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We study lensing of gravitational waves by a black hole in the deep wave optics regime, i.e., when the
wavelength is much larger than the black hole Schwarzschild radius. We apply it to triple systems, with a
binary of stellar-mass objects in the inspiraling phase orbiting around a central massive black hole. We
describe the full polarization structure of the wave and derive predictions for the polarization modes of the
scattered wave measured by the observer. We show that lensing in the wave optics regime is not helicity
preserving, as opposed to lensing in the geometric optics regime. The amplitude of the total wave is
modulated due to interference between the directly transmitted and lensed components. The relative
amplitude of the modulation is fixed by the lensing geometry and can reach unity in the most favorable
settings. This indicates that wave optics lensing is potentially detectable by the Laser Interferometer Space
Antenna for sufficiently high SNR systems. Our findings show that in the wave optics regime it is necessary
to go beyond the usual lensing description where the amplification factor is assumed to be the same for both
helicity modes. While motivated by GW190521 and the active galactic nuclei formation scenario, our
results apply more broadly to stellar-mass binaries orbiting a third body described as a Schwarzschild black
hole, with a period comparable to the gravitational wave observation time.
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I. INTRODUCTION

Lensing of gravitational waves (GW) beyond geometric
optics has been the subject of several studies in the last few
years. Geometric optics is an approximation that holds
when 2MG=c2 ≫ λ, where M is the lens mass and λ the
wavelength of the wave. While this condition is always
satisfied when considering lensing of GW in the frequency
band of ground-based detectors, beyond geometric-optics
effects are expected to appear in the frequency band of the
Laser Interferometer Space Antenna (LISA).
The existing literature on lensing beyond geometric

optics can be divided into two categories. References [1–3]
relax the geometric optics assumption and consider the
regime in which the GW wavelength is either comparable
or larger than the lens size. However, they still neglect the
spin nature of the wave, effectively treating it as a scalar
wave. On the other hand, there are studies of GW lensing
beyond geometric optics that do not neglect the spin-2

nature of the wave, either introducing a perturbative
approach [4–7] or importing quantum scattering tech-
niques; see Ref. [8] for a review and [9] for a more recent
work on the subject.
It is, however, not straightforward to compute the

phenomenology of realistic situations from these formal
results.
In this article, we present a framework to study lensing of

GW in the deep wave optics regime, i.e., when the wave-
length is much larger than the black hole Schwarzschild
radius. We keep track of the full tensorial structure of the
wave and we develop an approach to apply our results to
realistic situations. We stress that GW lensing in the wave
optics regime is not polarization preserving, i.e., the ratio of
the two helicity modes is not conserved during propagation,
unlike in the geometric-optics limit. We derive the trans-
formation properties of the two polarization modes under
lensing, showing that helicity modes are mixed, in contrast
with what is usually assumed in the literature when studying
GW lensing with a common amplification factor for both
polarization modes (see, e.g., Ref. [1]). We then apply our
finding to study lensing phenomenology of triple systems,
in which a binary of compact objects in the inspiralling
phase orbits around a central massive black hole. We show
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that interference between the scattered and transmitted
components of the wave gives rise to a modulation of
the total waveform, potentially detectable by LISA.
Our study is motivated by the features of black hole

merger GW190521, measured by LIGO and Virgo during
the last observing run, which suggest the binary might
have undergone stronger than expected interactions with
its environment. GW190521 had component masses
85þ21

−14M⊙ and 66þ17
−18M⊙ [10,11], with the larger lying

within the pair-instability gap ∼½50; 130�M⊙ [12–14]. A
possibility is that the progenitor black holes (BHs) may
have formed via a “dynamical” formation channel, i.e., by
repeated coalescences in dense environments such as
globular or nuclear stellar clusters [15–17] or active
galactic nuclei (AGNs) [18–20]. Moreover, the Zwicky
Transient Facility (ZTF) detected an optical flare (dubbed
ZTF19abanrhr) about 34 days after GW190521, in AGN
J124942.3þ 344929 at redshift z ¼ 0.438. The position
and distance of this system are compatible with the
inferred position and distance of GW190521. This event
was then interpreted as due to the BH remnant from
GW190521 moving in the AGN disk, Ref. [21], as a result
of the recoil produced by the anisotropic gravitational
wave emission during the merger. Reference [21] argued
that the distance of the GW190521 binary from the nucleus
should be about 700 GM=c2, with M ∼ 108–109M⊙ the
mass of the BH at the center of the AGN.
If indeed GW190521 lived in an AGN disk, it could

belong to a significant population of binary BHs located in
dense environments that will be detected in the coming
years by ground and space detectors [22–24]. The presence
of the central super massive black hole can significantly
affect the waveform, as a result of the accelerated motion of
the stellar-origin BH binary around it [25–27] or because
of lensing [28–31] and Shapiro time delay [30–32]. Several
of these environmental effects could be observable with
LISA, by targeting the early inspiral of stellar-origin BH
binaries months or years before they merge in the band of
ground detectors [24,26,27,30,33–37].1
In Refs. [28–31], lensing of such systems is described as

importing results developed to study lensing of electro-
magnetic radiation in the geometric-optics regime and
treating the wave as a scalar object. The condition defining
the regime of validity of wave optics can be written as

�
M

3 × 107M⊙

��
f

mHz

�
≪ 1: ð1Þ

It follows that while for the particular system of
GW190521, geometric optics is a good approximation of

lensing phenomena, wave optics lensing has to be consid-
ered for a broader range of triple systems.
In our phenomenological illustration, we consider a

binary system with chirp mass 80M⊙ in a scenario where
the lens is located at the low end of the AGN redshift
distribution [38]. The radius of the circular orbit of the
binary around the central lens is chosen to be 662 GM=c2,
following a numerical prescription by [39].2

We take f ¼ 3 × 10−3 Hz to be within the LISA band,
and consider an AGN mass of M ¼ 1.2 × 106M⊙. Such an
AGN mass is not unrealistic as is shown in [40]. Such a
system lies well inside the undulatory regime (1) and, if
detected by LISA, the wave optics modulation leaves an
observable signature on the waveform.
In Fig. 1 we depict the type of system that we consider,

and whose geometrical configurations are introduced step
by step in the subsequent sections.
We stress that, while motivated by GW190521 and

the AGN formation scenario, our results apply more
broadly to stellar-mass binaries orbiting a third body with
a period comparable to the GW observation time, in the
absence of gas (if matter is present around the black hole,
additional effects are, in principle, present and have to
be included in the waveform description, see, e.g., [41] for
a review).

FIG. 1. A binary in the inspiraling regime orbits around a
massive black hole, with ẽz along the binary’s angular momen-
tum. Waves emitted by the binary scatter off the third body’s
potential and reach the observer. Freezing the orbital motion, the
static geometry (in blue) is described using the ẽx;y;z basis,
naturally associated with the binary, and the derived ex;y;z
naturally associated with the incoming wave on the third body.
Adding the effect of orbital motion (orange) requires the
introduction of a third set ēx;y;z from which ẽx;y;z may be related
via Euler rotations of angles α1;2;3.

1These effects appear at negative post-Newtonian (PN)
orders in the GW phase relative to the vacuum quadrupole
emission [23,30]; hence, they are expected to be relevant at low
frequencies.

2Note that with a chirp mass of 80M⊙, the system has massive
components reaching the intermediate mass gap. However, AGN
migration traps have been found to be a favorable environment
for the production of black holes in this mass range [39], making
the assumption reasonable.
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The article is structured as follows: in Sec. II we
summarize the method followed to construct the wave at
the observer, in a static situation in which a binary system
emits a spherical wave lensed by a black hole. In Sec. III we
explicate the wave emitted by the source (and that we
assume to be described by the quadrupole formula) in a
reference frame centered on the lens and in terms of Regge-
Wheeler variables. In Sec. IV we construct the scattered
wave and show how the two helicity modes of the scattered
wave (at the observer) are related to the emitted ones. In
Sec. V we compute the cross section of this process,
showing that we recover known results of the literature
when taking proper limits. Finally, in Sec. VII we consider
the dynamical situation in which the binary system rotates
around the central back hole and we discuss phenomeno-
logical implications of lensing. In Sec. VIII we discuss our
findings and present our conclusions. Technical derivations
are presented in a series of Appendices. Table I lists the
geometrical quantities introduced in this work, and pro-
vides definitions. In this article, we work in natural units in
which G ¼ c ¼ 1.

II. SUMMARY OF OUR APPROACH

When studying the lensing of GWs by black holes in the
wave optics regime, it is convenient to express the strain in
terms of Regge-Wheeler variables. When using a refer-
ence frame ex;y;z centered on the lens (with the polar axis
aligned with the lens source direction), these variables
satisfy a Schrödinger-like scattering equation, describing
Rutherford scattering of a charged particle off a Coulomb-
like potential. Then one can import techniques developed
in the context of quantum scattering to compute phase
shifts that characterize the deviation of the scattered wave
with respect to an incoming plane wave. While this
analogy is apparent at a formal level, Rutherford scattering
and classical scattering of GW off black holes share some
common features: in both cases the potential associated to
the target object is Coulomb-like. Moreover, a charged

particle is electromagnetically charged in the same way as
the gravitational wave traveling in the black hole space
time is gravitationally charged and feels the gravitational
potential of the lens [42].
On the other hand, the waveforms emitted by astro-

physical objects are conveniently expressed in terms of plus
and cross polarizations of the strain in the transverse-
traceless (TT) gauge, since this allows one to easily
compute the effect on detectors. Moreover, the waveforms
emitted by compact binaries are also more conveniently
expressed using a system of axes ẽx;y;z centered on the
source, with the polar axis normal to the orbital plane of the
binary. Therefore, the frame used to study GW scattering
and the one used in waveform modeling are different, and
we must relate them.
Assuming that the source emits a monochromatic signal

well described by the quadrupole formula (in TT gauge),
we need to
(1) Assume that locally at the lens the wave front can be

described as a plane wave and write the wave in a
frame ex;y;z centered on the lens and with polar axis
aligned with the source-lens direction. This leads
to Eq. (29).

(2) Rewrite this plane wave using Regge-Wheeler var-
iables associated to a multipolar decomposition, see
Eqs. (35) and (36).

(3) Compute the scattered wave using phase shifts
results derived in the literature, i.e., Eqs. (10)
and (11).

(4) Write the final scattered wave in TT gauge in terms
of plus and cross polarization, leading to Eqs. (40)
and (41).

(5) Reconstruct the total wave at the observer, in real
space (scattered plus transmitted), in order to obtain
observable lensing signatures.

This description of wave optics lensing as a scattering
phenomenon is summarized in Fig. 2. In the remaining part
of this article, we will go through these various steps, and
the notation introduced is summarized in Table I. We start

TABLE I. We summarize our notation for the static (upper part) and circular orbit (full table) settings.

ẽx;y;z Cartesian basis vectors centered on the source, with ẽz along the source’s internal angular momentum
ðθ̃; ϕ̃; r̃Þ Spherical coordinates associated to the Cartesian system ẽx;y;z
ðθ̃X; ϕ̃XÞ Angular spherical coordinates of object X with respect to ẽx;y;z, for X ¼ L (lens) or O (observer)
ẽθ̃;ϕ̃;r̃ Spherical unit basis vectors of the system of spherical coordinates associated to ẽx;y;z
ex;y;z Cartesian basis vectors centered on the lens, defined as ex;y;z ≡ ẽθ̃;ϕ̃;r̃jðθ̃L;ϕ̃LÞðθ;ϕ; rÞ Spherical coordinates associated to the Cartesian system ex;y;z
ðθO;ϕOÞ Angular spherical coordinates of the observer with respect to the lens’s ex;y;z
eθ;ϕ;r Spherical unit basis vectors of the system of spherical coordinates associated to ex;y;z
η Angle between eθjO and ẽθ̃jO
ēx;y;z Fixed Cartesian basis vectors centered on the lens, with ēx along the observer direction
ι Inclination angle of the outer orbital plane with respect to the source-lens axis
α1;2;3 Euler angles that allow one to rotate the triad ēx;y;z into ẽx;y;z

WAVE OPTICS LENSING OF GRAVITATIONAL WAVES: … PHYS. REV. D 110, 044054 (2024)

044054-3



with a review of results on the scattering of GWs off black
holes in Regge-Wheeler variables. We first consider the
static situation, in which the geometry lens-source-observer
is fixed, and we then move to the time-dependent situation,
in which the source is in orbit around the central lens.

A. Regge-Wheeler variables

Let us consider a plane GW with wave vector k as a
perturbation of a Schwarzschild black hole. We choose the
system of coordinates such that the z axis is along k, and
jkj ¼ ω. The background metric is given by

ds2 ¼ gabdxadxb þ r2ΩABdxAdxB; ð2Þ

where a; b ¼ t, r, A; B ¼ θ;ϕ, the background metric on
the two-sphere is ΩAB ¼ diagð1; sin2 θÞ, and

gabdxadxb ¼ −BðrÞdt2 þ BðrÞ−1dr2; ð3Þ

with BðrÞ≡ 1–2M=r.
Linearizing the Einstein equations around this

Schwarzschild background leads to a set of perturbation
equations. It is standard lore to recast them into two
“master equations”: the Regge-Wheeler and the Zerilli
equations for, respectively, the Regge-Wheeler function
and the Zerilli “master functions,” each containing modes
of a given parity (odd and even, respectively); see Ref. [43]

for a pedagogical derivation. In vacuum, the Regge-
Wheeler and Zerilli functions (Ψodd and Ψeven, respec-
tively) satisfy the Schrödinger-like equation

d2Ψ•

dr2�
þ ðω2 − V•ÞΨ• ¼ 0; ð4Þ

where • ¼ ðeven; oddÞ and dr�=dr ¼ 1=B defines the
tortoise coordinate once we integrate it to

r�ðrÞ ¼ r − 2M ln

�
r
2M

− 1

�
: ð5Þ

The choice of integration constant above is made such that
it is compatible with the phase shifts of [44]. For the odd
(axial) mode the potential is

Vodd ¼ BðrÞ
�
lðlþ 1Þ

r2
−
6M
r3

�
; ð6Þ

and for the even (polar) one

Veven ¼
2BðrÞ
r3

9M3 þ 3β2lMr2 þ β2lð1þ βlÞr3 þ 9M2βlr
ð3M þ βlrÞ2

;

ð7Þ

with βl ¼ ðl − 1Þðlþ 2Þ=2. In principle, the full per-
turbed metric in the Regge-Wheeler gauge can be recon-
structed from these two master functions, and it can then be
expressed in TT gauge.

B. Gravitational wave scattering: Phase shifts

In direct analogy with quantum scattering theory, the
differential equation (4) can be solved such that the solution
reduces to the original plane wave in absence of scattering
(M ¼ 0). The scattered part of the solution can be described
using a phase shift approach. The initial incoming wave is
expressed as a superposition of spherically ingoing and
outgoing waves, and the scattering process induces an extra
outgoing spherical (scattered) wave. The effect of scattering
can be recast into the ratio of the in- and outgoing spherical
wave amplitudes (the former contains only the incoming
wave contribution while the latter contains both incoming
and scattered wave contributions). For a scalar initial plane
wave eikr, the general expansion of the wave ψ is

ψ ≃
i

2ωr

X∞
l¼2

ð−1Þlð2lþ 1Þ½e−iωr� − ð−1Þleiωr�SlðωÞ�Plðcos θÞ; ð8Þ

FIG. 2. Two dimensional schematic visualization of the wave
lensing as a scattering process, a spherical wave that is locally
plane scatters off a third body, producing a scattered spherical
wave centered on the latter. This scattered wave interferes with
the incident one.
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with jkj ¼ ω, kkz and

SlðωÞ≡ e2iδlðωÞ: ð9Þ

This set of functions describes the departure of the wave
function from the plane wave; i.e., for δl ¼ 0 the wave
function coincides with the plane wave (asymptotic limit of
the partial waves expansion).
The gravitational case which we consider is analogous,

with some caveats. First, the wave is not scalar but
tensorial, so the partial wave expansion is not as straight-
forward as in Eq. (8), since the expansion of a tensor valued
wave has more multipolar indices (l; m; s). In place of the
gravitational wave itself, the scattering process is conven-
iently phrased in terms of the scalar valued functions
Regge-Wheeler and Zerilli Ψ•. This comes at the price
of needing to translate the initial conditions on the local
plane metric perturbation into conditions on Ψ•. Hence we
must first relate Ψ• and the GW, a procedure built up from
Ref. [45] and detailed in Sec. III A, where we show that Ψ•

can still be expanded as a superposition of incoming and
outgoing spherical waves, thus allowing us to use the phase
shift formalism.
In the ðωMÞ ≪ 1 long wavelength limit, analytic forms

for the phase shifts associated with Eq. (4) have been found
by Poisson and Sasaki [44], thus solving the differential
equation. They read

expð2iδoddl Þ ¼ e−iΦ−2iMωe8iMω=lðlþ1Þ Γðlþ 1 − 2iMωÞ
Γðlþ 1þ 2iMωÞ

þOðM2ω2Þ; ð10Þ

with Φ ¼ −4Mω lnð4MωÞ. The phase shifts of even parity
are related to those of odd parity by

expð2iδevenl Þ ¼ ðlþ 2Þðlþ 1Þlðl − 1Þ þ 12iMω

ðlþ 2Þðlþ 1Þlðl − 1Þ − 12iMω

× expð2iδoddl Þ: ð11Þ

Note that these phase shifts are independent of m since the
potential is spherically symmetric. The solution of Ref. [44]
shows that in the phases of the spherical wave modes, the
radial coordinate r has to be substituted by the tortoise r�
that appears in the radial derivative of the differential
equation (4). The appearance of logarithmic radial correc-
tions in the phases is a generic feature of 1=r potentials and
also appears in quantum Coulomb scattering [42]. With
this, we have all the ingredients to reconstruct scattering
solutions for Ψ•, in the long wavelength limit.

III. INCOMING WAVE

We consider the simple static setup, as in Fig. 1. The
source emits a spherical wave, well described by
the quadrupole formula in a system of axes centered on

the source. We then rewrite this wave in a reference system
centered on the lens, and in terms of Regge-Wheeler
variables (instead of þ and × polarizations). We will
assume that locally (around the lens) the spherical wave-
front can be approximated with a plane wavefront, i.e., we
treat the wave impacting on the lens as a plane wave.

A. Metric perturbations and Regge-Wheeler variables

Reference [45] provides the relations between Regge-
Wheeler variables and the metric perturbations expanded in
terms of even parity and odd parity spherical harmonics.
Using the indices convention defined after Eq. (2), a
generic perturbation hμν of the Schwarzschild metric
may be expanded as

hab ¼
X
lm

hlmab Y
lm; ð12Þ

haB ¼
X
lm

ðjlma Ylm
B þ hlma Xlm

B Þ; ð13Þ

hAB ¼
X
lm

ðr2KlmΩABYlm þ r2GlmYlm
AB þ hlm2 Xlm

ABÞ; ð14Þ

where Ylm are the standard spherical harmonics, while Ylm
A

(respectively, Xlm
A ) are even (respectively, odd) vector

spherical harmonics and Ylm
AB (respectively, Xlm

AB) are even
(respectively, odd) tensorial spherical harmonics. These are
functions on the sphere with given parity, whose relation
to spin-weighted spherical harmonics is outlined in
Appendix A. The expansion factors hlmab ; h

lm
a ; jlma ; Klm;

Glm; hlm2 are functions which depend on r and t.
The asymptotic identification of the even and odd

Regge-Wheeler and Zerilli gauge invariant potentials is
then found from gauge invariant combinations of metric
perturbations, once the functions hlmab ; h

lm
a ; jlma ; Klm;

Glm; hlm2 are known. For instance, in the odd case, with
Appendix C of [45], we find in terms of gauge invariant
quantities (denoted with a hat)

Ψlm
odd ¼

2r
μ

�
∂

∂r
ĥlmt −

∂

∂t
ĥlmr −

2

r
ĥlmt

�
; ð15Þ

where μ ¼ ðl − 1Þðlþ 2Þ. These gauge invariant variables
are defined as

ĥlmt ¼ hlmt −
1

2
∂thlm2 ; ð16Þ

ĥlmr ¼ hlmr −
1

2
∂rhlm2 þ 1

r
hlm2 : ð17Þ

For the even parity we have (see Appendix C of Ref. [45])
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Ψlm
even ¼

2r
μþ 2

�
K̂lm þ 2B

Λ

�
Bĥlmrr − r

∂

∂r
K̂lm

��
; ð18Þ

where Λ ¼ μþ 6M=r and where the gauge invariant
quantities are defined as

ĥlmrr ¼ hlmrr − 2∂rjlmr −
2M
r2B

jlmr þ r2∂2rGlm

þ 2r − 3M
B

∂rGlm; ð19Þ

K̂lm ¼ Klm −
2B
r
jlmr þ rB∂rGlm þ μþ 2

2
Glm: ð20Þ

B. Quadrupole formula in the lens frame

The source emits a spherical wave, described by the
quadrupole formula. For any fixed lens angular position
ðθ̃L; ϕ̃LÞ in the source sky, we take as basis vectors
ðex; ey; ezÞ ¼ ðẽθ̃; ẽϕ̃; ẽr̃Þjðθ̃L;ϕ̃LÞ, where ðẽθ̃; ẽϕ̃; ẽr̃Þ are the
spherical basis vectors of the source sky at the lens position.
The metric, in this ðθ̃L; ϕ̃LÞ direction, can be written as

hij ¼

0
B@

hþ h× 0

h× −hþ 0

0 0 0

1
CA

ij

; ð21Þ

in the ðex; ey; ezÞ Cartesian coordinate system, for a generic
lens direction ðθ̃L; ϕ̃LÞ. For a binary system of compact
objects of masses m1;2, the chirp mass is

Mc ¼
ðm1m2Þ3=5

ðm1 þm2Þ1=5
: ð22Þ

When the binary is in the inspiraling phase, which we
describe to lowest order by a circular motion, the emitted
wave in the lens (L) direction is [46] (note our different
convention for spherical coordinates with respect to that
reference)

hþðt; r̃; θ̃L; ϕ̃LÞ ¼
Ain

r̃
1þ cos2 θ̃L

2
cos½ωðt− r̃Þ−2ϕ̃L�; ð23Þ

h×ðt; r̃; θ̃L; ϕ̃LÞ ¼
Ain

r̃
cos θ̃L sin½ωðt − r̃Þ − 2ϕ̃L�; ð24Þ

where

Ain ¼ 4M5=3
c ðπfÞ2=3; ω ¼ 2πf; ð25Þ

which holds along the source-lens direction ðθ̃L; ϕ̃LÞ; i.e., r̃
denotes the radial distance from the source in the fixed ez
direction. Note that the dependence on the phase ϕ̃L
corresponds to a physically arbitrary choice of initial phase
in the binary orbital motion, which propagates in the

relative choice of orientation for ẽx;y in Fig. 1. Rather than
reabsorbing it, we keep track of this phase anticipating the
treatment of a superposition of scattered and transmit-
ted waves.
We are interested in considering the wave impacting on

the lens, i.e., we rewrite the radial variable as r̃ ¼ dSL þ z,
where dSL is the distance source lens, and z is the line
of sight distance measured from the lens (along the
source-lens direction). In this ðθ̃L; ϕ̃LÞ direction, one
can check that the local plane wave can be written as3

hij ∝

eiðkr̃−ωtÞei2ϕ̃L

0
BB@

1þcos2 θ̃L
2

i cos θ̃L 0

i cos θ̃L − 1þcos2 θ̃L
2

0

0 0 0

1
CCA

ij

þ c:c: ð26Þ

∝ eiðkr̃−ωtÞ

8><
>:2Y22ðθ̃L; ϕ̃LÞ

0
B@

1 −i 0

−i −1 0

0 0 0

1
CA

ij

þ −2Y22ðθ̃L; ϕ̃LÞ

0
B@

1 i 0

i −1 0

0 0 0

1
CA

ij

9>=
>;þ c:c: ð27Þ

For a locally plane wave in the lens neighborhood,

eiðkr̃−ωtÞ

r̃
¼ eiðkdSL−ωtÞ

dSL

eikz

1þ z
dSL

≃
eiðkdSL−ωtÞ

dSL
eikz; ð28Þ

we have

hij ¼
X
m¼�2

HðmÞQ2m
ij þ c:c:; ð29Þ

with

Q2�2
ij ¼ −

ffiffiffi
3

8

r
ðex � ieyÞiðex � ieyÞjeikz; ð30Þ

and

Hðm¼�2Þ ¼ −2
dSL

ffiffiffiffiffiffi
2π

15

r
Ain∓2Y

22ðθ̃L; ϕ̃LÞeiωðdSL−tÞ: ð31Þ

The choice of normalization for the basisQ2m
ij in Eq. (29) is

taken in agreement with Refs. [47,48], allowing us to use
results therein for the decomposition of a plane wave (with

3Note that ðex; eyÞ of the source and the lens coincide; hence,
expressions below can be interpreted as a wave expansion around
the lens.
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spin) onto a basis of spin-weighted spherical harmonics.
We observe that the modes HðmÞ can be related to standard
helicity modes hð�2Þ, defined as

hð�2Þ ¼ hþ � ih×: ð32Þ

The relation is given by4

hð−2Þ ¼ −
ffiffiffi
3

2

r
ðHð2Þeikz þHð−2Þ�e−ikzÞ; ð33Þ

hðþ2Þ ¼ −
ffiffiffi
3

2

r
ðHð−2Þeikz þHð2Þ�e−ikzÞ: ð34Þ

C. Final form of the incoming wave

We want to identify the even and odd Regge-Wheeler
potentials associated with the plane wave (29), in a system
of spherical coordinates centered on the lens. To do so, we
need to decompose the plane wave in spherical compo-
nents (radial and tangential) in spherical coordinates, i.e.,
find the explicit expression for the functions appearing in
the decomposition (12)–(14). Details can be found in
Appendix A. Given the explicit expression of the plane
wave, the Regge-Wheeler variables (15) and (18) asso-
ciated to it are found by using the corresponding functional
form of the radial functions hlmrr ; Klm;Glm; hlm2 ; hlmr ; jlmr
(other components vanish).
We obtain that the complexified incoming wave (emitted

by the binary) around the lens, in the lens frame, corre-
sponds to the Regge-Wheeler variables

Ψlm
even ¼ i

HðmÞ

2k

ffiffiffiffiffiffi
6π

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 2Þ!
ðlþ 2Þ!

s
½ð−1Þlþ1e−ikr þ eikr� þ c:m:; ð35Þ

Ψlm
odd ¼ −

m
jmj

HðmÞ

2k

ffiffiffiffiffiffi
6π

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 2Þ!
ðlþ 2Þ!

s
½ð−1Þlþ1e−ikr þ eikr� þ c:m:; ð36Þ

where c.m. refers to the “conjugate mode”: for a given
Ψl;m

• , its conjugate mode is ð−1ÞmΨl;−m�
• as introduced in

Appendix A. Equations (35) and (36) are the main result of
this section.

IV. SCATTERED WAVE

We compute the scattered wave. Indeed, we know that
Regge-Wheeler variables obey the scattering Eq. (4) and
that, after scattering, they are related to the ones before
scattering via a phase shift; see Eqs. (10) and (11). The
radiated polarizations at infinity are recovered fromRef. [45]

hð�2Þ ¼
X
lm

�2Y
lmhð�2Þ

lm ; ð37Þ

and

hð�2Þ
lm ¼ 1

2r

�ðlþ 2Þ!
ðl − 2Þ!

�
1=2

ðΨlm
even � iΨlm

oddÞ: ð38Þ

Note that for hð�2Þ
lm multipole indices lm are put down rather

than up for ease of reading; in practice we use both up/down
notation interchangeably.

Here polarizations hþ;× are defined with respect to the
basis ðeθ; eϕÞ in the polarization plane transverse to the
propagation direction er.
To extract the scattered part of the wave which we are

interested in, we use the scattered part of the Ψlm
even;odd

master functions in Eq. (38). Following the procedure
outlined in Sec. II B, the scattering process modifies the full
Ψlm

even;odd waves by altering the spherically outgoing partial
waves with the phase shifts given by (10) and (11). The
scattered part then consists of these full waves from which
we remove all the contributions from the initial incoming
wave. The coordinate r is further promoted to r� in the
phase of the functions, and accordingly for the incident
radial quantity dSL, since we use phase shifts computed
with respect to this radially corrected phase [44]. We find
that the scattered modes are given by

hð�2Þ
lm ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6πð2lþ 1Þp

4kr

×

�
HðmÞ

�
ðe2iδevenl − 1Þ ∓ ðe2iδoddl − 1Þ m

jmj
�
eikr�

− ð−1ÞmHð−mÞ�
�
ðe−2iδevenl − 1Þ

∓ ðe−2iδoddl − 1Þ m
jmj

�
e−ikr�

�
: ð39Þ4This is derived writing the wave as hij ¼ Θð2mÞ

ij hðmÞ with
Θð2�2Þ ¼ 1=2ðex � ieyÞiðex � ieyÞj and comparing with (29).
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This expression has to be inserted in Eq. (37) to compute
the resummed series defining helicity modes and þ and ×
polarizations. A detailed discussion of the convergence and
summability of this series can be found in the dedicated
Appendix E while its resummation is described in
Appendix D. The final asymptotical result for the scattered
polarizations is

hþ ¼ 2M
r

Ain

dSL

1

ð1− cosθÞ
1þ cos2θ

2

�
cos4

�
θ̃L
2

�
cosðφ− 2ϕÞ

þ sin4
�
θ̃L
2

�
cosðφþ 2ϕÞ

�
; ð40Þ

h× ¼ 2M
r

Ain

dSL

1

ð1 − cos θÞ cosðθÞ
�
cos4

�
θ̃L
2

�
sinðφ − 2ϕÞ

− sin4
�
θ̃L
2

�
sinðφþ 2ϕÞ

�
; ð41Þ

with Ain defined in (25), and a phase φðr; tÞ defined as

φðr; tÞ≡ ωðt − dSL� − r�Þ − 2ϕ̃L

þΦ − 2Mω½ln ð1 − cos θÞ − 1 − ln 2�; ð42Þ

where we recall that Φ is defined after Eq. (10).
Equations (40) and (41) describing the scattered wave
are the main results of this section. They are expressed for
any ðr; θ;ϕÞ observer location, in the polarization basis
ðeθ; eϕÞjO. These results have the structure of a double
projection of the original source quadrupole, as is further
detailed in Appendix D.
The ð1 − cos θÞ−1 divergence in the limit θ → 0 is

expected from the corresponding Coulomb problem, i.e.,
Rutherford scattering, which can be treated in multipole
space analogously to our problem; see Ref. [42] for a
detailed study that includes the analogy with scalar waves
on Schwarzschild spacetime. In the Coulomb case, an
exact solution exists, of which the ð1 − cos θÞ−1 expression
is only an approximation in the asymptotically limit of
ωrð1 − cos θÞ ≫ 1, thereby explicitly excluding θ ¼ 0.
Since the Rutherford scattering is free from any divergence
issue (and a similar feature is expected for scalar wave
propagation on Schwarzschild spacetime [42]), the same
may naturally be expected for GW scattering, despite the
fact that in this context there is no known exact closed form
solution. One may thus use the regime of validity of the
latter, i.e., ωrð1 − cos θÞ ≫ 1 as a benchmark for the
region of validity of our GW plane wave scattering process
derivation.
Computing the two helicity modes h�2 from Eqs. (40)

and (41), and comparing with the incident helicity, one can
explicitly check that the scattered and incident helicity are in
general different. The (absolute value of the) ratio of the two
helicity modes is not conserved during propagation on

Schwarzschild spacetime, unlike what happens in geometric
optics. This fact is rooted in the scattering process being not
helicity preserving [9,49]. The appropriate quantity to
illustrate this property is the degree of circular polarization
V of a wave, which will be introduced in Sec. V.

V. CROSS SECTION

We now consider the differential cross section of the
scattering process. We recall that in an asymptotically flat
universe, a GW carries an energy flux, that, for a transverse-
tranceless hij, reads [46]

dE
dAdt

¼ 1

32π
hḣijḣiji; ð43Þ

where dA ¼ r2dΩ is the area element at radial distance r,
and h� � �i denotes time averaging over a few periods. The
differential scattering cross section is then defined as the
ratio of outgoing differential (i.e., angular) energy flux to
the incident energy flux, that is

dσ
dΩ

¼ dE
dΩdt

����
scat

= dE
dAdt

����
in
¼ r2

hḣijḣijijscat
hḣijḣijijin

: ð44Þ

From Eqs. (40) and (41), the numerator of Eq. (44) reads

r2hḣijḣijijscat ¼
�
Ain

dSL

�
2

ω2M2

�
1

4
sin4θ̃Lcos4

�
θ

2

�
cosð4ϕÞ

þ
�
cos8

�
θ

2

�
þ sin8

�
θ

2

��
sin−4

�
θ

2

�

×

�
cos8

�
θ̃L
2

�
þ sin8

�
θ̃L
2

���
: ð45Þ

For the incoming wave, we have

hḣijḣijijin ¼
�
Ain

dSL

�
2

ω2

�
cos8

�
θ̃L
2

�
þ sin8

�
θ̃L
2

��
: ð46Þ

Therefore, the differential cross section can be written as

dσ
dΩ

¼M2
cos8

�
θ
2

	
þ sin8

�
θ
2

	
sin4

�
θ
2

	

þ 1

4
M2

sin4θ̃L

sin8
�
θ̃L
2

	
þ cos8

�
θ̃L
2

	cos4�θ
2

�
cosð4ϕÞ: ð47Þ

This result agrees with what is obtained in the literature for
special geometrical configurations; See Appendix F. The
½sinðθ=2Þ�−4 behavior when θ → 0 is a shared feature with
Rutherford scattering, as previously mentioned.
We further observe that the first contribution to the

differential cross section depends only on the geometry
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between the lens and the observer. Contrariwise, the second
contribution depends both on the geometry between source
and lens, and on that between lens and observer. However,
this second contribution vanishes for exactly two source-
lens configurations, namely, θ̃L ¼ 0; π. These particular
configurations correspond exactly to those for which the
incoming plane wave hasþ and × polarizations of the same
(absolute) amplitude, as is easily seen from Eqs. (23)
and (24).
For all other values of θ̃L, the incoming plane wave has a

preferred polarization by virtue of the geometry between
the source and the lens. The resulting scattering differential
cross section carries the imprint of this preferred polariza-
tion in its second term, while the first term is polarization
independent.
Based on that, we investigate how this θ̃L dependence is

related to the degree of circular polarization of the incom-
ing plane wave. We introduce the latter from the Fourier
modes h̃þ;×ðfÞ of the polarizations:

V ¼ 2Im½h̃þh̃�×�
jh̃þj2 þ jh̃×j2

¼ jh̃ð2Þj2 − jh̃ð−2Þj2
jh̃ð2Þj2 þ jh̃ð−2Þj2 ; ð48Þ

where it is understood that one must consider only the
prefactors to the Dirac distributions (the latter being
inherently present due to the assumed monochromatic
signal).
Note that V corresponds to the ratio of the Stokes

parameter V describing circular polarization and the inten-
sity I; see Ref. [50]. V is bounded between −1 (for pure
helicity −2) and 1 (for pure helicity 2), and vanishes for
linearly polarized waves. It is further invariant under a
rotation of the basis used in the plane transverse to the
direction of propagation of the wave. One can verify that
the polarization dependent part of the cross section (48) can
be reexpressed in terms of the degree of polarization of the
incoming wave, using that

sin4θ̃L

sin8
�
θ̃L
2

	
þ cos8

�
θ̃L
2

	 ¼ 8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

incident

q
; ð49Þ

where V incident is computed from the incident h̃þ× at
the lens.
Consider a situation in which the degree of circular

polarization of the impinging wave is exactly 0 (θ̃L ¼ π=2).
Then, an observer at θ ¼ π=2 would be placed at a location
where the scattering cross section is 1

2
M2½1þ cosð4ϕÞ�, by

Eq. (47). In that particular configuration, depending on the
observer’s azimuthal position ϕ with respect to the lens, the
cross section may be doubled (when ϕ ¼ nπ=2; n∈N) with
respect to that of a circularly polarized wave, or may vanish
(when ϕ ¼ ð1þ 2nÞπ=4; n∈N).

This is illustrated in Fig. 3, where we display the ratio of
the total cross section to the polarization independent part
of the cross section [i.e., the first term of Eq. (47)] for the
particular source-lens geometry mentioned here.
We have mentioned the condition ωrð1 − cos θÞ ≫ 1 as

a benchmark for the regime of validity of our results. It may
be used to define a minimal value for θ ¼ θmin where the
results may be used, given ωr, for a plane GW scattering
process. While we effectively solve a plane wave scattering
equation, we should recall that the real case of interest
involves the scattering of a spherical wave that is only
locally plane. A spherical wave is perceived as locally plane
if dSL, the distance from the emitter, is much larger than the
characteristic size of the scattering center. More than the
lens’s Schwarzschild radius 2M, the (integrated) cross
section naturally provides a constraining effective length
scale that is relevant for the scattering process. In this view,
on top of the validity condition ωrð1 − cos θÞ ≫ 1 of the
plane wave computation, we may set the further constraint
that for spherical waves, the results should remain valid for
values of θmin such that the (incompletely) integrated cross
section Z

π

θmin

dθ
Z

2π

0

dϕ sin θ
dσ
dΩ

< 10% πd2SL; ð50Þ

where 10% is an arbitrary threshold. Below this θmin value,
the scattering process associates an effective size to the
scattering center that is too large compared to dSL for the
incident wave to be judged locally plane. For cases of
interest, the criterion of local planarity (50) is more

FIG. 3. Ratio of the total cross section to the polarization
independent part of the cross section as a function of observer
angular position, for a purely hþ incoming plane wave from the
−z direction reaching a lens situated at the origin. This corre-
sponds to fixed θ̃L ¼ π=2 so that the incident wave has no
circular polarization. While for forward (positive z) and backward
(negative z) scattering, the total cross section is dominated by the
polarization independent cross section, the polarization depen-
dent part is significant for scattering angles θ about π=2.
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constraining than the regime of validity of plane wave
scattering ωrð1 − cos θminÞ ≫ 1. We observe that such
criteria would, in principle, not be necessary if an analytic
framework designed to study scattering of spherical waves
existed for our context.

VI. TOTAL WAVE

In standard scattering theory, the total wave received by
the observer is given by the superposition of scattered and
transmitted waves. These two waves will interfere, creating
an interference pattern in the observed total waveform. The
scattered wave is given by Eqs. (40) and (41); however, the
computation of the transmitted part is not trivial.
In our case the source emits a nonisotropic spherical

wave that we have approximated by a plane wave only at
the lens scale. It is clear that as M → 0, the transmitted
wave should reduce to the incident spherical wave evalu-
ated at the observer position. Assuming this transmitted
wave to be the correct one also for M ≠ 0 has been proven
valid in electromagnetic and acoustic scattering processes
involving spherical waves interacting with a sphere [51],
an assumption that we extend to our context for illustra-
tion.5 In other words, we assume that the transmitted wave
is what we would find if we computed the two polarization
models out of Ψl;m

even;odd without adding the scattering phase
shifts, reversing the operations of Sec. III.
We observe that when computing the total wave in the

analogous context of scattering of the scalar wave off
Coulomb potentials, the incident wave has to be corrected
by an angle dependent logarithmic phase modification for
which there exists a closed form;, see, e.g., [42].
A closed result for the phase shift in the case of a

spherical wavefront does not exist to date. Nevertheless,
any nontrivial phase correction would only modify the
resulting interference pattern between incoming and scat-
tered wave, but not the order of magnitude of the inter-
ference effect, i.e., the strength of scattering phenomenon.6

For illustrative purposes, in Sec. VII, we will thus
approximate the transmitted wave as the incident spherical
wave emitted by the source in the observer (O) direction,
i.e., (23) and (24) evaluated at the observer rather than lens
position:

htransþ ¼ Ain

dSO

1þ cos2θ̃O
2

cos½ωðt − dSOÞ − 2ϕ̃O�; ð51Þ

htrans× ¼ Ain

dSO
cos θ̃O sin½ωðt − dSOÞ − 2ϕ̃O�; ð52Þ

acknowledging that the exact expression will have addi-
tional phase corrections.
When summing the scattered and transmitted waves to

build the total wave at the observer position, we should
make sure to make a unique choice of polarization basis
with respect to which hþ;× are expressed. Indeed, the
scattered hþ;× (40) and (41) are expressed in a polarization
basis ðeθ; eϕÞjO, transverse to the propagation direction
erjO, while the aforementioned transmitted polarizations
would be expressed in a polarization basis ðẽθ̃; ẽϕ̃ÞjO,
transverse to the propagation direction ẽr̃jO. In the distant
observer approximation, the two propagation directions
match, ẽr̃jO ≃ erjO, but transverse to that, the polarization
modes should be properly rotated to be added. We choose
to rotate the polarization basis associated to the scattered
wave into that of the transmitted wave. That is, for
scattered hþ;×,

hþ → hþ cosð2ηÞ − h× sinð2ηÞ; ð53Þ

h× → hþ sinð2ηÞ þ h× cosð2ηÞ; ð54Þ

with cos η ¼ ðẽθ̃ · eθÞjO ¼ ðẽϕ̃ · eϕÞjO and sinð−ηÞ ¼
ðẽϕ̃ · eθÞjO.

VII. PHENOMENOLOGICAL IMPLICATIONS

Having at hand analytical expressions for the quantities
involved in a process of wave optics lensing, we now
attempt to derive phenomenology. To quantify the strength
of the scattering effect, we note that leaving aside all
angular geometrical factors but the scaling at small angles,
the amplitude ratio ρ of scattered to transmitted wave is
[e.g., compare Eqs. (40) and (51)]

ρ≡ 2M
dSO

dSLdLO

1

ð1 − cos θÞ ≃
2M
dSL

1

ð1 − cos θÞ : ð55Þ

We identify two important factors governing the amplitude
of the scattered wave in terms of the transmitted one: the
source-lens distance, in units of the lens Schwarzschild
radii and the alignment of the lensing geometry. The work
by Ref. [39] shows that stable orbits around an AGN are
found in disc migration traps located at dSL ∼ 24.5 × 2M
and dSL ∼ 331 × 2M (assuming a particular disc model).
For dSL ∼ 50M one expects orbital velocities of order
Oð0.1Þ and there should be relativistic orbital dynamics
involved. For the sake of ease in illustration, we thus
consider dSL ¼ 331 × 2M.
Then, the scattered wave is suppressed with respect to

the transmitted wave by a factor of 10−3ð1 − cos θÞ−1,
where the factor ð1 − cos θÞ−1 can reach ∼80 for, e.g.,
θ ∼ 0.15, which is still within the regime of validity given
by Eq. (50). In addition to this forward magnification, to get
a large relative modulation effect, one can also think of

5The validity of this assertion in our case should be assessed in
a rigorous framework of gravitational spherical wave scattering.

6A quantitative prediction of the total wave would require us to
numerically solve the scattering problem (probably making use of
algorithms from numerical relativity), and include line of sight
effects that have been neglected in our study. We postpone this to
a future work.
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geometrical configurations where one of the transmitted
polarizations is trigonometrically strongly suppressed
while the corresponding scattered polarization is not. In
such a case the scattered to transmitted amplitude ratio may
exceed 50%, leaving a strong imprint in the total wavefront.
To get a detectable modulation signal, one has to make

sure that the transmitted wave (i.e., what one would get
without lensing) is detectable with a sufficiently high SNR.
This is the case for systems hosted in the low redshift tail of
the AGN distribution, e.g., z ∼ 0.01 [38]. Using [52] to
estimate SNR for LISA and adapting results of [31], we
find that a hierarchical triple system like ours with
Mc ∼ 80M⊙, f ∼ 0.003 Hz is detectable by LISA with
SNR above 100 for a 4-year mission, if located at z ∼ 0.01.7

This implies that the modulation in the total wave due to
interference between scattered and transmitted wave would
be detectable for such a signal, in the most favorable
geometrical configurations.
In this phenomenological illustration, we stick to the

reference case of a Mc ¼ 80M⊙ inspiral of Ref. [31] and
consider the optimistic scenario where the lens is located
at the low end of the AGN redshift distribution, i.e., z ∼
0.01 [38], with dSL ¼ 662M. Note that with the choice
Mc ¼ 80M⊙, the system has massive components reach-
ing the intermediate mass gap. However, AGN migrations
traps have been found to be a favorable environment for
the production of black holes in this mass range [39],
making the assumption reasonable. We emphasize that any
choice of source redshift and chirp mass gives only a
scaling of the overall amplitude of the total wave (and
thereby the SNR), but does not impact the relative strength
of the scattering effect that we are describing, which is
fully given by the geometry once dSL is fixed. As for the
Mω ≪ 1 requirement, we take ω ¼ 2πf ¼ 2π × 3 ×
10−3 Hz to be within the LISA band, and consider an
AGN mass of M ¼ 1.2 × 106M⊙ to reach Mω ≃ 0.11.
Such an AGN mass is not unrealistic even at z ∼ 10−2, as is
shown in [40].8

So far, we considered a static lensing configuration. In
realistic situations, the binary of solar mass objects orbits
around the central black hole, as was depicted in Fig. 1. To
study this dynamical setting, we evaluate our static scatter-
ing results, letting geometrical quantities become functions
of time (in other words, we do not include any further
kinematic effect apart from the evolution of the alignment
geometry and the corresponding time delay).

To study the evolution of the waveform with time, we
need to parametrize the motion of the binary around the
AGN and take into account how the various angular
quantities in Eqs. (40) and (41) evolve with time. For
illustration, and motivated by the stability of the disk
migration traps, we assume that the source is in a
Newtonian circular orbit around the AGN, under the
approximation of axial parallelism (no precession) for the
inspiraling binary system. We do not include any relativistic
effect in the motion. Our description of the dynamics is
presented in detail in Appendix G. There, three relevant free
parameters that specify the scattering geometry, are intro-
duced: ðι;α1;2Þ. The angle ι describes the inclination of the
orbital plane of the outer binary with respect to the source-
lens axis (see Fig. 1). It corresponds to the minimal
scattering angle θ that is reached along the orbit. Note that
by fixing ι ≠ 0, any forward divergence is avoided. When
we consider a time varying scattering geometry, the source
is sending a varying polarization to the lens over time,
because the emitted signal is not isotropically polarized. The
angles α1;2 describe the orientation of the source’s angular
momentum with respect to the observer-lens rest frame, and
thereby parametrize the emitted polarization.
Under the assumption of circular motion, and for our

mass and distance values, the orbital period is

T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π2d3SL
M

r
≃ 1 week; ð56Þ

hence, for such a system one expects to observe multiple
periods of revolution of the binary around the AGN.

FIG. 4. Configuration ι ¼ 0.15; α1 ¼ 0.16; α2 ¼ 6.12. Envelope
of scattered waves (40) and (41), for both polarizations, over the
course of one orbit. The strong ð1 − cos θÞ−1 amplification is
taking place at the point of best alignment. Even in the absence of
the ð1 − cos θÞ−1 amplification, for this configuration the scattered
waves show strong interference patterns between the two sub-
components of (40), respectively, (41). These submodulations of
the polarization’s amplitudes are correspondingly amplified at
small inclination.

7It was found by [31] that such a hierarchical triple is
detectable by LISA with SNR of 5–10 for a 4-year mission, if
located at z ≃ 0.27. Transposing this system to a lower z ∼ 0.01
would allow a boost in SNR for the transmitted wave by a factor
∼dSOðz ¼ 0.27Þ=dSOðz ¼ 0.01Þ ∼ 30.

8We observe that for a binary with equal mass and the
geometry chosen above, their separation is 2.2 × 105R⊙, hence
very far from merging but very small compared to dSL.
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The scattering effect is thus periodic as long as the binary
emitting frequency and distance to the third body remain
constant. Using Ω ¼ 2π=T and Eq. (55), the relative
strength ρ of the effect has the maximal value

ρmax ¼ 2ðMΩÞ2=3ð1 − cos ιÞ−1: ð57Þ

Figure 4 shows the scattered wave polarizations given
by Eqs. (40) and (41) over the course of one orbit, for a
particular configuration. The inclination ι is chosen so as
to have sizeable amplification factor, while remaining
in the bound of Eq. (50). We see that the amplitude of
both polarization modes increases at a certain point in
the orbit, which coincides with the situation of best

source-lens-observer alignment. It is interesting to look
at the total wave, sum of transmitted and scattered
components, which is the observable quantity at the
observer.
This is shown in Figs. 5 and 6, for two configurations

with respectively low and high V in the transmitted wave.
In both Figs. 5 and 6, the total wave signal is dominated by
the (constant) amplitude of the transmitted wave. The
interference effect with the scattered wave results in a
modulation of the amplitude, apparent at the point of best
alignment. The mismatch between lensed and unlensed
waves is manifested by the total wave amplitude departing
from a constant. The oscillatory pattern arises from
interference between the scattered and transmitted waves.

FIG. 5. Configuration ι ¼ 0.16; α1 ¼ 0.90; α2 ¼ 1.50. Top:
envelope of the total wave, for both polarizations, over the
course of one orbit in a configuration of low total circular
polarization. For this configuration with hþ > h×, the relative
modulation due to interference is of order 12% on hþ and exceeds
180% on the (weak) h× signal. Bottom: corresponding degree of
circular polarization. We show V incident as the degree of circular
polarization of the incoming wave at the lens, Vscat that of the
above scattered wave, V trans the (constant) one of the transmitted
wave at the observer, and V tot that of the total wave. The
oscillations in the individual polarizations amplitudes propagate
in the total degree of circular polarization.

FIG. 6. Configuration ι ¼ 0.12; α1 ¼ 1.40; α2 ¼ 1.00. Top:
envelope of the total wave, for both polarizations, over the
course of one orbit in a configuration of high total circular
polarization. Both transmitted hþ;× show a similar amplitude. The
interference between the scattered and transmitted waves acts as a
∼30% to 45% modulation of the wave amplitude, with the
modulation being approximately identical to both polarizations in
this geometry. Hence, while the interference effect leaves a clear
imprint on the polarizations, the total degree of circular polari-
zation remains approximately constant. Bottom: corresponding
degree of circular polarization. Along the orbit V tot ≃ V trans ≃ 1,
the maximal possible value.
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Indeed, the transmitted wave’s propagation time to the
observer varies along the orbit due to changing dSO.
Notably, interference oscillations occur when dSO changes
by one wavelength. The peak spacing is larger at quasia-
lignment points [extrema of dSO], and decreasing as the
source moves away from these points. The polarization
modes hþ;× shown in Fig. 6 have similar amplitude
throughout the orbit, for both the transmitted and scattered
waves, leading to an approximately common modulation
factor of the amplitudes.
At best alignment, helicity is preserved with V incident ≃

Vscat, while in anti-alignment (i.e., a configuration lens-
source-observer, reached round t ∼ 5 days), we have
V incident ≃ −Vscat, showing that helicity is then reversed
by the scattering process. This feature, due to the fact that
the process is not helicity preserving, is general; however,
the time evolutions of V incident and Vscat are not universal but
configuration dependent.
Note that in Figs. 5 and 6 the degree of polarization of

the incident wave V incident and of the scattered one Vscat
have a similar behavior. However, the resulting V tot is quite
different in the two cases. In the first case indeed, one has
hþ > h×; hence, the relative modulation due to lensing is
larger for the first mode than for the second one. The
oscillations in amplitude of the total degree of circular
polarization are due to the oscillations of the single
polarization modes. In the second case, the amplitude of
both polarizations is similar, and they are affected in a
similar way by lensing. The resulting degree of polarization

is very close to one and shows a small modulation around
the point of best alignment.
In the absence of lensing, V reduces to the constant

V trans. We stress that V incident and Vscat do not need to reach
the extremal values of �1 for a generic orbit, and may
actually remain close to 0 at all times. As an example, in
Fig. 7 we show a configuration of medium total circularity
(it is the same geometry considered in Fig. 4 for the
scattered wave).

VIII. DISCUSSION AND CONCLUSION

In this paper we have presented a framework to study
lensing of GWs from a black hole, in the deep wave optics
regime (i.e., in the case of the wavelength being much
larger than the lens Schwarzschild radius), and keeping full
track of the tensorial structure of the wave. Unlike previous
works on GWs lensing in wave optics, we relax the
assumption that the wave is a scalar wave. We show that
the two helicity modes of the wave do not transform in the
same way under lensing: the degree of circular polarization
is not preserved by wave optics lensing, unlike what
happens in geometric optics and in wave optics when
treating the wave as a scalar wave. Our approach shows the
limit of the standard treatment of lensing in wave optics
where lensing effects are described by introducing a
common amplification factor for both polarization modes
and indicates the need to go beyond this approximation to
have an accurate description of the lensing signal.
The formalism used builds on existing results on phase

shifts for spin-2 waves, found in the context of plane wave
scattering (see, e.g., Ref. [9]). We adapted these results to
describe the case of scattering of a wave emitted by a binary
system of compact objects, in orbit around a central
massive lens, under the assumption that the emitted
spherical wave can be considered as a plane wave at the
lens scale.
We presented analytical results for the polarization

modes of the scattered wave, and for the total wave at
the observer. We showed that the lensing process is not
helicity preserving, unlike what happens in geometric
optics. The degree of circular polarization of a wave is
the appropriate basis-independent quantity to highlight this
property. Although it is not a physical observable in this
context (see [42]), we also computed the differential cross
section characterizing the scattering process and checked
that we recovered results known in the literature, in some
specific limits.
We then turned to the dynamical situation in which the

binary system moves around the central lens, on a circular
orbit. We illustrated the evolution of the scattered wave
with observation time, for an orbital period comparable
with the observation time.

FIG. 7. Configuration ι ¼ 0.15; α1 ¼ 0.16; α2 ¼ 6.12. Degree
of circular polarization corresponding to the setting of Fig. 4, with
a medium total circularity. Again, we display V incident as the
degree of circular polarization of the incoming wave at the lens,
Vscat that of the above scattered wave, V trans the (constant) one of
the transmitted wave at the observer, and V tot that of the total
wave. Both incident and scattered wave have a very low degree of
circular polarization.
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We showed that the total wave received by the observer
presents a modulation arising from interference between
the scattered and transmitted components of the wave.9

Hierarchical triple systems of this type are a target for the
LISA mission [30,31]. We found that the magnitude of the
scattered wave is suppressed with respect to the unlensed
signal as the distance between source and lens increases:
sources in disk migration traps around an AGN systems are
interesting systems where lensing signals could be sizable.
Moreover, the relative magnitude of the scattering effect
highly depends on the degree of best alignment, given by
the inclination parameter ι of the plane of the outer orbit,
with respect to the lens-observer direction. This is sum-
marized by the dimensionless ρmax in Eq. (57), which
approximates the maximal value of the relative size of the
modulation for a given configuration. Notice that this
modulation can be large, even in the wave optics regime.
We indeed found that the modulation effect can be of the
order of 100% for the most favorable geometrical settings
and can be detectable by LISA for systems with sufficiently
high SNR (in the absence of lensing), e.g., if triple systems
sufficiently close are detected.10

Properly studying lensing effects, accounting for the full
tensorial structure of the wave, is relevant since matter
effects could either be degenerate with tests of general
relativity with low-frequency GW signals, or bias the results
of such tests if not properly taken into account. Indeed,
some modifications of general relativity also predict low-
frequency phase contributions, some already partially con-
strained by LIGO-Virgo observations [53,54]. LISA has the
potential to improve low-frequency constraints by about 8
orders of magnitude (in the flux) [55,56], provided that
matter effects are absent or accurately modeled.
We note that in our study we have focused on the effect of

lensing, assuming that kinematic effects (entering, e.g., via
the variation of redshift over time see e.g., [25]) and other
line-of-sight-effects are vanishing. However, for the systems
under study, Refs. [28,33,36,57,58] found that the Doppler
modulation could be measured and used to infer the super-
massive black hole (SMBH) mass. If the binary is even
closer to the SMBH, its spin can also be measured thanks to
the Lense-Thirring effect [36], and retrolensing [59] can be
significant. Incorporating effects due to the AGN’s spin
obviously requires going beyond the Schwarzschild space-
time that was considered in this work. Finally, also note that

Refs. [34,35,60] explored other higher order effects (such as
the Kozai-Lidov eccentricity oscillations) and found
that these could also be detected by LISA in particular
configurations. In a future work, we will review all possible
effects affecting the emitted waveform of such a system and
analyze the relative importance in various parts of the
parameter space.
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APPENDIX A: REGGE-WHEELER VARIABLES
ASSOCIATED WITH THE INCOMING WAVE

This appendix details the identification of the even and
odd Regge-Wheeler potentials associated with the plane
wave (29) in a system of spherical coordinates centered on
the lens. The identification of the even and odd Regge-
Wheeler potentials will be asymptotical (ωr ≫ 1, which
together with ωM ≪ 1 implies r ≫ M) to allow the use of
the phase shift formalism. To that goal, we decompose the
plane wave in spherical components (radial and tangential)
in spherical coordinates. We use the orthonormal
ðer; eθ; eϕÞ and the coordinates ðr; θ;ϕÞ naturally associ-
ated with the Cartesian system ðex; ey; ezÞ attached to the
lens and the associated coordinates ðx; y; zÞ. We also define
the helicity basis

e� ¼ 1ffiffiffi
2

p ðeθ ∓ ieϕÞ: ðA1Þ

Using the results by Ref. [48], we get the decomposition of
the plane wave in a spherical system of coordinates around
the lens, for p; q ¼ r; θ;ϕ

hpq ¼
X
lms

HðmÞ
sg2mclsα2ml ðkrÞsYlmnspq þ c:c:; ðA2Þ

where the wedge brackets denote symmetric traceless
tensors that define nspq

n0pq ¼ erhpe
r
qi n�1

pq ¼ e�hpe
r
qi n�2

pq ¼ e�hpe
�
qi; ðA3Þ

and the cl ¼ il
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið4πÞð2lþ 1Þp

and sgjm are just numerical
coefficients that read, from (4.11) of Ref. [48],

0g
22 ¼ 3

2
; �1g

22 ¼∓ ffiffiffi
3

p
; �2g

22 ¼
ffiffiffi
3

2

r
; ðA4Þ

with sgl;−m ¼ sglm.

9We illustrated this result for a reference choice of the phase of
the transmitted part. As explained in the body of this paper, the
computation of the phase distortion of the transmitted component
can be done only numerically, and goes beyond the scope of this
work. The choice of this phase does not affect quantitatively our
findings.

10The allowed inclination angle is limited by the assumption of
local planarity of the incident wave. When illustrating our results,
we have stayed well within the limits of validity of our
approximation (meaning that more drastic effects may possibly
arise).
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The radial functions are decomposed into even and odd
parity as (here notation with s ≥ 0)

�sα
2m
l ¼ sϵ

2m
l � isβ2ml : ðA5Þ

Their explicit expressions are provided in Appendix B. In
Eq. (A2), sYlm are evaluated at ðθ;ϕÞ.
We now want to relate our plane wave (A2) to the metric

decomposition presented in Sec. III A, directly related to
Regge-Wheeler variables. First of all, we recall the relation
between even and odd vector harmonics and spin-weighted
spherical harmonics which involves the covariant derivative
on the unit sphere DA

Ylm
A ¼ DAYlm ¼ 1

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

2

r
ð−1Y

lmeþA þ−1 Ylme−AÞ;
ðA6Þ

Xlm
A ¼ −ϵBADBYlm

¼ −
i
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

2

r
ð1YlmeþA þ −1Y

lme−AÞ; ðA7Þ

where the 1=r rescaling accounts for the fact that we
follow [48] in which e�A are defined at any r, while we
introduced DA on the unit sphere as in [45], so that
Ylm
A ; Xlm

A depend only on θ;ϕ.
For even and odd tensor harmonics, we have

Ylm
AB ¼ DhADBiYlm

¼ 1

2r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2Þ!
ðl − 2Þ!

s
ð2Ylmn2AB þ −2Y

lmn−2ABÞ; ðA8Þ

Xlm
AB ¼ i

2r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2Þ!
ðl − 2Þ!

s
ð2Ylmn2AB − −2Y

lmn−2ABÞ: ðA9Þ

Then the radial components of the metric perturbations (12)
are related to the plane wave (A2) as

hrr ¼
X
lm

hlmrr Ylm; ðA10Þ

hrA ¼ hAr ¼
X
lm

hlmr Xlm
A þ jlmr Ylm

A ; ðA11Þ

hAB ¼
X
lm

hlm2 Xlm
AB þ r2GlmYlm

AB þ r2KlmΩABYlm: ðA12Þ

Note that our wave perturbation hij (21) explicitly has
vanishing modes hlmta ; hlmtA .
We verify that under complex conjugation Ylm� ¼

ð−1ÞmYl;−m, this relation also holds if one substitutes Y
by YA;B;AB or XA;B;AB. As a consequence, one can work with

Eq. (A2) first without adding the complex conjugate term,
thereby extracting the modes (A10)–(A12) of a complexi-
fied metric perturbation. The physical (real) metric is then
recovered using that, e.g.,X

lm

hlm�
rr Ylm� ¼

X
lm

ð−1Þmhlm�
rr Yl;−m ðA13Þ

¼
X
lm

ð−1Þmhl;−m�
rr Ylm; ðA14Þ

so that if hlmrr was the expansion coefficient of the complex
metric perturbation (A2) without c.c., the corresponding
coefficient for the real perturbation is ðhlmrr þ ð−1Þmhl;−m�

rr Þ.
The same holds true for all other coefficients.
We call ð−1Þmhl;−m�

rr the conjugate mode, or c.m. for
short, which, unlike the complex conjugate, corresponds
to the term that has to be added in order to recover the
real metric perturbation. For a generic coefficient al;m

in (A10)–(A12):

al;m þ c:m:≡ al;m þ ð−1Þmal;−m�: ðA15Þ

Matching Eq. (A2) onto Eqs. (A10)–(A12) thus gives
(recall m ¼ 2 or m ¼ −2 only)

hlmrr ¼ HðmÞcl0ϵ
2m
l ðkrÞ þ c:m:; ðA16Þ

Klm ¼ −
1

2
hlmrr þ c:m:; ðA17Þ

jlmr ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2lðlþ 1Þ

s
HðmÞcl1ϵ

2m
l ðkrÞ þ c:m:; ðA18Þ

hlmr ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2lðlþ 1Þ

s
HðmÞcl1β

2m
l ðkrÞ þ c:m:; ðA19Þ

r2Glm ¼ r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ðl − 2Þ!
ðlþ 2Þ!

s
HðmÞcl2ϵ

2m
l ðkrÞ;þc:m:; ðA20Þ

hlm2 ¼ r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ðl − 2Þ!
ðlþ 2Þ!

s
HðmÞcl2β

2m
l ðkrÞ þ c:m:; ðA21Þ

with all radial functions given in Appendix B.
We can now explicitly write the quadrupole emission in

Regge-Wheeler variables. We put Eqs. (A16)–(A20) into
(15) and (18). Very much like in the scalar partial wave
expansion, the gravitational wave partial wave expansion
contains spherical Bessel functions and related expressions.
It is useful to expand the latter special functions in the
asymptotic kr ≫ 1 limit to get a result in terms of a
superposition of simple spherically in- and outgoing waves.
We obtain that the complexified incoming wave (emitted by
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the binary) around the lens, in the lens frame, is described
by the following Regge-Wheeler variables:

Ψlm
even ¼ i

HðmÞ

2k

ffiffiffiffiffiffi
6π

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl− 2Þ!
ðlþ 2Þ!

s
ðð−1Þlþ1e−ikr þ eikrÞ þ c:m:; ðA22Þ

Ψlm
odd ¼ −

m
jmj

HðmÞ

2k

ffiffiffiffiffiffi
6π

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 2Þ!
ðlþ 2Þ!

s
ðð−1Þlþ1e−ikr þ eikrÞ þ c:m: ðA23Þ

APPENDIX B: RADIAL FUNCTIONS

We list here some useful results, from [48], that we used
in Sec. III and in Appendix A. The radial functions �sα

jm
l

satisfy the following properties:

−sα
jm
l ðνÞ ¼ sα

j−m
l ðνÞ ¼ sα

jm
l ð−νÞ; ðB1Þ

sα
jm
l ¼ mα

js
l ; ðB2Þ

and

sα
jm
l ¼ ð−1Þl−jsαlmj : ðB3Þ

We split the function into even and odd parts as

�sα
2m
l ¼ sϵ

2m
l � isβ2ml ; ðB4Þ

where

0β
2m
l ¼ 0; ðB5Þ

and

sβ
j;−m
l ¼ −sβ

j;m
l ; ðB6Þ

sϵ
j;−m
l ¼ sϵ

j;m
l : ðB7Þ

In flat space, the radial functions are built as

sα
jm
l ðxÞ¼

X
L

sCm0m
lLj jLðxÞiLþj−l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πð2Lþ1Þ

ð2lþ1Þð2jþ1Þ

s
; ðB8Þ

in terms of the Gaunt coefficient

sCm1m2m3

l1l2l3
≡

Z
d2ΩðsYl1m1Þ�Yl2m2ðsYl3m3Þ

¼ ð−1Þm1þs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þ

4π

r

×

�
l1 l2 l3

s 0 −s

��
l1 l2 l3

−m1 m2 m3

�
: ðB9Þ

The expressions for the even and odd parity are given in
Appendix F of [48]. We list here the functions of interest for
us (x ¼ kr), and we also mark the scaling for x ≫ 1

0ϵ
2;2
l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðlþ 2Þ!
8ðl − 2Þ!

s
jlðxÞ
x2

∝
1

x3
; ðB10Þ

1ϵ
2;2
l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðlþ 2Þðl − 1Þp
2

1

x2
d
dx

½xjlðxÞ� ∝
1

x2
; ðB11Þ

1β
2;2
l ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðlþ 2Þðl − 1Þp
2

jlðxÞ
x

∝
1

x2
; ðB12Þ

2ϵ
2;2
l ¼ 1

4

�
j00lðxÞ− jlðxÞþ 4

j0lðxÞ
x

þ 2
jlðxÞ
x2

�
∝
1

x
; ðB13Þ

2β
2;2 ¼ −

1

2x2
d
dx

½x2jlðxÞ� ∝
1

x
: ðB14Þ

APPENDIX C: RESUMMATION FORMULAS

We present here resummation formulas that we will use
in Appendix D to resum the series defining the scattered
wave (see Sec. IV). For jmj ¼ l and for ReðaÞ > 0, we
have

ð1 − cos θÞa−1sYlmðθ;ϕÞ ¼
X
L

sclmL sYLmðθ;ϕÞ: ðC1Þ

The coefficients are given by (for m ≥ 0 but possibly s
negative)

sclmL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þð2Lþ 1Þ

p
2a−1

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþmÞ!ðl −mÞ!
ðlþ sÞ!ðl − sÞ!

ðLþmÞ!ðL − sÞ!
ðL −mÞ!ðLþ sÞ!

s

×
Γðmþ sþ aÞΓðLþ 1 −m − aÞ
Γð1 − aÞΓðLþ 1þmþ aÞ : ðC2Þ

The coefficients when m < 0 are found from the properties
of the spherical harmonics when the m sign is flipped. One
finds
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sclmL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þð2Lþ 1Þ

p
2a−1

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþmÞ!ðl −mÞ!
ðlþ sÞ!ðl − sÞ!

ðLþ jmjÞ!ðLþ sÞ!
ðL − jmjÞ!ðL − sÞ!

s

×
Γðjmþ sj þ aÞΓðLþ 1 − jmj − aÞ

Γð1 − aÞΓðLþ 1þ jmj þ aÞ : ðC3Þ

The expansion (C1) is a generalization of the expansion of
ð1 − cos θÞa−1 in spherical harmonic, which can be
obtained with s ¼ l ¼ m ¼ 0, and which is obtained from
the integral (7.127) of [61] along with the orthonormality of
spherical harmonics. We did not obtain an explicit proof of
the expansion (C1) in the more general case, but we have
checked that

sclmL ¼
Z

d2Ωð1 − cos θÞa−1sYlmðθ;ϕÞðsYLmÞ⋆ ðC4Þ

on many combinations of l, s, and L with jmj ¼ l,
using the explicit forms of the spin-weighted spherical
harmonics.

APPENDIX D: SCATTERED WAVE:
EXPLICIT COMPUTATION

We want to compute the plus and cross polarization of
the scattered wave of Sec. IV. We need to compute the
following objects:

hþ � ih× ¼
ffiffiffiffiffiffi
6π

p
i
eikr�

4kr
Hð�2ÞX

l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p ðe2iδevenl − e2iδ
odd
l Þ�2Y

l�2 ðD1Þ

þ
ffiffiffiffiffiffi
6π

p
i
eikr�

4kr
Hð∓2ÞX

l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p ðe2iδevenl þ e2iδ
odd
l − 2Þ�2Y

l∓2 ðD2Þ

−
ffiffiffiffiffiffi
6π

p
i
e−ikr�

4kr
Hð∓2Þ�X

l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p ðe−2iδevenl − e−2iδ
odd
l Þ�2Y

l�2 ðD3Þ

−
ffiffiffiffiffiffi
6π

p
i
e−ikr�

4kr
Hð�2Þ�X

l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p ðe−2iδevenl þ e−2iδ
odd
l − 2Þ�2Y

l∓2: ðD4Þ

The summability of the series is discussed in
Appendix E. The sum and difference of phase shifts are
given by the following expressions, for m ¼ −s

exp ð2iδevenL Þ þ exp ð2iδoddL Þ

¼ 2
ΓðL − 1 − 2iMωÞ
ΓðLþ 3þ 2iMωÞ

ðLþ 2Þ!
ðL − 2Þ! e

−iΦ−2iMω; ðD5Þ

while for m ¼ s

exp ð2iδevenL Þ − exp ð2iδoddL Þ

¼ 24iMω
ΓðL − 1 − 2iMωÞ
ΓðLþ 3þ 2iMωÞ e

−iΦ−2iMω: ðD6Þ

We use the resummation formulas in Appendix C to
evaluate the sum over l in (D1) and (D2), i.e., we use

ð1 − cos θÞa−1sYlmðθ;ϕÞ ¼
X
L

sclmL sYLmðθ;ϕÞ; ðD7Þ

where the explicit form of the coefficients is given in (C2)
and (C3). We obtain for m ¼ −s ¼ �2

sclmL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þð2Lþ 1Þ

p
2a−1

×
ðLþ 2Þ!
ðL − 2Þ!

ΓðaÞ
Γð1 − aÞ

ΓðL − 1 − aÞ
ΓðLþ 3þ aÞ ; ðD8Þ

while for m ¼ s ¼ �2

sclmL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þð2Lþ 1Þ

p
2a−1

Γð4þ aÞ
Γð1 − aÞ

ΓðL − 1 − aÞ
ΓðLþ 3þ aÞ ;

ðD9Þ

where in our context a ¼ 2iMω (we comment on the fact of
applying these formulas for that value of a in Sec. E). Using
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this in our expressions for hþ � ih× (D1)–(D4), we obtain

hþ � ih× ¼
ffiffiffiffiffiffi
6π

p
i
eikr�

4kr
Γ½1 − a�ffiffiffi

5
p 22−ae−iΦ−að1 − cos θÞa−1

×



Hð�2Þ 6a

Γ½4þ a� �2Y
2�2ðθ;ϕÞ

þHð∓2Þ 1

Γ½a� �2Y
2∓2ðθ;ϕÞ

�
ðD10Þ

−
ffiffiffiffiffiffi
6π

p
i
eikr�

4kr
2Hð∓2ÞX

L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Lþ 1

p
�2Y

L∓2 ðD11Þ

−
ffiffiffiffiffiffi
6π

p
i
e−ikr�

4kr
Γ½1þ a�ffiffiffi

5
p 22þaeiΦþað1 − cos θÞ−a−1

×



Hð∓2Þ� −6a

Γ½4 − a� �2Y
2�2ðθ;ϕÞ

þHð�2Þ� 1

Γ½−a� �2Y
2∓2ðθ;ϕÞ

�
ðD12Þ

þ
ffiffiffiffiffiffi
6π

p
i
e−ikr�

4kr
2Hð�2Þ�X

L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Lþ 1

p
�2Y

L∓2: ðD13Þ

We note that the sums (D11) and (D13) are the leftovers of
the −2 contributions in, respectively, (D2) and (D4), which
were there to ensure that the scattered wave polarizations
vanish in thea → 0 limit (i.e., no scattering). The limita → 0
can be easily taken in (D10) and (D12), recalling the a → 0
behavior of the different Γ½a� contributions:

Γ½1−a�6a
Γ½4þa� ¼ aþOða2Þ; Γ½1−a�

Γ½a� ¼ aþOða2Þ: ðD14Þ

It follows that one ends up with an already vanishing
a → 0 limit for the resummed terms (if θ ≠ 0). It is therefore
expected that the expressions in (D11) and (D13)will also be
vanishing for any θ ≠ 0. Indeed, noticing that

�2Y
L;mð0; 0Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Lþ 1
p δm;∓2

2
ffiffiffi
π

p ¼ �2Y
L;m�ð0; 0Þ; ðD15Þ

one rewrites the sums in (D11) and (D13) as

X
L≥2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Lþ 1

p
�2Y

L∓2ðθ;ϕÞ ¼
X
L≥2

XL
m¼−L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Lþ 1

p
δm;∓2�2Y

Lmðθ;ϕÞ ¼
X
L≥2

XL
m¼−L

2
ffiffiffi
π

p
�2Y

L;m�ð0; 0Þ�2Y
Lmðθ;ϕÞ

¼ 2
ffiffiffi
π

p X
L≥2

XL
m¼−L

�2Y
L;m�ð0; 0Þ�2Y

Lmðθ;ϕÞ ¼ 2
ffiffiffi
π

p
δðθÞ δðϕÞ 1

sin θ
; ðD16Þ

where we used the completeness relation of spin weighted spherical harmonics to introduce the Dirac deltas [62].
These contributions in the form of a delta function of the forward direction can be traced to the contribution of the

incoming plane wave in the forward direction.
We recall that the expressions (10) and (11) for the phase shifts are derived in the long wavelength limit (Mω ≪ 1). We

thus expand the Γ factors in our summed expressions the same limit, using Eq. (D14). For θ ≠ 0, one ends up with the
approximate expressions

hþ � ih× ≃ 4i

ffiffiffi
π

5

r
�2Y

2�2ðθ;ϕÞ
n
AðrÞð1 − cos θÞa−1Hð�2Þ −A�ðrÞð1 − cos θÞ−a−1Hð∓2Þ�

o

þ 4i

ffiffiffi
π

5

r
�2Y

2∓2ðθ;ϕÞ
n
AðrÞð1 − cos θÞa−1Hð∓2Þ −A�ðrÞð1 − cos θÞ−a−1Hð�2Þ�

o
; ðD17Þ

with the overall r-dependent amplitude factor

AðrÞ ¼
ffiffiffi
6

p eikr�

8kr
a21−ae−iΦ−a: ðD18Þ

Recalling that
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�2Y
2�2ðθ;ϕÞ ¼ 1

2
e�2iϕ

ffiffiffi
5

π

r �
1 − cos θ

2

�
2

; �2Y
2∓2ðθ;ϕÞ ¼ 1

2
e∓2iϕ

ffiffiffi
5

π

r �
1þ cos θ

2

�
2

: ðD19Þ

It follows that in hþ � ih×, the θ → 0 divergence is only present in the s ¼ −m contributions, but not in the s ¼ m ones.
Extracting the hþ;× polarizations, we obtain the following structure:

hþ ≃AðrÞið1 − cos θÞa−1 1þ cos2θ
2

ðHð2Þe2iϕ þHð−2Þe−2iϕÞ þ c:c:; ðD20Þ

h× ≃AðrÞð1 − cos θÞa−1 cos θð−Hð2Þe2iϕ þHð−2Þe−2iϕÞ þ c:c: ðD21Þ

Explicitly, this is

hþ ≃
2M
r

Ain

dSL

1

1 − cos θ
1þ cos2θ

2

�
cos4

�
θ̃L
2

�
cos ðφ − 2ϕÞ þ sin4

�
θ̃L
2

�
cos ðφþ 2ϕÞ

�
; ðD22Þ

h× ≃
2M
r

Ain

dSL

1

1 − cos θ
cos θ

�
cos4

�
θ̃L
2

�
sin ðφ − 2ϕÞ − sin4

�
θ̃L
2

�
sin ðφþ 2ϕÞ

�
; ðD23Þ

with the incoming wave amplitude factor Ain and a phase φðr; tÞ defined by

Ain ≡ 4M5=3
c

�
ω

2

�
2=3

; φðr; tÞ≡ ωðt − dSL� − r�Þ − 2ϕ̃L þΦ − 2Mωðln ð1 − cos θÞ − 1 − ln 2Þ: ðD24Þ

When the tensorial nature of the GW is restored from
these polarization components, this scattered wave has the
structure of the double TT projection

hijðtÞ ¼
2M

rð1 − cos θÞPer



1

dSL
Pẽr ½AijðtretÞ�

�
; ðD25Þ

from a quadrupolar source

AijðtÞ ¼ Ain½cosðωtÞðẽxi ẽxj − ẽyi ẽ
y
jÞ þ sinðωtÞðẽxi ẽyj þ ẽyi ẽ

x
jÞ�;

ðD26Þ

where a TT projector orthogonal to a unit vector is
defined by

Pn½Aij� ¼
�
⊥k

i⊥l
j −

1

2
⊥ij⊥kl

�
Akl; ⊥j

i ¼ δji − ninj:

ðD27Þ

The first TT projection in (D25) with Pẽr is the projection
of the quadrupolar source onto the plane orthogonal to the
radiated direction ẽr, with a spherical wave decay ∝ 1=dSL,
which is evaluated at the lens position. The second TT
projection with Per due to scattering is in the plane
orthogonal to the scattered direction er, and it is weighted

by the 2M=ð1 − cos θÞ factor with a spherical wave decay
∝ 1=r. As seen in Eq. (D24), the source is evaluated at a
retarded time tret which is different from the naive
t − dSL − r, not only because tortoise coordinates must
be used; hence, dSL� and r� replace dSL and r, but also due
to a further offset as in (D24).

APPENDIX E: SUMMABILITY
OF THE MULTIPOLE SERIES

We now discuss the convergence and the summation of
the multipole series (37) defining plus and cross polar-
izations after the scattering

hþ � ih× ¼
X
lm

�2Y
lmhð�2Þ

lm ; ðE1Þ

with multipoles given in (39).
We start by considering the high-l behavior of �2Y

lm.
For this we exploit the asymptotic behavior of the Wigner
dlms function, as well as the relation between dlms and sYlm.
The latter is expressed as follows:

sYlmðθ;ϕÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r
eimϕð−1Þsdlm;−sðθÞ: ðE2Þ
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The asymptotic behavior of dlm;−s is given, e.g., in [63]. In the range θ∈ ½0; π�, we have that for l → ∞, and
m ≈ −s ≈ 1

2
ðm − sÞ ≪ l

dlm;−sðθÞ →

8>><
>>:

J−s−m

�
θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 − 1

4
ðm − sÞ2

q �
if θ ≤ π

2

ð−1Þl−mJm−s

�
ðθ − πÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 − 1

4
ðmþ sÞ2

q �
if θ > π

2

; ðE3Þ

with Jn being the Bessel function of order n. The Bessel
functions JnðlÞ at large l scales as l−1=2 cosðlÞ (see, e.g.,
[64]). Therefore, the asymptotic scaling in l of sYlm has
the dominant term ∝ l1=2l−1=2 cosðlÞ ¼ cosðlÞ, i.e., it is
an oscillating function with constant amplitude.
We need now to consider the high-l behavior of the

coefficients in Eq. (39).
In this context, we note that even and odd phase shifts

tend to become more and more identical at high l, and that
their respective contribution is either summed or subtracted
in the m partial sum of the full m;l multipole sum,
depending on whether the considered partial sum has
m ¼ s, or m ¼ −s, for fixed s ¼ �2 mode.
Considering only the lower orders in Mω for the phase

shifts, it appears that the partial sum with m ¼ s sees the
even and odd contributions cancel each better and better
with increasing l [i.e., these are the terms with � m

jmj ¼ −1
in Eq. (39)]. Indeed, we have

ðe2iδevenl − 1Þ − ðe2iδoddl − 1Þ
¼ e2iδ

even
l − e2iδ

odd
l

¼ 24iMω
ðl − 2Þ!
ðlþ 2Þ!þOððMωÞ2Þ: ðE4Þ

The l−4 scaling of this term apparently removes the
divergence in these particular partial sums. On the other
hand, in the partial sums with m ¼ −s, the divergence of
the even and odd subcomponents adds, and the resulting
partial sums remain divergent. The full multipole sum,
being the sum of the two partial sums with m ¼ �s,
remains therefore divergent.
It has been illustrated in Ref. [42] that the simpler

problem of Rutherford scattering and of scattering of a
scalar wave off a Schwarzschild black hole also typically
gives rise to a divergent multipole series for the scattering
amplitude. This is a mathematical artifact, due to the
improper taking of asymptotic limits within individual

multipoles before summing them. For the case of
Rutherford, one can indeed compute the exact solution in
real space, and get a closed form for the scattering
amplitude. When working in multipole space, one can
obtain a closed form for the series by using summation
formulas extended outside their range of validity, just as has
been done here using a ¼ 2iMω in (C2) and (C3). For
Rutherford and for the scalar wave case, this closed form
has remarkably been shown to be unique for any converging
nonstandard summation that fulfils criteria of regularity,
linearity, and stability, such as Cesàro summation.
Cesàro summation is a (regular, linear, and stable)

summation technique that can average out the oscillations
that are preventing some series from converging. We briefly
introduce it here. Further details can be found in the classic
reference [65]. For any series with terms aj, we introduce
the family of ðC; αÞ Cesàro summations of the series, for
α∈N, as

lim
n→∞

Xn
j¼0

ðnjÞ
ðnþα

j Þ aj: ðE5Þ

The case α ¼ 0 corresponds to ordinary summation, while
the case α ¼ 1 is often simply called Cesàro summation.
By construction, Cesàro summation is an average of the
ordinary partial sums. When solving the problem numeri-
cally, one has to truncate these sums at some maximal n
value. Numerically, partial sums of Cesàro summation of
multipoles series was shown to provide results in agree-
ment with the expected closed form apart from the θ ¼ 0
direction; in the context of Rutherford scattering, see [42].
While, unlike the case of Rutherford, we do not show a
unicity result of Eqs. (D22) and (D23) being the closed
forms of any converging nonstandard summation that
fulfils criteria of regularity, linearity, and stability, it is
natural to conjecture this property to hold.
In view of investigating this numerically with Cesàro

summation in mind, we turn to our m ¼ −s summations of
interest, e.g., (D2):

Sðn → ∞; θ;ϕ; aÞ≡ Xn→∞

l¼2

�
−2þ 2e−a−iΦðaÞ Γ½l − 1 − a�

Γ½lþ 3þ a�
ðlþ 2Þ!
ðl − 2Þ!

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p
−2Yl;2ðθ;ϕÞ; ðE6Þ
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where we used Eq. (D5) to sum phase shift exponentials. We shift the summation index by two to rewrite the partial sum as a
sum starting at l ¼ 0 (stability property), defining

Sðn; θ;ϕ; aÞ ¼
Xn
l¼0

�
−2þ 2e−a−iΦðaÞ Γ½lþ 1 − a�

Γ½lþ 5þ a�
ðlþ 4Þ!

l!

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 5

p
−2Ylþ2;2ðθ;ϕÞ: ðE7Þ

As n → ∞, we recall that the expected closed form of this
series is (see Appendix D)

Γ½1 − a�ffiffiffi
5

p
Γ½a� 2

2−ae−a−iΦðaÞð1 − cos θÞ−1þa
−2Y2;2ðθ;ϕÞ; ðE8Þ

with a ð1 − cosðθÞÞ−1 divergence as θ → 0 (a being purely
imaginary). We now replace the ordinary partial sums
in (E7) with Cesàro partial sums: the Cesàro averaging
process averages out the ever growing oscillations of
the partial sums. We illustrate numerically in Fig. 8 the
attempt of summing Sðn; θ;ϕ; aÞ until various finite
maximal n values, and replacing the ordinary partial
sum with ðC; α ¼ 0; 1; 2Þ partial sums, which we denote
by

PðCn;αÞ. In each case we rescale the summed result by a
ð1 − cosðθÞÞ factor for visual convenience, and we plot the
result against the closed form (E8). While the sum never
converges in the sense of ordinary summation, it numeri-
cally converges in the sense of Cesàro. The same holds for
the other s ¼ −m sum (D4).

APPENDIX F: CROSS SECTION:
COMPARISON WITH LITERATURE

The cross section for scattering of gravitational waves off
Schwarzschild black holes has been computed already in
the 1970s; see, e.g., Ref. [66], where both the cross section
for unpolarized and purely þ or × polarized incoming
waves are given.
For a circularly polarized incoming wave, which in our

case reduces to θ̃L ¼ 0, our cross section (47) reduces to

dσ
dΩ

¼ M2
cos8ðθ=2Þ þ sin8ðθ=2Þ

sin4ðθ=2Þ : ðF1Þ

This can equivalently be written as

dσ
dΩ

¼ M2
1

sin4ðθ=2Þ
�
cos2 θ þ 1

8
sin4 θ

�
; ðF2Þ

and it agrees with the result of [66] for an unpolarized
wave. Our cross section in the limit θ̃L → π=2 is that of a
purely hþ polarized incoming wave. In this limit, after a
few simplification we can check that it agrees with the
result of Peters for a purely þ incoming wave, i.e.,

1

sin4ðθ=2Þ
�
cos2 θ þ 1

4
sin4 θ cos2ð2ϕÞ

�
: ðF3Þ

Peters also gives a formula for a purely × incoming plane
wave, and finds

1

sin4ðθ=2Þ
�
cos2 θ þ 1

4
sin4 θ sin2ð2ϕÞ

�
: ðF4Þ

Our choice of basis in the polarization plane does not allow
us to have a purely × incoming wave. Indeed the only
incoming wave with zero circular polarization that we may
have is the one emitted by a binary seen edge on, with a
purely þ emission. To obtain a purely × incoming wave,
one should take the configuration of an h× only incoming
wave (i.e., θ̃L → π=2) and rotate the polarization plane basis
(on the lens) by −π=4. The rotation axis (source-lens axis) is
left unchanged by this rotation, so the θ angle remains
untouched. The new angle ϕ is however rotated by π=4 with
respect to the old one. Thus, reexpressing the cross section
in this new polarization basis, one has to substitute
ϕ → ϕ − π=4 in (F3). This self-consistently gives (F4),
as expected. Averaging the result for the pure hþ and h×
incoming wave as [66], we indeed obtain their claimed
result for an unpolarized incoming wave, i.e., (F1).

APPENDIX G: TRIPLE SYSTEM:
PARAMETRIZING THE TIME-DEPENDENCE

We now want to look at emission of a wave from source
orbiting around a fixed lens (AGN), with a hypothetical
fixed observer. The motion of the source is on three-
dimensional orbit. Figure 1 represents a snapshot at a
fixed time.
We now wish to parametrize the source’s circular motion

around the lens. For that, we introduce a further set of
Cartesian orthonormal basis vectors ðēx; ēy; ēzÞ that are
attached to the observer-lens rest frame, centered on the
lens. For simplicity, we fix ēx to be in the observer
direction, and fix the time origin of the circular motion
such that the source is initially along ēy. With that, the
orbital trajectory of the source is expressed as
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r̄SðtÞ ¼ dSL

0
B@

− cos ι sinðΩtÞ
cosðΩtÞ

sin ι sinðΩtÞ

1
CAðwith respect to ēx;y;zÞ;

ðG1Þ

which is identical to the parametrization chosen in [29,31]
(for ϕ• → 0 in the former reference). The angle ι

corresponds to the inclination of the orbital plane with
respect to the observer-lens axis and is a free parameter.
Recall that in the earlier static setting, the set of basis

vectors ðex; ey; ezÞ were constructed from the source-
attached basis vectors ðẽx; ẽy; ẽzÞ, the former being the
set of spherical coordinates unit vectors in the Cartesian
basis given by the latter. We keep the same construction
here, with the extra hypothesis of axial parallelism: the triad

FIG. 8. Real (left column) and imaginary (right column) parts of the numerical truncated Cesàro summation of series (E7), each time
for various maximal values of the summation order n. On the first row is the α ¼ 0 case of Cesàro summation, i.e., ordinary partial sums,
while on the second and third rows are the α ¼ 1, 2 truncated Cesàro summations.
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ðẽx; ẽy; ẽzÞ is simply translated along the source motion, but sees its orientation preserved, i.e., scalar products between ẽi
and ēi basis vectors (fixed) are constants over time. This neglects any precession of the source’s internal angular
momentum. Vectors ðẽx; ẽy; ẽzÞ are therefore uniquely defined by three Euler angles α1;2;3, which rotate ðēx; ēy; ēzÞ into
ðẽx; ẽy; ẽzÞ. So, in terms of ēx;y;z

ẽz ≡
0
B@

sin α1 cos α2
sin α1 sin α2

cos α1

1
CA; ẽx ≡

0
B@

cos α1 cos α2 cos α3 − sin α2 sin α3
cos α1 sin α2 cos α3 þ cos α2 sin α1

− sin α1 cos α3

1
CA; ẽy ≡ ẽz × ẽx; ðG2Þ

where α1;2;3 are free parameters. While α1;2 have a physical
meaning associated with the source’s internal angular
momentum (parallel to ẽz), α3 merely fixes the orientation
of ẽx;y.
With the source orbital motion and axial parallel trans-

lation of ðẽx; ẽy; ẽzÞ, the ðθ̃L; ϕ̃L; θ̃O; ϕ̃OÞ angular positions
of lens and observer become functions of time. Similarly,
ðex; ey; ezÞ rotates as a function of time, and so ðθ;ϕÞ
become functions of time.

From the simple orbital motion (G1), the angle between
the source-lens axis and the lens-observer axis is easily
computed to be

θðtÞ ¼ arccosðcos ι sinðΩtÞÞ: ðG3Þ

The observer azimuthal angle with respect to ex;y;z is more
involved. We find

tanðϕðtÞÞ ¼ sinα1 sin ι sinðΩtÞ sinα2 − cosα1 cosðΩtÞ
sinα1 cosα2

h
1
2
cos2ιcosð2ΩtÞ− 1

4
cosð2ιÞþ 3

4

i
þ cos ι sinðΩtÞ½cosα1 sin ιsinðΩtÞþ sinα1 cosðΩtÞ sinα2�

; ðG4Þ

while θ̃LðtÞ is computed from ẽz · ez, giving

θ̃LðtÞ ¼ arccosðsinðΩtÞ½sin α1 cos ι cos α2 − cos α1 sin ι� − sin α1 cosðΩtÞ sin α2Þ: ðG5Þ

Further

tan ðϕ̃LðtÞÞ ¼
χ1 cos α3 þ χ2 sin α3
χ1 sin α3 − χ2 cos α3

; ðG6Þ

for

χ1 ≡ cosðΩtÞ cos α2 þ sinðΩtÞ cos ι sin α2; ðG7Þ

and

χ2 ≡ − cosðΩtÞ cos α1 sin α2
þ sinðΩtÞðsin ι sin α1 þ cos ι cos α1 cos α2Þ: ðG8Þ

As for the transmitted wave, we consider the incident
wave emitted by the source, evaluated at observer position.
From (G2), the angular position of the observer as seen
from the source’s Cartesian ẽx;y;z is given by

cosðθ̃OÞ ¼ sin α1 cos α2: ðG9Þ

tanðϕ̃O;farÞ ¼
− cosα1 cosα2 sinα3 − sinα2 cosα3
cosα1 cosα2 cosα3 − sinα2 sinα3

: ðG10Þ

This position is independent of time in the far observer
limit. Finally, from the orbital motion parametrized
by (G1), we find from ðẽθ̃ · eθÞjO ¼ ðẽϕ̃ · eϕÞjO

cosðηÞ ¼ −
2ðcosðΩtÞ sin α1 sin α2 þ cos α1 sin ι sinðΩtÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2 α1 cos2 α2 þ sin2 α2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3þ cosð2ΩtÞ − 2 cosð2ιÞ sin2ðΩtÞ
p : ðG11Þ

The notation used for all geometrical concepts is summed up in Table I. Because of finite travel time of the GW signal, the
scattering geometry should be evaluated at retarded time.
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