system was evolved until t ¼ 20.

FIG. 1. Convergence plots of (a) v1 and (b) ϕ at t ¼ 15.07, K ¼ 0.1.
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T5 ¼ −2U0∂θU; ð4:8Þ

T6 ¼ −ϕ0∂θϕ: ð4:9Þ

For the constraint violations C1 to be actually small, we
expect that the norm of each individual term (4.4)–(4.9)
should be larger than the norm of the total constraint
violation C1 since this indicates that a cancellation among
the terms in the sum is occurring. Figure 3 demonstrates
that this cancellation is happening for C1. We observe
similar behavior for the other constraints, C2, C3, C4, and
C5. From these observations, we conclude that the con-
straints are being preserved sufficiently well by our
numerical scheme.

3. Code validation

A simple way to test the validity of our code is to
compare our numerical solution with the exact FLRW
solution (3.7). For this convergence test, we employ the
following initial data, which are obtained by setting
a ¼ b ¼ c ¼ d ¼ f ¼ k ¼ 0,

ρ̃ ¼ 1

K þ 1
;

α ¼ − log

0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

3ðK þ 1Þ þ 2

s 1
A;

ϕ0 ¼
3
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ K

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 6ð1þ KÞp ;

U0 ¼ −
1

2
;

A ¼ A1 ¼ A0 ¼ U ¼ U1 ¼ η ¼ ϕ ¼ ϕ1 ¼ v1 ¼ 0:

Because of the homogeneity of the solution, the order of
convergence only depends on our time stepping method,
which is fourth order accurate. Our scheme displays the
expected convergence rate, shown for ϕ0 in Fig. 4.

B. Numerical behavior

1. Asymptotic behavior and approximations

Before we present our numerical results, we first derive
the expected asymptotics for the solutions from the
evolution equations through a heuristic analysis. In par-
ticular, we will justify (1.1); recall that t̄ and t are related by
(2.5) and that the big bang asymptotics correspond to
the limits t̄↘0 and t → ∞, respectively. To this end, we
suppose that, near the singularity, the Einstein-Euler-scalar
field system is well approximated by a FLRW solution of
Einstein-scalar field equations. It follows from (3.7) that
this metric takes the asymptotic form

g ¼ e−t
�
−
1

2
e−2tdt2 þ dθ2 þ dy2 þ dz2

�
; ð4:10Þ

which corresponds to the metric variables

U¼−t=2; η¼−t; α¼−t− log
ffiffiffi
2

p
; A¼ 0:

Remark 4.1. Employing the time coordinate T ¼
ffiffi
2

p
3
e−

3
2
t

allows us to express the metric (4.10) in the standard FLRW
form

g ¼ −dT2 þ 3
2
3

2
1
3

T
2
3ðdθ2 þ dy2 þ dz2Þ:

FIG. 4. Convergence plot of the L2 norm of ϕ0 − ϕexact
0 for

several different values of the time step Δt. All evolutions used
N ¼ 200 and K ¼ 0.2. The system was evolved until t ¼ 20.

FIG. 3. Comparison of the L2 norm of the individual terms in
momentum constraint and the combined constraint quantity C1.
N ¼ 6400, K ¼ 0.1.
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As expected for a scalar field solution, the scale factor is
proportional to T

1
3.

Furthermore, we assume that the fluid part of the solution
is asymptotically governed by the Euler equations on the
background (4.10) with negligible spatial derivative terms.
For each spatial point, we therefore have that

B̃0 ¼
� Kðe−tþðv1Þ2Þ

ð1þKÞρ̃ Kv1

Kv1 ð1þ KÞρ̃

�
;

B̃1
∂θṼ ¼ 0;

FṼ ¼
� − K

2
ðv1Þ2

− 3
2
ð1þ KÞKρ̃v1

�
;

and thus, the Euler equations (2.21) reduce to

∂tṼ ¼ −
1

2

1

e−t þ ð1 − KÞðv1Þ2
� ð1þ KÞð1 − 3KÞðv1Þ2ρ̃

Kð2ðv1Þ2 þ 3e−tÞv1

�
:

ð4:11Þ

It is then straightforward to show that for each spatial point
the second equation in (4.11) implies the following implicit
solution, cf. (1.1),

et=2v1ðtÞ
ð1þ etv21ðtÞÞK=2

¼ βðtÞ
ð1 − β2ðtÞÞð1−KÞ=2 ¼ ce−ð3K−1Þt=2

ð4:12Þ

where c∈R is an integration constant and

βðtÞ ¼ et=2v1ðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ etv21ðtÞ

p : ð4:13Þ

This solution is only valid for those t∈R for which
jβðtÞj < 1. Recall from (2.7) and (4.10) that the fluid
velocity tangent vector field [labeled by the same letter
v as the corresponding cotangent vector field in (4.10)] is
given by

v ¼ −2e3tv0∂t þ etv1∂θ ¼ −
ffiffiffi
2

p
e3t=2v0e0 þ et=2v1e1

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2ðtÞ

p e0 þ
βðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − β2ðtÞ
p e1; ð4:14Þ

where

e0 ¼ −
ffiffiffi
2

p
e3t=2∂t; e1 ¼ et=2∂θ ð4:15Þ

are frame vector fields orthonormal with respect to (4.10).
The implicit solution (4.12) can now be interpreted at each

spatial point as follows. If c ¼ 0, we have v1ðtÞ ¼ βðtÞ ¼ 0.
In this case the right side of (4.12) is identically zero and we
say that the fluid is orthogonal. On the other hand, if c ≠ 0,

we consider the three cases: K ∈ ð1=3; 1�, K ∈ ½0; 1=3Þ, and
K ¼ 1=3. Now, if c ≠ 0 and K ∈ ð1=3; 1�, βðtÞ approaches
zero as t → ∞ because the right side of (4.12) approaches
zero in the limit t → ∞. In this case, we refer to the fluid as
“asymptotically orthogonal.” Next, if c ≠ 0 and K < 1=3,
we have that β2ðtÞ → 1 since the right side approaches
infinity in the limit t → ∞. Thus, the leading order behavior
of the fluid is a null vector and we call the fluid “asymp-
totically extremely tilted.” Finally, ifK ¼ 1=3, then βðtÞ is a
nonzero constant and hence the fluid has a nonvanishing
asymptotically spatial velocity and we refer to the fluid as
“asymptotically tilted.”Asmentioned earlier, it is interesting
to observe that the limit t → −∞ corresponds to switching
the roles of the respective K intervals: the fluid is asymp-
totically orthogonal if K < 1=3 and asymptotically
extremely tilted if K ∈ ð1=3; 1�.
Using the first equation in (4.11) and (2.20) we conclude

that

ρðtÞ ¼ ρ0 exp

�
−
1

2
ð1þ KÞð1 − 3KÞ

×
Z

t

t�

esv21ðsÞ
1þ ð1 − KÞesv21ðsÞ

ds

�
e
3ð1þKÞ

2
t; ð4:16Þ

where ρ0 > 0 is an integration constant. All of this can be
used now to derive the following asymptotics in the limit
t → ∞ from (4.12):

(i) Orthogonal case (c ¼ 0):

et=2v1ðtÞ¼ βðtÞ¼ 0; ρðtÞ¼Oðe3ð1þKÞ
2

tÞ: ð4:17Þ

(ii) Asymptotically orthogonal case [c ≠ 0, K ∈
ð1=3; 1�]:

et=2v1ðtÞ ¼ Oðe−ð3K−1Þt=2Þ;
βðtÞ ¼ Oðe−ð3K−1Þt=2Þ;
ρðtÞ ¼ Oðe3ð1þKÞ

2
tÞ: ð4:18Þ

(iii) Asymptotically extremely tilted case [c ≠ 0,
K ∈ ½0; 1=3Þ]:

et=2v1ðtÞ ¼ Oðeð1−3KÞt
2ð1−KÞ Þ;

1 − β2ðtÞ ¼ Oðe−1−3K
1−K tÞ;

ρðtÞ ¼ Oðe1þK
1−KtÞ: ð4:19Þ

(iv) Asymptotically tilted case (c ≠ 0, K ¼ 1=3):

et=2v1ðtÞ ¼ const;

βðtÞ ¼ const;

ρðtÞ ¼ Oðe2tÞ: ð4:20Þ

PAST INSTABILITY OF FLRW SOLUTIONS OF THE … PHYS. REV. D 110, 044060 (2024)

044060-11



Our numerical scheme replicates the expected growth rates
for all K ∈ ½0; 1�. In particular, for K ∈ ½0; 1

3
Þ we observe the

orthogonal growth rate (4.17) near points where v1 van-
ishes and the tilted rate (4.19) elsewhere, shown in Fig. 5.

2. Behavior of the Ricci scalar

We expect to see a curvature singularity in our numerical
solutions as t → ∞, which can be verified by the asymp-
totic behavior of the Ricci scalar. Using the trace-reversed
Einstein equation the Ricci scalar is given by

R ¼ −T ¼ −e3=2ð1þKÞtð−1þ 3KÞρ̃þ e2Uðϕ2
1 − ϕ2

0Þ
e2αþ2η ;

where the T is the trace of the stress-energy tensor. As
expected the Ricci curvature blows up as t → ∞, shown
in Fig. 6.

3. Behavior of the density gradient

The density gradient is, by definition, ∂θρρ . In terms of the
rescaled density (2.20), it is given by

∂θρ

ρ
¼ ∂θρ̃

ρ̃
:

As in [36], we observe that the density gradient develops
steep gradients and blows up as t → ∞ for K ∈ ½0; 1=3Þ if
the initial spatial velocity vanishes at least one point, as
shown in Fig. 7. On the other hand, for K ∈ ½1=3; 1Þ, we
have not observed such fluid spikes, which is consistent
with that stability result [14]. This behavior is shown in
Fig. 8. The tilt instability is due to the fluid asymptotically
approaching two different null vectors. This behavior is
particularly apparent when considering the fluid vector in
an orthonormal basis. Using the metric (2.6), we obtain the
orthonormal frame vectors

e0 ¼ eU−η−α
∂t; e1 ¼ eU−η

∂θ;

cf. (4.15), for the special case that the metric is (4.10).
Following the heuristics from Sec. IV B 1, the variable that
corresponds to β is

eU−ηv1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2ðU−ηÞv21

q :

As the fluid velocity approaches the two null vectors (with
opposite tilts), we expect this quantity should approach a
step function. This behavior is confirmed in Fig. 9.

FIG. 6. The natural logarithm of the L2 norm of the Ricci scalar.
N ¼ 1000, K ¼ 0.1.

FIG. 5. Plot comparing the asymptotic behavior of ρ with asymptotically orthogonal and extremely tilted growth rates. N ¼ 1000,
K ¼ 0.1. (a) ρ at the 334th grid point (blue) and tilted growth rate (4.19) (orange). (b) ρ at the 560th grid point (blue) and orthogonal
growth rate (4.17) (orange).
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V. LARGE PERTURBATIONS: FLUID AND
GRAVITATIONAL SPIKES

A. Fluid spikes for large initial data

In the following, we will consider initial data with large
values of the parameters, a, b, c, d, f, and k. As we increase
the size of these parameters, our initial data become further
away from that of the FLRW solution. We find that, for
suitably large initial data, fluid spikes form for all values of
the parameter K, shown in Fig. 10.
As discussed in the Sec. I, this is consistent with the

behavior described in [40] where a tilt instability was
observed in inhomogeneous cosmological models for
0 < K < 1. On first appearances, it may seem that these

numerical results of this article conflict with the stability of
the FLRW big bang singularities for sounds speeds 1=3 <
K < 1 that was rigorously established in [14]. However,
the stability established in [14] only holds for sufficiently
small perturbations of FLRW solutions and, by choosing our
initial data suitably large, we have exited the stable regime.

B. Gravitational spikes

We now demonstrate the formation of gravitational
spikes in numerical solutions to (2.22) and (2.23) for initial
data of the form (4.1) with the parameters a, b, c, d, f, and
k set as follows:

a ¼ b ¼ c ¼ d ¼ k ¼ 0.01; f ¼ 0.5: ð5:1Þ

FIG. 9. eU−ηv1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þe2ðU−ηÞv2

1

p at various times: (a) t ¼ 3.015, (b) t ¼ 13.06, (c) t ¼ 18.09. N ¼ 1000, K ¼ 0.1.

FIG. 7. Density gradient ∂θρ
ρ at various times: (a) t ¼ 3.015, (b) t ¼ 12.06, (c) t ¼ 17.085. N ¼ 1000, K ¼ 0.1.

FIG. 8. Density gradient ∂θρ
ρ at various times: (a) t ¼ 5.025, (b) t ¼ 10.05, (c) t ¼ 19.59. N ¼ 1000, K ¼ 0.35.
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We have been unable to observe spikes in the metric
functions for values of a, b, c, d, f, and k which are too
close to zero, that is, near a FLRW solution. Following [50],
we confirm that spikes produced in our simulations are not
coordinate artifacts by observing the behavior of curvature
invariants. If a curvature invariant shows spiky features at
the same location as the metric functions, then the spikes
are physical rather than gauge.12

For the choice of parameters (5.3), we observe in our
numerical simulations that spikes form at the same location
in the fractional density gradient, the metric function U,
and the Ricci scalar R as shown in Fig. 11. A natural
question is whether the fluid spikes in the density gradient
are related to the gravitational spikes in U and the Ricci
scalar. To test this, we consider initial data for which the
fluid velocity crosses zero more than twice. In particular we
modify our initial data (4.1) by taking α and v1 to be

v̊1 ¼ a sinðnθÞ;

α̊ ¼ − log

 
−
a
n
cosðnθÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

3ðK þ 1Þ þ 2

s !
; ð5:2Þ

where n is an arbitrary positive integer which determines
the number of times v1 crosses zero. In practice, the

value of n corresponds to the number of fluid spikes that
initially form in the fractional density gradient. For
initial data of the form (5.2), we observe that the spikes
in the density gradient form first, followed by gravita-
tional spikes in U and the Ricci scalar at the same
locations. At late times, we always observe two of the
fractional density gradient spikes grow more rapidly
than the others, which overwhelms the resolution of our
simulations. These larger spikes dominate our plots at
late times (i.e., near the big bang singularity), which we
suspect masks “small” scale features that are related to
the other smaller fractional density gradient spikes. This
behavior is demonstrated in Figs. 12(a)–12(d). In par-
ticular, it is clear from Fig. 12 that our resolution is
insufficient to capture any small scale features of
the density gradient near the big bang singularity. To
generate these plots, we have used the following choice
of parameters

b ¼ c ¼ d ¼ k ¼ 0.01; a ¼ 0.1; f ¼ 0.5; and

n ¼ 4 ð5:3Þ

in our initial data. It should be noted that, while
increasing the size of a is not necessary to generate
multiple fluid spikes, it makes the smaller spikes more
apparent before they are overwhelmed by the dominant
spikes at late times.

FIG. 11. (a) Density gradient, (b) U, and (c) the Ricci scalar R at t ¼ 25.62. N ¼ 2000, K ¼ 0.2.

FIG. 10. Density gradient ∂θρ
ρ at various times: (a) t ¼ 10.05, (b) t ¼ 20.1, (c) t ¼ 34.17. N ¼ 1000, K ¼ 0.5,

a ¼ b ¼ c ¼ d ¼ k ¼ 0.01, f ¼ 0.5.

12Physical and gauge spikes are sometimes referred to as
“true” and “false” spikes, respectively.
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VI. DISCUSSION

In this article, we have numerically simulated Gowdy-
symmetric, nonlinear perturbations of FLRW solutions to
the Einstein-Euler-scalar field equations over the full sound
speed parameter range 0 ≤ K ≤ 1 in the contracting direc-
tion. For K ∈ ð1=3; 1�, we observe numerically that suffi-
ciently small perturbations of FLRW solutions are stable
toward the past (contracting direction) and terminate in a
spacelike big bang singularity in agreement with the
analytic results obtained in [7,14]. For these solutions,
all suitably normalized gravitational and matter fields
converge monotonically to limits on the big bang singu-
larity. We also observe similar stable behavior for K ¼ 1=3,
but as discussed above, a more thorough investigation is
required to be confident that we are integrating long enough
to resolve the asymptotic behavior of solutions. On the
other hand, for K ∈ ½0; 1=3Þ, we observe numerically that
small perturbations of the FLRW solutions for which the
spatial fluid velocity vanishes somewhere on the initial
hypersurface are unstable toward the past. These solutions
still terminate in the past at a spacelike big bang singularity,
but now the fluid develops a fluid tilt instability that

manifests as sharp features (spikes) that develop in the
fractional density gradient ∂θρρ and ultimately lead to blowup
of this quantity at finitelymany spatial points on the big bang
singularity. Interestingly, a similar fluid tilt instability in the
expanding direction (to the future) was predicted by Rendall
[38] and observed numerically in [36]. We have also
observed that, for initial data suitably far away from that
of the FLRWsolution, gravitational spikes form in themetric
functions as well as fluid spikes for all K ∈ ½0; 1�. While it
appears from the numerical simulations that the gravitational
spikes are induced by the fluid spikes, more investigation is
required to understand the precise relationship. We plan on
investigating this further in future work. The results of
this article suggest several interesting topics for future
research. The obvious first step is to remove the Gowdy
symmetry assumption and study the fluid tilt instability that
develops in small perturbations of FLRW solutions for
K ∈ ½0; 1=3Þ without any additional symmetry assumptions.
Additionally, it would be interesting to further study the
connection between dynamics of the Einstein-Euler system
with positive cosmological constant toward the future with
the Einstein-Euler-scalar field system toward the past.

FIG. 12. Density gradient ∂θρ
ρ (top), U (middle), and the Ricci scalar R (bottom) at various times: (a) t ¼ 0.753, (b) t ¼ 3.76,

(c) t ¼ 7.53, (d) t ¼ 22.61. N ¼ 2000, K ¼ 0.1.
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Poincaré 5, 1041 (2004).

[39] T. A. Oliynyk, On the fractional density gradient blow-up
conjecture of Rendall, arXiv:2310.19184.

[40] W. C. Lim and A. A. Coley, General relativistic density
perturbations, Classical Quantum Gravity 31, 015020
(2013).

[41] A. A. Coley and W. C. Lim, Generating matter inhomoge-
neities in general relativity, Phys. Rev. Lett. 108, 191101
(2012).

[42] A. A. Coley and W. C. Lim, Spikes and matter inhomoge-
neities in massless scalar field models, Classical Quantum
Gravity 33, 015009 (2016).

[43] W. C. Lim, L. Andersson, D. Garfinkle, and F. Pretorius,
Spikes in the mixmaster regime of G2 cosmologies, Phys.
Rev. D 79, 123526 (2009).

[44] R. H. Gowdy, Vacuum spacetimes with two-parameter
spacelike isometry groups and compact invariant hyper-
surfaces: Topologies and boundary conditions, Ann. Phys.
(N.Y.) 83, 203 (1974).

[45] B. K. Berger and D. Garfinkle, Phenomenology of the
Gowdy universe on T3 × R, Phys. Rev. D 57, 4767 (1998).

[46] B. K. Berger, J. Isenberg, and M. Weaver, Oscillatory
approach to the singularity in vacuum spacetimes with T2

isometry, Phys. Rev. D 64, 084006 (2001).
[47] B. K. Berger, Why solve the Hamiltonian constraint in

numerical relativity?, Gen. Relativ. Gravit. 38, 625 (2006).
[48] V. Faraoni, S. Jose, and S. Dussault, Multi-fluid cosmology

in einstein gravity: Analytical solutions, Gen. Relativ.
Gravit. 53, 12 (2021).

[49] E. Marshall and T. A. Oliynyk, On the stability of relativistic
perfect fluids with linear equations of state p ¼ Kρ where
1=3 < K < 1, Lett. Math. Phys. 113, 102 (2023).

[50] A. D. Rendall and M. Weaver, Manufacture of Gowdy
spacetimes with spikes, Classical Quantum Gravity 18,
2959 (2001).

PAST INSTABILITY OF FLRW SOLUTIONS OF THE … PHYS. REV. D 110, 044060 (2024)

044060-17

https://doi.org/10.1007/s00220-015-2551-1
https://arXiv.org/abs/1505.00857
https://doi.org/10.4171/jems/424
https://doi.org/10.1007/s00029-012-0090-6
https://doi.org/10.1103/PhysRevD.107.104030
https://doi.org/10.1103/PhysRevD.107.104030
https://doi.org/10.1063/5.0078470
https://doi.org/10.1007/s00023-004-0189-1
https://doi.org/10.1007/s00023-004-0189-1
https://doi.org/10.1007/s00023-004-0189-1
https://arXiv.org/abs/2310.19184
https://doi.org/10.1088/0264-9381/31/1/015020
https://doi.org/10.1088/0264-9381/31/1/015020
https://doi.org/10.1103/PhysRevLett.108.191101
https://doi.org/10.1103/PhysRevLett.108.191101
https://doi.org/10.1088/0264-9381/33/1/015009
https://doi.org/10.1088/0264-9381/33/1/015009
https://doi.org/10.1103/PhysRevD.79.123526
https://doi.org/10.1103/PhysRevD.79.123526
https://doi.org/10.1016/0003-4916(74)90384-4
https://doi.org/10.1016/0003-4916(74)90384-4
https://doi.org/10.1103/PhysRevD.57.4767
https://doi.org/10.1103/PhysRevD.64.084006
https://doi.org/10.1007/s10714-006-0252-y
https://doi.org/10.1007/s10714-021-02784-5
https://doi.org/10.1007/s10714-021-02784-5
https://doi.org/10.1007/s11005-023-01722-7
https://doi.org/10.1088/0264-9381/18/15/310
https://doi.org/10.1088/0264-9381/18/15/310

