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Inspired by the recent discovery of a violation of strong cosmic censorship (SCC) for the near-
extremal Reissner-Nordström black holes in de Sitter space (RN-dS), we investigate if the weak cosmic
censorship conjecture (WCCC) can also be violated in RN-dS with a fixed cosmological constant. Our
method is based on the recent formulation of examining WCCC by the constraint of the second law,
which in this case requires the sum of areas of the event and cosmic horizons cannot decrease during the
infall process of Wald’s gedanken experiment. We find that the WCCC can be violated for the near-
extremal RN-dS in some regimes of second-order perturbation of field configurations. Given the charge
parameter of RN-dS, we can find the lowest value of the subextremality parameter, beyond which the
WCCC holds. Our results imply that there might be possible correlations between the violation of SCC
and WCC. Because of a lack of an unambiguous relation between the gravitational mass and matter’s
kinematic mass in asymptotically de Sitter space, we cannot compare the corresponding regimes of
parameter space for the violations of SCC and WCCC. We also discuss the subtlety in formulating the
first- and second-law approaches to examine WCCC.
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I. INTRODUCTION

Curvature singularity is predicted to be unavoidable in
Einstein’s gravity [1]. However, the singularity will yield
unphysical results and should be shielded behind the
event horizon [2]. This was formulated as the weak cosmic
censorship conjecture (WCCC) [3]. The WCCC can be
subjected to the test of gedanken experiments [4,5] by trying
to destroy the event horizon of a (near-)extremal black hole
via overcharging or overspinning it with some infalling
matter. Besides, the presence of the timelike curvature
singularity, shielding by an inner Cauchy horizon for the
charged or rotating black holes, implies the breakdown of
the determinism of Einstein’s gravity. This is because the
initial data cannot uniquely determine the evolution of the
region beyond the Cauchy horizon. This leads to the strong
cosmic censorship (SCC) [6,7] that the inner Cauchy
horizon is unstable due to its infinite blue-shifted effect
to become a null-like curvature singularity so that the
determinism is preserved.

For a long time, these two forms of cosmic censorship
conjectures have been considered independent. This is
because they have pretty different mathematical formula-
tions. Despite that, it is interesting to see if there are possible
correlations between them, specifically, if they can be
satisfied or violated simultaneously. It is easier to find
examples of both conjectures being satisfied, such as the
Kerr-Newman black holes. The SCC is satisfied due to the
mass inflation [8–14] induced by the infalling perturbation
as the weak solution of Einstein’s equation [15]; and the
WCCC is ensured by the first law of black hole mechanics
and energy condition of the infalling matter [5], or by the
second law of nondecreasing black hole entropy [16,17]. On
the other hand, the finite causal past bounded by the cosmic
horizon could prevent the infinite blueshift on the Cauchy
horizon so that the mass function is bounded, and the SCC
could be violated for some charged black holes in de Sitter
space. The study of this issue has a long history [18–22],
e.g., see a review for earlier efforts in [23]. Inspired by the
mathematical study of Cauchy evolution in the black hole
background as the weak solutions [24–33], a revival of
interest in this issue was initiated in [29,34] and followed up
by [35]. The criterion of examining SCC is mainly done by
reformulating the SCC as the inextendibility of the maximal
Cauchy evolution as a weak solution of the field equations
with smooth initial data so that the stability of the Cauchy
horizon is related to the spectral gap of the quasinormal
modes (QNM) of the background spacetime induced by
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infalling matter [27,28,31,36]. Thus, if the spectral gap
β ≔ −Imðω0Þ=κ− is less than 1=2, where ω0 is the
frequency of the longest-lived QNM and κ− the surface
gravity of Cauchy horizon, then SCC holds. In [29,34,35],
by numerically solving the QNM of (charged) scalar waves,
the parameter ranges of violating SCC for the near-extremal
black holes are found.
As far as we know, the WCCC for the Reissner-

Nordström (RN) black holes in de Siter space has not
yet been examined. Naively, we may generalize Wald’s
gedanken experiments to examine WCCC by trying to
overspin or overcharge an extremal or a near-extremal
black hole with infalling matter [4,5]. However, we will see
that the existence of the cosmic horizon hinders the direct
application of Wald’s method, which is based on trans-
forming matter’s energy conservation to the first law of
black hole mechanics. To see such difficulty, let us recall
Wald’s procedure [4,16] for examining the WCCC for an
extremal RN black hole of mass M and charge Q ¼ M in
asymptotically flat spacetime by throwing into it a particle
of mass m and charge q. If the particle is freely falling, its
conserved energy is given by

E ¼ −ðmuμ þ qAμÞtμ; ð1Þ

where Aμ and tμ are the Maxwell gauge field and the
timelike Killing vector of the background configuration.
We can evaluate E either on the event horizon at r ¼ rþ or
at spatial infinity r ¼ ∞, and yield the relation

−ðmuμ þ qAμÞtμjr¼rþ ¼ −muμtμjr¼∞; ð2Þ

where we have used the fact that limr→∞ Aμtμ ¼ 0 (up to an
irrelevant constant), which could always be guaranteed by
assuming spherical and static configuration.
As the particle goes into the black hole, it causes a

change of the mass and charge by the amount δM and δQ.
It is known that the gravitational mass cannot be defined
locally but can be defined with Arnowitt–Deser–Misner
(ADM) formalism at spatial infinity, i.e., r ¼ ∞. Therefore,
we can then relate δM to E at spatial infinity, i.e.,

δM ¼ −muμtμjr¼∞: ð3Þ

Along with the relation δQ ¼ q ensured by Gauss’s law
and the fact that Aμtμjr¼rþ ¼ −1 for the extremal black
hole, we can convert the relation (2) for the conservation of
freely falling particle into the following first law of black
hole mechanics,

δM − δQ ¼ −muμtμjr¼rþ ≥ 0: ð4Þ

The last inequality is ensured by the energy condition, i.e.,
m ≥ 0, noting that −uμtμjr¼rþ ≥ 0 for all timelike vectors
uμ and tμ if they are both pointing to the future or both to

the past. Therefore, the WCCC is preserved because
M þ δM ≥ Qþ δQ is preserved.
From the above discussion, we can see (3) relating the

ADMmass δM tom is a key ingredient to arrive at the first-
law relation (4) for checking WCCC. However, the cosmic
horizon prevents us from properly defining the ADM mass
δM. Therefore, to examine the WCCC for a black hole in
de Sitter space, we need a method that does not rely on the
definition of ADM quantities. Indeed, in [17], an alternative
method for checking WCCC based on the second law has
been proposed. The second law, which requires the Wald
entropy never to decrease, provides a constraint relating the
changes of mass and charges of the black hole due to the
infalling matter. This constraint then ensures WCCC if it
holds. For the Kerr-Newman black holes, both this second-
law method and the one proposed in [5] based on the first
law yield WCCC. The WCCC for the Myers-Perry black
holes examined by the second-law method has also been
verified, as shown in the Appendix. To generalize this
second-law method to the black holes in de Sitter space, we
face the problem of defining the gravitational entropy for
such a background. Due to the lack of asymptotic spatial
infinity to determine the ADM quantity and thus the first
law, gravitational entropy is also ambiguous. There are
various definitions for the gravitational entropy for black
holes in de Sitter space; see [37–41] for examples. Among
them, we take the gravitational entropy to be [39–41]

S ¼ πðr2þ þ r2cÞ; ð5Þ

where rþ and rc are the radii of event and cosmic horizons,
respectively. We now elaborate on the reasons for choosing
(5). The gravitational area-law entropy for a black hole in
asymptotically flat spacetime can be defined by reinter-
preting the law of black hole mechanics as the first law
of thermodynamics. Later, Wald obtained a covariant
formulation of gravitational entropy as a Noether’s charge
associated with an event horizon [42,43]. Wald’s formula
can also be applied to the area-law gravitational entropy
associated with the cosmic horizon. As the entropy is an
extensive quantity, the gravitational entropy of an RN black
hole in de Sitter space (RN-dS) is naturally given by (5). On
the other hand, the entropy should also bear the statistical
meaning, and so is the gravitational entropy. There is no
first-principle way of counting the degrees of freedom
associated with the event horizons due to the lack of a
fundamental quantum gravity theory. However, some
attempts have been made to find the emerging (1þ 1)-
dimensional conformal field theory (CFT) associated with
asymptotic near-horizon symmetries to obtain the gravita-
tional entropy using the Cardy formula. This was adapted
to obtain the gravitational entropy for Schwarzschild black
hole [44] and de Sitter space [45], or for black holes in
anti-de Sitter space via the Cardy-Verlinde formula [46].
Therefore, (5) can also be interpreted as the statistical
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entropy associated with the microscopic near-horizon CFTs.
Finally, the entropy formula (5) can also characterize the
ignorance of information behind both the event and cosmic
horizons for the observer in the region between these two
horizons [47]. This contrasts the entropy bound proposed
in [37] for the observable entropy in de Sitter space.
For cases without a cosmic horizon, the second law

requires rþ to increase continually. With the presence of r2c
term in S of (5) for the black hole in de Sitter space, the
second law may not always guarantee the increase of rþ.
For example, some infalling matter may cause the decrease
of rþ and the increase of rc, such that the overall entropy
change is positive. Thus, for a (near-)extremal RN black
hole in de Sitter space, it is possible to violate WCCC
without violating the second law.
In this paper, we will examine the above situations in

detail and determine the regime in parameter space for
which the second law fails to ensure WCCC in de Sitter
space. Our result is in accordance with the behavior of the
violation of SCC. However, a direct comparison for the
regime of parameter space is not viable due to the lack of
direct relation between the mass/charges of the infalling
matter and the resultant changes of the black hole’s
mass/charge in de Sitter space. This is also why one cannot
adopt Wald’s first-law formulation to check WCCC, as
discussed. Despite that, it is the first example for which one
can show that both WCCC and SCC are violated.
The remainder of the paper is organized as follows.

In the next section, we solve the horizons of the RN-dS.
In Sec. III, we recapitulate the second-law method for
checking WCCC and apply it to a limiting case of RN-dS.
We present our main result in Sec. IV by examining the
WCCC for RN-dS with the second-law method. We then
identify the WCCC-violating regime for both first- and
second-order variations. Finally, we conclude our paper in
Sec. V with some discussion on the subtlety in formulating
both the first-law and second-law approaches in examining
the WCCC. The Appendix details proving WCCC for
five-dimensional (5D) Myers-Perry black holes using the
second- and first-law methods.

II. RN BLACK HOLE IN DE SITTER SPACE

Consider an RN black hole with the mass parameter M
and charge parameter Q in de Sitter space of cosmic
constant Λ ¼ 3=L2. We will abbreviate it as RN-dS. Then,
the metric is given by

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΩ2
2 ð6Þ

and the gauge potential by

A ¼ −
Q
r
dt; ð7Þ

in which

fðrÞ ¼ 1 −
r2

L2
−
2M
r

þQ2

r2
: ð8Þ

In reasonable parameter range, fðrÞ ¼ 0 has three real
positive roots r− ≤ rþ ≤ rc, corresponding to the Cauchy
horizon, event horizon, and cosmic horizon, respectively.
The equation fðrÞ ¼ 0 is of the form of so-called depressed
quartic equation

r4 þ ar2 þ brþ c ¼ 0 ð9Þ

with a ¼ −L2; b ¼ 2L2M, and c ¼ −L2Q2, which could
be solved in terms of solutions of a related cubic equation
as follows. Let y be any solution of the cubic equation

y2 − c ¼ b2

4ð2y − aÞ ; ð10Þ

then (9) could be converted to an equation with both sides
perfect squares that could be solved by

r¼ 1

2

0
@−η1

ffiffiffiffiffiffiffiffiffiffiffiffi
2y−a

p
þ η2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2y−aþ η1

2bffiffiffiffiffiffiffiffiffiffiffiffi
2y−a

p
s 1

A; ð11Þ

in which η1;2 ¼ �1. The cubic equation (10) can be solved
in a standard procedure. Let

p ¼ −
a2

12
− c; ð12Þ

q ¼ −
a3

108
þ ac

3
−
b2

8
: ð13Þ

(10) has the solution

y ¼ a
6
þ w −

p
3w

; ð14Þ

with

w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
q
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

4
þ p3

27

r
3

s
: ð15Þ

For (9), single double-root happens when

ða2 þ 12cÞ3 ¼
�
aða2 − 36cÞ þ 27

2
b2
�

2

> 0 ≠ b; ð16Þ

which corresponds to either extremal black hole with
rþ ¼ r− or Nariai-like spacetime with rþ ¼ rc. The
extremal condition turns out to be
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M−
1

3
ffiffiffi
6

p
�
L2þ 36Q2 −

ðL4 −12L2Q2Þ3=2
L4

�
1=2

¼ 0; ð17Þ

for which we have

rþ ¼ r− ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

6
L
�
L −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 − 12Q2

p �r
; ð18Þ

rc ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

6
L
�
L −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 − 12Q2

p �r

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3
L
�
2Lþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 − 12Q2

p �r
: ð19Þ

In terms of rþ; rc, the extremal condition (17) could be
expressed as

rc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 − 2r2þ

q
− rþ: ð20Þ

The entropy for RN-dS, either extremal or nonextremal,
contains contributions from both the event horizon and
cosmic horizon, obeying the area law (5). For simplicity,
hereafter we replace r=L → r, M=L → M, and Q=L → Q,
i.e., equivalently we choose L ¼ 1.

III. WCCC AND SECOND LAW

The WCCC can be examined by trying to overspin or
overcharge a black hole and see if the event horizon can be
destroyed. A viable way is to follow Wald’s proposed
gedanken experiment [4] by throwing into matter obeying
the energy condition into a (near-)extremal black hole. In a
seminal paper [5], the WCCC has been shown to hold in
Einstein-Maxwell theory by adopting Wald’s covariant
formulation of the first law of black hole mechanics. The
first law relates the changes of mass, spin, and charges of a
black hole to the corresponding quantities of the infalling
matter. It ensures that the infalling matter of positive energy
cannot decrease the black hole horizon. This energetic
consideration for WCCC avoids the difficulty of dealing
with the backreaction and self-force when directly studying
the dynamical problem of the infalling matter. Later, this
energetic approach is generalized to show that WCCC also
holds for the extremal nonspinning charged black holes [16]
in generic higher derivative gravity and electromagnetic
theories.
When applying the energetic consideration of [5] to the

near-extremal black holes, it needs to take into account the
backreaction of the second-order gravitational and electro-
magnetic waves. This requires finding the corresponding
stress tensors in higher derivative theories. Unfortunately,
the covariant construction of such stress tensors is compli-
cated and ambiguous, e.g., [48]. Naively assuming no such
backreaction, the energetic consideration of [5] yields
failure of WCCC as checked in [17]. To bypass such

difficulty, in [17], the second-law method, as discussed
earlier, is proposed to check the WCCC for the near-
extremal nonspinning charged black holes in higher deriva-
tive theories. The results show that the WCCC holds for
these black holes. In Einstein’s gravity, the second law can
be proved equivalent to the first law and the imposition of
the null energy condition of matter [49,50]. Indeed, the
second-law method gives the same result as the first law to
ensure WCCC for the near-extremal Kerr-Newman black
holes, as shown in [17].
The advantage of the second-law formulation is its

simplicity compared to the first law, without requiring
the input of the energy condition of the infalling matter
and the ADM quantities. The key idea for WCCC is to
answer what kind of matter can fall into a black hole or
how the conserved quantities of a black hole can vary. Thus,
the spirit of the second law is that variations of these
quantities should not violate the second law. For a black
hole in the general theories of gravity, the entropy can be
constructed by Wald’s covariant Noether’s charge method.
Let us denote it as

S ¼ SWaldðM;Q; JÞ ð21Þ

for a black hole with mass M, charge Q, and angular
momentum J.
The infalling matter then causes variations of the con-

served quantities, i.e.,

C → C þ
X
n

λn

n!
δnC; C ¼ M;Q; J: ð22Þ

Here, we introduce the parameter 0 ≤ jλj < 1 to track the
order of variations. The allowed variations are required to
satisfy the second law order by order in λ, i.e.,

δnS ≥ 0; for all n ð23Þ

with δnS defined by

δS ¼ S

�
Cþ

X
n

λn

n!
δnC
�
− SðCÞ ≔

X
n

λn

n!
δnS: ð24Þ

Unlike the first law, we can choose the quantities C to be
arbitrary functions ofM, Q, and J as long as the number of
independent parameters is the same, such as the radii of the
black hole’s and cosmic horizons or some other geometrical
quantities, to proceed with the variations. Thus, the WCCC
check based on the second law can be done even for cases
with no proper ADM quantities, such as the RN-dS.
The WCCC can be violated if the resultant black hole

after infall becomes superextremal. Thus, it is essential to
find out the subextremal condition, which we abstractly
denote as
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WðCÞ ≥ 0 ð25Þ

for a black hole characterized by a set of parameters
denoted by C. The exact form of WðCÞ depends on the
types of black holes and the choices of C. For RN-dS,
WðM;QÞ is given by the lhs of (17) for a given L.
For WCCC to hold, we should require that the variations

of C satisfy the second law constraints and maintain the
subextremal condition after the infall. This can be sum-
marized succinctly by

WkðC þ δCÞ ≔ W

 
C þ

Xk
n¼1

λn

n!
δnC

����
2nd law

!
≥ 0 ð26Þ

for all 0 ≤ jλj < 1. In practice, we will consider the lower
bound of WkðC þ δCÞ, denoted as WkðλÞ and given by

WkðλÞ ≔ W

 
C þ

Xk
n¼1

λn

n!
δnC

����
δ1S¼δ2S¼���¼δkS¼0

!
: ð27Þ

We call WkðλÞ the WCCC discriminant function. Note that
the index k indicates the maximal order of variations. In this
paper, we will only consider k ¼ 1, 2. If WkðλÞ’s are
positive definite for all k considered, then (26) is guaran-
teed, henceWCCC is ensured by the second law. Otherwise,
WCCC can be possibly violated.
To prove WCCC, we can follow the spirit of [5]. For

extremal black holes, since there is no backreaction due to
radiation flux during the infall process, it is enough to
require δ1S ≥ 0 and proveW1ðλÞ ≥ 0 for all λ. For the near-
extremal black holes, however, it is not enough to just prove
W1ðλÞ ≥ 0 by requiring δ1S ≥ 0, since there are second-
order backreaction effects [5].1 Therefore, one needs to
check WCCC up to δ2C. To examine if the second-order
variation δ2C due to infalling matter could violate WCCC,
we can assume δ1C is optimally done, i.e., satisfying

δ1S ¼ 0; ð28Þ

and requires δ2C to obey

δ2S ≥ 0 ð29Þ

to check if W2ðλÞ is a complete square or not. For the
Einstein-Maxwell gravity, for which the first-law formu-
lation by [5] can be worked out precisely, it was shown

in [17] that both the first- and second-law formulations give
the same complete square for the lhs of (26). Namely, for
near-extremal RN black holes with Q ¼ M

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p
with ϵ

parametrizing the subextremality and the WCCC discrimi-
nant function WðM;QÞ ¼ M2 −Q2, the conditions (28)
and (29) give [5,17]

δ1S ¼ 0 → δ1M ¼ ð1 − ϵÞδ1Q; ð30Þ

δ2S¼ 0→ δ2M ≥
1− ϵ

M
ðδ1QÞ2þ

�
1− ϵþ ϵ2

2

�
δ2Q; ð31Þ

which then yield

W2ðλÞ ¼ ðMϵ − λδ1QÞ2: ð32Þ

It is a complete square, so WCCC holds either sign of λ.
This demonstrates the validity of the second-law formu-
lation of checking WCCC. As discussed, we can choose
different C and WðCÞ to examine WCCC. For RN case, we
can choose C ¼ frþ; r−g, and WðCÞ ¼ rþ for the subex-
tremal condition (25). Since the Wald entropy is simply
S ¼ πr2þ, thus the second law δS ¼ πrþδrþ ≥ 0 implies
δrþ ≥ 0, which then ensures WCCC. The simplicity of the
above proof demonstrates the advantage of choosing proper
C and WðCÞ when examining WCCC.
On the other hand, when considering the cases with

possible violations of WCCC, such as the RN-dS, our
purpose is to identify the regimes of parameters such as C
or λ, for which the second-law constraints can no longer
guarantee WCCC. That is, we like to find the regimes of
parameters Q, ϵ, and λ such that WkðλÞ ≤ 0 so that (26)
cannot hold definitely. This implies that the WCCC can be
possibly violated because the second law does not guar-
antee the validity of (26). Thus, we need to adopt a slightly
different strategy than the one above to prove WCCC.
In such cases, WCCC may be violated at the first-order
variations, i.e., W1ðλÞ cannot be positive definite for δ1C
satisfying δ1S ≥ 0. Then, it seems there is no need to turn
on the variations of second or higher orders to obtain
Wk≥2ðλÞ for disproving WCCC. However, from the expe-
rience of proving WCCC, the second-order variations will
tend to save WCCC. Therefore, to pin down a more precise
WCCC-violating regime of parameter space, we should
turn on δ2C. Again, we can assume δ1C is optimally done,
i.e., δ1S ¼ 0, and then introduce δ2C satisfying δ2S ≥ 0
to examine the difference between W1ðλÞ and W2ðλÞ. As
we will see, the latter usually yields a narrower WCCC-
violating regime than the former.

A. WCCC in the limiting de Sitter

Before considering WCCC for RN-dS with a sizable
cosmological constant such that α ≔ M=L is finite based
on the second-law method with entropy given by (5),

1The infalling matter would cause backreaction to the metric
and the Killing vector as well as the definition of the conserved
charges C, which is manifested in δ2C. A second-order variation
of the fields via Sorce-Wald approach leads to the canonical
energy, which turns out to be related to the flux of gravitational
and electromagnetic energy through the horizon [5]. These
second-order variations and backreactions are thus relevant for
WCCC of a near-extremal black hole.
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we first apply the method to check WCCC for the limiting
case with an infinitesimal α and expand the result in the
order of α.
We start by expanding all the quantities up toOðα0Þ, thus

rþ ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
; rc ¼ M

�
−1þ 1

α

�
; ð33Þ

and the subextremal condition is

WðM;QÞ ¼ M2 −Q2 ≥ 0; ð34Þ

which was obtained by plugging (33) into the extremal
condition (20) and expanding it up to Oðα0Þ. We then
consider a near-extremal black hole with

Q ¼ M
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p
with 0 < ϵ ≪ 1 ð35Þ

where ϵ characterizes the size of subextremality. Then,
using the condition (28) and (29) up to Oðα0Þ for the
entropy S given by (5), we find that the resultant WCCC
discriminant of (27) is

W2ðλÞ ¼
�
Mϵ −

�
2 −

2

α
þ 1

α2

�
λδ1Q

�
2

; ð36Þ

which is a complete square so that WCCC holds at Oðα0Þ.
We see that (36) is singular in the limit of α → 0, and
cannot smoothly recover (32) for a near-extremal RN black
hole in asymptotically flat spacetime. This suggests that the
check for WCCC by the expansion in α will break down
when going to the higher order of α expansion.
To see this, we expand all the quantities up to OðαÞ. In

this case, the subextremal condition is the same as (34) up to
an irrelevant factor ð1þ 4αÞ, which wewill omit. Following
the same procedure for Oðα0Þ case, we find that the
resultantW2ðλÞ cannot be a complete square atOðαÞ unless
Oðα2Þ terms are added. Note that this is different from (36),
which is a complete square within Oðα0Þ. The need of
Oðα2Þ terms for checking WCCC at OðαÞ motivates to go
to Oðα2Þ or higher. However, the singular nature of α
expansion appears at Oðα2Þ by having

rþ ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
þ α2

 
2ð2M2 −Q2Þ

M
þ 8M4 − 8M2Q2 þQ4

2M2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
!
: ð37Þ

The Oðα2Þ term of rþ is singular at the extremal limit
M2 ¼ Q2, which further causes the ambiguity when solving
the second-law constraints (28) and (29), with the solutions
depending on the order of truncating the expansions of ϵ and
α to the second order. This then fails the check of WCCC at
Oðαm≥2Þ. We can conclude that the α → 0 is the singular

limit for the RN-dS, so we cannot consistently check
WCCC by the α expansion. The next section will examine
WCCC for the finite α case without relying on α expansion.

IV. VIOLATIONS OF WCCC FOR RN BLACK
HOLES IN DE SITTER

Based on the scheme discussed in the previous section,
we now examine the WCCC for near-extremal RN-dS and
determine the WCCC-violating regimes of parameter space
based on the second-law method with the entropy of RN-dS
given by (5). We first consider the linear order variations
and then the second-order variations.
Instead of choosing M and Q to define the subextremal

condition, we choose rþ and rc to make the overall
calculations less tedious because the entropy formula (5)
of RN-dS has a simple form in terms of them. From (20),
we can define the following subextremal condition for
RN-dS,

Wðrþ; rcÞ ¼ rc −
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2r2þ
q

− rþ

�
≥ 0; ð38Þ

and introduce the subextremal parameter ϵ accordingly as
the following:

rc ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2r2þ
q

− rþ

� ffiffiffiffiffiffiffiffiffiffiffi
1þ ϵ

p
: ð39Þ

Note also that it should require rþ ≤ 1=
ffiffiffi
2

p
for (38)

and (39) to make sense.

A. Linear order variation

Consider a subextremal RN-dS perturbed by infalling
matter. By using (39), the linear order variation inequality
δ1Sðrþ; rcÞ ≥ 0 gives

δrc ≥ −
ð2 − ϵÞrþ

2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2r2þ
p

− rþ
� δrþ: ð40Þ

As ϵ is a small parameter, it is interesting to see that, in
general, δrc has the opposite sign to δrþ as required by
the second law. For the second law to hold, the cosmic
and event horizons cannot be increased or decreased
simultaneously by the infalling matter. It is possible that
the decrease of black hole entropy due to the shrinking
of the event horizon can be compensated by the increase
of the cosmic horizon by the expansion of the cosmic
horizon to satisfy the second law. This can possibly lead
to the destruction of the black hole and violation of
WCCC and is incredible for asymptotic flat or AdS black
holes with no cosmological horizon.
Assuming that the resultant field configuration is again

an RN-dS and belongs to a one-parameter family of
solutions to field equations, described by
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rþðλÞ ¼ rþ þ λδrþ; rcðλÞ ¼ rc þ λδrc; ð41Þ

in which λ is the small parameter characterizing perturbation
and is assumed to be of OðϵÞ. The WCCC discriminant
functionW1ðλÞ for the first-order perturbation based on (38)
turns out to be

W1ðλÞ ¼
1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2r2þ

q
− rþ

�
ϵ

þ 4r2þ − 1

2r2þ − 1þ rþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2r2þ

p λδrþ; ð42Þ

in which we have used the defining equation (39) for
the subextremality and the saturation of the second law
from (40). Recall that by construction, any linear pertur-
bation obeying (42) due to the infall process will saturate
the second law. Given ϵ and rþ, the rhs of (42) is just a
linear function of the parameter λ, and cannot be positive
definite. If W1ðλÞ < 0, it implies that the second law

cannot guarantee (26) so that some infalling matter can
violate WCCC.
The rhs of (42) is plotted as a function of λ for different

values of ϵ in Fig. 1. Since the extremal RN-dS black hole is
characterized by only one parameter, for numerical calcu-
lation, one could choose either rþ or equivalently Q
[related by (18)] as the free parameter. We choose the
black hole charge parameter Q ¼ 0.1, corresponding to
extremal event horizon radius rþ ¼ 0.102. The blue line
with ϵ ¼ 0 is the extremal RN-dS case, showing that as
long as λ < 0, WCCC would definitely be violated. As we
have discussed, this is understandable as the second law can
be maintained by shrinking the event horizon but expand-
ing the cosmic horizon. As shown, this scenario can be
realized for negative λ.
For the near-extremal RN-dS, the orange and green lines

in Fig. 1 show that WCCC might also be violated for
sufficiently large jλj. However, since jλj is assumed to be
small, only the jλj < 1 regime of these lines is reliable, as is
highlighted by the vertically dotted gray lines in Fig. 1. This
indicates that WCCC might be restored for nonextremal
RN-dS black holes. To see if the second-order perturbation
could change the regime violating WCCC, we need to
examine δ2S.

B. Second-order variation

Following the same concern as in [5,17] for examining
WCCC of a near-extremal black hole, we need to consider
the variation of the field configurations up to the second
order to take care of the backreaction effect. To see the
effect of the second-order perturbation, we start with the
optimally done first-order perturbation by requiring
δ1S ¼ 0. This gives

δrc ¼ −
ð8 − 4ϵþ 3ϵ2Þrþ
8ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2r2þ

p
− rþÞ

δrþ; ð43Þ

for which we have kept up to Oðϵ2Þ for consistency.
On top of that, we further require the second-order

perturbations to satisfy the second-order second law,
δ2S ≥ 0, and it gives

δ2rc ≥
−8þ 4ϵþ 4ϵð2 − 3ϵÞr2þ − 3ϵ2 þ 2ð8 − 4ϵþ 3ϵ2Þrþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2r2þ

p
8ð−3rþ þ 5r3þ þ ð1þ r2þÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2r2þ

p
Þ ðδrþÞ2

þ ð8 − 4ϵþ 3ϵ2Þrþð−1þ r2þ þ 2rþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2r2þ

p
Þ

8ð−3rþ þ 5r3þ þ ð1þ r2þÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2r2þ

p
Þ δ2rþ: ð44Þ

We assume that the resulting spacetime is characterized by

FIG. 1. The WCCC discriminant function W1ðλÞ saturating the
second law by the linear order one-parameter perturbation of
RN-dS configurations. We choose Q ¼ 0.1 which corresponds to
extremal event horizon radius rþ ¼ 0.102. δrþ and δ2rþ should
be of OðrþÞ, hence we simply choose δrþ ¼ δ2rþ ¼ rþ. The
blue, orange, and green lines correspond to ϵ ¼ 0, 0.119965 and
0.3, respectively.
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rþðλÞ ¼ rþ þ λδrþ þ λ2

2
δ2rþ; rcðλÞ ¼ rc þ λδrc þ

λ2

2
δ2rc: ð45Þ

The critical discriminant function W2ðλÞ up to second-order perturbation based on (38) turns out to be

W2ðλÞ ¼
1

2

�
−rþ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2r2þ

q �
ϵþ ð−1þ 4r2þÞδrþ

−1þ 2r2þ þ rþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2r2þ

p λ −
1

8

�
−rþ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2r2þ

q �
ϵ2

þ rþδrþ
2
�
−rþ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2r2þ

p � ϵλþ
0
B@1

2
δ2rþ þ ðδrþÞ2 þ rþδ2rþ − 2r3þδ2rþ

ð1 − 2r2þÞ3=2

þ
�
−1þ 2rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2r2þ

p �
ðδrþÞ2 þ rþ

�
−1þ r2þ þ 2rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2r2þ

p �
δ2rþ

2
�
−3rþ þ 5r3þ þ ð1þ r2þÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2r2þ

p �
1
CAλ2; ð46Þ

in which we have used (39), (43), and (44). One can check
easily that (46) is not a perfect square as those asymptotic
flat black holes shown in [5,17]. The value of W2ðλÞ is
plotted in Fig. 2 in solid curves, showing clearly that the
straight dashed lines due to constraint from linear order
variation are modified to parabolas.
We again chooseQ ¼ 0.1which corresponds to extremal

event horizon radius rþ ¼ 0.102. The blue solid curve in

Fig. 2 corresponds to ϵ ¼ 0, showing again that the
horizon for extremal RN-dS would be destroyed by
perturbation with λ < 0. As ϵ increases, the parabolas
rise up and finally depart from the horizontal axis. The
orange solid curve corresponds to a critical W2ðλÞ curve
with ϵ ¼ ϵc ≔ 0.119965. This critical curve has its mini-
mum occur atW2ðλÞ ¼ 0 for some λ. Therefore, for ϵ > ϵc
with a given Q, the corresponding W2ðλÞ is positive
definite, so WCCC holds. Compared with the orange
dashed line obtained from linear order variation con-
straint, we see that the second-order effect makes it
possible that W2ðλÞ become positive definite hence
WCCC is restored. For ϵ > ϵc, e.g., the green curve with
ϵ ¼ 0.3, the parabolas are all above the horizontal axis and
W2ðλÞ are strictly positive definite. Our results show that
the WCCC is violated only for near-extremal RN-dS. This
is qualitatively consistent with the violation of SCC also
for near-extremal RN-dS [29,34,35]. However, a more
precise comparison of the violations of SCC and WCCC
cannot be made in principle due to the lack of relations
between gravitational mass and matter mass in asymp-
totically de Sitter space.
Since our procedure is based on perturbation, which

requires jλj < 1, we should trust the result when the
perturbation approximation is valid. Therefore, we should
be more careful with the above interpretation of our results
to justify or falsifyWCCC near the λ ¼ −1 regime. Looking
into this regime in Fig. 2 more closely, we see that the
minimum of the orange critical curve seems rather near
λ ¼ −1. We then like to see if the minimum of the critical
W2ðλÞ curve can be shifted toward the smaller jλj regime by
tuning the black hole parameter Q. The result is shown in
Fig. 3, which shows the critical W2ðλÞ curves for different
Q’s. These critical curves are defined by having their local
minimums occur at W2ðλÞ ¼ 0 for some λ, thus are
characterized by the values of the pair ðQ; ϵcÞ. We see that

FIG. 2. The WCCC discriminant function W2ðλÞ saturating the
second laws by both linear and second-order one-parameter
perturbations of RN-dS configurations. The entropy is chosen
to be the one given by (5). The results of correspondingW1ðλÞ in
Fig. 1 are also shown in dashed lines for comparison. We choose
again Q ¼ 0.1 which corresponds to extremal event horizon
rþ ¼ 0.102; and δrþ ¼ δ2rþ ¼ rþ. The blue, orange, and green
lines again correspond to ϵ ¼ 0, ϵc, and 0.3, respectively. Here,
ϵc ≔ 0.119965 is the critical value of ϵ, beyond which W2ðλÞ is
positive definite. The inset figure shows this zoomed-in region
near the local minimum of the ϵ ¼ ϵc curve, where W2ðλÞ ¼ 0.
Our results show that the WCCC is violated only for near-
extremal RN-dS for ϵ < ϵc. This is qualitatively consistent with
the violation of SCC.
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for quite a range of Q, the minimums of the critical curves
are still near λ ¼ −1. However, away from the regime of
ϵ ≈ ϵc, one can unambiguously identify the regime of
violating WCCC for the (near-)extremal RN-dS inside
the jλj ≤ 1 window, as the blue line in Fig. 2. Another
interesting point, as shown in the inset in Fig. 3, is that the
minimum moves toward a slightly larger value of λ (but
smaller jλj) as the value of Q increases. However, ϵc
increases as Q increases.

From the above discussions, it is fair to conclude that for
such nonextremal black holes, small enough perturbation
due to infalling matter could not destroy the black hole
horizon. On the other hand, for very near extremal RN-dS,
the second-law constraint could not guarantee WCCC; the
possibility of violating WCCC increases when closing to
the extremal limit. This behavior is qualitatively in accord
with the SCC result revealed in [29,34].
Moreover, we find that there exists no real ϵc when the

parameterQ is large enough, e.g., forQ > 0.3. This implies
there exists no criticalW2ðλÞ curve, and theWCCCmust be
violated in some regime of jλj ≤ 1 for near-extremal RN-dS
with 0 < ϵ ≤ 1. Thus, it is interesting to see how theW2ðλÞ
curve changes as we change Q for a fixed ϵ, and the results
are shown in Fig. 4. We can see that WCCC is easier to be
violated for larger Q.

V. CONCLUSION AND DISCUSSION

In this paper, we have shown the regime of the parameter
space of the near-extremal RN-dS, in which the WCCC can
be violated. The WCCC is examined based on Wald’s
gedanken experiment of overcharging the black hole by
infalling matter, which causes the second-order variations
obeying the second-law constraint. Here, the second-law
constraint requires that the sum of the areas of the event and
cosmic horizons can never decrease. This is qualitatively
comparable with the violation of SCC for RN-dS configu-
rations discovered earlier [29,34,35].
Our result implies that the violations of WCCC and SCC

could possibly be correlated, even though they are formu-
lated in quite different ways. Despite that, some issues
remain to be explored further, and we will discuss them
briefly before concluding our paper.
For the eternal black hole in asymptotically flat space-

time, we can associate a Hawking temperature with the
event horizon, and then the first and second laws of
thermodynamics follow, similarly, for pure de Sitter space.
However, suppose there are both event and cosmic horizons.
In that case, it seems that we cannot define a global
temperature, and the whole spacetime may not be in thermal
equilibrium to define the first law and, thus, the entropy for
both the first and second laws. In the main text, we have
adopted the definition of entropy as the sum of the areas of
the event and cosmic horizons (up to a constant factor). This
is motivated by the meaning of entropy as the ignorance of
the physical information shield behind both horizons.
However, other choices for the entropy of the second law
can also be considered when examining WCCC. For
example, it was argued based on the cosmic holographic
entropy bound conjecture [51,52] that the order of the area
of the cosmic horizon should bound the entropy of matter
inside de Sitter space. Suppose we adopt such entropy to
examine WCCC based on our second-law method. In that
case, we find that WCCC can be violated similarly as found
in the main text with the chosen entropy (5), but with a

FIG. 3. The critical curves from the discriminant function
W2ðλÞ saturating the first- and second-order second law with
entropy given by (5) for RN-dS of different values of Q. These
critical curves are defined by having their local minimums occur
at W2ðλÞ ¼ 0 for some λ, and are thus characterized by the value
of Q and the corresponding value of ϵc, which we denote the pair
as ðQ; ϵcÞ. In this figure, ðQ; ϵcÞ are (0.05,0.0539477) for blue
curve, (0.1,0.119965) for orange curve, and (0.2,0.350888) for
the green curve. We can also see that the minimums of these three
curves all lie very closely and near λ ¼ −1.

FIG. 4. The WCCC discriminant function W2ðλÞ saturating the
first- and second-order second law with entropy given by (5) for
RN-dS of ϵ ¼ 0.119965 but for differentQ values, withQ ¼ 0.05
(blue), 0.1 (orange), 0.2 (green), and 0.3 (red), respectively. We
also zoom in on the seemingly intersecting regime, as shown in
the inset subfigure. The results imply that for a fixed subextre-
mality, the WCCC tends to be violated for larger Q.

VIOLATION OF WEAK COSMIC CENSORSHIP IN DE SITTER … PHYS. REV. D 110, 044057 (2024)

044057-9



slightly different regime of parameter space. The result is
shown in Fig. 5. For curiosity, we also consider the case
with entropy chosen to be the area of the event horizon, i.e.,
S ¼ πr2þ, and proceed to examine the WCCC and the result
is shown in Fig. 6. Unlike the previous two cases, WCCC is
violated even for the ϵ ¼ 1 case, which cannot be seen as
the near-extremal RN-dS. With the above comparison,
we may say that the choices of entropy to be either
S ¼ πðr2þ þ r2cÞ or S ¼ πr2c are sensible because the cor-
responding regime for violating WCCC is qualitatively
similar to the near-extremal regime for violating SCC.

The other issue that deserves future exploration is
formulating Wald’s first-law approach to WCCC for
RN-dS. As discussed in the Introduction, this approach’s
difficulty is defining the ADM mass to arrive at a relation
like (3). Despite that, there are still some tentative proposals
for defining gravitational mass in asymptotically de Sitter
space [53–55]. We now consider the proposal of [54], in
which an Iyer-Wald invariant mass [43] is defined on a
spherical hypersurface at r ¼ rHS with rþ < rHS ≤ rc. This
gravitational mass equals the mass parameter M of RN-dS
and is independent of the value of rHS. Adopting this
definition of gravitational mass, we can generalize the
relation (3) to RN-dS as δM ¼ E ¼ −ðmuμ þ qAμÞtμjr¼rHS

,
and yield a relation similar to (4) as follows,

δM −
Q
rþ

δQ ≥ 0; ð47Þ

where we have used Aμtμjr¼rþ ¼ − Q
rþ
with rþ given by (18)

for an extremal RN-dS, and also δQ ¼ q by Gauss’s law.
On the other hand, the extremal condition (17) for RN-dS
can be rewritten into (set L ¼ 1)

54M2 ¼
�
2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 12Q2

p �
2
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 12Q2

p �
: ð48Þ

The subextremal condition for RN-dS is obtained by
replacing the ¼ in (48) by ≥. Furthermore, by replacing
M by M þ δM and Q by Qþ δQ in this subextremal
condition and expanding up to the first order of δM and δQ,
we can obtain the condition for WCCC of an extremal
RN-dS, which turns out to be nothing but (47). This implies
that WCCC is preserved for the extremal RN-dS by
adopting the first-law relation (47) with δM defined in
the way of [54].
The above WCCC-preserving result seems in contra-

diction with our WCCC-violating result as shown in Fig. 1
obtained from the second-law method. This implies that
one of the two methods should be flawed. In the second-
law approach, we can understand that the violation of
WCCC mainly comes from the increase in the area of the
cosmic horizon, compensating for the shrinking of the
event horizon. However, in the relation (47), no term
reflects the cosmic horizon’s area change. Thus, it is more
like a local statement associated with the event horizon
only. On the other hand, if we think the gravitational mass
can be defined quasi-locally in the way of [54], then once
the particle enters the black hole, the mass and charge
parameters in RN-dS will also change accordingly, so does
the radius of rc for a given L. Indeed, our second-law
approach does take such change into account. The above
arguments imply that any first law for RN-dS without
taking care of the change of entropy associated with the
cosmic horizon, such as the one given by (47), will be
incomplete and flawed. The flaw of the first-law approach

FIG. 5. The WCCC discriminant function W2ðλÞ saturating the
first- and second-order second law with entropy given by
S ¼ πr2c. The results of corresponding W1ðλÞ are also shown
in dashed lines. The line styles and parametersQ and ϵ are chosen
to be the same as in Fig. 2. The results shown here look quite
close to the ones in Fig. 2. However, the critical value of ϵ is
slightly changed to ϵc ¼ 0.121117.

FIG. 6. The WCCC discriminant function W2ðλÞ saturating the
first- and second-order second law with entropy given by
S ¼ πr2þ. The results of corresponding W1ðλÞ are also shown
in dashed lines. The line styles and parameter Q are chosen to be
the same as in Figs. 2 and 5, but here the blue, orange, and green
lines correspond to ϵ ¼ 0, 0.5 and 1, respectively. We see that the
WCCC is violated even for ϵ ≥ 1 cases.
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could be due to the quasilocal definition of the gravita-
tional mass of RN-dS in the way of [54]. However, a good
definition of gravitational mass in asymptotically de Sitter
to take the cosmic dynamics into account is still out of
reach and deserves further study.

ACKNOWLEDGMENTS

We thank Jason Payne for the discussion on WCCC of
Myer-Perry’s BHs. F. L. L is supported by Taiwan’s
National Science and Technology Council through Grant
No. 112-2112-M-003-006-MY3. B. N. is supported by the
National Natural Science Foundation of China with Grants
No. 11975158 and No. 12247103.

APPENDIX: WCCC OF 5D MYERS-PERRY
BLACK HOLES

This Appendix examines the WCCC for the 5D Myers-
Perry black holes [56]. The metric in Boyer-Lindquist
coordinates is

ds2 ¼ −dt2 þ ρ2

4Δ
dx2 þ ρ2dθ2

þ ðxþ a2Þ sin2 θdϕ2 þ ðxþ b2Þ cos2 θdψ2

þ r20
ρ2

ðdtþ a sin2 θdϕþ b cos2 θdψÞ2; ðA1Þ

in which

ρ2 ¼ xþ a2 cos2 θ þ b2 sin2 θ;

Δ ¼ ðxþ a2Þðxþ b2Þ − r20x:

The parameter r0 is related to the mass M of the Myers-
Perry black hole,

M ¼ 3π

8G
r20; ðA2Þ

and a, b is related to the two independent angular
momentums Ja, Jb:

Ja ¼
2

3
Ma; Jb ¼

2

3
Mb: ðA3Þ

The locations of the horizons are indicated byΔ ¼ 0, which
gives

x� ¼ 1

2

�
r20 − a2 − b2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr20 − a2 − b2Þ2 − 4a2b2

q �
: ðA4Þ

The angular velocities on the event horizon are

Ωa ¼
a

xþ þ a2
; Ωb ¼

b
xþ þ b2

: ðA5Þ

If r0 ¼ aþ b, the black hole is extremal with xþ ¼ x−,
hence we define the following subextremal condition:

Wðr0; a; bÞ ¼ r20 − ðaþ bÞ2; ðA6Þ

and introduce the subextremal parameter ϵ by

r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþ bÞ2 þ ϵ2

q
: ðA7Þ

The black hole entropy is

S ¼ π2r20
4Gκ

�
2 −

2a2

xþ þ a2
−

2b2

xþ þ b2

�
; ðA8Þ

with κ the surface gravity

κ ¼ 2xþ þ a2 þ b2 − r20
r20

ffiffiffiffiffiffi
xþ

p : ðA9Þ

The Hawking temperature is simply TH ¼ κ=ð2πÞ. First,
we consider linear order perturbation. The linear order
variation inequality δ1Sðr0; a; bÞ ≥ 0 gives

δr0 ¼ δaþ δb −
bð5aþ bÞδaþ að5bþ aÞδbffiffiffiffiffiffi

ab
p ðaþ bÞ2 ϵ: ðA10Þ

Assuming the perturbed metric finally settles down to
another Myers-Perry black hole characterized by

r0ðλÞ ¼ r0 þ λδr0;

aðλÞ ¼ aþ λδa;

bðλÞ ¼ bþ λδb: ðA11Þ

It turns out that the critical discriminant function W1ðλÞ
is null,

W1ðλÞ ¼ 0: ðA12Þ

That is, the WCCC is always preserved for linear order
perturbation. To see the effect of the second-order pertur-
bation, we set the linear order perturbation to be optimally
done, i.e., δ1S ¼ 0, up to Oðϵ2Þ giving
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δr0 ¼ δaþ δb −
bð5aþ bÞδaþ að5bþ aÞδbffiffiffiffiffiffi

ab
p ðaþ bÞ2 ϵþ b2ð41a2 þ 10abþ b2Þδaþ a2ð41b2 þ 10abþ a2Þδb

2abðaþ bÞ4 ϵ2; ðA13Þ

while the second-order variation inequality δ2S ≥ 0 gives

δ2r0 ≥
1

abðaþ bÞ3 ðb
2ð25a2 þ 10abþ b2ÞðδaÞ2

þ a2ð25b2 þ 10abþ a2ÞðδbÞ2
þ abð10a2 þ 52abþ 10b2ÞδaδbÞ
þ δ2aþ δ2bþOðϵÞ: ðA14Þ

Assuming that the resulting metric is described by

r0ðλÞ ¼ r0þ λδr0þ
λ2

2
δ2r0;

aðλÞ ¼ aþ λδaþ λ2

2
δ2a;

bðλÞ ¼ bþ λδbþ λ2

2
δ2b; ðA15Þ

the critical discriminant function W2ðλÞ turns out to be a
perfect square

W2ðλÞ ¼
�
ϵ−

ðb2δaþa2δbþ 5abðδaþ δbÞÞffiffiffiffiffiffi
ab

p ðaþbÞ λ

�
2

; ðA16Þ

showing that the WCCC is also satisfied up to the second-
order perturbation.
The above result is also consistent with the Sorce-Wald

procedure [5] based on the first law. The linear order
variation inequality (assuming null energy condition) is

δM −ΩaδJa −ΩbδJb ≥ 0; ðA17Þ

in which

δM ¼ dM
dr0

δr0; ðA18Þ

δJa ¼
∂Ja
∂r0

δr0 þ
∂Ja
∂a

δa; ðA19Þ

δJb ¼
∂Jb
∂r0

δr0 þ
∂Jb
∂b

δb: ðA20Þ

Up toOðϵÞ, we find (A17) simply gives (A10), hence leads
to (A12). Assuming that the linear order perturbation is
optimally done, up to Oðϵ2Þ we obtain (A13). The con-
straint for the second-order perturbation should be

δ2M −Ωaδ
2Ja −Ωbδ

2Jb ≥ −THδ
2SMP; ðA21Þ

in which the second-order change in mass and angular
momentums are given by

δ2M ¼ dM
dr0

δ2r0; ðA22Þ

δ2Ja ¼
∂Ja
∂r0

δ2r0 þ
∂Ja
∂a

δ2a; ðA23Þ

δ2Jb ¼
∂Jb
∂r0

δ2r0 þ
∂Jb
∂b

δ2b; ðA24Þ

while δ2SMP denotes the second-order change in the
entropy for a one-parameter family of Myers-Perry black
holes with parameters given by

rMP
0 ¼ r0 þ αδr0; ðA25Þ

aMP ¼ aþ αδa; ðA26Þ

bMP ¼ bþ αδb: ðA27Þ

Thus,

δSMP ¼ ∂S
∂r0

δr0 þ
∂S
∂a

δaþ ∂S
∂b

δb; ðA28Þ

δ2SMP ¼ ∂ðδSMPÞ
∂r0

δr0þ
∂ðδSMPÞ

∂a
δaþ ∂ðδSMPÞ

∂b
δb: ðA29Þ

We find that (A21) finally gives rise to exactly (A14), hence
leading to the same perfect square (A16).
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