
Geodesically complete universes

Raúl Carballo-Rubio ,1,* Stefano Liberati ,2,3,4,† and Vania Vellucci 2,3,4,‡

1CP3-Origins, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
2SISSA - International School for Advanced Studies, Via Bonomea 265, 34136 Trieste, Italy

3IFPU, Trieste - Institute for Fundamental Physics of the Universe, Via Beirut 2, 34014 Trieste, Italy
4INFN Sezione di Trieste, Via Valerio 2, 34127 Trieste, Italy

(Received 6 May 2024; accepted 31 July 2024; published 27 August 2024)

Singularity theorems demonstrate the inevitable breakdown of the concept of continuous, classical
spacetime under highly general conditions. Quantum gravity is expected to intervene to avoid
singularities, and models so far hint toward several regularized geometries, in which limited spacetime
regions requiring full quantum gravitational description can be safely covered by an extension of some
suitable spacetime geometry. Motivated by these premises, in recent years, a systematic, quantum gravity
agnostic study has been carried out to catalog all the conceivable nonsingular, continuous, and globally
hyperbolic geometries arising from evading Penrose’s focusing theorem in gravitational collapse. In this
study, we extend this inquiry by systematically examining all potential nonsingular, continuous,
and globally hyperbolic extensions into the past of Friedmann-Lemaître-Robertson-Walker metrics. As
in the black-hole case, our investigation reveals a remarkably limited set of alternative scenarios. The
stringent requisites of homogeneity and isotropy drastically restrict the viable singularity-free geometries
to merely three discernible nonsingular cosmological spacetimes: a bouncing universe (where the scale
factor reaches a minimum in the past before reexpanding), an emergent universe (where the scale
factor reaches and maintains a constant value in the past), and an asymptotically emergent universe
(where the scale factor diminishes continually, asymptotically approaching a constant value in the past).
We also discuss the implications of these findings for the initial conditions of our Universe, and the arrow
of time.
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I. INTRODUCTION

Penrose’s theorem published in 1965 [1] had an imme-
diate impact in the general relativity (GR) community [2].
It showed that singularities in gravitational collapse are
unavoidable under reasonable physical assumptions.
Shortly after, Hawking pointed out that similar results

would hold for cosmological situations [3–5] (see also [6]),
thus showing that the same robustness holds for the singu-
larities characteristic of Friedmann-Lemaître-Robertson-
Walker (FLRW) spacetimes. In particular, any universe that
is well approximated at large scales by the FLRW spacetime
(such as ours [7]), would be expected to become singular if
GR, aswell as the assumptions that enter the theorem,were to
hold indefinitely backward in time.
However, the current consensus is that some of these

assumptions, and most likely the very framework provided
by GR, fail to describe adequately the very early Universe,
at least because quantum gravitational effects are expected

to become relevant before reaching a singularity.
Understanding the precise form in which this happens is
subject of intense research, with the development of diverse
theoretical models [8–21] that could eventually be tested
observationally [22–25].
Here, we extend a quantum gravity agnostic, geometric

analysis already successfully carried out for classifying
the possible geometries of regular black holes [26,27] to
classify all the nonsingular, continuous, and globally
hyperbolic extensions into the past of FLRW metrics. In
doing so, we find that a limited catalog of alternative
scenarios can be realized. Still, such scenarios are suffi-
ciently general to encompass all of the models previously
illustrated in the quantum gravity literature, and illuminate
on the possible initial conditions for our Universe and their
implication for the time arrow problem.
The paper is organized as follows: In Sec. II, we discuss

the assumptions at the base of cosmological singularity
theorems. In Sec. III, we discuss the structure of trapped
regions in FLRW geometries and its relevance for our
analysis. In Sec. V, we then analyze, for flat or open FLRW
universes, the possible alternatives to a past spacelike
singularity such as the “big bang.” In Sec. VII, we extend
the same analysis to the case of closed FLRW universes.
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We close with a discussion of the implications of our
findings in Sec. VIII.

II. BEYOND PENROSE’S THEOREM

Penrose’s 1965 theorem [1] marked a milestone in our
understanding of gravity [2]. It was based on a quite
restricted set of assumptions that can be summarized as

(i) The “null convergence condition,” Rabkakb ≥ 0 ∀
null vector ka, holds (this implies in GR the null
energy condition).

(ii) The manifold is a time orientable, globally hyper-
bolic spacetime M ¼ R × Σ3 admitting a noncom-
pact Cauchy hypersurface.

(iii) At some point in a gravitational collapse process, a
closed future-trapped surface T 2 forms, with a
(negative) maximum expansion θmax ¼ θ0 < 0.

The theorem then proceeds in two steps. The first
one consists in showing that an initial negative expansion
and the null convergence condition are enough to
prove via the Raychaudhuri equation that the expansion
will become infinitely negative in the future for some
finite value of the affine parameter of a null congruence
orthogonal to T 2. This focusing point is expected
to be singular. The second step consisted in an ingenious
use of topological arguments to prove that assuming
the regularity of the focusing point is incompatible
with the presence of a noncompact Cauchy hypersurface.
The original singularity theorem summarized above

actually proves that at the end of a gravitational collapse,
either the spacetime is geodesically incomplete, or it must
develop a Cauchy horizon so that the presence of a
noncompact Cauchy hypersurface cannot hold. This moti-
vated Penrose and Hawking to formulate a second theorem
in 1970 not relying on Cauchy hypersurfaces, and hence
also extendible to closed universes, where noncompact
Cauchy hypersurfaces were absent [5]. In order to analyze
general closed universes, we would need to use this second
theorem. However, we will see that, for spatially homo-
geneous and isotropic spacetimes, the framework provided
by the original Penrose theorem suffices to classify the
possible nonsingular spacetimes.
In this work, we analyze and classify globally hyper-

bolic and time-orientable manifolds describing expand-
ing, homogeneous, and isotropic regular universes. In
order to avoid the formation of a singularity, at least one of
the assumptions of the Penrose theorem must necessarily
be violated. For flat and open manifolds, the last two
assumptions of the theorem will always be verified, and
thus, the geodesically complete geometries that we will
find will necessarily violate the null convergence con-
dition. For closed manifolds, similar considerations imply
that all the geodesically complete geometries that we find
necessarily violate the timelike convergence condition
(see Sec. VII).

III. TRAPPED REGIONS IN FLRW GEOMETRIES

Let us consider the FLRW metric [28]

ds2 ¼ −dt2 þ a2ðtÞ½dr2 þ R2ðrÞðdθ2 þ sin2θdϕ2Þ�; ð1Þ
with RðrÞ ¼ ðsin r; r; sinh rÞ if (k ¼ 1; 0;−1) respectively,
where k is the spatial curvature.
The family of past-directed radial null geodesics in this

spacetime has tangent vector field [29]

Va
� ¼ 1

aðtÞ
�
−1;� 1

aðtÞ ; 0; 0
�

¼ dxa

dλ
; ð2Þ

where dλ ¼ −aðtÞdt� aðtÞ2dr is an affine parameter.1

Note that the þ sign indicates outgoing geodesics, while
the − indicates ingoing geodesics. Along such null geo-
desics, from Eq. (1) we have dr=dt ¼∓ 1=a and
thus, λ ¼ −2

R
aðtÞdt.

The expression for the expansion of such geodesics is
then2

θ� ¼ 2

a2ðtÞ
�
−ȧðtÞ � ∂RðrÞ=∂r

RðrÞ
�
; ð3Þ

in terms of the time t, or

θ� ¼ 2

a2ðλÞ
�
2aðλÞa0ðλÞ � ∂RðrÞ=∂r

RðrÞ
�
; ð4Þ

in terms of the affine parameter λ. In these expressions as
well as the rest of the paper, ȧ ¼ da=dt and a0 ¼ da=dλ, so
that ȧ ¼ −2aa0 ¼ −ða2Þ0. Because of the one-to-one rela-
tion between λ and t, we can choose any of these variables
to parametrize null geodesics. In the following, we will
always use t for this purpose. When working with specific
geodesic congruences, we will always choose, without loss
of generality, a reference point λ ¼ λ⋆ such that tðλ⋆Þ ¼ 0.
Let us now discuss the structure of trapped surfaces for

expanding universes. In the flat and open cases, taking into
account that RðrÞ is always a positive and monotonically
increasing function in its range of definition, any expanding
universe [ȧðtÞ > 0 or a0ðλÞ < 0] satisfies

θ− ≤ 0; ð5Þ

1Note that these two null vectors are defined only up to a
multiplicative function of the respective orthogonal null coor-
dinate. The redefinition V� → gðu∓ÞV�, with gðu∓Þ > 0 and
du� ¼ −dt=aðtÞ � dr, stills results in affinely parametrized
vector fields. However, u� are constant along the respective
orthogonal geodesics, which implies Va

�∇agðu∓Þ ¼ 0. Hence,
this redefinition changes expansions by a positive multiplicative
factor and therefore does not affect our identification of trapped
regions.

2The expression provided for the expansion is not the usual
one derived as ∂t lnA, where A is the proper cross-sectional area
[30], but it is that divided by 1=aðtÞ in order to coincide with the
divergence of the tangent vector normalized as in Eq. (2).
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while

θþ

�
> 0 if ∂ lnRðrÞ=∂r > ȧ;

≤ 0 if ∂ lnRðrÞ=∂r ≤ ȧ:
ð6Þ

In the closed case, RðrÞ is no more a monotonically
increasing function and can assume negative values.
However, we also have to take into account that, in such
a universe, θþ < 0 does not correspond necessarily to a
trapped region since for some values of r, outgoing and
ingoing geodesics exchange roles, as we shall elaborate in
Sec. VII. Thus, one has to check the sign of both θþ and θ−,
and a trapped region is present only if both of them are
negative. We get

θþ

�
> 0 if ∂ lnRðrÞ=∂r > ȧ;

≤ 0 if ∂ lnRðrÞ=∂r ≤ ȧ;
ð7Þ

θ−

�
> 0 if ∂ lnRðrÞ=∂r < −ȧ;
≤ 0 if ∂ lnRðrÞ=∂r ≥ −ȧ:

ð8Þ

The function ∂ lnRðrÞ=∂r goes fromþ∞ at r ¼ 0 to 0 at
r ¼ ∞ for the flat case (k ¼ 0), from þ∞ to 1 in the open
case (k ¼ −1), and from þ∞ and −∞ for the closed case
(k ¼ 1). Hence, both flat and closed expanding universes
always have trapped surfaces with the structure depicted in
Fig. 1, which is also shared by open universes with ȧ > 1.3

Figure 2 shows the causal structure of a decelerating
FLRW metric and its trapped region, which will exist for
the open case only for ȧ > 1. Trapped surfaces appear for
sufficiently large distances to the reference point r ¼ 0
being used. However, due to homogeneity and isotropy, the
choice of reference point is fiduciary and has no physical
meaning. This is different with respect to spherically
symmetric black holes, in which the gravitational potential
has a defined center. Hence, in an FLRW spacetime it is
enough to show that a point belongs to a trapped surface to
conclude that all points belong to trapped surfaces. In other
words, there are no trapped regions in the usual sense:
Either all points are trapped, or no points are trapped.
Finally, regardless of the spatial curvature and the

structure of the trapping surfaces, imposing regularity of
curvature invariants implies some further constraints on the
nature of the scale factor as a function of the time. The
Ricci scalar R takes the form

R ¼ 6½kþ aðtÞäðtÞ þ ȧ2ðtÞ�
aðtÞ2 ; ð9Þ

while the Kretschmann scalar K reads

K ¼ 12½a2ðäÞ2 þ ðkþ ȧ2Þ2�
a4

: ð10Þ

As a consequence, a necessary condition to avoid curvature
singularities is for aðtÞ to be at least a C2 function.

IV. NULL-EXPANSIONS-BASED
CLASSIFICATION OF REGULAR
COSMOLOGICAL SPACETIMES

We shall now analyze the possible conditions under
which a singularity in the past of a FLRW universe can be
avoided, starting with some general considerations.

FIG. 1. Structure of trapped surfaces (dark gray) in a given slice
of constant time t of FLRW spacetimes (for open universes, it is
necessary that ȧ > 1 for trapped surfaces to exist). The solid
circle indicates the location of a marginal trapped surface for a
given value of ȧ, and the arrows pointing to the dashed line
indicate how this location changes as ȧ increases.

FIG. 2. Penrose diagram of a singular decelerating universe.
The shaded region is the one containing trapped surfaces (which,
for open universes, requires ȧ > 1 in order to exist). Note that the
shading indicates trapped points with respect to a fiduciary
reference point which has no physical meaning: Because of
homogeneity and isotropy, either all points are trapped, or no
points are trapped.

3Note that, as we have chosen k to be dimensionless following
standard conventions, aðtÞ has dimensions of length. Since we are
also choosing units in which c ¼ 1, and ȧðtÞ is dimensionless.
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For flat and open universes (that is, well approximated by
either k ¼ 0 or k ¼ −1 FLRWspacetimes), the discussion is
parallel to the one in [27], with the only difference that we
will consider congruences of past-directed (instead of
future-directed) null geodesics. Hence, the different geo-
metric possibilities for these cases are in one-to-one corre-
spondence to the possible ways in which spacetimes can be
deformed to avoid focusing points. For general closed
universes, Penrose’s theorem does not apply in general,
and therefore the classification below would not apply
without further considerations. However, as discussed in
Sec. VII, this classification is still meaningful for homo-
geneous and isotropic closed universes.
As explained in Sec. III, moving to bigger values of the

affine parameter for these congruences corresponds to
moving toward the past (i.e., to smaller values of t), and
in the following equations we will always choose, without
loss of generality, a reference point λ ¼ λ⋆ such that
tðλ⋆Þ ¼ 0. As we start with negative expansion for some
of the past-directed outgoing null geodesics (we start in a
past-trapped region), the avoidance of a focusing point
requires at some point a change of sign for θþ and hence
that the latter vanishes.
However, different from the black-hole cases studied in

[27], for cosmological spacetimes, the expansion does not
vanish at the same value of the affine parameter for all null
geodesics. We shall name the point at which θþ ¼ 0 for the
most trapped null geodesic, and thus θþ ≥ 0 for all null
geodesics, the defocusing point.
Starting from a reference value of the affine parameter λ�,

we can classify different geometries depending on the
behavior of radial null congruences for λ ¼ λ0 > λ�.
The rate of change of the area element orthogonal to the
congruence is determined by the following equation:

ln

�
δAþjλ¼λ0

δAþjλ¼λ�

�
¼

Z
λ0

λ�
dλ θþðλÞ: ð11Þ

Note that we are choosing a reference point λ� for which
δAþjλ¼λ� ≠ 0. As it was shown in [27], a corollary of this
equation is that a congruence has a focusing point at a finite
affine distance λ ¼ λ0 if and only if θþjλ¼λ0

¼ −∞.
In order to avoid that the spacetime is geodesically

incomplete, we need to modify the spacetime geometry in
the vicinity of the focusing point, either creating a defocus-
ing point (θþ ¼ 0) or displacing the focusing point to
infinite affine distance.
We can now proceed to a systematic consideration of all

the possible regularizations of FLRW universes. In doing
so, we shall use the same categorization used in [27] based
on three parameters, i.e., the value of the affine parameter λ
for which we have a defocusing of the outgoing congru-
ence, the value of the radius RðλÞ of the area element
orthogonal to the congruence at that point, and the value of
the ingoing congruence expansion at that point, θ̄.

Case A: Defocusing point at a finite affine dis-
tance, λdefocus ¼ λ0.

A.I ðλ0; R0; θ̄ < 0Þ: The expansion θþ vanishes and
changes sign at a finite affine distance λ ¼ λ0 or, in
terms of the radius of the area element orthogonal to
the null outgoing congruence, at a value R0 ¼
Rðλ0Þ > 0. On the other hand, the expansion of the
intersecting ingoing radial null geodesics remains
negative until (and including) λ0, so that θ̄ ¼
θ−jλ¼λ0

< 0.
A.II ðλ0; R0; θ̄ ≥ 0Þ: The only difference with respect to
the previous case is that the expansion of the inter-
secting ingoing radial null geodesics does not remain
negative at R0 ¼ Rðλ0Þ, θ̄ ¼ θ−jλ¼λ0

≥ 0.
Case B: Defocusing point at an infinite affine dis-

tance, λdefocus ¼ ∞.
B.I ð∞; R∞; θ̄ < 0Þ: The expansion θþ vanishes in the
limit λ → ∞, in a manner such that the integral in
Eq. (11) is convergent. The corresponding asymptotic
value of the radius of the area element orthogonal to the
outgoing null congruence is R∞ ¼ limλ0→∞Rðλ0Þ > 0.
The expansion of the intersecting ingoing radial
null geodesics remains negative there, so that θ̄ ¼
θ−jλ→∞ < 0.

B.II ð∞; R∞; θ̄ ≥ 0Þ: The only difference with respect to
the previous case is that the expansion of the inter-
secting ingoing radial null geodesics does not remain
negative at R∞ ¼ limλ0→∞ Rðλ0Þ, θ̄ ¼ θ−jλ→∞ ≥ 0.

B.III ð∞; 0; θ̄ < 0Þ: The expansion θþ vanishes in the
limit λ → ∞, in a manner such that the integral in
Eq. (11) is divergent. Thus, the radius of the area
element orthogonal to the congruence vanishes
asymptotically along these geodesics (in other words,
there is an asymptotic focusing point), R∞ ¼
limλ0→∞ Rðλ0Þ ¼ 0. The expansion of the intersecting
ingoing radial null geodesics remains negative at 0, so
that θ̄ ¼ θ−jλ→∞ < 0.

B.IV ð∞; 0; θ̄ ≥ 0Þ The only difference with respect to
the previous subcase is that the expansion of the
intersecting ingoing radial null geodesics does not
remain negative, θ̄ ¼ θ−jλ→∞ ≥ 0.

Case C: No defocusing point, λdefocus ¼ ∅.
C.I ð∅; 0; θ̄ < 0Þ: The expansion θþ remains negative (but
finite) in the limit λ → ∞, which in particular implies
that the integral in Eq. (11) is divergent. Thus, the radius
of the area element orthogonal to the congruence
vanishes asymptotically along these geodesics. The
expansion of the intersecting ingoing radial null geo-
desics remains negative, so that θ̄ ¼ θ−jλ→∞ < 0.

C.II ð∅; 0; θ̄ ≥ 0Þ: The only difference with respect to
the previous subcase is that the expansion of the
intersecting ingoing radial null geodesics does not
remain negative, θ̄ ¼ θ−jλ→∞ ≥ 0.

We can now discuss these different cases separately in
order to understand in more detail the properties of these
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spacetimes and, in particular, the implications of the
homogeneity and isotropy assumptions. Given the quite
different nature of closed universes, we shall treat first the
flat and open cases in Secs. V and VI, and consider
separately the closed case in Sec. VII.

V. REGULAR FLAT FLRW UNIVERSES

We shall now discuss in detail the different cases
discussed in Sec. IV for a flat FLRW universe. We will
be using often the expression for the expansion of ingoing
and outgoing null geodesics, Eq. (3), specialized to k ¼ 0
so that RðtÞ ¼ rðtÞ:

θ� ¼ 2

a2ðtÞ
�
−ȧðtÞ � 1

rðtÞ
�
¼ 2

a2ðtÞrðtÞ ½−ȧðtÞrðtÞ � 1�:

ð12Þ
In order to have a more clear physical interpretation of

this expression, it is useful to rewrite it as

θ� ¼ 2

aðtÞ
�
−
ȧðtÞ
aðtÞ �

1

aðtÞrðtÞ
�
¼ 2

aðtÞ
�
−HðtÞ � 1

aðtÞrðtÞ
�
:

ð13Þ
We see that null rays for which the comoving radius

aðtÞrðtÞ lies outside the Hubble sphere 1=HðtÞ, are trapped.
The Hubble sphere is the point in which the recession
velocity due to the cosmological expansion equates the
speed of light [31,32] (indeed, the Hubble radius is
sometimes called the “speed of light sphere” [31]). Now,
consider two past-directed outgoing null geodesics; they
have a tendency to move away from each other but, since
they are past directed, these experience a contraction of
the Universe that tends to bring them closer. They will
effectively move away from each other only if their velocity
is larger than the “contraction” velocity of the Universe;
that is, if their comoving radius is inside the Hubble sphere.
The remaining null geodesics lying outside 1=HðtÞ will
inevitably get closer to each other driven by the contraction
of the spacetime, and are indeed trapped.

A. Cases A.I and A.II ðλ0;R0Þ
For a given congruence of outgoing null geodesics that is

trapped at t ¼ 0, it is required that θþ < 0, whichmeans that

ȧð0Þ > 1

rð0Þ → ȧð0Þrð0Þ > 1: ð14Þ

The existence of a defocusing point at a finite affine distance
t ¼ t0 requires the condition

ȧðt0Þ ¼
1

rðt0Þ
→ ȧðt0Þrðt0Þ ¼ 1: ð15Þ

Hence, a relative deceleration toward the past is required.
Also, it is necessary that the decreasing scale factor does not

vanish in the interval t∈ ½0; t0Þ. Otherwise, we would have
θþðtÞ ¼ −∞, thus signaling the formation of a focusing
point, which we were trying to avoid [the limiting case in
which aðt0Þ → 0 slow enough so that θþðt0Þ → 0 is dis-
cussed below]. The condition inEq. (15)must be satisfied for
some value of t0 along all congruences. As shown next, this
imposes a stronger constraint on ȧðtÞ.
Proposition. All congruences of null geodesics are

untrapped at finite affine distance λ corresponding to time
t if and only if the derivative of the scale factor with respect
to the time ȧðtÞ vanishes.
Proof. Let us assume that ȧðtÞ does not vanish for any

value of t, and show that this implies the existence of at
least a congruence of past-directed null geodesics that does
not have a defocusing point at finite affine distance. Let us
take a reference congruence, for which

1 − ȧð0Þrð0Þ < 0; ð16Þ

thus implying that θþð0Þ < 0, while

1 − ȧðt0Þrðt0Þ ð17Þ

has an indefinite sign. Let us now multiply rðtÞ by a
positive constant factor N, which yields another congru-
ence with a larger value of the radius. We still have that

1 − ȧð0ÞNrð0Þ ¼ 1 − ȧð0Þrð0Þ − ðN − 1Þȧð0Þrð0Þ < 0;

ð18Þ

so this second congruence was still trapped originally.
Moreover, a value of N always exists such that

1 − ȧðt0ÞNrðt0Þ < 0: ð19Þ

This holds for any finite value of t0, thus showing that there
always exists a congruence of past-directed outgoing null
geodesics that remains trapped, thus reaching a contradiction.
Regarding the converse implication, if we impose

ȧðt0Þ ¼ 0, then the expansion of any past-directed con-
gruence of null geodesics is positive. ▪
Hence, spacetimes in this class are geodesically com-

plete if and only if the derivative of the scale factor vanishes
at some t ¼ t0, while the scale factor remains nonzero at
t ¼ t0. Indeed, the limiting case in which also the scale
factor vanishes is not admissible, as it would entail a
manifest curvature singularity. For t < t0, in order to avoid
the formation of further trapped surfaces, ȧðtÞ ≤ 0. Hence,
spacetimes in this class describe a bounce between a
contracting and an expanding universe (as shown in
Fig. 3) where a future-trapped region is continuously
connected with a past-trapped region being both delimited
by the trapping horizon r ¼ �1=aðtÞ.
Note that we are implicitly assuming that the scale factor

is an analytic function of the time which, if dropped, would

GEODESICALLY COMPLETE UNIVERSES PHYS. REV. D 110, 044055 (2024)

044055-5



allow also the possibility that aðtÞ vanishes in a closed
interval or half line (in the latter case, the geometry
describes an expanding universe emerging from a sta-
tionary phase [8]). Analytical solutions that are effectively
emergent are however possible; for example, the expansion
can be preceded by an oscillatory phase in which ȧ is 0 on
average (see [11] for a specific realization). These solutions
embody a hybrid nature, drawing from both emergent and
bouncing universe scenarios, as ȧ assumes also negative
values during the “emergent” phase. In Fig. 4 we report an
example of the possible behavior of the scale factor in an
emergent or effectively emergent universe. The Penrose
diagram of spacetimes entering class A.I (bouncing and
emerging universes) is shown in Fig. 5.
As we have mentioned above, the expansion does not

vanish at the same value of the affine parameter for all null
outgoing geodesics. Furthermore, the homogeneity and
isotropy assumptions strongly constrain the behavior of

ingoing geodesics with respect to the outgoing ones.
Indeed, if θþðtÞ ¼ 0, then

θ−ðtÞ ¼ −
4

a2ðtÞrðtÞ ≤ 0: ð20Þ

Hence, it is not possible to achieve at the same time
θþðtÞ ¼ 0 and θ−ðtÞ ≥ 0 for all null geodesics (case A.II)
within the family of geometries being considered.
An analogous reasoning leads to the same conclusions

also for cases B.II, B.IV, and C.II; thus, we neglect this
discussion about ingoing geodesics in the next sections.

B. Cases B.I and B.II ð∞;R∞Þ
This case is similar to A.I, but now the defocusing point

is at an infinite affine distance λdefocus ¼ ∞. Since aðtÞ is
always finite, this means that tdefocus ¼ −∞. We have that
the integral

t

FIG. 3. Bouncing universe: behavior of the scale factor aðtÞ, of
its derivative to respect to time and of the Hubble radius
1=jHðtÞj ¼ aðtÞ=ȧðtÞ. The defocusing point ȧðtÞ ¼ 0 is reached
in a finite affine distance, and it is preceded by a contracting
phase in which ȧðtÞ < 0.

t t

FIG. 4. Effectively emergent universe and emergent universe: behavior of the scale factor aðtÞ of its derivative to respect to the time
and of the Hubble radius 1=jHðtÞj ¼ aðtÞ=ȧðtÞ. The defocusing point ȧðtÞ ¼ 0 is reached in a finite affine distance, and it is preceded
either by a “stationary” phase in which ȧðtÞ is 0 on average (in the effectively emergent case, left panel) or exactly 0 (in the emergent
case, right panel).

FIG. 5. Penrose diagram of a bouncing or emergent universe.
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λdefocus ¼ λ� þ 2

Z
0

−∞
dt aðtÞ ð21Þ

is divergent, while the integral

ln

�
δAþjλ¼∞
δAþjλ¼λ�

�
¼
Z

0

−∞
dtaðtÞθþðtÞ

¼
Z

0

−∞
dt

2

aðtÞ
�
−ȧðtÞþ 1

rð0ÞþR
0
t dt

0=aðt0Þ
�

ð22Þ

must not be negatively divergent (> −∞), where we have
used the expression rðtÞ ¼ rð0Þ þ R

0
t dt0=aðt0Þ obtained

along geodesics, with tangent vector given by Eq. (2).
Proposition. All congruences of null geodesics are

untrapped at infinite affine distance if and only if the
derivative of the scale factor with respect to the time ȧðtÞ
vanishes for t → −∞.
Proof. The proof proceeds as the one for case A.I simply

putting t0 ¼ −∞. ▪

Example. Let us require to have a regular expanding
universe at any time; thus, ȧðtÞ ≥ 0 and aðtÞ > 0 for any t.
In order to have the defocusing at infinite affine distance,
we then need limt→−∞ ȧðtÞ ¼ 0. A simple analytic profile
for aðtÞ is then aðtÞ ¼ a0 þ b0eHt, which is a sort of
“regularized inflation” (see Figs. 6 and 7). With this choice,
the integral in Eq. (22) goes to þ∞. It is possible to prove
that this is a generic feature of each regular spacetime
entering this case.
Proposition. For a regular expanding flat FLRW space-

time with complete defocusing at infinite affine distance
[ȧðtÞ vanishes for t → −∞], the integral in Eq. (22)
diverges positively, ln ðδAþjλ¼∞=δAþjλ¼λ� Þ ¼ þ∞.

Proof. If the spacetime is regular, aðtÞ ≠ 0 ∀ t, then the
first term in the integral Eq. (22),

Z
0

−∞
dt

�
−2

ȧðtÞ
aðtÞ

�
; ð23Þ

is negative but finite. Indeed, if aðtÞ ≠ 0 the integrand in the
equation above is finite; thus, the integral from 0 to tB with
tB arbitrarily small, but finite, cannot diverge. On the other
hand, since aðtÞ is a monotonically increasing function in
the interval t∈ ½−∞; tB� and it starts from a value
að−∞Þ > 0, we have

Z
tB

−∞
dt

�
−2

ȧðtÞ
aðtÞ

�
>

Z
tB

−∞
dt

�
−2

ȧðtÞ
að−∞Þ

�

¼ −2
�

aðtBÞ
að−∞Þ − 1

�
> −∞: ð24Þ

Let us therefore focus on the second term:Z
0

−∞

2dt
aðtÞ½rð0Þ þ R

0
t dt

0=aðt0Þ� : ð25Þ

As mentioned before, we are choosing a reference point λ�
corresponding to t ¼ 0 at which δA is finite,4 and thus,
aðt ¼ 0Þ ¼ a0 is a finite positive number. Since aðtÞ is a
monotonically increasing function from −∞, aðtÞ < a0 in
all the interval ½0;−∞Þ thus,
Z

0

−∞

2dt
aðtÞ½rð0ÞþR

0
t dt

0=aðt0Þ�>
Z

0

−∞

2dt
a0½rð0Þþ

R
0
t dt

0=aðt0Þ� :

ð26Þ

We can split this integral into two pieces by defining a
negative value of t, tB1,

t

FIG. 6. Regular inflating universe: behavior of the scale factor
aðtÞ of its derivative to respect to the time and of the Hubble
radius 1=jHðtÞj ¼ aðtÞ=ȧðtÞ. The defocusing point ȧðtÞ → 0 is
reached in an infinite affine distance.

FIG. 7. Penrose diagram of a regular universe of case B.I
(asymptotic defocusing, e.g., aðtÞ ¼ a0 þ b0eHt).

4This is always possible through a linear rescaling of the time
coordinate t → tþ c with c an arbitrary constant.
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Z
0

−∞

2dt
a0½rð0Þþ

R
0
t dt

0=aðt0Þ� ¼
Z

0

tB1

2dt
a0½rð0Þþ

R
0
t dt

0=aðt0Þ�
þ
Z

tB1

−∞

2dt
a0½rð0Þþ

R
0
t dt

0=aðt0Þ� ;

ð27Þ

with the first term being finite, so that any divergent
behavior (if present) is isolated in the second term. Let
us therefore focus on this second term, introducing another
auxiliary value of the time tB2 > tB1 and expanding aðtÞ
near −∞ as aðtÞ ¼ a−∞ þ a1=tþ a2=t2 þ…, so that

Z
tB1

−∞

2dt
a0½rð0Þ þ

R
0
t dt

0=aðt0Þ� ¼
Z

tB1

−∞

2dt

a0½rð0Þ þ
R
0
tB2

dt0=aðt0Þ þ R tB2
t dt0=ða−∞ þ a1=t0 þ a2=t02 þ � � �Þ�

¼
Z

tB1

−∞

2dt

a0½rðtB2Þ þ
R tB2
t dt0ð1=a−∞ þ b1=t0 þ b2=t02 þ � � �Þ�

¼
Z

tB1

−∞

2dt
a0½gðtB2Þ − t=a−∞ − b1 ln jtj þ b2=tþ � � �� ; ð28Þ

where we introduced gðtB2Þ ¼ rðtB2Þ þ tB2=a−∞ þ
b1 ln jtB2j − b2=tB2 that is not a function of t. Since the
integrand goes to 0 in the t → −∞ limit at most as 1=t, the
integral in the last line is divergent.
This analysis is general enough for being in principle

applicable also to the cases B.I and B.II. Nonetheless, as
explained at the end of Sec. VA, case B.II cannot be
realized within the family of geometries being considered
here, given that the conditions θþ ¼ 0 and θ− ≥ 0 are never
realized simultaneously for all null geodesics.

C. Cases B.III and B.IV ð∞;0Þ
In this case, the defocusing point is at an infinite affine

distance, and the integral in Eq. (22) is divergent (−∞). As
discussed below, this case is singular.
Proposition. If the integral in Eq. (22) is negatively

divergent (it goes to −∞), then aðtÞ → 0 for some t, and
thus the spacetime is also singular.
Proof. We will prove the equivalent proposition: If

aðtÞ ≠ 0 ∀ t (including the limit t → −∞), then the
integral Eq. (22) cannot be negatively divergent. Indeed,
the term proportional to 1=rðtÞ is always positive; thus, to
prove that the integral is greater than −∞, we only need to
focus on the following piece:

Z
0

−∞
dt

�
−2

ȧðtÞ
aðtÞ

�
; ð29Þ

which however, as already proved, is never negatively
divergent [see, in particular, Eq. (24) in the previous section].
Finally, note that the above reasoning is strictly needed

for case B.III only, given that case B.IV, as explained at the
end of Sec. VA, is not realizable within the family of
geometries being considered.

D. Cases C.I and C.II ð∅;0Þ
In this case, there is some congruence for which θþ

remains negative for λ → þ∞ (t → −∞). This can happen

only if ȧðtÞ remains positive in the infinite domain ð−∞; 0�.
Thus, if aðtÞ is finite at the point t ¼ 0, it must have crossed
or reached the value of 0 at some point in the past. This
proves that there is a curvature singularity, and therefore
these spacetimes cannot be regular.
Note that, as explained at the end of Sec. VA, aside from

this singular behavior, it would not be possible to realize
case C.II within the family of geometries being considered.

VI. REGULAR OPEN FLRW UNIVERSES

We shall now discuss in detail the different cases
discussed in Sec. IV for an open FLRW universe. The
expansion of ingoing and outgoing null geodesics, Eq. (3),
particularized to k ¼ −1, i.e., RðrÞ ¼ tan rðtÞ, is

θ�ðtÞ ¼
2

a2ðtÞ
�
−ȧðtÞ � 1

tanh rðtÞ
�

¼ 2

a2ðtÞ tanh rðtÞ ½1 − ȧðtÞ tanh rðtÞ�: ð30Þ

A. Cases A.I and A.II ðλ0;R0Þ

Proposition. All congruences of null geodesics are
untrapped at finite affine distance λ corresponding to time
t if and only if ȧðtÞ ≤ 1.
Proof. Let us assume that ȧðtÞ remains greater than 1 for

any value of t and show that this implies the existence of at
least a congruence of past-directed null geodesics that does
not have a defocusing point at affine distance. Let us take a
reference congruence, for which

1 − ȧð0Þ tanh rð0Þ < 0; ð31Þ

thus implying that θþð0Þ < 0, while

1 − ȧðt0Þ tanh rðt0Þ ¼ 0: ð32Þ
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Let us now multiply rðtÞ by a positive constant factor N,
which yields another congruence with a larger value of the
radius. Then we have that

tanhNrðtÞ ¼ M tanh rðtÞ ð33Þ

with M > 1 since tanhðxÞ is monotonically increasing in
½0;þ∞Þ. Thus, we still have that

1 − ȧð0Þ tanhNrð0Þ ¼ 1 − 2Mȧð0Þ tanh rð0Þ
¼ 1 − ȧð0Þ tanh rð0Þ − ȧð0Þ
× ðM − 1Þ tanh rð0Þ < 0; ð34Þ

so this second congruence was still trapped originally.
Moreover, a value of N always exists such that

1 − ȧðt0Þ tanhNrðt0Þ ¼ 1 −Mȧðt0Þ tanh rðt0Þ < 0: ð35Þ

This holds for any finite value of t0, thus showing that there
always exists a congruence of past-directed outgoing null
geodesics that remains trapped, thus reaching a contra-
diction. Regarding the converse implication, if we impose
ȧðt0Þ ≤ 1, then ȧðt0Þ tanh rðt0Þ ≤ tanh rðt0Þ ≤ 1, and thus
the expansion of any past-directed congruence of null
geodesics is positive. ▪
Note that it is possible to have singular spacetimes

without trapped regions if aðtÞ vanishes, for instance,
aðtÞ ¼ et. In this case, there is a naked curvature singularity
at t ¼ −∞ where θ� ¼ �∞, which is therefore not a
focusing point. Hence, the condition ȧ ≤ 1 is necessary, but
not sufficient for regularity.
As in the flat case, the homogeneity and isotropy

assumptions strongly constrain the behavior of ingoing
geodesics with respect to the outgoing ones. Indeed, if
θþðtÞ ¼ 0, then

θ−ðtÞ ¼ −
4

a2ðtÞ tanh rðtÞ ≤ 0: ð36Þ

Hence, it is not possible to achieve at the same time
θþðtÞ ¼ 0 and θ−ðtÞ ≥ 0 for all null geodesics within the
family of geometries being considered, and therefore, case
A.II cannot be realized.
An analogous reasoning leads to the same conclusions

for cases B.II, B.IV, and C.II; thus, we will not repeat
explicitly this discussion about ingoing geodesics in the
next sections.

B. Cases B.I and B.II ð∞;R∞Þ
In this case, the defocusing point is at an infinite affine

distance, and the integral in Eq. (22) is convergent.
Proposition. This case cannot be realized; if one pushes

the defocusing point to ∞, then the integral in Eq. (22)
diverges.

Proof. To have the defocusing point at ∞, ȧ → 1 for
t → −∞. This can be seen following the proof of case A.I
simply putting t0 ¼ −∞. If ȧ → 1 for t → −∞, it always
remains positive in the infinite domain ½−∞; tð0Þ�; thus, if
aðtÞ is finite at the point t ¼ 0, it must have crossed or
reached the value of 0 at some point in the past. This proves
that the integral in Eq. (22) diverges and that there must be a
curvature singularity.
As explained at the end of Sec. VI A, case B.II cannot be

achieved within the family of geometries being considered.

C. Cases B.III and B.IV ð∞;0Þ
The defocusing point is at an infinite affine distance, and

the integral in Eq. (22) is divergent (it goes to −∞).
Proposition. This case is singular.
Proof. If ȧ → 1 for t → −∞, it always remain positive in

the infinite domain ½−∞; tð0Þ�; thus, if aðtÞ is finite at the
point t ¼ 0, it must have crossed or reached the value of 0 at
some point in the past. This proves that there must be a
curvature singularity.
Note that, as explained at the end of Sec. VI A, it is not

possible to achieve case B.IV within the family of geom-
etries being considered.

D. Cases C.I and C.II ð∅;0Þ
This case is singular, and the proof proceeds as for

case B.III.
As discussed at the end of Sec. VI A, it is impossible to

achieve case C.II within the family of geometries being
considered.

VII. REGULAR CLOSED FLRW UNIVERSES

In the case of a closed universe, the noncompactness
assumption of the Penrose theorem is no longer guaranteed;
thus, in general we would have to rely on the Hawking-
Penrose theorem. However, as we will show in the
following, in the specific case of a homogeneous and
isotropic universe (describable by the FLRW metric),
simpler assumptions suffice to prove the presence of a
singular focusing point.
The first part of Penrose’s theorem makes no use of the

presence of a noncompact Cauchy hypersurface, and thus is
also valid for any generic closed spacetime, therefore
showing that an initial negative expansion and the null
convergence condition are enough to prove the presence of
a focusing point in which the expansion will become
infinitely negative. What is no longer guaranteed for closed
spacetimes is that this focusing point is singular.
The expansion of null geodesics in a closed FLRW

spacetime is given by

θ� ¼ 2

a2ðtÞ
�
−ȧðtÞ � 1

tan rðtÞ
�
: ð37Þ

GEODESICALLY COMPLETE UNIVERSES PHYS. REV. D 110, 044055 (2024)

044055-9



Note that 1= tan r is a periodic function; thus, we can
evaluate it in r∈ ½0; π�, taking values ∞ for r → 0, 0 for
r → π=2 and −∞ for r → π. Both poles (0 and π)
correspond to RðrÞ ¼ 0, and the reason for which the
expansions there blow up with different signs is geomet-
rical and essentially the same reason for which the
expansion of geodesics in flat Minkowski blows up at
r ¼ 0. These points are then regular focusing points.
Using this expression for the expansions, we now show

that, in the presence of a trapped region where both
expansions θ� are negative, a singular focusing point is
always present if the timelike convergence condition holds
(this implies the strong energy condition in GR). In order to
isolate the divergent behavior at the focusing point, while
avoiding the divergences caused by the poles, it is useful to
introduce the following quantity:

θ ¼ θþ þ θ− ¼ −
2ȧðtÞ
a2ðtÞ : ð38Þ

If both θ� are negative initially, and thus a trapped surface
is present, then also θ will have an initial negative value
θ0 < 0. On the other hand, θ is the expansion of a past-
directed timelike congruence of geodesics with tangent
vector Ua ¼ ð−2; 0; 0; 0Þ=aðtÞ and, as such, it satisfies the
Raychaudhuri equation with zero twist and shear:

dθ
dλ

¼ −
θ2

3
− RabUaUb: ð39Þ

From the timelike convergence condition (Rμνuμuν ≥
0 ∀ uμ timelike)—or the strong energy condition if one
assumes the Einstein field equations—we have that

dθ�
dλ

≤ −
θ2�
3
; ð40Þ

so that, in the best-case scenario (the expansion taking the
least negative value possible), we have

dθ
dλ

¼ −
θ2

3
: ð41Þ

Solving this differential equation results in the expression

θ−1 ¼ θ−10 þ λ

3
; ð42Þ

which indicates that θ will reach−∞ for a finite value of the
affine parameter (in particular, −3θ−10 ).
On the other hand, taking a look at the functional form of

θ in Eq. (38), we see that it can reach −∞ only if aðtÞ ¼ 0
or ȧðtÞ → þ∞. Both cases correspond to a divergence of
the Ricci scalar in Eq. (9), and thus this focusing point is
associated with a curvature singularity.
In summary, we have proved that a spacetime satisfying

the following assumptions cannot be geodesically complete:

(i) It is a homogeneous and isotropic solution of Ein-
stein equations.

(ii) The timelike convergence condition holds.
(iii) At some point, a closed past-trapped surface forms

where both expansions have a maximum negative
value.

Based on this result, let us continuewith our aim of character-
izing the different possible regular solutions with a trapped
region, following the classification discussed in Sec. IV.

A. Case A

The reasoning is similar to the corresponding case for
flat spacetime but taking into account that now θþ < 0 does
not correspond necessarily to a trapped region, since
outgoing and ingoing geodesics exchange roles for some
values of r (see Fig. 8). We thus have to check the sign of
both θþ and θ−, and a trapped region is indeed present if
both are negative.
Proposition. All congruences of null geodesics are

untrapped at finite affine distance λ corresponding to time
t if and only if the derivative of the scale factor with respect
to the time ȧðtÞ vanishes.
Proof. Let us assume that ȧðtÞ does not vanish but

remains positive for any value of t. Then for any t, all the
geodesics for which −ȧðtÞ < 1= tan rðtÞ < ȧðtÞ would
have θ� < 0 and thus would be trapped. These trapped
geodesics always exist. Indeed, since for the periodic nature
of the metric functions, r can be taken in the finite interval
½0; π�, it is always possible to choose an initial value for the
photon position rð0Þ such that rðtÞ is sufficiently near π=2
to satisfy the previous trapping condition. Conversely, if
ȧðtÞ becomes negative, θþ < 0 only for geodesics with
1= tan rðtÞ < ȧðtÞ < 0, while θ− < 0 only for geodesics
with 1= tan rðtÞ > −ȧðtÞ > 0. Thus, there are no geodesics
for which both θþ and θ− are negative, and therefore no
trapping region if ȧðtÞ becomes negative.
Hence, also for the closed case, this class describes a

bounce with ȧðtÞ vanishing between a contracting and an
expanding universe (or, if we drop the assumption that the
scale factor is an analytic function of the time, an expand-
ing universe emerging from a stationary phase).
For what regards the distinction between case A.I

and A.II, we saw that in a closed universe outgoing and
ingoing geodesics exchange roles for some values of r
(see Fig. 8).
The homogeneity and isotropy assumption strongly

constrain the behavior of one family of geodesics with
respect to the other. Indeed, if θþðtÞ ¼ 0, then

θ−ðtÞ ¼ −
4

a2ðtÞ tan rðtÞ ; ð43Þ

and if θ−ðtÞ ¼ 0, then

θþðtÞ ¼ −
4

a2ðtÞ tan rðtÞ : ð44Þ
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Hence, it is not possible to achieve at the same time
θþðtÞ ¼ 0 and θ−ðtÞ ≥ 0 [or θ−ðtÞ ¼ 0 and θþðtÞ ≥ 0] for
all null geodesics (case A.II) within the family of geom-
etries being considered.
An analogous reasoning leads to the same conclusions

also for cases B.II, B.IV, and C.II; thus, we neglect this
discussion about ingoing geodesics in the next sections.

B. Case B

Analogous to case A, all congruences of null geodesics
are untrapped at infinite affine distance if and only if the
derivative of the scale factor with respect to the time ȧðtÞ
vanishes for t → −∞. The proof proceeds as in case A,
simply considering t → −∞.
Different from the flat and open cases, we can no longer

use the integral in Eq. (11) to distinguish between cases B.I
(no focusing point) and B.III (asymptotic focusing point)
since in this case it always diverges for long enough
geodesics (even for regular spacetimes) due to the divergent

behavior of the term 1= tan ½rðtÞ� in the expansion.
However, the presence of a singularity can still be detected
in the behavior of geodesics since it is signaled by the
vanishing of the Universe radius aðtÞ that causes the
negative divergence of both expansions, θ� → −∞.
Note that, as explained in Sec. VII A, it is not possible to

achieve cases B.II and B.IV within the family of geometries
being considered.

C. Case C

We can show that curvature invariants must be singular
in this case. By definition, there is now some congruence
for which both θ� remain negative for λ → þ∞ (t → −∞).
From Eq. (37), we can conclude that this can happen only if
ȧðtÞ remains positive in the semi-infinite domain ð−∞; 0�.
As a consequence, if aðtÞ is finite at t ¼ 0, it must have
crossed or reached the value of 0 at some point in the past
due to its derivative being definite positive in a semi-infinite
domain. This proves that there is a curvature singularity.
Note that, as explained in Sec. VII A, it is not possible to

achieve case C.II within the family of geometries being
considered.

VIII. CONCLUSIONS

This studydelved into thebehavior of null geodesicswithin
various spacetime geometries in the context of cosmology.
The investigation primarily focused on the behavior of the
expansion of null congruences with the aim of classifying
from a geometric standpoint the possible regularizations of
the initial singularity. Results for flat, open and closed
spacetimes are summarized in Figs. 9, 10, and11 respectively.
Distinct scenarios emerged based on the behavior of the
expansion and the presence and extension of trapped regions.
These scenarios are

(i) A bouncing universe
(ii) An expanding universe emerging from a station-

ary phase

FIG. 8. Path of geodesics in a two-dimensional closed space-
time. As we can see, the ingoing/outgoing nature of trajectories
changes at the equator and the poles.

FIG. 9. Scheme of the allowed flat homogeneous and isotropic regular geometries. These geometries are classified according to (i) the
value of the affine parameter at which all outgoing null geodesics are defocused λdef so that θþðλdefÞ ¼ 0; (ii) the area element
orthogonal to the congruence at λdef ; (iii) the derivative of the scale factor for λ > λdef that is in the past with respect to the defocusing
(t < tdef ).
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(iii) An asymptotically emergent universe where the scale
factor is always decreasing toward the past but never
vanishes. An example of a scale factor with these
characteristics is an inflating universe, with a char-
acteristic exponential behavior of the scale factor but
with the addition of a constant that corresponds to the
asymptotic value of aðtÞ toward the past.

Some concrete examples for these three scenarios are con-
structed and studied in [19] where it is explicitly shown that
they all violate the null energy conditions for at least some
amount of time.
The analysis of closed universes presented unique chal-

lenges due to the violation of the noncompactness
assumption and to the diverging nature of certain functions
influencing geodesic expansions. Despite this, it was estab-
lished that, also in this case, true defocusing points at finite
or infinite affine distance are contingent upon specific

behaviors of the scale factor derivative with respect to time.
Moreover, the absence of defocusing leads to the inevitable
occurrence of a curvature singularity. Regarding the physical
interpretation of the bouncing solutions, it is interesting to
keep in mind the following consideration. The metric alone
does not provide any real information regarding the direction
in which time flows. GR is time symmetric, as flipping the t
direction on a globally hyperbolicmanifold results in another
valid solution to the field equations.5

The scenario of a universe contracting to a minimum
scale factor and then expanding stems from the implicit

FIG. 11. Scheme of the allowed closed homogeneous and isotropic regular geometries. These geometries are classified according to:
(i) the value of the affine parameter at which all outgoing geodesics are defocused λdef , so that θþðλdefÞ ¼ 0; (ii) aðλdefÞ or equivalently
the value of both expansions for the same value of the affine parameter [note that, if aðλdefÞ ¼ 0, then θ�ðλdefÞ ¼ −∞]; (iii) the
derivative of the scale factor for λ > λdef, i.e., for t < tdef.

FIG. 10. Scheme of the allowed open homogeneous and isotropic regular geometries. These geometries are classified according to
(i) the value of the affine parameter at which all outgoing geodesics are defocused λdef jθþðλdefÞ ¼ 0; (ii) the value of the affine parameter
at which the Universe ceases to contract/expand, that is λȧ¼0; (iii) the area element orthogonal to the congruence at λdef ; (iv) the
derivative of the scale factor for λ > λdef, i.e., for t < tdef.

5Note that, due to the fact that at the bounce ȧðtÞ ¼ 0, this would
be possible while keeping the metric components at least C1, and
could be possibly fine-tuned so that at the bounce it also has äðtÞ ¼
0 so as to ensure regularity of curvature tensors as well.
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assumption that the direction of time remains the same before
and after the bounce. However, it is possible to imagine a
scenario in which the two parts of spacetime separated by the
defocusing point have opposite time directions. In this case,
we would have two identical expanding bouncing universes
joined at the defocusing point (the bounce). The reason why
we expect the inversion of time direction to be possible at the
bounce is because, besides being a stationary point for the
expansion of the Universe, it is also a point at which we
expect quantum gravitational effects to play an important
role, causing this possible inversion. If, for example, as in the
Hartle-Hawking no boundary proposal [33], near thewould-
be singularity, timebecomes imaginary, and itwould lose any
privileged direction there, making the subsequent appear-
ance of an opposite arrow of timemore natural. Furthermore,
this scenario seems also to connect with similar ideas
recently advanced to address the so-called “arrow of time”
problem [34].

In conclusion, this study elucidated the diverse range of
regular possibilities within cosmological models, shedding
light on the interconnections between geodesic behavior,
singularities, and the evolution of the Universe. These
findings not only contribute to our theoretical understand-
ing of the Universe’s behavior but also pave the way for
refining cosmological models based on observational data
and theoretical considerations. Efforts to reconcile these
theoretical studies with empirical observations and astro-
physical data would be instrumental in refining and
validating cosmological models.
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