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It has been known that warped-product spacetimes such as spherically symmetric ones admit the
Kodama vector. This vector provides a locally conserved current made by contraction of the Einstein tensor,
even though there is no Killing vector. In addition, a quasilocal mass, Birkhoff’s theorem, and various
properties are closely related to the Kodama vector. Recently, it is shown that the notion of the Kodama
vector can be extended to three-dimensional axisymmetric spacetimes even if the spacetimes are not
warped product. This implies that warped product may not be a necessary condition for a spacetime to
admit the Kodama vector. We show properties of the Kodama vector originate from the conformal Killing-
Yano 2-form. In particular, the well-known spacetimes that admit the Kodama vector have a closed
conformal Killing-Yano 2-form. Furthermore, we show the Kodama vector provides local conserved
currents for each order of the Lovelock tensor as well as the Einstein tensor.
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I. INTRODUCTION AND SUMMARY

The Kodama vector, which was at first found in
four-dimensional spherically symmetric spacetimes [1],
provides a locally conserved current for the Einstein tensor
even in spacetimes without Killing vectors such as dynami-
cal spacetimes. Conventionally, the Kodama vector has
been defined by Ka ¼ −ϵab∇br, where r denotes the areal
radius and ϵab denotes the two-dimensional volume form
on time and radial space. Since this vector Ka satisfies
Gab∇aKb ¼ 0 for the Einstein tensor Gab, a current Ja ≡
GabKb is locally conserved, i.e., ∇aJa ¼ 0. If Ka is
timelike, this current can be interpreted as an appropriate
energy current with assuming the Einstein equation and its
associated charge yields the so-called Misner-Sharp qua-
silocal mass [2,3]. This notion has been generalized to
higher dimensions straightforwardly. It is worth noting
that spherical symmetry is not essential for a spacetime to
admit the Kodama vector but warped product with two-
dimensional base space plays an important role. Moreover,
it is known that the Kodama vector is closely related
to Birkhoff’s theorem (see [4], for example). This theorem
states that all spherically symmetric solutions of the
Einstein equation in vacuum must be static. It can be
rephrased in terms of the Kodama vector as follows. The
warped-product spacetimes, including spherically symmet-
ric spacetimes, admit the Kodama vector. If the spacetime is
Einstein manifold, then the Kodama vector becomes the
Killing vector.

Recently, it is shown that in three-dimensional axisym-
metric spacetimes even for nonwarped-product spacetimes
such as rotating ones, the notion of the Kodama vector can
be extended [5,6]. This vector can provide a local con-
served current and quasilocal mass taking into account
angular momentum, as in the cases of warped product
spacetimes. This fact suggests that warped product does not
seem to be necessary for a spacetime to admit the Kodama
vector.
In this paper we show properties of the Kodama vector

geometrically originate from a conformal Killing-Yano
(CKY) 2-form. Various conserved currents and charges
associated with (conformal) Killing tensors and (con-
formal) Killing-Yano forms have been reported in the
literature [7–15]. What we emphasize here is that the
Kodama vector is the so-called associated vector with a
CKY 2-form, while each subject has been discussed
separately. In particular, all the well-known spacetimes
admitting the Kodama vector have closed conformal
Killing-Yano (CCKY) 2-forms, which belong to a sub-
class of CKY 2-forms.
Furthermore, we show that the associated vector of the

CKY 2-form can yield conserved currents not only for the
Einstein tensor but also for each order of the Lovelock
tensor [16,17]. This means that the Kodama vector
provides a locally conserved energy current in Lovelock
gravity, which has been partially proved and conjectured
for symmetric spacetimes such as spherically symmetric
ones in [18,19]. (In warped-product spacetimes of a two-
dimensional base and an Einstein space, the Kodama
vector and the Misner-Sharp quasilocal mass were studied
in Ref. [20].)*Contact author: kinoshita.shunichiro@nihon-u.ac.jp
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This paper is organized as follows. In Sec. II we present
definitions and some basic properties of CKY 2-forms. We
reveal the relation between the Kodama vector and the
associated vector of a CKY 2-form. In Sec. III we exhibit
some explicit examples of the known Kodama vectors in
terms of CKY 2-forms. Thus, we demonstrate that the
Kodama vectors arise from the CKY 2-forms, indeed.

II. CONFORMAL KILLING-YANO 2-FORM
AND KODAMA VECTOR

In this section we will show the associated vector of a
conformal Killing-Yano 2-form yields locally conserved
currents contracted with each order of the Lovelock tensor,
including the Einstein tensor. This implies that properties
which the Kodama vectors should satisfy originate from
conformal Killing-Yano 2-forms.

A. CKY 2-form and conserved current
for Einstein tensor

We consider that a D-dimensional spacetime with the
metric gab admits a CKY 2-form, hab. The conformal
Killing-Yano 2-form [21,22] (also, see [23] and references
therein) satisfies

∇chab ¼ gcaKb − gcbKa þ Labc;

Ka ≡ −
1

D − 1
∇bhab; Labc ≡∇½ahbc�; ð1Þ

where the vector field Ka is the so-called associated vector
of hab. If Labc ¼ 0, hab reduces to a CCKY 2-form. In this
case, a Hodge dual of hab yields a Killing-Yano (D − 2)-
form fa1���aD−2

, which satisfies ∇afb1���bD−2
¼ ∇½afb1���bD−2�.

Covariant derivative of the associated vector Ka is

∇aKb ¼ −
1

D − 1
∇a∇chbc

¼ −
1

D − 1
ð∇c∇ahbc þ Ra

c
b
dhdc þ Ra

c
c
dhbdÞ

¼ 1

D − 1
∇aKb þ

1

D − 1
Racbdhcd

þ 1

D − 1
Ra

chbc −
1

D − 1
∇cLabc: ð2Þ

This can be rewritten as

∇aKb ¼
1

2ðD−2ÞRabcdhcdþ
1

D−2
Ra

chbc−
1

D−2
∇cLabc;

ð3Þ

where we have used the first Bianchi identity Rabcd þ
Racdb þ Radbc ¼ 0.

It turns out that a symmetric part of Eq. (3) is given by

∇ðaKbÞ ¼
1

D − 2
RðachbÞc: ð4Þ

The trace yields

∇aKa ¼ 1

D − 2
Rachac ¼ 0; ð5Þ

implying that the vector field Ka is divergence-free. For the
Einstein tensor Gab, we obtain

Gab∇aKb ¼
1

D − 2
RabRa

chbc ¼ 0: ð6Þ

Thus, the associated vector Ka for a conformal Killing-
Yano 2-form hab provides the same properties as Kodama
vectors and GabKb becomes a locally conserved current.1

We note that if the spacetime is an Einstein space, i.e.,
Rab ¼ λgab, then Eq. (4) leads to the Killing equation
∇aKb þ∇bKa ¼ 0 [22]. This implies a version of
Birkhoff’s theorem that the Kodama vector becomes a
Killing vector in vacuum with a cosmological constant. In
four dimensions, the relation between CKY 2-form and
Birkhoff’s theorem was discussed [24].
We can rewrite GabKb as

GabKb ¼ 1

2ðD − 3Þ∇
bðRabcdhcd þ 4R½achb�c þ RhabÞ

¼ ∇b

�
1

2ðD − 3ÞWabcdhcd þ
2

D − 2
R½achb�c

þ D
2ðD − 1ÞðD − 2ÞRhab

�

¼ 1

2ðD − 2ÞCabchbc þ∇b

�
2

D − 2
R½achb�c

þ D
2ðD − 1ÞðD − 2ÞRhab

�
; ð7Þ

where Wabcd denotes the Weyl curvature tensor and the
Cotton tensor Cabc is defined as

Cabc≡2∇½cRb�a−
1

D−1
ga½b∇c�R¼D−2

D−3
∇dWadbc: ð8Þ

Since GabKb is given by a divergence of 2-form
“potential” in Eq. (7), we can explicitly see this current
is locally conserved. It is worth noting that the expressions
in the first and second lines of (7) are valid in D > 3

1These properties have been pointed out in Refs. [10,13,14],
where GabKb is referred to as “Einstein current.”
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dimensions, because both Pabcd ≡ Rabcd − 2Ra½cgd�b þ
2Rb½cgd�a þ Rga½cgd�b

2 and Wabcd are identically zero in
three dimensions. However, that in the last two lines is
valid even in D ¼ 3 dimensions. We note that Cabchbc is a
so-called Cotton current in Ref. [11].3

In a specific case, if hab is a Killing-Yano tensor, then
the potential 2-form field Rabcdhcd þ 4R½achb�c þ Rhab
itself can be conserved. This is referred to as the
Yano current [8]. It is equivalent to the fact that the
associated vector for the Killing-Yano tensor will vanish
in Eq. (7).

B. Generalization to Lovelock tensor

By using the fact that the Kodama vector is provided by a
CKY 2-form, we can prove the Kodama vector yields
conserved currents for each order of the Lovelock tensor as
well as the Einstein tensor.
The nth order Lovelock tensor (0 < n < D=2) in D

dimensions [16,17] (also, see [27] and references therein) is
given by

GðnÞa
b ≡ −

1

2nþ1
δaa1���a2nbb1���b2nRa1a2

b1b2 � � �Ra2n−1a2n
b2n−1b2n ; ð9Þ

which reduces to the Einstein tensor for n ¼ 1. Note that
symbol δa1���akb1���bk is the generalized Kronecker δ symbol,
defined by

δa1���akb1���bk ¼ k!ga1½b1 � � � g
ak
bk�

¼ −
1

ðD − kÞ! ϵ
a1���akckþ1���cDϵb1���bkckþ1���cD ; ð10Þ

where ϵa1���aD denotes the totally antisymmetric D-
dimensional volume form.
We introduce the following 2-form field consisting of a

CKY 2-form hab and n powers of the Riemann tensors:

FðnÞ
ab ≡ δcda1���a2nabb1���b2nhcdRa1a2

b1b2 � � �Ra2n−1a2n
b2n−1b2n : ð11Þ

It turns out that

∇bFðnÞ
ab ¼ δcda1���a2nabb1���b2n∇bhcdRa1a2

b1b2 � � �Ra2n−1a2n
b2n−1b2n þ δcda1���a2nabb1���b2nhcd

Xn
k¼1

Ra1a2
b1b2 � � �∇bRa2k−1a2k

b2k−1b2k � � �Ra2n−1a2n
b2n−1b2n

¼ δcda1���a2nabb1���b2nðgbcKd − gbdKc þ Lb
cdÞRa1a2

b1b2 � � �Ra2n−1a2n
b2n−1b2n

¼ −2ðD − 2n − 1Þδda1���a2nab1���b2nKdRa1a2
b1b2 � � �Ra2n−1a2n

b2n−1b2n

¼ 2nþ2ðD − 2n − 1ÞGðnÞ
adKd: ð12Þ

The second equality follows from the second Bianchi
identity, ∇½aRbc�de ¼ 0, and the third equality does from
the first Bianchi identity. Since Fab is antisymmetric,
GðnÞ

adKd is divergence-free. Hence, we have also a local
conserved current for the nth order Lovelock tensor as

JðnÞa ≡GðnÞa
bKb ¼ 1

2nþ2ðD − 2n − 1Þ∇bFðnÞab: ð13Þ

Note that, for n ¼ 1, the previous result for the Einstein
tensor is obviously reproduced. On arbitrary spacelike
hypersurfaces Σ with a common boundary ∂Σ, by using
the Stokes theorem, we have a conserved charge written in
the boundary integral. An nth order quasilocal charge
becomes

QðnÞ½∂Σ� ¼
Z
Σ
JðnÞadΣa¼

1

2nþ2ðD−2n−1Þ
I
∂Σ
FðnÞabdSab:

ð14Þ

We note that the potential 2-form field (11) seems
to be very similar to a part of the Killing-Lovelock
potential [28,29] to define improved Komar integrals in
Lovelock theory. The nth Killing-Lovelock potential for
the nth order Lovelock term, however, consists of (n − 1)
powers of the Riemann tensor. On the other hand, in
Ref. [15], the authors introduced a 2-form field with the
same powers of the Riemann tensor as (11) for Killing-
Yano 2-forms but not for conformal Killing-Yano 2-forms.
In that case, the 2-form field itself is conserved.

III. APPLICATIONS TO KNOWN EXAMPLES

In this section, we will demonstrate that, for the conven-
tional Kodama vectors, which were heuristically obtained
in specific spacetimes, various properties can be repro-
duced in terms of CKY 2-forms admitted by those space-
times. In particular, such spacetimes admit closed CKY
2-forms, that is, a subclass of CKY 2-forms.

2This rank-4 tensor is divergence-free and its indices have the
same symmetries of the Riemann tensor, which can be also
written as δcda1a2abb1b2

Ra1a2
b1b2 ¼ 4Pab

cd by using the generalized
Kronecker δ symbol. This type of tensor has been used in
Ref. [25], for example.

3A conserved current for the Cotton tensor was discussed in
Ref. [26], also.
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A. Warped-product spacetime

It is known that warped-product spacetimes with two-
dimensional base possess the Kodama vector field. We
revisit the known results for the Kodama vector in terms of
CKY 2-forms (also see Appendix D in [30]).
We consider that the metric of a D-dimensional warped-

product spacetime, B ×r F , is given by

gabdxadxb ¼ γμνðyÞdyμdyν þ rðyÞ2ωIJðσÞdσIdσJ; ð15Þ

where γμν and ωIJ denote metrics on the two-dimensional
base space B and the (D − 2)-dimensional fiber F , respec-
tively. The positive function rðyÞ is a warp factor depending
only on the coordinates on the base space, fyμg. On F the
metric ωIJ itself becomes a rank-2 Killing tensor and the
associated (D − 2)-dimensional volume form is a Killing-
Yano (D − 2)-form. It follows from the lifting theorem
in [31] that we can lift it to a Killing-Yano (D − 2)-form on
the whole spacetime. As a result, we find that this spacetime
admits a CCKY 2-form given by

1

2
habdxa ∧ dxb≡ r

2
ðγÞϵabdxa ∧dxb ¼ r

ffiffiffiffiffiffi
−γ

p
dy0 ∧ dy1;

ð16Þ

where ðγÞϵab is the two-dimensional volume form associated
with the metric γμν. Note that this is equivalent to the Hodge
dual f ¼ �h being the Killing-Yano (D − 2)-form.
The associated vector with this CCKY 2-form yields the

Kodama vector as follows:

∇ahab ¼
1ffiffiffiffiffiffi−gp ∂a

� ffiffiffiffiffiffi
−g

p
rðγÞϵab

�

¼ 1

rD−2 ffiffiffiffiffiffi−γp ffiffiffiffi
ω

p ∂a

�
rD−1 ffiffiffiffiffiffi

−γ
p ffiffiffiffi

ω
p ðγÞϵab

�

¼ ðD − 1ÞðγÞϵab∇ar; ð17Þ

where the conventional Kodama vector is given by
Ka ¼ −ðγÞϵab∇br. In fact, the warp factor r is given
by a “norm” of the CCKY 2-form h [or the KY
(D − 2)-form f] as

r2 ¼ −
1

2
habhab: ð18Þ

For the Einstein tensor, the components on the two-
dimensional base space are

Gμν ¼ −
D − 2

r
∇μ∇νrþ

�ðD − 2ÞðD − 3Þ
2r2

∇λr∇λr

þD − 2

r
∇λ∇λr −

1

2r2
ðωÞR

�
γμν; ð19Þ

where ∇̄μ denotes the covariant derivative associated
with γμν and ðωÞR is the scalar curvature of the (D − 2)-
dimensional metric ωIJ. For a conserved currentGabKb, we
have

GabKb ¼ −
1

rD−2
ðγÞϵab∇b

�
ðD − 2Þ r

D−3

2
∇cr∇cr

−
rD−3

2ðD − 3Þ
ðωÞR

�
¼ 1

rD−1 hab∇bm; ð20Þ

where a mass function can be defined by

m ¼ D − 2

2
rD−3

�
KaKa þ

ðωÞR
ðD − 2ÞðD − 3Þ

�
: ð21Þ

Since Ka is divergence-free, the Kodama vector itself
becomes a conserved current for the metric tensor gab. By
definition, a charge associated with this current is given by

Ka ¼ −
1

r
hab∇br ¼ −

1

ðD − 1ÞrD−1 hab∇brD−1: ð22Þ

If we consider the Einstein equation with a cosmological
constant term, Gab þ Λgab ¼ Tab, the Misner-Sharp qua-
silocal mass

mMS ¼
D − 2

2
rD−3

�
−

2Λ
ðD − 1ÞðD − 2Þ r

2 þ KaKa

þ
ðωÞR

ðD − 2ÞðD − 3Þ
�

ð23Þ

is obtained by combining two conserved charges, including
only the contribution of matter without a cosmological
constant. It is built from the CCKY 2-form and the Ricci
scalar on the fiber F.

B. Three-dimensional spacetime

In three dimensions one can consider that spacetimes are
not warped product but axisymmetric, such as a rotating
spacetime with angular momentum. In this case the
Kodama vector can be defined and it provides conserved
current and charge [5,6].
Let us suppose ψa is a Killing vector satisfying

∇aψb þ∇bψa ¼ 0: ð24Þ

The Hodge dual of it provides a CCKY 2-form given by

hab ≡ ϵabcψ
c: ð25Þ

Note that we can directly confirm
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∇chab ¼ ϵabd∇cψ
d

¼ gacKb − gbcKa; ð26Þ

where the associated vector is given by

Ka ≡ −
1

2
∇bhab ¼ −

1

2
ϵabc∇bψc: ð27Þ

This is the extended Kodama vector, which has been
introduced in [5,6]. Note that ∇aψb ¼ ϵabcKc. We have

∇aKb ¼ −
1

2
ϵb

cd∇a∇cψd

¼ 1

2
ϵb

cdRcda
eψe

¼ −ϵacdGb
dψc ¼ hacGb

c; ð28Þ

which yields Gab∇aKb ¼ 0. A straightforward calculation
shows

∇aðKbKbÞ ¼ 2Kb∇aKb

¼ −2ϵacdψcGd
bKb ¼ 2hacGc

bKb; ð29Þ

∇aðψbψbÞ ¼ 2ψb∇aψb

¼ 2ϵabcψ
bKc ¼ −2habKb; ð30Þ

and

∇aðψbKbÞ ¼ ψb∇aKb þ Kb∇aψ
b

¼ −ϵacdψcGb
dψb ¼ hacGc

bψ
b: ð31Þ

This implies that the above scalar quantities KaKa, ψaψa,
and ψaKa are conserved charges associated with conserved
currents Ga

bKb, Ka, and Ga
bψ

b, respectively.
If we assume that ψa is an axial Killing vector and the

Einstein equation Gab þ Λgab ¼ Tab is satisfied, the fol-
lowing scalar functions

m≡ 1

2
ð−Λψaψa þ KaKaÞ;

j≡ −ψaKa; ð32Þ

can be interpreted as a Misner-Sharp quasilocal mass and
Komar angular momentum in three-dimensional axisym-
metric spacetimes.

C. Generalized Misner-Sharp mass
in Lovelock gravity

In this subsection we consider D-dimensional warped-
product spacetime (15) again. For simplicity, we focus
on the cases in which the metric ωIJ on the (D − 2)-
dimensional subspace F is maximally symmetric, i.e.,

ðωÞR ¼ ðD − 2ÞðD − 3Þk. The real constant k denotes a
curvature scale on the (D − 2)-dimensional subspace.
Now, because the whole spacetime is warped product,

components of 2-form potential only on the two-dimen-
sional base should contribute to the conserved charge by
integrating the conserved current for the nth Lovelock
tensor. The CCKY 2-form of Eq. (16), hab, is proportional
to the volume form of the two-dimensional base space.
We have

FðnÞ
ab h

ab ¼ δcda1���a2nabb1���b2nh
abhcdRa1a2

b1b2 � � �Ra2n−1a2n
b2n−1b2n

¼ −4r2δI1���I2nJ1���J2nRI1I2
J1J2 � � �RI2n−1I2n

J2n−1J2n

¼ −
ðD − 2Þ!2nþ2

ðD − 2n − 2Þ!r2n−2 ðkþ KaKaÞn; ð33Þ

where (D − 2)-dimensional components of the Riemann
curvature tensor are given by

RIJ
KL ¼ kþ KaKa

r2
δKLIJ : ð34Þ

Note that δKLIJ denotes the generalized Kronecker δ
symbol on the (D − 2) dimensions, and we have used
the formulas ϵabc1���cD−2

hab ¼ −2rD−1ðωÞϵc1���cD−2
and

δI1I2���I2n−1I2nJ1J2���J2n−1J2nδ
J1J2
I1I2

� � � δJ2n−1J2nI2n−1I2n
¼ 2nðD − 2Þ!=ðD − 2n − 2Þ!.

As the result, a conserved current and a quasilocal charge
for the nth Lovelock tensor are

GðnÞa
bKb ¼ ∇b

�
mðnÞ

rD−1 h
ab

�
; ð35Þ

where

mðnÞ ≡ ðD − 2Þ!
2ðD − 2n − 1Þ! r

D−2n−1ðkþ KaKaÞn: ð36Þ

Since, for each order of the Lovelock tensor, each current
and each charge are conserved, linear combinations of these
quantities should be conserved. Hence, according to the
field equations, they can reproduce the generalized Misner-
Sharp quasilocal mass in Lovelock gravity, which has been
proposed in Refs. [18,19].
We note that, when the (D − 2)-dimensional subspace is

described by Einstein spaces as well as maximally sym-
metric spaces, the Misner-Sharp quasilocal mass was
provided in Ref. [20]. In that case, the quasilocal mass
contains the Weyl curvature of the (D − 2)-dimensional
Einstein space. [More generally, it comprises the sum of
every order of Lovelock terms for the (D − 2)-dimensional
subspace, as shown in Appendix A.]
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IV. DISCUSSION

In this paper, we have shown that the associated vector of
a conformal Killing-Yano 2-form is the origin of the
Kodama vector. In spacetimes admitting a CKY 2-form,
each order of the Lovelock tensors as well as the Einstein
tensor contracted with the Kodama vector yields a locally
conserved current. This fact results from purely geometrical
properties of CKY forms without the field equations in
gravitational theories. Physical interpretations of the con-
served current such as an energy current should be provided
through the field equations. The Kodama vectors that
have been known in the literature arise from closed
CKY 2-forms. This means that in order to obtain character-
istic properties of the Kodama vectors only weaker con-
ditions need to be imposed on spacetimes because closed
CKY 2-forms are contained within CKY 2-forms. We
expect that various arguments based on the Kodama vector
can be extended to spacetimes admitting CKY 2-forms as
well as closed ones. Unfortunately, little is known about
general ansatz of nontrivial spacetimes admitting a CKY
2-form such that its associated vector is not Killing vector.
If a spacetime admits a CCKY 2-form, we can obtain the
spacetime admitting the CKY 2-form by conformal trans-
formation. Thus, it turns out that conformally warped-
product spacetimes have the Kodama vectors.
For each order of the Lovelock tensor, including the

Einstein tensor and metric tensor (i.e., cosmological con-
stant term), each current provided by the Kodama vector
can be individually conserved. This means there are
individual, conserved charges associated with each current.
It is expected that in terms of these charges we can obtain
thermodynamic relations such as the Smarr formula and the
first law [19,32]. In particular, this nature may play a
significant role in extracting the contribution of a cosmo-
logical constant from a definition of energy [25,33].
The conserved currents associated with Killing vectors

and Kodama vectors have a similar structure [28,29] built
from the following quantities: PðnÞ

ab
cd ≡ δcda1���a2nabb1���b2n ×

Ra1a2
b1b2 � � �Ra2n−1a2n

b2n−1b2n , which are crucial to the
Euler-Lagrange equations in Lovelock gravity [27,34,35].
Because a Killing vector ξa is divergence-free, we obtain a
2-form potential ωab such that ξa ¼ ∇bω

ab. A part of a

Komar-type potential is given by PðnÞ
abcdω

cd. On the other
hand, a Kodama vector is provided by a CKY 2-form hab as
Ka ¼ −∇bhab=ðD − 1Þ and the potential is given by

PðnÞ
abcdh

cd. It is fascinating to explore the relation between
these conserved currents.
A primitive proof of Birkhoff’s theorem based on the

CKY 2-form can apply to only vacuumwith a cosmological
constant not but electrovac spacetimes, because it relies on
the fact that the spacetime is described by the Einstein
metric. However, the condition that the spacetime is
described by the Einstein metric is only a sufficient
condition for the Kodama vector to be a Killing vector.

The fact that Birkhoff’s theorem holds for a wider class of
spacetimes even in Lovelock gravity [36–38] implies the
proof can be improved. For example, extending the argu-
ment to generalized CKYs or CCKYs with torsion [39,40]
may be interesting.
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APPENDIX A: CURVATURE TENSORS ON
WARPED-PRODUCT SPACETIMES

In this Appendix, we summarize useful relations in terms
of the curvature tensor on the D-dimensional warped-
product spacetimes, B ×r F , described by the metric (15).
The nonvanishing components of the Riemann tensor are

given by

Rμναβ ¼ ðγÞRγμ½αγβ�ν;

RμIνJ ¼ −ωIJr∇̄μ∇̄νr;

RIJKL ¼ r2½ðωÞRIJKL þ 2KaKaωI½KωL�J�; ðA1Þ

where ðωÞRIJKL denotes the Riemann tensor with respect to
the metric ωIJ on the fiber F , and ðγÞR and ∇̄μ denote,
respectively, the Ricci scalar and the covariant derivative
with respect to the metric γμν on the base B.
The nonvanishing components of the Ricci tensor are

Rμν ¼
ðγÞR
2

γμν −
D − 2

r
∇̄μ∇̄νr;

RIJ ¼ ðωÞRIJ þ ½ðD − 3ÞKaKa − r∇̄μ∇̄μr�ωIJ; ðA2Þ

and the Ricci scalar is

R ¼ ðγÞR −
2ðD − 2Þ

r
∇̄μ∇̄μr

þ 1

r2

h
ðωÞRþ ðD − 2ÞðD − 3ÞKaKa

i
: ðA3Þ

The contraction of n powers of the Riemann tensor with
the generalized Kronecker δ on (D − 2)-space is given by

δI1���I2nJ1���J2nRI1I2
J1J2 � � �RI2n−1I2n

J2n−1J2n

¼ 1

r2n
δI1���I2nJ1���J2n

h
ðωÞRI1I2

J1J2 þ KaKaδ
J1J2
I1I2

i
� � �

¼ 2n

r2n
Xn
l¼0

nCl
ðD − 2 − 2nþ 2lÞ!

ðD − 2 − 2nÞ! ðKaKaÞlRðn−lÞ
ω ; ðA4Þ

where

SHUNICHIRO KINOSHITA PHYS. REV. D 110, 044056 (2024)

044056-6



RðkÞ
ω ≡ 1

2k
δI1���I2kJ1���J2k

ðωÞRI1I2
J1J2 � � � ðωÞRI2k−1I2k

J2k−1J2k : ðA5Þ

Note that we have used

δI1���I2nJ1���J2nδ
I1I2
J1J2

� � � δI2l−1I2lJ2l−1J2l

¼ 2lðD − 2 − 2nþ 2lÞ!
ðD − 2 − 2nÞ! δ

I1���I2ðn−lÞ
J1���J2ðn−lÞ ðn ≥ lÞ: ðA6Þ

If ωIJ on the fiber F is a (D − 2)-dimensional Einstein
metric, i.e, ðωÞRIJ ¼ kðD − 3ÞωIJ, then we have ðωÞRIJ

KL ¼
ðωÞWIJ

KL þ kδKLIJ , where ðωÞWIJKL is the Weyl tensor with
respect to ωIJ. Equation (A4) reduces to

δI1���I2nJ1���J2nRI1I2
J1J2 � � �RI2n−1I2n

J2n−1J2n

¼ 2n

r2n
Xn
l¼0

nCl
ðD − 2 − 2nþ 2lÞ!

ðD − 2 − 2nÞ! ðkþ KaKaÞlWðn−lÞ
ω ;

ðA7Þ

where WðkÞ
ω has been obtained by replacing the Riemann

tensor ðωÞRIJ
KL with the Weyl tensor ðωÞWIJ

KL in Eq. (A5).

APPENDIX B: FORMULAS
FOR CURVATURE POLYNOMIALS

In this appendix, we summarize basic properties of
curvature polynomials in D dimensions (see, for example,
Refs. [27,34,35]).
The nth order Lovelock scalar and Lovelock-Ricci

tensor, which are respectively analogous to the Ricci scalar
and the Ricci tensor for n ¼ 1, are

RðnÞ ≡ 1

2n
δa1a2���a2nb1b2���b2nRa1a2

b1b2 � � �Ra2n−1a2n
b2n−1b2n ; ðB1Þ

RðnÞa
b ≡ n

2n
δa1a2���a2nbb2���b2n Ra1a2

ab2 � � �Ra2n−1a2n
b2n−1b2n : ðB2Þ

The nth order Lovelock tensor, which is the analog of the
Einstein tensor, is given by

GðnÞa
b ≡ −

1

2nþ1
δaa1a2���a2nbb1b2���b2nRa1a2

b1b2 � � �Ra2n−1a2n
b2n−1b2n

¼ RðnÞa
b −

1

2
RðnÞgab; ðB3Þ

where the last equality is easily verified by using the
following formula:

δaa1a2���a2nbb1b2���b2n ¼ gabδ
a1a2���a2n
b1b2���b2n −

X2n
k¼1

gabkδ
a1a2���ak���a2n
b1b2���b���b2n : ðB4Þ

An nth order rank-4 tensor that consists of n powers of
the Riemann tensor is given by

PðnÞ
ab

cd ≡ δcda1a2���a2nabb1b2���b2nRa1a2
b1b2 � � �Ra2n−1a2n

b2n−1b2n : ðB5Þ

Its indices have the same properties as those of the Riemann
tensor,

PðnÞ
abcd ¼−PðnÞ

bacd¼−PðnÞ
abdc;

PðnÞ
abcd ¼PðnÞ

cdab; PðnÞ½abc�d ¼ 0; ðB6Þ

and, in addition, it is divergence-free for each index,

∇aPðnÞ
abcd ¼ 0: ðB7Þ

This tensor has various useful properties as follows. The
contraction yields

PðnÞ
ac

bc ¼ −2nþ1ðD − 2n − 1ÞGðnÞ
a
b: ðB8Þ

Furthermore, we have

RðnÞ ¼ 1

2n
Pðn−1Þ

abcdRabcd; RðnÞa
b ¼

n
2n

Pðn−1Þ
bcdeRacde:

ðB9Þ
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