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In this paper, we establish that a four-dimensional static vacuum asymptotically flat spacetime
containing a massive particle sphere is isometric to the Schwarzschild spacetime. Our results expand
upon existing uniqueness theorems for static vacuum asymptotically flat spacetimes, which focus on
scenarios featuring event horizons or photon spheres. Similarly to the uniqueness theorems concerning
photon spheres or event horizons, only a single massive particle sphere is sufficient to obtain a unique
solution. However, in contrast to previous theorems, our result leads to the existence of an entire spacetime
foliation sliced by a set of massive particle spheres spanning various energies.
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I. INTRODUCTION

Black hole shadows offer a direct means to observe the
optical characteristics of immensely strong gravitational
fields. The theoretical comprehension of these shadows is
closely intertwined with the photon and massive particle
surfaces [1–7].
Since the inception of general relativity, it has beenwidely

recognized that the spherically symmetric Schwarzschild
solution contains a series of circular null orbits, collectively
constituting a complete photon sphere due to its inherent
symmetry. The profound implications of these surfaces
began to crystallize in the late 1990s. The seminal work
byVirbhadra and Ellis [8] delineated the correlation between
the properties of photon spheres and the intricacies of strong
gravitational lensing, leading to the formal characterization
of the photon sphere as a timelike hypersurface in spacetime,
where the light beam’s deflection angle at the closest
approach distance tends towards infinity. Subsequently,
Claudel et al. [9] introduced a comprehensive definition
of the general photon surface as a timelike surface wherein
any null geodesic, touching it tangentially, remains entirely
within it, and established a theorem linking this definition to
the hypersurface’s geometry. The equivalence of these

definitions was demonstrated in Ref. [10] for general static
spherically symmetric metrics.
Notably, it was revealed that the intimate connection

between photon spheres and strong lensing persists even in
the context of naked singularities, thereby suggesting their
categorization into weak and strong variants [10,11].
Recently, in close correlation with photon surfaces, several
significant relationships have been unveiled regarding the
geometric attributes of relativistic images [12,13], the
compactness of supermassive dark objects at galactic cores
[14], and the impact of the cosmological constant on the
photon sphere [15].
An important property of the photon surfaces is estab-

lished by the theorem asserting that these are timelike
totally umbilic hypersurfaces in spacetime [16] exhibiting
proportionality of their first and second fundamental forms.
This purely geometric approach serves as a constructive
definition for analyzing photon surfaces instead of solving
geodesic equations and plays a decisive role in the analysis
of the black hole uniqueness.
The first black hole uniqueness theorem was estab-

lished by Israel in Ref. [17]. It states that the
Schwarzschild solution is the only static asymptotically
flat vacuum spacetime which has a nonsingular closed
simply connected event horizon. Then, similar unique-
ness theorems were suggested to generalize the result,
e.g., the Kerr solution was shown to be the only rotating
vacuum black hole by Robinson in Ref. [18]. The focus
on the event horizon in the uniqueness proofs was then
moved to photon surfaces in work by Cederbaum [19],
where the Schwarzschild spacetime was shown to be the
only static vacuum asymptotically flat spacetime that
possesses a suitably defined photon sphere. Later, the
uniqueness theorems for photon spheres were established
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for Einstein-scalar [20], Einstein-Maxwell [21–23],
Einstein-Maxwell-dilaton [24,25], and Einstein-multiple-
scalar [26] models, for wormholes [27,28], and in higher
dimensions [29,30]. The condition of constancy of the
lapse function that was used in the first papers was
weakened to constancy of the lapse function in each spatial
slice in Ref. [31]. An alternative perturbative approach to
considering the uniqueness of photon spheres was sug-
gested in Refs. [32,33]. Gibbons and Warnick [34] dis-
covered that photon surfaces may exist in less symmetric
spacetimes. This was extended in Ref. [35], where the
photon surfaces were demonstrated to be possible if the
spacetime admits a nontrivial Killing tensor. This might
suggest the potential challenge of formulating a uniqueness
theorem solely relying on the umbilicity without constancy
of the lapse function. Similar connections in stationary
spacetimes were established in Refs. [36,37].
The framework of photon spheres has been extended to

encompass massive particle surfaces, which share analo-
gous properties for timelike geodesics associated with
massive particles interacting with black holes or other
ultra-compact gravitating objects [38–40]. Although the
flow of massive particles is not directly observable from
distant points (except perhaps for neutrinos, whose detec-
tion remains a considerable challenge), these surfaces can
be indirectly observed through their proper radiation, which
may become visible under certain conditions. Moreover,
the significance of massive particle surfaces lies in their
relevance to photons traversing through plasma environ-
ments that may surround black holes [6]. In environments
with inhomogeneous plasma, besides the gravitational
deflection of light, electromagnetic refraction also plays
a role [41–44], which can be integrated into a unified lensing
theory.
In this paper, we adapt proofs from Refs. [20,21,24,26]

suggested by Yazadjiev et al. Within the framework of the
same assumptions (there is only one connected photon
sphere and the lapse function regularly foliates spacetime),
we prove the uniqueness theorem for massive particle
spheres in static vacuum asymptotically flat spacetimes.
In contrast to previous uniqueness theorems, our result
leads to the existence of an entire spacetime foliation
sliced by a set of massive particle spheres spanning various
energies.

II. MASSIVE PARTICLE SPHERE

We start with considering a four-dimensional static
vacuum asymptotically flat spacetime M with given
Arnowitt-Deser-Misner (ADM) mass M > 0 and Levi-
Civita connection ∇α. In a static spacetime, there is a
timelike Killing vector field kα ¼ αmα, where α > 0 is a
lapse function and mα is a future-directed timelike unit
vector (kαkα ¼ −α2). One can define spatial slices Σ
orthogonal to kα. The induced metric on Σ is ḡαβ ¼ gαβ þ
mαmβ which defines the corresponding Levi-Civita

connection ∇̄α. Here and further bars denote quantities
associated with the slice Σ. Vacuum Einstein equations
Rαβ ¼ 0 after dimensional reduction along kα read [19,20]

R̄αβ ¼ α−1∇α∇βα; ∇α∇αα ¼ 0: ð1Þ

Since we are interested in asymptotically flat spacetimes,
the lapse function and the metric have the following
asymptotics for r → ∞ [19,20]:

α ¼ 1 −
M
r
þOðr−2Þ; gαβ ¼ ηαβ þOðr−1Þ; ð2Þ

where r is a suitable radial coordinate and ηαβ is a flat
Minkowski four-dimensional metric. For vacuum space-
time with a time-like Killing vector kα, there is an
alternative in determination of the ADM mass of the
solution through the Komar integral [45]

M ¼ −
1

8π

Z
S̄
∇αkβdSαβ; dSαβ ¼ n½αmβ�dS̄; ð3Þ

where S̄ is an arbitrary closed two-dimensional surface in Σ
with an outer normal vector nα (the vector nα lies in the
tangent space of slice Σ), antisymmetrization is defined
with unit weight as n½αmβ� ≡ nαmβ − nβmα and dS̄ is a
volume form associated with the induced metric on S̄.
The definition of a massive particle surface for static

vacuum spacetimes can be formulated as follows [38]:
Definition 2.1. A massive particle surface is a timelike

hypersurface S of M such that, for every point p∈ S and
every vector vαjp ∈TpS such that vαkαjp ¼ −E and
vαvαjp ¼ −m2, there exists a geodesic γ ofM for a particle
with massm and energy E such that γ̇αð0Þ ¼ vαjp and γ ⊂ S.
We omit the charge from the definition in Ref. [38] since

the solution is vacuum and there is no electromagnetic force
acting on particles. Here, we focus on static massive
particle surfaces, which are additionally tangent to the
timelike Killing vector kα.
In other words, the definition states that any geodesic of a

particle with mass m and energy E initially tangent to the
correspondingmassive particle surface Swill remain tangent
toS. For a staticmassive particle surfaceSwith normalnα the
first and second fundamental forms read as [38]

hαβ ¼ gαβ − nαnβ; χαβ ¼ H

�
hαβ þ

m2

E2
kαkβ

�
; ð4Þ

whereH is some scalar function on S andDα is a Levi-Civita
connection in S. Since the Killing vector field kα is tangent to
the hypersurface S everywhere (kαnα ¼ 0), the followingLie
derivatives are equal to zero (see Appendix A):

Lknα ¼ 0; Lkhαβ ¼ 0; Lkχαβ ¼ 0; LkH¼ 0: ð5Þ
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If S̄ is a spatial section of a surfaceS sliced byΣ, from general
geometric considerations we have [46]

χαβ ¼ χ̄αβ−mαmβ ·nα∇α lnα; hαβ ¼ h̄αβ−mαmβ: ð6Þ

Comparing (4) and (6), we find

χ̄αβ ¼ Hh̄αβ þ α−2kαkβ

�
nα∇α lnα −H

�
1 −

α2m2

E2

��
; ð7Þ

and since χ̄αβ is tangent to the spatial section and kα is
orthogonal to it, we find the following expressions:

χ̄αβ ¼ Hh̄αβ; nα∇α lnα ¼ H

�
1 −

α2m2

E2

�
: ð8Þ

The spatial section of a staticmassive particle hypersurface is
a totally umbilical surface with a spatial mean curvature
H ¼ 1

2
χ̄α

α. However, unlike the photon sphere [9], the
principal curvature in the time direction is different from
the spatial ones. In what follows we also assume that the
spatial section is connected, compact and closed.
Equations (5) and (8) and Refs. [19–22,24,26,28] inspire

us to introduce two important definitions: a massive particle
sphere and a nonextremal massive particle surface.
Definition 2.2. The massive particle surface S is a

massive particle sphere if and only if Dαα ¼ 0 on S.
Definition 2.3. The massive particle surface S is a

nonextremal massive particle surface if and only if
m2α2=E2 < 1 on S.
Further we are interested in nonextreme massive particle

spheres only. The latter has a number of important geo-
metric properties. First, it has a constant spatial mean
curvature, i.e. DαH ¼ 0. Indeed, consider the Codazzi
equation [16] in spacetime

0¼nρhσαRρσ ¼Dβχα
β−Dαχβ

β

¼m2

E2
kαLkHþHm2

E2
DβðkαkβÞþDαH−

�
3−

m2α2

E2

�
DαH

¼−
�
2−

m2α2

E2

�
DαH: ð9Þ

Here, we used Eq. (4) to rewrite the second fundamental
form χαβ. Then, we used Eq. (5) and

DβðkαkβÞ ¼
1

2
Dαα

2 þ kα ·Dβkβ ¼ 0; ð10Þ

to get rid of the first two terms in the second line. Also, we
used the condition Dαα ¼ 0 and Killing equations
DðαkβÞ ¼ 0. Since we consider a nonextremal sphere
m2α2=E2 < 1, the term in brackets ð2 −m2α2=E2Þ is non-
zero, and we get DαH ¼ 0.

Since we have proven that H is constant at the sphere,
this allows us to obtain useful geometric identities. First,
consider the Komar integral (3) over the spatial sections S̄
of a massive particle sphere:

M ¼ −
1

8π

Z
S̄
∇αkβdSαβ ¼ −

1

8π

Z
S̄
∇αkβn½αmβ�dS̄

¼ 1

4π

Z
S̄
nα∇ααdS̄ ¼ 1

4π

Z
S̄
αH

�
1 −

α2m2

E2

�
dS̄: ð11Þ

Since the integrand expression is constant, there is an
algebraic relation between the mass M and the spatial
section area of the massive particle sphere AS:

4πM ¼ αH

�
1 −

α2m2

E2

�
AS; AS ¼

Z
S̄
dS̄: ð12Þ

In particular, sphere S̄ has a positive constant mean
curvature H > 0 if a physical assumption of positive mass
M is taken into consideration. By virtue of Eq. (8), this
means that on the sphere nα∇αα > 0, i.e., the norm of the
spatial gradient ∇̄αα does not vanish anywhere on S̄.
Consider an outer space region Σext outside the massive

particle sphere S̄ or equivalently a spacetime region
Mext outside S. In this case, the massive particle sphere
is an inner boundary ∂Mext. Similarly to Ref. [20], we
introduce an additional assumption that α ¼ const regularly
foliates the manifold Mext. It is worth noting that the
condition for the existence of a regular foliation is technical
and, in principle, open to relaxation, as discussed in
Ref. [22].
By definition, the function α is constant at the massive

particle sphere. As we will show, the massive particle
sphere S̄ has the topology of a sphere. Given the regularity
of the foliation, any slice in the outer region Σext is a
topological sphere as well. The equations of motion (1)
necessitate α to be a harmonic function, while the boundary
conditions at asymptotics dictate that α must approach 1 as
it tends to infinity. Following the maximum principle for
the harmonic functions, α monotonically increases to 1
moving from the sphere S̄ to infinity along the flow of
slices, i.e., 0 < α < 1.
The second key identity can be obtained from the Gauss-

Bonnet theorem. The trace of the Gauss equations gives the
following expression for the scalar curvature R̄ of the
spatial section S̄ [see Eq. (C13) in Ref. [46], keeping in
mind that Rαβ ¼ 0, Dαα ¼ 0, and (8)]:

R̄¼ χ̄2− χ̄αβχ̄
αβþ2χ̄β

βnα∇α lnα¼ 4

�
3

2
−
α2m2

E2

�
H2: ð13Þ

Therefore, the nonextremal (m2α2=E2 < 1) sphere S̄ has a
constant and positive scalar curvature R̄ > 0, representing
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a round sphere [20]. Then, integrating (13) over S̄ and
applying the Gauss-Bonnet theorem

R
S̄ R̄dS̄ ¼ 8π, we find

the second useful identity:

2π ¼
�
3

2
−
α2m2

E2

�
H2AS: ð14Þ

Dividing the Eq. (14) by (12), the following algebraic
connection between the mean curvature H and the lapse
function α on S can be found:

H ¼ α

M
·
1 − α2m2=E2

3 − 2α2m2=E2
: ð15Þ

III. UNIQUENESS THEOREM

Having completed all the preparations, we are ready to
formulate and prove the main result of this article.
Theorem 3.1. Let Mext be a four-dimensional static and

asymptotically flat spacetimewith given ADMmassM > 0,
satisfying the vacuum Einstein equations Rαβ ¼ 0 and
possessing a nonextremal massive particle sphere as an inner
boundary ofMext. Assume that the lapse functionα regularly
foliatesMext. Then,Mext is isometric to the Schwarzschild
spacetime with mass M, and the area radius of the massive
particle sphere rS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
AS=4π

p
satisfies the equation

E2=m2 ¼ ðrS − 2MÞ2=ðr2S − 3MrSÞ.
Proof. The proof is based on a modification of the proof

presented in Refs. [20,21,24,26] for the case of photon
spheres. The main problem is to prove the spherical
symmetry of the spacetime Mext. First, let us perform a
Weyl transformation g̃αβ ¼ α2ḡαβ. In this case, Eq. (1) turns
into

R̃αβ ¼ 2∇̃α ln α · ∇̃β ln α; ∇̃α∇̃α ln α ¼ 0; ð16Þ

where ∇̃ and R̃αβ are the Levi-Civita connection and the
Ricci tensor for g̃αβ. Our goal is to show that the metric g̃αβ
is conformally flat. For this purpose, one can use the Cotton
tensor [47] over a three-dimensional Riemannian manifold
which is defined by

R̃αβγ ¼ ∇̃½αR̃β�γ −
1

4
∇̃½αR̃g̃β�γ: ð17Þ

Using Eq. (16), the following divergences can be obtained
[20]:

∇̃α

�
Ω−1∇̃αω

�
¼ 1

16
ω−7Ω3R̃αβγR̃αβγ; ð18aÞ

∇̃α

�
Ω−1

�
U∇̃αω − ω∇̃αU

��
¼ 1

16
Uω−7Ω3R̃αβγR̃αβγ;

ð18bÞ

where

ω¼ð∇̃αU∇̃αUÞ1=4; U¼ 1−α2

1þα2
; Ω¼ 4α2

ð1þα2Þ2 : ð19Þ
Since we have shown that 0 < α < 1, it follows that
0 < U < 1. After integration over the entire spatial slice
Σ, this leads to the following two inequalities (equality if
and only if R̃αβγ ¼ 0)Z

Σ
∇̃α

�
Ω−1∇̃αω

�
dΣ̃

≥
Z
Σ
∇̃α

�
Ω−1

�
U∇̃αω − ω∇̃αU

��
dΣ̃ ≥ 0; ð20Þ

where dΣ̃ is the volume form associated with the metric g̃αβ.
Let us now apply Stokes’ theorem to them using the
massive particle sphere S̄ and asymptotic sphere S̄∞ as
boundary surfaces:Z

S̄∞−S̄
αΩ−1nα∇̄αωdS̄

≥
Z
S̄∞−S̄

αΩ−1ðUnα∇̄αω − ωnα∇̄αUÞdS̄ ≥ 0; ð21Þ

where we used dS̃ ¼ α2dS̄ and ñα ¼ α−1nα, and −S̄ means
that the orientation of the normal to the inner boundary is
opposite to the foliation. Given the asymptotics (2), each
surface term reads (see Appendix B for some details)Z

S̄∞

αΩ−1nα∇̄αωdS̄ ¼ −4π
ffiffiffiffiffi
M

p
; ð22aÞ

Z
S̄∞

αΩ−1ðUnα∇̄αω − ωnα∇̄αUÞdS̄ ¼ 0; ð22bÞ

Z
−S̄

αΩ−1nα∇αωdS̄ ¼ AS

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H3

α

�
1 −

α2m2

E2

�s

×

�
ð1þ 3α2Þ − 2α4m2

E2

�
; ð22cÞ

Z
−S̄
αΩ−1ðUnα∇αω−ωnα∇αUÞdS̄

¼AS

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H3

α

�
1−

α2m2

E2

�s �
ð1−3α2Þþ2α4m2

E2

�
: ð22dÞ

Then, the right inequality in (21) immediately results in

3α2−1−
2α4m2

E2
≤ 0: ð23Þ

The left inequality in (21) gives

4π
ffiffiffiffiffi
M

p
−AS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α3H3

�
1−

α2m2

E2

�s �
3−

2α2m2

E2

�
≤ 0; ð24Þ
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which can be transformed using Eqs. (14) and (15) into the
following expression:

3α2 − 1 −
2α4m2

E2
≥ 0; ð25Þ

where we took into account nonextremality m2α2=E2 < 1.
The inequalities (23) and (25) are compatible if and only if
they degenerate into equalities

3α2 − 1 −
2α4m2

E2
¼ 0: ð26Þ

On the other hand, inequalities can degenerate into
equalities if and only if the Cotton tensor vanishes
R̃αβγ ¼ 0. For a three-dimensional Riemannian manifold,
this is a necessary and sufficient condition for the metric g̃αβ
to be conformally flat [47]. Hence, the metric ḡαβ is also
conformally flat and R̄αβγ ¼ 0. In particular, we have the
identity [20]

0¼ R̄αβγR̄αβγ ¼ 8

α4φ4

��
αχ̄αβ−

αχ̄

2
· αh̄αβ

��
αχ̄αβ−

αχ̄

2
· αh̄αβ

�

þ 1

2φ2
αh̄αβ∂αφ∂βφ

�
; ð27Þ

where αχ̄αβ, αh̄αβ and φ−1 ¼ nα∇αα are the induced metric,
the second fundamental forms and the lapse function of
slices α ¼ const respectively, and the trace is denoted as
αχ̄ ¼ αχ̄α

α. Since the induced metric possesses the
Euclidean signature, each square in the brackets is equal
to zero, yielding the following expressions:

αχ̄αβ ¼
αχ̄

2
· αh̄αβ; D̄αφ ¼ 0: ð28Þ

Thus, all slices are totally umbilic and the lapse function is
constant on them. As in the case of photon spheres [20], this
implies that all slices of the foliationα ¼ const have constant
mean and scalar curvatures, i.e. slices are round spheres. As a
result, the entire spacetime Mext is spherically symmetric
and therefore isometric to the Schwarzschild vacuum asymp-
totically flat spacetime (due to Birkhoff’s theorem). In
particular, resolvingEqs. (12), (14), and (26) and introducing
the area radius

rS ¼
ffiffiffiffiffiffi
AS

4π

r
; ð29Þ

we get standard expressions for the radius of the massive
particles sphere [38] and lapse functions in the
Schwarzschild spacetime (m ≠ 0)

E2

m2
¼ ðrS−2MÞ2
rSðrS−3MÞ ; α2¼ 1−

2M
rS

; H2¼ 1

r2S

�
1−

2M
rS

�
:

ð30Þ

This completes the proof of the theorem.
On the one hand, substitution of Eq. (30) into the

condition of nonextremality m2α2=E2 < 1 results in
M=ðrS − 2MÞ > 0, i.e., the condition holds outside the
horizon. On the other hand, massive particle spheres exist
for rS > 3M; otherwise, E2=m2 is negative. There is a
photon sphere at rS ¼ 3M, so massive particle spheres are
located outside the photon sphere, which is physically
reasonable.
We also emphasize the need to have only one massive

particle sphere to prove the theorem. However, the result of
the theorem suggests that the entire spacetime Mext is
sliced by the massive particle spheres, each with distinct
energy. Indeed, by virtue of (28) all spatial slices α ¼ const
are totally umbilic and have a constant mean curvature and
lapse function φ−1 ¼ nα∇αα. These slices represent a
massive particle sphere when we additionally demand only
that Eq. (8) admits a real solution for E, as it will
automatically remain constant on the slice. From our
previous discussion, it is clear that such a solution will
exist for all slices at rS > 3M. Future inquiries may find it
intriguing to explore the flows of massive particle surfaces,
parametrized by particle energy, rather than adhering to a
regular foliation α ¼ const. Such a shift could potentially
weaken several technical assumptions of the theorem.

IV. CONCLUSIONS

In this paper, we have established (under some technical
assumptions) that a four-dimensional static vacuum asymp-
totically flat spacetime admitting a massive particle sphere
is isometric to the Schwarzschild spacetime. This broadens
the scope of uniqueness theorems applicable to static
vacuum asymptotically flat spacetimes containing regular
event horizons or photon spheres, now encompassing a
more general case of massive particles. Moreover, this
result allows further generalization to other theories like
Einstein-scalar, Einstein-Maxwell, and Einstein-Maxwell-
dilaton-axion theories and others.
It is worth noting that the new theorem offers the

possibility of extending the uniqueness theorem to encom-
pass strongly naked singularities [10], wherein neither a
photon sphere nor a horizon exists, but a massive particle
sphere is present. For instance, in a superextreme electro-
vacuum spacetime, the massive particle sphere exists in a
broader range of parameters compared to the photon sphere
and, in particular, can be detected in close proximity to a
strongly naked singularity [38].
While the assumption of a regular foliation is just

technical [20,22], the constancy of the lapse function
and the static nature of the sphere plays a key role in
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the proof of the uniqueness theorem. Recent work has
explored the notion of equipotential surfaces as a potential
dynamic alternative to a static sphere [31]. However,
whether solely relying on the concept of a massive particle
surface is sufficient for the uniqueness theorems, remains
uncertain. In contrast to unique photon surfaces, massive
particle surfaces form entire flows, that extend to infinity
and asymptotic spheres as energy varies. The analysis of
such surface flows can provide additional information and
advances in this area of research.
In addition, there is considerable interest in the prospect

of extending the result to stationary spacetime, where there
is a suitable geometric definition of the surfaces of massive
particles [39]. Such generalizations could expand under-
standing of the role of massive particle surfaces and hidden
symmetries in the discussion of uniqueness.
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APPENDIX A: PROPOSITION

Proposition 1.1. Let the Killing vector field kα be
everywhere tangent (kαnα ¼ 0) to the hypersurface S; then

Lknα ¼ 0; Lkhαβ ¼ 0; Lkχαβ ¼ 0: ðA1Þ

Proof. Calculate the Lie derivative of the normal
covector

Lknα ¼ kβ∇βnα þ nβ∇αkβ: ðA2Þ

The projection of this equation onto the normal nα reads

nαLknα ¼ nαkβ∇βnα þ nαnβ∇αkβ ¼
1

2
kβ∇βðnαnαÞ

þ nαnβ∇αkβ ¼ 0; ðA3Þ

by virtue of the Killing equations ∇ðαkβÞ ¼ 0 and normali-
zation of the normal vector on the surface nαnα ¼ 1.
The tangent projection reads

hαγLknα ¼ kβhαγ∇βnαþnβhαγ∇αkβ ¼ kβhαγ∇βnα−kβhαγ∇αnβ

¼−kσhαγh
β
σ∇½αnβ� ¼ 0; ðA4Þ

where we used the relation

0 ¼ hαγ∇αðkβnβÞ ¼ nβhαγ∇αkβ þ kβhαγ∇αnβ; ðA5Þ

and the involutive property hαγh
β
σ∇½αnβ� ¼ 0. Thus, the

expression Lknα ¼ 0 is proved. We also derive the follow-
ing straightforward yet valuable corollaries:

Lknα ¼ gαβLknβ ¼ 0; ðA6aÞ

Lkhαβ ¼ Lkðgαβ − nαnβÞ ¼ −nðαLknβÞ ¼ 0; ðA6bÞ

Lkχαβ ¼
1

2
LkLnhαβ ¼

1

2
LnLkhαβþ

1

2
LLknhαβ ¼ 0: ðA6cÞ

Calculating the Lie derivative of Eq. (4) we immediately
find that H is also static:

LkH ¼ 0: ðA7Þ

APPENDIX B: CALCULATIONS

Here, we give explicit expressions for ω and its deriva-
tive along nα. First, from Dαα ¼ 0 follows the expression

ω ¼ ð−α−1nα∇αUÞ1=2 ¼
�

4

ð1þ α2Þ2 n
α∇αα

�
1=2

; ðB1Þ

where the relations ∇̃αU ¼ ∇̄αU ¼ nαnβ∇̄βU and g̃αβ ¼
α−2ḡαβ are used. Then, the remaining derivatives read

nβ∇̄βU ¼ −
4α

ð1þ α2Þ2 n
β∇̄βα; ðB2aÞ

nβ∇̄βω ¼ 1

2
ð−α−1nα∇̄αUÞ−1=2

�
−
16αðnα∇ααÞ2
ðα2 þ 1Þ3

−
8H

ðα2 þ 1Þ2 n
α∇αα

�
; ðB2bÞ

where we used the identity nα∇̄αðnβ∇̄βαÞ ¼ −2Hnγ∇γα.
Using Eqs. (B1), (B2a), and (B2b) and the identity (8),
some algebraic calculations lead us to the result (22).
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