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We construct a general class of modified Ellis-Bronnikov wormholes, where one asymptotic Minkowski
region is replaced by a bounded 2-sphere core, characterized by an asymptotic finite areal radius. We
pursue an in-depth analysis of the resulting geometry, outlining that geodesic completeness is also
guaranteed when the area function asymptotically shrinks to zero. Moreover, we perform an analysis of the
circular orbits present in our model and conclude that stable circular orbits are allowed in the bounded
region. As a consequence, a stable light ring may exist in the inner region and trapped orbits may appear
within this bounded region. Such internal structure suggests that the bounded region can trap perturbations.
Then, we study the evolution of scalar perturbations, bringing out how these geometric configurations can
in principle affect the time-domain profiles of quasinormal modes, pointing out the distinctive features with
respect to other black hole or wormhole geometries.
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I. INTRODUCTION

The advent of gravitational wave astronomy [1] and the
technical progress made in very large base-line inter-
ferometry [2] is enabling us to confront predictions of
gravitational theories in the strong field regime with
observational data. In this sense, significant theoretical
efforts are being devoted to the search and study of exotic
compact objects that may offer a reasonable alternative to
the black hole paradigm of Einstein’s theory of general
relativity (GR). Such objects could lead to effects not
expected in GR and, for this reason, their analysis could
help identify observational signatures of new physics.
Among the most popular alternatives, one finds hairy
or regularized black holes [3–6], boson stars [7,8], grav-
astars [9], wormholes [10], and black bounces [11]. In this
work, we put the focus on a new kind of exotic object
closely related with wormholes but with proper observa-
tional features that could allow us to tell them apart from
the usual wormholes found in the literature.
In the conventional approach to the resolution of the field

equations of a given gravitational system, one typically
begins with a reasonable description of the matter sources
and then employs the Einstein field equations to derive the

corresponding spacetime geometry. When dealing with
wormhole configurations, however, the process is usually
inverted. In fact, once the desired spacetime geometry is
selected, it is possible to use Einstein’s equations in reverse
to determine the matter distribution responsible for it.
Despite violating various energy conditions, wormholes
still stand out because of their theoretical implications, as
they offer valuable insights into the foundational aspects of
gravity models and their possible nontrivial topological
structure. Wormholes are not only relevant for interstellar
travel [12], which is a well-known and popular application
recurrently used in the literature, but could also be crucial to
better understand the nature of quantum entanglement [13].
For these reasons, it is important to explicitly address the
theoretical implications of their existence and the proper
observational signatures that could signal their presence in
astrophysical scenarios [14–20].
The emission of gravitational waves by the coalescence

of compact objects, for instance, can clearly distinguish
between black holes (objects with an event horizon) and
wormholes (no event horizon), as the latter are expected to
emit a series of echoes [21] which are not present in the
case of objects with a horizon, from which nothing can
come out (though these echoes are not unique to worm-
holes; see for instance [22]). Also, the distortion of light
trajectories by black holes and wormholes might be quite
different, not only because wormholes may allow light to
come out from their internal region but also because the
number and structure of light rings might exhibit different
behaviors [23,24]. These aspects can be used to identify a
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number of treats that allow to characterize the various
specimens present in the zoo of compact objects.
In this sense, it should be noted that among the billions

of compact objects present in the Universe, the observation
of events apparently compatible with our predictions does
not rule out the existence of objects of a different nature.
Current detectors’ sensitivities are still insufficient to break
significant degeneracies in the data [25], which demands
new generations of observatories able to provide a clearer
picture of the nature of such objects [26]. In the meantime,
the existence and consistency of exotic compact objects
can be pursued theoretically, with the aim of identifying
their proper signatures and potential phenomenological
implications.
It is important, therefore, to have a clear understanding of

the proper features that define and identify wormholes.
From an astrophysical perspective, one would expect that
wormholes should be spherical or axisymmetric (rotating).
Accordingly, the presence of spherically symmetric worm-
holes is typically identified in the literature by the existence
of a 2-sphere of minimal nonzero area, which represents the
wormhole throat [10,27]. However, the observation of a
minimal 2-sphere, which is a local characteristic, cannot
be used to infer anything about the global properties of the
spacetime, such as its topology. Thus, in order to broaden
our understanding of their observational features, it is
necessary to consider scenarios in which typical local
properties of wormholes are present but where their proper
global aspects are not. In particular, since in standard
wormholes the throat connects two unbounded regions
(typically asymptotically flat, though there are exceptions
[28,29]), one may consider spacetimes where the throat
connects an unbounded region to a bounded one. Space-
times with this characteristic have been recently found as
the end product of the collapse of boson stars in quadratic
Palatini gravity [30,31]. In that scenario, the central region
of the collapsed object experiences a kind of inflationary
stretching that leads to the formation of an expanding
bubble (or baby universe) behind the event horizon.
Inspired by that phenomenon, here we consider a static
setting in which an asymptotically Minkowskian region is
attached to a bounded bubble via a minimal 2-sphere. The
gravitational echoes generated by such bounded universes
and their geodesic structure will be scrutinized and com-
pared with those of more standard wormholes.
One of the simplest wormhole configurations is repre-

sented by the well-known Ellis-Bronnikov wormhole
(EBWH) [32,33], which is made of two asymptotically flat
regions connected by a throat.1 In this work we introduce
the idea that one of the infinite asymptotic regions, i.e.
the Minkowski spacetime of EBWHs, could be possibly

replaced by some inner spatial volume endowed with
finiteness in one or more directions. The (partial) compact-
ness of this new internal region is thus expected to induce
specific observable effects on both the shadow of the object
and on its spectroscopic properties, where peculiar absorp-
tion effects, resonances, and echoes may arise depending
on the typical size of the internal region and the different
boundary conditions involved.
In this work we take a first step in this direction by

looking at minimal deformations of the classic EBWH [32]
considering that one of the asymptotic Minkowski regions
is replaced by a bounded 2-sphere with asymptotically
constant areal radius. We expect that the finiteness of the
radial function in this internal region plays a relevant role
in the propagation of perturbations, because the effective
potential perceived by scalar modes, hereinafter VΦ,
critically depends on the areal radius behavior. In particular,
we refer to the possibility that echoes could be generated,
bringing the question of how to distinguish, in a phenom-
enological sense, our geometrical setting from analogous
results in different scenarios [35–40]. Moreover, among the
possible geometric realizations studied, we consider the
case in which the asymptotic areal radius vanishes, imply-
ing that the geodesic completeness of the resulting space-
time is not a priori guaranteed (see [41,42] for examples
of geodesically incomplete wormholes). In order to clarify
this delicate issue we analyze to some extent the geodesic
motion for radial (analytically) and nonradial (numerically)
trajectories, confirming that geodesic completeness is
insensitive to the actual value of the asymptotic areal
radius, which turns out to affect only the presence or not
of inner region bounces for nonradial motion.
The paper is organized as follows. In Sec. II we introduce

the model and we discuss the general geometric properties,
by also presenting a detailed analysis of the energy
condition violation; in Sec. III we perform an exhaustive
investigation of geodesic motion and photon orbit stability;
in Sec. IV scalar perturbations are addressed and we show
how the appearance and the properties of echoes are
affected by the geometry; and in Sec. V we report our
final comments.
The spacetime signature is chosen mostly plus, i.e. ημν ¼

diagð−1; 1; 1; 1Þ and we adopt units in which G ¼ c ¼ 1.

II. THE MODEL

One of the simplest (symmetric) traversable wormholes
in the literature is represented by the EBWH, whose line
element is given by [32,33]

ds2 ¼ −dt2 þ dx2 þ r2ðxÞðdθ2 þ sin2θdφ2Þ; ð1Þ

with radial coordinate x∈ ð−∞;∞Þ and areal radius
rðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ a2

p
. The areal radius has a regular minimum

at x ¼ 0, which corresponds to the wormhole throat with
radius a. The throat separates the spacetime into two

1In this work we do not focus on wormhole geometries
involving Schwarzschild-like deformation (see for instance [11]),
which will be the subject of a forthcoming analysis [34].
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symmetric regions, called respectively the inner (or inter-
nal) region for x < 0 and outer (or external) region for
x > 0. As jxj increases, the areal radius monotonically
grows and the line element (1) approaches Minkowski
spacetime as x → �∞.
Here we present a toy model of a wormhole-like object

with an inner region characterized by a maximal 2-sphere
and an asymptotically flat exterior, formally described by
the line element (1), but with a modified radial function
rðxÞ that accounts for the inner structure. This asymmetric
configuration is achieved by requiring:

(i) The smoothness of the throat

lim
x→0

rðxÞ ¼ a; lim
x→0

dr
dx

¼ 0; lim
x→0

d2r
dx2

¼ 1

a
; ð2Þ

(ii) The asymptotic boundedness of the internal region

lim
x→−∞

rðxÞ ¼ R; ð3Þ

where a and R are non-negative constants with dimension
of length, which denote the throat radius and the (internal)
bounded 2-sphere radius, respectively. Assumption (2)
guarantees a smooth local minimum in the areal radius,
assuring the presence of a throat structure in the spacetime
and, additionally, a smooth transition from the external to
the internal region. In turn, assumption (3) imposes that,
as one moves towards the internal region, the spacetime
evolves into a finite 2-sphere core. Under these conditions,
one has a large freedom to choose the areal radius profile,
and here we propose a model with

r2ðxÞ ¼
(
x2 þ a2; x ≥ 0;

ðx2 þ a2Þsech2ðcx2Þ þ R2tanh2ðcx2Þ; x < 0;

ð4Þ

where c is a non-negative constant with dimension
of length−2. The advantage of this toy model is the
simpler dependences on parameters governing the internal
boundedness.
One can check that (4) is endowed with a throat-like

structure in x ¼ 0, where rðxÞ exhibits the regular mini-
mum r2ð0Þ ¼ a2. In the asymptotic internal region, as
x → −∞, the radial function r2ðxÞ → R2, that is, the
2-sphere radius is asymptotically bounded. The role of
the parameter c is to control how much the radial function
r2ðxÞ departs from a parabola close to the throat, so that the
asymptotic value R is reached faster as one increases the
value of c. If c ¼ 0, the radial function (4) reduces to that of
the EBWH, that is, r2ðxÞ ¼ x2 þ a2.
In this model, the outer universe (x ≥ 0) is described

by the same line element as the EBWH spacetime. The
modified areal radius (4), however, sharply modifies the
structure of the inner universe (x < 0). In Fig. 1 we exhibit

the behavior of the modified areal radius squared on both
sides of the throat and compare it with the standard
parabolic behavior of EBWH (r2ðxÞ ¼ x2 þ a2). In the
top panel we fix the value of the parameter c and consider
some values of the asymptotic 2-sphere radius R. In the
bottom panel we fix the asymptotic radius and consider
different values of c. From Fig. 1 one notices that the
areal radius may present a local maximum in the inner
region. One can check that the location of the maximum,
xm, must satisfy MðxmÞ ¼ 0 and rxxðxmÞ < 0, where
rx ∝ MðxÞ, with

MðxÞ≡ 1 − 2cðx2 þ a2 − R2Þ tanhðcx2Þ ð5Þ

where rx and rxx stand for the first and second derivatives
of rðxÞ with respect to x. Since MðxÞ is continuous in
the interval ð−∞; 0Þ, and MðxÞ → −∞ as x → −∞ and
MðxÞ → 1 as x → 0−, there is at least one point
xm ∈ ð−∞; 0Þ such that MðxmÞ ¼ 0, and this point is a
maximum if rxxðxmÞ < 0.

FIG. 1. Modified areal radius (4). Top panel: r2ðxÞ for fixed
value of c and different asymptotic 2-sphere radius R. Bottom
panel: r2ðxÞ for fixed R and some choices of c. We normalize the
plots with the throat radius a.
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In the particular case when R ¼ 0, the 2-sphere radius
shrinks to zero exponentially fast (cf. Fig. 1), and one can
say that the internal region is effectively closed spatially. To
better see this, one can compute the volume of the inner
region by following [43] (see also [44] for equivalent
definitions of spacetime volume) as

V ¼
Z
B

ffiffiffiffiffiffi
−g

p
dxdθdφ

¼
Z

2π

0

dφ
Z

π

0

sin θdθ
Z

0

−∞
ðx2 þ a2Þsech2ðcx2Þdx; ð6Þ

where B denotes the three-dimensional region behind the
throat. One notes that if c ¼ 0 the volume V blows up, since
in this case the internal (as well as the external) region of
the EBWH is infinite. Conversely, for nonvanishing values
of c, the internal volume V is finite. In Fig. 2 we plot V as a
function of the parameter c.

A. Embedding diagrams

The areal function (4), therefore, significantly changes
the structure of the modified EBWH internal region.
This can be properly visualized by drawing the embedding
diagrams of the model for different asymptotic 2-sphere
radii. To do so, we consider at a given time coordinate t the
equatorial plane θ ¼ π=2, where the metric (1) reduces to
ds2 ¼ dx2 þ r2ðxÞdϕ2. Now, one may embed this hyper-
surface in the three-dimensional Euclidean space (written
in cylindrical coordinates) ds2 ¼ dz2 þ dρ2 þ ρ2dϕ2. By
identifying the polar radius with the radial function, i.e.
ρ ¼ rðxÞ, one obtains the differential equation

z2x ¼ 1 − r2x; ð7Þ

which can be solved for zðxÞ. Together with (4), they can be
plotted in the plane r − z to build the embedding diagram as
the revolution surface of the curve γðxÞ ¼ ðrðxÞ; zðxÞÞ
about the axis r ¼ 0. In Fig. 3 we show the embedding

diagrams of two bounded EBWHs. In the top panel, we find
the object whose 2-sphere radius shrinks to zero in the
asymptotic region, creating a sort of “bubble” below the
throat, which makes evident the finiteness of this spatial
volume, as computed via Eq. (6). When the internal sector
tends to a constant area (lower panel), the spatial volume is
clearly infinite. Though we are mainly interested in asym-
metric configurations of a bounded 2-sphere connected to
an asymptotically flat region (where observers are expected
to live), for the sake of completeness we also show in Fig. 4
two symmetric bounded configurations.

B. Curvature, energy density and pressures

To have a better physical view of the solutions modeled
by the line element (1) with areal radius (4), one can
compute the curvature invariants related to it, which read

FIG. 2. Finite volume of the internal region of the modified
EBWH with R ¼ 0 as a function of c.

FIG. 3. Embedding diagrams of finite 2-sphere radius EBWHs
with a fixed value of c. In the top panel we exhibit a wormhole-
like object in which the 2-sphere radius shrinks to zero, creating a
sort of “bubble” in the internal region, while in the bottom panel
we show a configuration in which the asymptotic 2-sphere radius
is bigger than the wormhole throat a.
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gμνRμν ¼ 2ð1 − r2x − 2rrxxÞ
r2

; ð8Þ

RμνRμν ¼ 2ððr2x − 1Þ2 þ 2rðr2x − 1Þrxx þ 3r2r2xxÞ
r4

; ð9Þ

RαβγλRαβγλ ¼ 4ð1 − 2r2x þ r4x þ 2r2r2xxÞ
r4

: ð10Þ

Since the spacetime is asymptotically flat in the exterior
region, all the above curvature scalars vanish very far from
the throat. In the internal region, instead, curvature invar-
iants may be bounded or unbounded depending on the
asymptotic 2-sphere radius R. As the radial coordinate
approaches x → −∞, one finds that gμνRμν → 2=R2,
RμνRμν → 2=R4 and RαβγλRαβγλ → 4=R4, corresponding
to the curvature invariants of a 2-sphere of radius R. If
R ¼ 0 the curvature scalars are unbounded in the internal
region, as they diverge as x → −∞. However, as we will

see, such a behavior does not actually represent any
pathology in the spacetime, since all the geodesics can
be extended forever in this geometry, and no spacetime
singularity is present (see discussion in Sec. III). In Fig. 5
we show the curvature scalars of the modified EBWH. We
notice that in the asymptotic internal region, the modified
EBWH has the constant curvature of a 2-sphere of radius R
and, in particular, the curvature scalars are unbounded
if R ¼ 0.
It is a well established fact that standard EBWHs can be

sustained in GR only by the presence of exotic matter
fields, resulting in the explicit violation of the different
energy conditions [12,45]. Here, we show that our modified
EBWH model, considered in the context of GR, does not
evade such a restriction in the bounded region, and exotic
matter sources are still required.2 For this purpose, it is
convenient to introduce the orthonormal frame

et̂ ¼ ∂t; ex̂ ¼ ∂x; eθ̂ ¼
∂θ

rðxÞ ; eϕ̂ ¼ ∂ϕ

rðxÞ sin θ ;

ð11Þ

which satisfies gμνe
μ
âe

ν
b̂
¼ ηâ b̂, where ηâ b̂≡diagð−1;1;1;1Þ

is the Minkowski metric. In such a frame, the Einstein
tensor takes the form Gâ b̂ ¼ Gμνe

μ
âe

ν
b̂
, whose compo-

nents are

Gt̂ t̂ ¼
1 − r2x − 2rxx

r2
; ð12Þ

Gx̂ x̂ ¼
r2x − 1

r2
; ð13Þ

Gθ̂ θ̂ ¼ Gϕ̂ ϕ̂ ¼ rxx
r
: ð14Þ

By assuming for the source of the wormhole a fluid
description, in the orthonormal basis we can write the
energy-momentum tensor in the form Tâ b̂ ¼ diagðρðxÞ;
−τðxÞ; pðxÞ; pðxÞÞ, where its components have a well-
known physical interpretation in terms of the energy
density ρðxÞ, the radial tension τðxÞ and the lateral pressure
pðxÞ. Now, requiring that our model is a solution of GR, i.e.
Gâ b̂ ¼ 8πTâ b̂, we obtain the expressions3

ρ ¼ 1 − r2x − 2rrxx
8πr2

; τ ¼ 1 − r2x
8πr2

; p ¼ rxx
8πr

; ð15Þ

with ρ ¼ −2pþ τ. In the unbounded region, these quan-
tities read

FIG. 4. Embedding diagrams of symmetric bounded worm-
holes with areal radius given by r2 ¼ ðx2 þ a2Þsech2ðcx2Þ þ
R2tanh2ðcx2Þ in the two sides of the throat.

2Here we do not discuss in detail modified theories of gravity,
where traversable wormhole configurations can emerge in the
absence of exotic matter sources [46–54].

3Henceforth we omit the dependence on x in the components
of the energy-momentum tensor.
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ρ ¼ −
a2

8πðx2 þ a2Þ2 ; ð16Þ

τ ¼ a2

8πðx2 þ a2Þ2 ; ð17Þ

p ¼ a2

8πðx2 þ a2Þ2 ; ð18Þ

while in the bounded region they take much more cum-
bersome expressions

ρ ¼ 4 coshð2cx2Þða2ð1 − 16c2R2x2Þ þ 2R2ð8c2x2ðR − xÞðRþ xÞ − 1Þ þ x2Þ
16πð2a2 þ R2 coshð2cx2Þ − R2 þ 2x2Þ2

þ 16cR2ða2 − R2 þ 5x2Þ sinhð2cx2Þ − 12a2 þ 7R2 − 4x2 þ R2 coshð4cx2Þ
16πð2a2 þ R2 coshð2cx2Þ − R2 þ 2x2Þ2

þ cða2 − R2 þ x2Þsech2ðcx2Þða2 − R2 þ 4x2Þ sinhð2cx2Þ
πð2a2 þ R2 coshð2cx2Þ − R2 þ 2x2Þ2

þ cx2ðð−3a2 þ 7R2 − 3x2Þ coshð2cx2Þ þ 7a2 − 3R2 þ 7x2Þ
πð2a2 þ R2 coshð2cx2Þ − R2 þ 2x2Þ2sech2ðcx2Þ ; ð19Þ

τ ¼ cosh2ðcx2Þð2a2 þ R2 cosh ð2cx2Þ − R2 þ 2x2Þ − ðx − 2cxða2 − R2 þ x2Þ tanh ðcx2ÞÞ2
4πð2a2 þ R2 cosh ð2cx2Þ − R2 þ 2x2Þ2 ; ð20Þ

FIG. 5. Curvature scalars of the modified EBWH. One notes that the curvature scalars approach those of a 2-sphere of radius R in the
asymptotic internal region. In particular the curvature scalars are unbounded in the vanishing R case.
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p ¼ R2 cosh ð2cx2Þð8c2x2ða2 − R2 þ x2Þ þ 1Þ þ 2cR2ð−a2 þ R2 − 5x2Þ sinh ð2cx2Þ
4πð2a2 þ R2 cosh ð2cx2Þ − R2 þ 2x2Þ2

−
4cða2 − R2 þ x2Þðða2 − R2 þ 3x2Þ tanh ðcx2Þ þ 2cx2ð2ða2 − R2 þ x2Þsech2ðcx2ÞÞÞ

4πð2a2 þ R2 cosh ð2cx2Þ − R2 þ 2x2Þ2

−
4cða2 − R2 þ x2Þðð−a2 þ 3R2 − x2ÞÞ þ 2a2 − R2

4πð2a2 þ R2 cosh ð2cx2Þ − R2 þ 2x2Þ2 : ð21Þ

If R ≠ 0, it is easier to study the behavior of these
quantities by analyzing Eq. (15), where it is clear that the
energy density, radial tension and lateral pressure are finite
or zero in the whole spacetime. In particular, in the
asymptotic internal region they become

lim
x→−∞

ρ ¼ 1

8πR2
; ð22Þ

lim
x→−∞

τ ¼ 1

8πR2
; ð23Þ

lim
x→−∞

p ¼ 0: ð24Þ

When R → 0, these fluid quantities are unbounded in the
internal region. Expanding these functions, we find that
their leading terms in the asymptotic internal region are

ρ0 ≈
1

32π

e2cx
2

x2
−
3c2x2

2π
; ð25Þ

τ0 ≈
1

32π

e2cx
2

x2
−
c2x2

2π
; ð26Þ

p0 ≈
c2x2

2π
; ð27Þ

where we have added a 0 subscript to emphasize that those
quantities represent the limits when R ¼ 0. One readily
sees that the density and radial tension diverge more rapidly
than the lateral pressure as x → −∞.
In GR, energy conditions may be posed in terms of the

energy-momentum tensor components in the above ortho-
normal system [55,56]. They are the null energy condition

ρ − τ ≥ 0 and ρþ p ≥ 0; ð28Þ

the weak energy condition

ρ ≥ 0; ρ − τ ≥ 0 and ρþ p ≥ 0; ð29Þ

the strong energy condition

ρ − τ þ 2p ≥ 0; ρ − τ ≥ 0 and ρþ p ≥ 0; ð30Þ

and the dominant energy condition

ρ ≥ 0; τ∈ ½−ρ; ρ� and p∈ ½−ρ; ρ�: ð31Þ

In order to probe where the bounded EBWH violates some
energy conditions, we investigate where the energy density
and (ρ ∓ τ) and (ρ� p) are greater than zero. In Fig. 6
we exhibit the behavior of the energy density (19) for
some bounded EBWHs. We note that unlike in the
unbounded case, where the energy density is nonpositive
everywhere, in the internal bounded region ρ can be
positive. One notes that as x → −∞, the energy density
approaches a positive limit, namely 1=ð8πR2Þ. Therefore,
the smaller the asymptotic areal radius, the larger the
energy density in the bounded region. In particular, if
R ¼ 0, the energy density exponentially diverges inside the
bounded EBWH.
The behaviors of (ρ� τ) and (ρ� p) are plotted in

Fig. 7. A careful look at that figure reveals that the energy
conditions are satisfied in certain internal regions of the
bounded universe. Near the throat they are violated, as ρ,
ρ − τ and ρ − p are negative; however delving into the
internal region, the energy conditions are satisfied, since
there is a region where ρ, (ρ� τ), and (ρ� p) are positive.
Such a region is followed by a small domain of energy
violation and, since ρ − τ is either negative or zero,
depending on the vanishing of R as x → −∞, the asymp-
totic bounded region can either violate or satisfy all the
energy conditions. Specifically, if R ≠ 0, it follows that
ρ − τ → 0 as x → −∞. On the other hand, if R ¼ 0,

FIG. 6. Energy density of some bounded EBWHs with different
asymptotic radius.
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ρ0 − τ0 ≈ −c2x2=π as x → −∞, and thus ρ − τ is a mono-
tonically decreasing parabola in the asymptotic internal
region (cf. Fig. 7).

III. GEODESIC ANALYSIS

In this section we examine in some detail the geodesic
trajectories of free point-like particles in their motion over
the two regions of the modified EBWH. The geodesic
equation is obtained from the Lagrangian L ¼ ṡ2=2 ¼ k=2,
where the overdot denotes a derivative with respect to an
affine parameter λ and k is the normalization of the four-
velocity (k ¼ −1, 0 for massive particles and light rays,
respectively). Due to the symmetries of the Lagrangian,
two quantities are conserved along the geodesics, namely
E and L, respectively related with the time translation
symmetry (the Lagrangian is independent of t) and with the
rotational symmetry (the Lagrangian is independent of φ).
Therefore, in the equatorial plane the geodesic equation
reads

ẋ2 ¼ E2 − ðVeff − kÞ; ð32Þ

where Veff ¼ L2=r2ðxÞ is the so-called effective potential.
By conducting a thorough analysis of (32) together with the
radial function (4), we can unveil the underlying geodesic
structure of the models we propose.
Let us first investigate the geodesic completeness of the

modified EBWHs by considering radial geodesics (L ¼ 0)
moving towards the bounded internal region, which are
given by

ẋ2 ¼ E2 þ k; ð33Þ

ṙ2 ¼ r2xðE2 þ kÞ; ð34Þ

regardless of the asymptotic internal 2-sphere radius R.
Upon integration of (33), one obtains the trajectory for
outgoing particles that cross the throat into the inner region
xðλÞ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2 þ kÞ

p
λþ x0, where x0 is an integration

constant. Therefore, one notices that radial geodesics can
extend indefinitely, regardless of the asymptotic 2-sphere
radius. This is particularly relevant when the inner radius R
shrinks to zero and the bounded region has a finite volume.
In this case, the curvature scalars, energy density, and

FIG. 7. Behavior of (ρ ∓ τ) and (ρ� p) in the bounded universe. The negative regions represent energy violation regions in the
bounded universe.
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pressures diverge as x → −∞. However, since it takes an
infinite affine time λ to reach the asymptotic infinity, the
region with ill-defined properties is actually inaccessible
for massive or massless particles in radial motion. From
Eq. (34), one notices that the areal velocity ṙ of particles in
radial motion goes to zero when λ → ∞ (particles going
to x → −∞).
The analysis for nonradial geodesics is more involved,

since we cannot obtain an analytical expression for the
geodesics. However, some approximations and numerical
analysis lead to interesting conclusions. First, let us
consider that the asymptotic radius R is finite and non-
vanishing. When this happens, as one approaches the
asymptotic internal region, ẋ2 is approximately

ẋ2 ≈ E2 −
�
L2

R2
− k

�
; ð35Þ

which can also be integrated leading to the conclusion that
even nonradial geodesics are complete for both massive
and massless particles moving in the internal region of the
modified EBWH with R ≠ 0.
When R ¼ 0 an interesting feature happens. In the

internal region, the effective potential grows without bound
and, far from the throat, it can be approximated by

Veff ≈
L2

4x2
e2cx

2

: ð36Þ

This implies that any particle with nonzero angular
momentum (and finite energy) must suffer a bounce in
the internal region, being reflected back to the outer
universe. The only particle capable of propagating
indefinitely within this geometry is one with zero angular
momentum, regardless of its mass, exhibiting purely
radial motion. Hence, even in the vanishing R case, all
geodesics are complete and one must regard such space-
time as nonsingular.

A. Stability of circular orbits and light rings

An important point to investigate is if the bounded
EBWH can support stable circular orbits. This analysis
can be done through the study of the Lyapunov exponents,
that in a (classical) phase space, give a measure of the
average rate at which two nearby trajectories converge
(or diverge).
Let us briefly review the Lyapunov exponent technique

and how to obtain them by the matrix method [57–59]. In
order to determine the Lyapunov exponent, we begin with
the equations of motion of a particle, which in terms of the
phase space variables, Xi, read

dXiðtÞ
dt

¼ FiðXjÞ: ð37Þ

One can linearize the equations of motion at a certain orbit,
namely

dδXiðtÞ
dt

¼ KijðtÞδXjðtÞ; ð38Þ

where KijðtÞ is the linear stability matrix defined by

KijðtÞ ¼
∂Fi

∂Xj

����
XiðtÞ

: ð39Þ

One can write the solutions of Eq. (38) in terms of the
evolution matrix, LijðtÞ, namely

δXiðtÞ ¼ LijðtÞδXjð0Þ; ð40Þ

where the evolution matrix obeys dLijðtÞ=dt ¼ KimLmjðtÞ,
with Lijð0Þ ¼ δij. The eigenvalues of the evolution matrix
lead to the principal Lyapunov exponent, namely

λ ¼ lim
t→∞

1

t

�
LjjðtÞ
Ljjð0Þ

�
: ð41Þ

Such an exponent can be conveniently expressed by
determining the eigenvalues of the stability matrix.
Now, the Lagrangian for a test particle in the equatorial

plane of the bounded universe can be written as

L ¼ 1

2

�
−ṫ2 þ ẋ2 þ r2ðxÞφ̇2

�
: ð42Þ

The canonical momenta derived from the above Lagrangian
are pμ ¼ ∂L=∂ẋμ, namely

pt ¼ −ṫ ¼ −E; ð43Þ

px ¼ ẋ; ð44Þ

pφ ¼ φ̇

r2ðxÞ ¼ L; ð45Þ

where E and L are the above-mentioned energy and angular
momentum of the particle conserved along the trajectory,
respectively. From a Legendre transform, one writes the
Hamiltonian

H ¼ ẋμpμ − L

¼ 1

2

�
−p2

t þ p2
x þ

p2
φ

r2ðxÞ
	
:

Hence the Hamilton equations, namely ẋμ ¼ ∂H=∂pμ and
ẋμ ¼ −∂H=∂xμ, yield the equations of motion, which in the
equatorial plane read
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ṫ ¼ −pt; ṗt ¼ 0; ð46Þ

ẋ ¼ px; ṗx ¼
p2
φr0ðxÞ
r3ðxÞ ; ð47Þ

φ̇ ¼ pφ

r2ðxÞ ; ṗφ ¼ 0: ð48Þ

Moreover, recalling that gμνẋμẋν ¼ k, where k ¼ −1 for
massive particles and k ¼ 0 for massless particles, one
obtains

pt ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
φ þ r2ðxÞ þ p2

xr2ðxÞ
q

rðxÞ ð49Þ

for massive particles, and

pt ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
φ þ p2

xr2ðxÞ
q

rðxÞ ð50Þ

in the massless case.
By restricting the analysis to problems that have a two-

dimensional phase space, XiðtÞ ¼ ðpx; xÞ, and linearizing
the system about an equilibrium circular orbit, namely by
constraining

px ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 þ k−

L2

r2ðxÞ

s
¼ 0; ṗx ¼

p2
φr0ðxÞ
r3ðxÞ ¼ 0; ð51Þ

the components of the linear stability matrix reduce to

K11 ¼ 0; K21 ¼ −
p2
ϕr

00ðxÞ
ptr3ðxÞ

;

K12 ¼ −
1

pt
; K22 ¼ 0: ð52Þ

For such circular geodesics, the principal Lyapunov expo-
nent can be expressed as

λ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K12K21

p
; ð53Þ

where from now on we choose the positive sign. Specifi-
cally, for massless particles the principal Lyapunov expo-
nent reads

λnc ¼
ffiffiffiffiffiffiffiffiffiffiffi
r00ðxÞ
rðxÞ

s
; ð54Þ

while for massive particles it reads

λtc ¼
Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L2 þ r2ðxÞ
p

ffiffiffiffiffiffiffiffiffiffiffi
r00ðxÞ
rðxÞ

s
: ð55Þ

It is important to point out that Lyapunov exponents are
not invariant under changes of the time parametrization
used. However, the ratio between the Lyapunov time scale
(τλ ¼ 1=λ) and a relevant time scale is invariant. By
introducing the orbital time scale τΩ ¼ 2π=Ω, one can
define a critical exponent

γ ¼ τΩ
τλ

¼ Ω
2πλ

; ð56Þ

where the orbital angular velocity (angular frequency) is
given by

Ω ¼ φ̇

ṫ
: ð57Þ

Then, the angular frequency for light-like circular orbits is

Ωnc ¼
1

rðxÞ ; ð58Þ

while the angular frequency for time-like circular orbits is

Ωtc ¼
L

rðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ r2ðxÞ

p ; ð59Þ

such that the ratio Ωtc=Ωnc ¼ L2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ r2ðxÞ

p
. We notice

that, for both massive and massless particles, the critical
exponent on circular orbits reads

γ ¼ 1

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðxÞr00ðxÞp : ð60Þ

Moreover, it is convenient to introduce the dimensionless
instability exponent as λ=Ωnc.
Depending on the positiveness of λ2, one determines if

the circular orbit is stable, marginally stable or unstable,
namely

8><
>:

λ2 < 0∶ stable circular orbit;

λ2 ¼ 0∶ marginally stable circular orbit;

λ2 > 0∶ unstable circular orbit:

ð61Þ

For unstable circular orbits, tiny perturbations in the circular
motion lead to chaos. Also, the larger the Lyapunov
exponent, the stronger the perturbation.
Hence, from the equilibrium orbits condition (51), it

follows that local minima or local maxima in the areal
radius are the only allowed radii that lead to circular orbits.
In the unbounded case c ¼ 0, the areal radius rðxÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ a2

p
presents only a local minimum at x ¼ 0, which

corresponds to the throat radius, rð0Þ ¼ a. Thus, if the
conserved quantities E and L satisfy
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E2 þ k −
L2

a2
¼ 0 ð62Þ

the particle is at a circular orbit at rð0Þ ¼ a. From the
analysis of the Lyapunov exponent at that radius, the
circular motion at the throat is unstable since r00ð0Þ ¼
1=a > 0 and consequently λ2 > 0.
Therefore, light-like particles (k ¼ 0) are in unstable

circular motion at the throat if the ratio L=E ¼ a, hereafter
called unstable light rings. The Lyapunov exponent at the
throat for light-like particles is

λnc ¼
1

a
; ð63Þ

and the dimensionless instability exponent at the throat is
λnc=Ωnc ¼ 1. On the other hand, for time-like geodesics
(k ¼ −1) to be in an unstable circular motion at the throat,
the values of the constants of motion E and L along the
trajectory are such that only particles with

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ L2

a2

s
> 1 ð64Þ

are in an unstable circular orbit at the throat. Therefore, the
bigger the angular momentum of the particle, the bigger
should its energy be in order to guarantee the circular
motion at the throat. The Lyapunov exponent at the throat
for time-like particles is

λtc ¼
L

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ a2

p ; ð65Þ

and the dimensionless instability exponent at the throat is
λtc=Ωnc ¼ L=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ a2

p
. One thus concludes that in the

EBWH there are no stable circular orbits outside the throat,
and that the only allowed circular orbits are unstable ones
located at the throat. As a consequence, there is no inner-
most stable circular orbit in this spacetime, which implies
that no accretion disks can develop in such a scenario [60].
A bounded internal region inside the throat sharply

modifies the geodesic structure of the spacetime. The areal
radius of the bounded universe may present additional
extrema in the inner region of the spacetime. For instance,
depending on the model parameters, there is a local
maximum of rðxÞ at x ¼ xm < 0, where r0ðxmÞ ¼ 0 and
r00ðxmÞ < 0. Such a radius corresponds to a circular orbit if
along the geodesic the constants of motion satisfy

E2 þ k −
L2

r2m
¼ 0; ð66Þ

where rðxmÞ ¼ rm. From the analysis of the Lyapunov
exponent at that radius, it follows that the circular motion at
rm is stable since r00ðxmÞ < 0 and consequently λ2 < 0.

Therefore, photons with L=E ¼ rm at rm are in stable
circular orbits. Those orbits are called stable light rings.
The Lyapunov exponent at the stable light ring is

λnc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r00ðxmÞ
rm

s
; ð67Þ

which in general has dependences on a, c, and R. The
dimensionless instability exponent at the stable light ring is
λnc=Ωnc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rmr00ðxmÞ

p
. We show the negativeness of the

dimensionless quantity λ2nc=Ω2
nc at rm in Fig. 8. We point

out that the existence of stable light rings may support long-
lived modes (radiation may be trapped by these compact
objects). In Sec. IV we discuss trapped scalar modes.
Remarkably, unlike in the unbounded case, the internal

region of the bounded universe can support massive
particles in stable circular orbits. At rm, time-like geodesics
with energy

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ L2

r2m

s
> 1 ð68Þ

are allowed to stay in a stable circular orbit at rm. The
energy of such particles should be bigger as the angular
momentum of the particle is bigger. We note that, since
rm > a (recall that rm is a local maximum while a is a local
minimum), time-like geodesics at stable circular orbits
demand less energetic particles than time-like geodesics at
unstable circular orbits. The Lyapunov exponent at rm for
time-like particles is

λtc ¼
Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L2 þ r2m
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r00ðxmÞ
rm

s
: ð69Þ

FIG. 8. Behavior of the dimensionless ratio λ2nc=Ω2
nc at the

stable circular orbit inside the bounded universe. We note that
λ2nc=Ω2

nc has a minimum for some value of c. Additionally, that
quantity approaches zero as c increases, indicating that the stable
circular orbit degenerates in the marginal circular orbit in the
asymptotic region.
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Performing a similar analysis in the asymptotic internal
region of bounded universes shows that as x → −∞,
particles with nonzero angular momentum approach a
circular motion with radius R. In the bounded universe
with radius R ≠ 0, the asymptotic value of the canonical
momentum px is

lim
x→−∞

px ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 þ k −

L2

R2

r
; ð70Þ

while its derivative, ṗx, vanishes asymptotically since r0ðxÞ
vanishes as x → −∞, namely

lim
x→−∞

ṗx ¼ lim
x→−∞

L2r0ðxÞ
r3ðxÞ ¼ 0: ð71Þ

Then, asymptotically, photons with L=E ¼ R approach a
circular motion with radius R. Such an asymptotic circular
orbit has a vanishing Lyapunov exponent, namely

lim
x→−∞

λnc ¼ lim
x→−∞

ffiffiffiffiffiffiffiffiffiffiffi
r00ðxÞ
rðxÞ

s
¼ 0: ð72Þ

Therefore that asymptotic orbit is marginally stable. Hence,
the asymptotic region of the bounded universe possesses a
marginally stable light ring. Moreover, asymptotically,
massive particles also approach a circular motion as
x → −∞ if their energy satisfies

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ L2

R2

r
> 1: ð73Þ

The Lyapunov exponent of that time-like asymptotically
circular orbit vanishes as well, namely

lim
x→−∞

λtc ¼ lim
x→−∞

Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ r2ðxÞ

p
ffiffiffiffiffiffiffiffiffiffiffi
r00ðxÞ
rðxÞ

s
¼ 0; ð74Þ

which tells us that such orbits are also marginally stable. One
notices that the dimensionless instability factor in those cases
vanishes regardless of the asymptotic value R. The asymp-
totic boundedness of the universe induces marginal stability
of time-like and null-like orbits. We remark that, if the areal
radius rðxÞ shrinks to zero as x → −∞ (R ¼ 0), no circular
orbit exists in the asymptotic region of the bounded universe.

B. Photon orbits

To better understand the geodesic structure of the
modified EBWH, one can analyze general orbits within
these geometries. Here, for simplicity, we specifically focus
on null orbits (k ¼ 0), so that Eq. (32) can be rewritten as

1

r4

�
dx
dφ

�
2

¼ 1

b2
− ṼeffðxÞ; ð75Þ

where b ¼ L=E is the so-called impact parameter and
ṼeffðxÞ≡ VeffðxÞ=L2 ¼ 1=r2ðxÞ.
First, let us consider null geodesics impinging on the

modified EBWH from the outer universe. As we saw, there
is an unstable photon sphere at the throat of our model.
Thus, photons impinging from the outer universe with
impact parameter greater than the throat radius, b > a,
do not enter the inner universe and are scattered back to
infinity, while photons with impact parameters smaller than
the throat radius, b < a, do cross the throat and enter the
inner universe. Photons with impact parameter equal to the
throat radius, b ¼ a, stay trapped in the unstable photon
sphere. In the unbounded EBWH scenario, photons that
cross the throat never come back to the outer universe.
However, as discussed above, in bounded models, there are
geodesics that upon crossing the throat are allowed to
return to the outer universe.
Such bouncing behavior can be visualized from the

analysis of the effective potential Ṽeff . In Fig. 9 we show
the effective potential of some configurations of bounded
EBWH, together with the inverse of the impact parameter
squared of some photons able to cross the throat (horizontal
lines). The point where a horizontal line meets the effective
potential, say xb, characterizes a turning point, where the
photon suffers a bounce (i.e. the photon is reflected in the
inner universe). For a nonvanishing asymptotic 2-sphere
radius, the potential goes to a barrier of magnitude 1=R2

as x → −∞, while for R ¼ 0, the effective potential

FIG. 9. Effective potential of four modified EBWHs with fixed
c and four choices of R, namely R=a ¼ 0, 0.5, 1 and 5. We also
plot the inverse of the impact parameter squared of some photons
that enter the inner region of the modified EBWH.
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exponentially grows inside the throat [cf. Eq. (36)]. Any
photon able to enter the inner universe (b < a), propagates
into a bounded 2-sphere universe, and the behavior of its
trajectory depends on the asymptotic radius R. For R ≥ a,
photons crossing the throat must propagate towards
asymptotic infinity, since the asymptotic value of the
effective potential 1=R2 ≤ 1=a2. However for R < a, after
crossing the throat, depending on their impact parameter,

photons may suffer a bounce in the inner universe, since
1=R2 > 1=a2. Specifically, for nonradial geodesics (L ≠ 0),
the bounce happens if given an impact parameter b, there is
an x ¼ xb such that ṼeffðxbÞ ¼ 1=b2 and Ṽeff > 1=b2 for
x < xb. At xb therefore a bounce happens and the particle is
scattered to the outer universe.
In Fig. 10 we show how the four configurations shown in

Fig. 9 scatter light rays with the same impact parameter in

FIG. 10. Null geodesics in the modified EBWH. Solid lines correspond to light rays propagating in the outer universe, while dashed
lines represent geodesics in the inner universe. We consider photons with the same values of impact parameter in the outer universe, and
show how these photons are scattered or absorbed depending on the modified EBWH configuration. The circle with radius 1
corresponds to the throat of the wormhole; the outermost circle corresponds to the local maximum of the areal radius rðxÞ in the inner
universe. The other circles are the asymptotic 2-sphere radius of each configuration.
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the outer universe. In the top-left panel, the geodesics
propagate in the modified EBWH with vanishing asymp-
totic 2-sphere radius. As previously discussed, any non-
radial geodesic moving through the inner region must
suffer a bounce. This behavior is shown in the top-left
panel of Fig. 10. When R < a, depending on the impact
parameter the geodesic can be scattered to the outer
universe or propagate to the asymptotic internal region.
We exhibit this behavior in the top-right panel of Fig. 10.
We can see that, geodesics with impact parameter b ≤ R are
scattered back to the outer universe, and any other geodesic
crossing the throat must propagate to the asymptotic
internal region with a bounded 2-sphere. The bottom-left
and bottom-right panels, respectively, exhibit geodesics in
R ¼ a and R > a modified EBWHs. In these configura-
tions any photon crossing the throat to the inner universe,
propagates toward it to the asymptotic internal region with
a bounded 2-sphere.
As previously discussed, the geodesic structure of the

internal region is richer than the outer one, and stable light
rings may be present. When they exist, the effective
potential exhibits a well, and families of trapped geodesics
are allowed to stay inside the bounded universe. For this
to happen, the photon energy and angular momentum must
be such that 1=b2 ¼ E2=L2 is smaller than the potential
barrier at the throat ð1=a2Þ and than the asymptotic value
of Ṽeff in the internal region. The trapped orbits represent
an oscillatory motion between these two turning points

inside the well. To illustrate this behavior, in the left
panel of Fig. 11 we show, as horizontal lines, the ratio
1=b2 ¼ E2=L2 of three trapped orbits inside a finite-
volume bounded universe. The values of x where the
horizontal lines have the same value as the effective
potential are the turning points of the trapped orbits. In
the right panel of Fig. 11, we represent these orbits confined
within the bounded region. Note that photons with smaller
1=b2 oscillate between nearer turning points, which is
translated into the trapped orbit being more concentrated
near the stable light ring (the local maximum of the
bounded region).
It is important to point out that the potential well is

formed, in general, by two potential barriers with different
heights (cf. Fig. 9). Specifically, if R > a the higher barrier
is the one at the throat, while if R < a, the higher barrier is
the one associated with the bounded 2-sphere core. Hence,
the smaller the asymptotic 2-sphere radius, the greater the
ratio E=L one can find in photons at trapped orbits. Since
photons with ratio E=L > 1 can escape from the bounded
region, photons at trapped orbits cannot have such a ratio.
Therefore, in a bounded EBWH with R < a, there are
photons with ratio 1=xm ≤ E=L < 1=a at trapped orbits
within the bounded region, whereas, if R > a, one can only
find photons with ratio 1=xm ≤ E=L < 1=R at trapped
orbits within the bounded region. We remark that, photons
with E=L ¼ 1=xm at trapped orbits within the bounded
universe are the ones at the stable light ring.

FIG. 11. Trapped null geodesics inside a finite-volume bounded EBWH (R ¼ 0). Initially, the geodesics are at their corresponding
inner turning point, xb, and are evolved from an initial angle φ0 ¼ 0 to an angle φf ¼ 200. The inner and outer black circles denote the
local minimum and the local maximum of the bounded EBWH, respectively.
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IV. SCALAR FIELD PERTURBATIONS

In order to extract valuable information about the
geometries investigated in this study, we turn our attention
to the analysis of scalar perturbations on the background
metric gμν. By examining the evolution of these perturba-
tions, we can discern the distinctive effects that these
geometries imprint on the time-domain profiles, making
them distinguishable from other black hole and wormhole
configurations.
For a massless scalar field Ψ localized within the

background metric gμν, the dynamics of the field are
governed by the Klein-Gordon equation

□Ψðt; x; θ;φÞ ¼ 0: ð76Þ

Due to the spherical symmetry of the problem, we can
decompose the field in the following way:

ΨðxμÞ ¼
X∞
l¼0

Xl
m¼−l

Φðx; tÞ
rðxÞ Ylmðθ;φÞ; ð77Þ

where Ylmðθ;φÞ denotes spherical harmonics of degree l
and orderm. By substituting (77) into (76), one obtains that
the radial function Φðx; tÞ must satisfy

�
d2

dt2
−

d2

dx2
þ VΦ

�
Φ ¼ 0; ð78Þ

where the effective potential VΦ is given by

VΦ ¼ lðlþ 1Þ
r2ðxÞ þ rxx

rðxÞ : ð79Þ

Now, in order to integrate the wave equation (78) we
follow the procedure described in [61]. This involves
introducing light-cone coordinates, specifically the advanced
time coordinate denoted as v≡ tþ x and the retarded time
coordinate denoted as u≡ t − x. Thus, the wave equation
can be expressed as

�
4

d2

dudv
þ VΦ

�
Φ ¼ 0: ð80Þ

The integration of this differential equation is done numeri-
cally on a null grid which leads to the following expression
for the discretized scalar field evolution:

ΦN ¼ ΦE þΦW −ΦS −
h2

8
VΦðSÞðΦW þΦEÞ þOðh4Þ;

ð81Þ

where h is the step size between two neighboring
grid points and subscripts indicate the point in the grid
where the function is evaluated. Explicitly, S ¼ ðu; vÞ,

W ¼ ðuþ h; vÞ, E ¼ ðu; vþ hÞ and N ¼ ðuþ h; vþ hÞ,
as can be seen more clearly in Fig. 12.
The initial distribution for the scalar perturbation is set

on the null surfaces u ¼ 0 and v ¼ 0. Then, the grid is
computed line by line using the mechanism described
in (81), with a step size h ¼ 0.1 and grid values ranging
from umin¼0 to umax¼1000 and vmin ¼ 0 to vmax ¼ 1000.
As initial conditions for the scalar perturbation we use a
Gaussian distribution on the u ¼ 0 surface, together with a
constant profile on the v ¼ 0 surface, i.e.

Φð0; vÞ ¼ Ae−ðv−vcÞ2=2σ2 ; ð82Þ

with height A ¼ 1, width σ2 ¼ 4.5 and centered at vc ¼ 20.
The effective potential is then calculated by applying

(79) and using the radial function rðxÞ as presented in (4).
Radial profiles of the effective potential with R=a ¼ 0 are
depicted in Fig. 13 where, in order to optimize the designed
grid, the throat of the wormhole has been conveniently
shifted to x ¼ −20 in our numerical computations. Once
we have obtained our numerical data, we will restore the
throat position to x ¼ 0 to align our analysis more closely
to the rest of the paper. As one can see, the effective
potential exhibits a peak like in standard EBWHs, which is
associated to the throat of the wormhole, and with their
maximum value increasing in proportion to l. Conversely,
as x tends to −∞, the potential does not drop to zero, but it
shows a rapid and smooth growth, remaining finite for all
finite radial values. It is remarkable that the effective
potential exhibits a significantly slower growth as x
approaches −∞ for the fundamental l mode as compared
to higher l modes. Moreover, with increasing values of l,

FIG. 12. Representation of the numerical grid used for the
integration of (80). The evaluation points of (81) are represented
with S, W, E and N. The step size of the grid can be visualized
by the distance between two consecutive points on the same
axis h ¼ uE − uS ¼ vN − vE.
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it approaches infinity at a faster rate, although the most
prominent discrepancy in growth rate is observed between
l ¼ 0 and l ¼ 1. This can be understood by computing
the leading term of the fundamental mode as x → −∞,
where we notice that it behaves as VΦ ≈ 4c2x2. This
clearly has a growth rate slower than the one experienced
when l ≠ 0, which diverges exponentially as VΦ ≈
lðlþ 1Þe2cx2=ð4x2Þ. Therefore, even though the effective
potential for l ¼ 2 diverges faster than the effective
potential for l ¼ 1, they both do it exponentially. By
contrast, the divergence is polynomial for the l ¼ 0 mode.
The unbounded behavior of the effective potential as

x → −∞, combined with the first peak, gives rise to a
well, which is expected to lead to echoes in the time-
domain spectrum (see discussion in the next section). We
point out that for the fundamental l mode, the effective
potential assumes negative values within the well near the
peak associated with the throat of the wormhole. The
radial extent over which a negative effective potential
occurs diminishes as l increases. Finally, it is worth
mentioning that the parameter c exerts an influence on the
effective potential, causing the well formed between the
throat peak and the asymptotic boundary to narrow as its
value increases.
For the nonvanishing R case, one can show that the

asymptotic behavior of VΦ reads

lim
x→þ∞

VΦ ¼ 0; ð83Þ

lim
x→−∞

VΦ ¼


0; l ¼ 0;
lðlþ1Þ

R2 ; l ≠ 0:
ð84Þ

It is worth nothing that in the asymptotic internal region,
whenever l ≠ 0 and R ≠ 0, the effective potential goes to a
threshold value. The massless scalar field propagating in
this region would behave equivalently to a scalar field with
effective mass in a Minkowski background, namely

�
d2

dt2
−

d2

dx2
þ μ2e

�
Φ ¼ 0; ð85Þ

where μe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp

=R. This kind of effective mass in
scalar field dynamics typically arises in nonasymptotically
flat spacetimes, such as when scalar waves propagate around
a black hole immersed in a magnetic field [62,63]. For the
case l ¼ 0, the effective potential vanishes asymptotically
on both sides of the modified EBWH, and therefore no
effective mass term appears.
In Fig. 14, we depict the radial profiles of the effective

potential for l ¼ 1 and various values of the R parameter.
As observed in the geodesic analysis, the presence of a
nonzero R leads to the asymptotic finiteness of the potential
as x → −∞. The finite value towards which the potential
tends is inversely proportional to the magnitude of R2, with
the potential becoming approximately 2 orders of magni-
tude smaller than the throat peak for R=a ¼ 5.
As the 2-sphere approaches its asymptotic value, the

effective potential exhibits a sort of effective centrifugal
barrier for R ¼ 0, playing the role of an effective mirror for
the scalar field perturbation. For R ≠ 0 in this same limit,
one can see that the effective potential tends to a plateau
whose height is proportional to 1=R2.

A. Time domain profile: Echoes

After solving the discretized wave equation, we extract
the scalar field values at the observation point xobs ¼ 0

FIG. 13. The radial profiles of the effective potential (79) are
presented for three lmodes and R=a ¼ 0. The top panel displays
the case for l ¼ 0, the central panel shows l ¼ 1, and the bottom
panel shows l ¼ 2. The solid line represents the radial profile of
the effective potential for the standard EBWH, while dashed lines
correspond to three different configurations of modified EBWH
with varying c parameters.
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using the coordinate transformation x ¼ ðu − vÞ=2 and
t ¼ ðuþ vÞ=2. Even though our model allows for arbi-
trarily large values of c, here we are focusing on small
deviations of EBWHs in the throat scale, and therefore
restricting our analysis to a2c ≤ 0.005. This results in the
potential peak at the throat being almost the same as in the
EBWH (see Figs. 13 and 14). As the initial wave packet
impinges on the modified EBWH, it encounters the throat
peak first, causing a portion of the wave to return back to
the observation point exhibiting a characteristic ringdown.
Due to the similarities between the throat peaks of modified
and standard EBWHs, the prompt contribution and initial
ringdown signal in the time profile of scalar perturbations
are expected to be basically the same in both scenarios.
The portion of the scalar wave packet that is transmitted

by the throat peak passes through the well and encounters
the potential barrier extending to x → −∞. It then reflects
back towards the observation point. However, in order to

reach xobs, it must interact with the throat peak once again.
A portion of the incident wave is reflected, repeating the
same process, while another portion is transmitted. The
transmitted portion, after being detected at the observation
point, evolves towards x → ∞ and does not pass through
the observation point again. Each time a wave is reflected
and passes through the observation point, it is recorded as a
peak in the time-domain profile of jΦlj. As expected based
on the description of the effective potential of the modified
EBWH, (unstable) photon sphere modes from the scalar
perturbation exist and ring in the same way as in a standard
EBWH. However, in this case, there is a stable photon
sphere in the inner universe, causing the bounded 2-sphere
region of the wormhole to act as a cavity, trapping photon
sphere modes. This results in a series of echoes in the scalar
perturbation time profile—the periodic disturbances in the
late-time behavior of the scalar waveform, telling apart the
ringdown profile of the bounded universe model from
the unbounded EBWH one, which are illustrated in Fig. 15
for the bounded universe model with vanishing asymptotic
2-sphere radius. The characteristics of these echoes vary
depending on the parameters used to construct the space-
time, since the width and height of the cavity in the
effective potential deeply depend on c and R, as can be
seen in Fig. 16.
First, let us discuss the R ¼ 0 spacetimes in order to gain

some intuition on the role of the parameter c. It can be
observed that there is a relationship between the value of
this parameter and the frequency of the echoes (cf. left
column of Fig. 16). This arises from the fact that c
influences the width of the effective potential well. As
the well becomes narrower with increasing c, it can be
observed that the time interval between two consecutive
echoes, Δt, decreases (or, equivalently the frequency
increases), as the waves have to travel a shorter distance.
In order to estimate this time interval, one usually computes
the time a light signal takes to return to the throat after a

FIG. 14. The radial profiles of the effective potential (79) are
presented for four configurations with different R parameter
and l ¼ 1.

FIG. 15. Left: time-domain profile of the absolute value of the scalar field perturbation for the l ¼ 1 mode of the EBWH and a
bounded universe model with a2c ¼ 0.005 and R=a ¼ 0. The disparity between the EBWH and the other cases are the so-called echoes.
Right: the late-time behavior of the scalar waveform in the considered bounded universe model. For such s configuration, the time
interval between two successive echoes is Δt=a ≈ 62.
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bounce in an internal potential barrier, which is roughly
given by

Δt ∼ 2

Z
0

xb

dx ¼ 2jxbj; ð86Þ

which depends nontrivially on the bounded universe
parameter c and on the impact parameter b of the photon.
In this way, the internal turning point basically acts as
an effective width of the cavity. A good estimation of the
time delay between consecutive echoes, therefore, deeply
depends on the construction of the effective width.
Remarkably, for dipolar modes (l ¼ 1), we have found
a suitable procedure for determining the effective width
of the cavity. It consists of taking xb such that VΦðxbÞ
has approximately the value of the effective potential
at the throat, namely VΦð0Þ2. Since we are considering

a2c ≤ 0.005, xb is expected to be far from the throat, where
the effective potential can be approximated, for l ¼ 1, by
VΦ ≈ e2cx

2

=ð2x2Þ. Therefore, in units of a, xb is approx-
imately given by the (negative) root of

e2cx
2
b

2x2b
¼ 9: ð87Þ

By numerically solving this equation we find the effective
width, jxbj, and a good estimation for the time delay
between consecutive echoes is found as Δt ¼ 2jxbj.
Specifically, the l ¼ 1 echoes’ time delay for the configu-
rations shown in Fig. 16, namely a2c ¼ 0.0005, a2c ¼
0.001 and a2c ¼ 0.005, are respectively Δt=a ≈ 222,
Δt=a ≈ 152 and Δt=a ≈ 62. Hence, as we expected,
increasing c leads to narrower bounded universes and
implies the presence of echoes with shorter time delays.

FIG. 16. Time-domain profile of the absolute value of the scalar field perturbation for the l ¼ 1 mode for different bounded universe
models. In the left column, three configurations with varying values of the parameter c and R=a ¼ 0 are displayed. In the right column,
three configurations with different values of the parameter c are shown, but with R=a ¼ 5.
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Another notable feature that can be observed is the
gradual decay of peak amplitudes. Each time the scalar
wave packet interacts with the throat peak, it is divided into
transmitted and reflected parts, resulting in weaker succes-
sive echoes. This effect contrasts with the case of the EBWH,
where the signal exhibits a rapid decay compared to the
modified EBWH scenario. The presence of two asymptotic
infinities and the absence of a potential well in the EBWH
prevent the emergence of echoes, thereby contributing to the
faster signal decay. When the potential well is narrower, the
superposition of different echoes becomes more noticeable,
leading to deformations in their waveforms. This behavior is
particularly evident in the late-time regime, as shown by the
bottom plot in the left column of Fig. 16.
Similar features are also noticeable in the right column

of Fig. 16, corresponding to the R=a ¼ 5 configuration.
However, the echoes’ amplitudes are notably smaller
compared to the previous scenario, making it difficult to
differentiate distinct echoes due to their reduced amplitude.
The absence of an unbounded growing effective poten-

tial results in wave packets interacting with a finite barrier,

leading once again to the division of the package into a
reflected part and a transmitted part that propagates towards
x → −∞ without bouncing back to the outer universe. The
height of the barrier diminishes as R increases, making it
evident that the reflected part of the wave is also smaller as
one considers bigger values of R, as shown in Fig. 17.
Notably, there is a distinct transition regime depending on
the asymptotic value to which the effective potential tends.
Specifically, the asymptotic value aligns with the height
of the throat peak for R=a ≈ 0.8 for the considered
configurations. When the barrier exceeds the throat peak
height (R=a < 0.8), the echoes are easily distinguishable.
However, when the barrier is smaller (R=a > 0.8), a higher
proportion of the wave is lost, leading to a reduction in the
amplitude of the echoes. Remarkably, by considering
c ≪ 1, the time-domain profile of the modified EBWH
with large asymptotic 2-sphere radius, tends towards the
expected profile of a standard EBWH.
For late times, we observe a diminishment in the

damping of the echoes of the scalar wave. At this point,
so-called quasiresonances are present—arbitrarily long-
lived quasinormal modes (QNMs) [64]. These modes were
discussed in the QNM analysis of massive fields in
asymptotically flat spacetimes [64,65], and also appear
in nonasymptotically flat scenarios where the wave equa-
tion acquires a sort of effective mass [63,66]. Our model
pertains to the latter case.
Finally, it is noteworthy that while the results presented

here are for the l ¼ 1 mode, the qualitative characteristics
are present in the other l modes as well.

V. FINAL REMARKS

We have introduced a new class of modified EBWHs,
where one side of the global spacetime geometry, usually
consisting in an asymptotic Minkowski region, is sup-
planted by a bounded 2-sphere patch, where the areal radius
is finite and asymptotically constant. The resulting asym-
metric wormhole is still endowed with a local minimum in
the areal radius, i.e. a throat-like structure, where a transi-
tion between the two regions takes place. This was
achieved by means of a modified radial function, which
smoothly interpolates from the standard Ellis case to the
bounded 2-sphere core on the other side.
In the internal region of the modified EBWH, the areal

radius exhibits a local maximum and eventually collapses
to its asymptotic value R. Such a peculiar behavior is
ultimately responsible for a rich geodesic structure. We
performed an extensive analysis on causal geodesics,
finding that regardless of the model parameters, the
modified EBWH is geodesically complete, even in the
vanishing asymptotic 2-sphere scenario, R ¼ 0. This is
indeed relevant, because in the vanishing 2-sphere radius
case, the curvature scalars, energy density and pressures are
unbounded as x → −∞, but these divergences remain
unreachable for causal geodesics. In the R ≠ 0 scenario,

FIG. 17. Time-domain profile of the absolute value of the scalar
field perturbation for the l ¼ 1 mode. Seven configurations with
the values R=a ¼ f0; 0.5; 0.9; 1; 10; 20; 40g are plotted, along
with the EBWH as a reference.
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the curvature scalars are well defined everywhere and
go to those of a 2-sphere with radius R in the asymptotic
internal region.
We also investigated photon orbits in this model by

numerically solving the geodesic equation. When the
asymptotic value of the 2-spheres radius is lower than
the throat radius, R < a, there are light rays that depending
on their impact parameter suffer a bounce in the inner
universe and are scattered back to the outer universe. As R
diminishes, and the inner region becomes more bounded,
the photon’s impact parameter necessary for the bounce to
happen is smaller (see Fig. 9). The extreme scenario is then
for R ¼ 0, where all geodesics entering the inner universe
are scattered back to the outer one, and the only null
geodesic that can propagate forever in the inner region is
that of a photon in purely radial motion. Last, for R ≥ a,
any photon that crosses the throat propagates towards the
asymptotic infinity with a bounded 2-sphere radius.
The analysis of the effective potential shows that an

unstable photon sphere is present at the throat, similarly to
the standard EBWH. Moreover, the inner universe has an
additional structure, a stable photon sphere, that is located
in the local minimum of the effective potential. The
existence of the stable photon sphere allows long-lived
modes to be trapped, giving rise to the appearance of
echoes in the ringdown profile, usually absent in standard
EBWHs. In order to probe this aspect, we performed an
analysis of massless scalar excitations in the modified
EBWH background. After being transmitted to the inner
universe the scalar perturbation interacts with an effective
centrifugal barrier for R ¼ 0 or a step potential for R ≠ 0.
Therefore, part of the modes are trapped in a potential well
and observed as a series of echoes in the time profile of the
scalar perturbation. In particular, we noticed that the role of
the parameter c is to modify the time delay between two
successive echoes. When c increases, the cavity in the
effective potential becomes narrower and the echoes’ time
delay diminishes.
The role of the asymptotically bounded 2-sphere radius

R is more subtle. For the R ¼ 0 case, the scalar perturba-
tions get trapped between the unbounded barrier and the
photon sphere at the throat. By increasing R, this behavior
persists, but since the unbounded barrier is replaced by a
step potential barrier, part of the modes can be transmitted
through the asymptotic internal region.
We notice that by replacing the asymptotically

Minkowski spacetime with a bounded 2-sphere core, the
scalar field acquires an effective mass in the asymptotic
internal region for nonvanishing values of the multipole
number l and nonzero asymptotic 2-sphere radius R. A
similar effect is observed with scalar waves propagating
around magnetized black holes [63]. This leads to the
presence of quasiresonances in the late-time profile, which

are arbitrarily long-lived QNMs. If R ¼ 0 and l ≠ 0, the
effective mass grows without bound acting as an effective
mirror for the scalar wave. Consequently, the scalar
perturbation cannot reach the asymptotic internal region,
and the modes trapped near the stable photon sphere at
some late time should tunnel to the outer universe.
Our results indicate that the observational features of

wormholes are crucially dependent on their global char-
acteristics, even though they can share a very similar throat-
like structure. The study of perturbations can be used to
extract valuable information about the compactness of the
inner universe, and this could be useful in future spectros-
copy experiments trying to identify new kinds of compact
objects. We remark that the geometrical structure of the
model described in the present work can be enriched further
in multiple ways, such as by considering scenarios with
horizons, or by restricting the domain of the bounded
2-sphere patch, i.e. truncating the range of the possible
values spanned by the coordinate x and imposing specific
boundary conditions, among other options. These configu-
rations are expected to generate a great variety of phe-
nomenological signatures in geodesic motions due to the
appearance of additional potential barriers or closed uni-
verse effects. The study of such aspects is currently
underway and will be the subject of forthcoming works.
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