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Tests of general relativity with gravitational waves typically introduce parameters for putative deviations
and combine information from multiple events by characterizing the population distribution of these
parameters through a hierarchical model. Although many tests include multiple such parameters,
hierarchical tests have so far been unable to accommodate this multidimensionality, instead restricting
to separate one-dimensional analyses and discarding information about parameter correlations. In this
paper, we extend population tests of general relativity to handle an arbitrary number of dimensions. We
demonstrate this framework on the two-dimensional inspiral-merger-ringdown consistency test, and derive
new constraints from the latest LIGO-Virgo-KAGRA catalog, GWTC-3. We obtain joint constraints for the
two parameters introduced by the classic formulation of this test, revealing their correlation structure both
at the individual-event and population levels. We additionally propose a new four-dimensional formulation
of the inspiral-merger-ringdown test that we show contains further information. As in past work, we find
the GW190814 event to be an outlier; the 4D analysis yields further insights on how the low mass and spin
of this event biases the population results. Without (with) this event, we find consistency with general
relativity at the 60% (92%) credible level in the 2D formulation, and 76% (80%) for the 4D formulation.
This multidimensional framework can be immediately applied to other tests of general relativity in any
number of dimensions, including the parametrized post-Einsteinian tests and ringdown tests.
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I. INTRODUCTION

In their first three observing runs (O1, O2, O3), LIGO [1]
and Virgo [2], have detected gravitational waves (GWs)
from over 90 compact binary coalescences (CBCs) [3–6].
These observations have not only opened up new frontiers
for astrophysics and cosmology [7–14] but also bolstered
support for general relativity (GR) [15–17]. Each individual
GW detection furnishes a test of GR, leading our cumu-
lative sensitivity to increase with the number of observa-
tions. The expanding catalog of events calls for robust
statistical methods to combine these tests and produce
constraints on deviations from GR from sets of detections
[18–24]. Isi et al. [19], building upon work by Zimmerman
et al. [18], proposed a hierarchical-inference framework
[25–30] for this purpose. The framework enables a null test

of GR that does not hinge on assumptions about the true
theory of gravity or about how deviations manifest in
different events.
Starting from measurements of parameters controlling

deviations away from GR in individual events, the hierar-
chical framework characterizes the distribution of the true
parameter across the population of events. Typically, para-
metrizations are constructed so that GR is recovered in the
limit of vanishing deviation parameters; this translates to a
population distribution that is a delta function at the origin if
GR is correct, i.e., with the deviationvanishing for all events.
Since O2, population distributions have been obtained for
parametrized post-Einsteinian (ppE) deviations in the GW
phase coefficients [31–34], ringdown analyses [35,36], and
inspiral-merger-ringdown (IMR) consistency tests [37,38],
among others [16,17,19,39]; recently, the framework has
been extended to simultaneously model the GR deviations
and the astrophysical properties of sources [22], as well as to
factor in selection biases [23,24].
However, so far, results have been limited to one-

dimensional tests of GR, which model a single deviation
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parameter at a time, even for tests that are inherently
multidimensional. For example, ringdown tests introduce
deviations in both the frequency and damping rate of one or
multiple quasinormal modes, while the IMR consistency
test introduces two parameters that quantify agreement
of the remnant mass and spin as inferred independently
from high versus low frequencies of the signal. In these
cases, multidimensional posteriors are produced at the
individual-event level, but then only the marginal distri-
butions are considered when combining events. On the
other hand, the ppE test is typically carried out by varying a
single deviation coefficient at a time, in spite of the
existence of multiple ppE coefficients that should, in
principle, be measured jointly (as has been done only
occasionally [40–43]).
Previous work has considered how a deviation in one

parameter can manifest in multiple coefficients when each
of them is measured independently rather than jointly, as is
typically the case for the ppE test. In that case, the deviation
is eventually detected by the one-dimensional hierarchical
test of GR given enough observations (Fig. 2 in Ref. [19]);
however, there will be little indication regarding the true
combinations of coefficients that can explain the observed
departure from GR, since individual-event measurements
did not contain information about correlations across
coefficients in the first place. Furthermore, there have been
no studies of the case in which such correlation information
exists at the individual-event level but it is ignored at the
catalog level, as has been the case for the IMR and
ringdown tests so far. Reducing a multidimensional test
to a single dimension discards information about potential
correlations between the deviation parameters (both at the
single-event and population levels) and decreases its
sensitivity.
In this paper, we generalize the hierarchical test of GR to

handle an arbitrary number of deviation parameters simul-
taneously. This allows us to properly deal with likelihood
correlations at the individual-event level (induced by the
measurement process, e.g., through parameter degenera-
cies), as well as potential correlation structure appearing in
the intrinsic distribution of GR deviations, were any of
them to be detected. Correlations in the intrinsic distribu-
tion of GR deviations would be expected if the observed
deviations were a function of binary parameters, like
masses or spins—a common feature of several extensions
to GR. We demonstrate an application in two and four
dimensions on the IMR test and GWTC-3 data. The
multidimensional analysis uncovers the structure of corre-
lations between the test parameters, while confirming the
data’s consistency with GR with significance comparable to
existing one-dimensional results.
The four-dimensional formulation also sheds further

light on the role of the GW190814 event, an outlier for
this test. With a remnant spin of χf ≈ 0.28, this event is an
outlier compared to the majority of the catalog that has

χf ≈ 0.75. Since the remnant spin is correlated with the
remnant spin inferred from pre-merger and post-merger
data, ignoring the former leads to a preference for a nonzero
value in the variance of the latter. Such a variance would
signal a GR deviation. The four-dimensional analysis gains
access to this correlation and restores consistency with GR.
The organization of this paper is as follows. In Sec. II,

we detail the hierarchical formalism for an arbitrary-
dimensional parameter space. In Sec. III we summarize
the two-dimensional IMR test and introduce an extended
four-dimensional formulation, which we argue can better
encompass the structure of the data. Sections IV and IV B
present results for a two- and four-dimensional test respec-
tively, and discuss the role of GW190814 in both. We
conclude in Sec. V.

II. METHOD

We adopt a hierarchical framework following Isi et al.
[19]. Consider N events and K beyond-GR parameters
fφg≡ fφ1;φ2;…;φKg. Each individual event has a true
underlying value fφ̂g; GR is recovered for φ̂ ¼ 0. We
target the first two moments of the true distribution of fφ̂g
by modeling it as a K-dimensional Gaussian N ðμ;ΣÞ,
where μ is a vector of lengthK and Σ is a K × K covariance
matrix. This is theK-dimensional generalization of the one-
dimensional Gaussian of Refs. [16,17,19]. The goal is to
determine the posterior distribution of the μ and Σ hyper-
parameters, which consist of 1

2
KðK þ 3Þ numbers: K

components of μ, and 1
2
KðK þ 1Þ unique components of

Σ, which is symmetric. GR is recovered in the limit that all
means and variances (diagonal of Σ) vanish.
Disregarding selection effects [23,24], the posterior

distribution for μ and Σ is

pðμ;ΣjfdigNi¼1Þ ∝ pðμ;ΣÞLðfdigNi¼1jμ;ΣÞ; ð1Þ
where pðμ;ΣÞ is the (hyper)prior, LðfdigNi¼1jμ;ΣÞ is the
hierarchical likelihood, and di is the data for the ith GW
event; the constant of proportionality normalizes the dis-
tribution. Selection effects can be accounted for by enhanc-
ing Eq. (1) with a detection efficiency factor following the
usual procedure, e.g., [23,24].

A. Hyperpriors

We adopt separable (hyper)priors for μ and Σ: pðμ;ΣÞ ¼
pðμÞpðΣÞ. For the mean vector μ ¼ ðμ1;…; μKÞ, we
choose an uncorrelated zero-mean Gaussian with some
characteristic scale ςμ;k for each k, i.e.,

pðμÞ ¼
YK
k¼1

N ð0; ς2μ;kÞ½μk�: ð2Þ

To avoid being overly restrictive, the prior scale ςμ;k
should match or exceed the typical magnitude of the φk
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measurements from individual events.1 One could
also replace this by a flat or Jeffreys prior, but Gaussian
priors are computationally beneficial. See [20] (including
Appendix A therein) for a discussion of the number of
events required for the likelihood to inform the posterior as
a function of prior scale.
To set the prior pðΣÞ for the covariance matrix Σ, we first

decompose the matrix itself as

Σ ¼ σ⊺Cσ; ð3Þ

where the vector σ ¼ ðσ0;…; σKÞ⊺ encodes the intrinsic
standard deviations of each parameter, and the matrix
Ckj ≔ Σkj=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ΣkkΣjj

p
is the associated correlation matrix.

While σ encodes the typical magnitude of each φ̂k, Cij has
unit-scale entries and reduces to the identity matrix if the
parameters are uncorrelated; by construction, C is positive
definite, with unit diagonal and 0 ≤ jCkjj ≤ 1 for k ≠ j. We
set priors for the scale vector σ and correlation matrix C
separately, so that pðΣÞ ¼ pðσÞpðCÞ.
For the scale vector σ prior, we choose an uncorrelated

(truncated) normal distribution as we did for μ, but now
with a set of scales ςσ;k. In other words, we set

pðσÞ ¼
YK
k¼1

N ½0;∞Þð0; ς2σ;kÞ½σk�; ð4Þ

with the ½0;∞Þ subscript indicating the additional con-
straint that σk ≥ 0 for all k, and pðσÞ ¼ 0 otherwise. Here,
again, the scale of the hyperprior ςσ;k should match or
exceed the expected scale of the φ̂k’s. As before, one could
also replace this by a flat or Jeffreys prior.
For the correlation matrix, C, we use the Lewandowsk-

Kurowicka-Joe (LKJ) [44] distribution, which is a standard
choice of prior for correlation matrices [45–48]. This is a
probability density on the space of unit-diagonal, positive-
definite correlation matrices; the density function can be
defined as a power-law of the determinant, jCj, such that

pðCÞ ¼ LKJCorrðCjηÞ ∝ jCjη−1; ð5Þ

for some shape parameter η > 0. For any η, the LKJ prior
always has the identity matrix (I) as the expected value, i.e.,
E½C�C∼LKJ ¼ I, so that on average there will be no corre-
lations imposed across different φ̂k’s. On the other hand,
the choice of η controls the spread of the distribution, and
thus the amount of support for off-diagonal elements of C,
with larger values of η more sharply favoring C ¼ I.

With this choice of prior on C, each off-diagonal element
Cjk, j ≠ k, will have a marginal prior given by a beta
distribution, Bðα; βÞ, with shape parameters α ¼ β ¼ η−
1þ K=2, for a K × K correlation matrix. Concretely, if
α ¼ β ¼ 1, then the density is uniform over correlation
matrices; if 0 < α ¼ β < 1, the prior probability density
drops for the identity matrix; if α ¼ β > 1, the prior peaks
at the identity, with increasing sharpness for larger η. For
K ¼ 4, as corresponds to our case below, we display this
marginal prior for different choices of η in Fig. 1, and
representations of correlation matrices drawn from Eq. (5)
in Fig. 8 in Appendix A.
For concreteness, in our analyses below we choose a

hyperprior η ¼ 2 that favors a weak correlation between
beyond-GR parameters φ̂ (dashed trace in Fig. 1); this
choice is not fixed and could be adjusted based on the
specific problem at hand. The full hyperprior is thus
pðμ;ΣÞ ¼ pðμÞpðσÞpðCÞ, with factors given by Eqs. (2),
(3), and (5).

B. Hierarchical likelihood

The hierarchical likelihood, Lðfdigjμ;ΣÞ, is obtained
from the likelihoods of individual events, pðfdigjφ̂Þ, as

LðfdigNi¼1jμ;ΣÞ ¼
Z

dφ̂pðfdigNi¼1jφ̂Þpðφ̂jμ;ΣÞ: ð6Þ

By construction of the population model, we have that
φ̂ ∼N ðμ;ΣÞ so the second factor in the integrand is a
Gaussian that can be evaluate in closed form, i.e.,
pðφ̂jμ;ΣÞ ¼ N ðμ;ΣÞ½φ̂�. The first factor is the likelihood
of observing the data given true values of the deviation
parameters φ̂. Since each individual observation is inde-
pendent, this separates into a product

FIG. 1. Marginal prior on the off-diagonal components of the
correlation matrix C corresponding to the LKJ prior of Eq. (5),
assuming a 4 × 4 correlation matrix, i.e., K ¼ 4 for different
values of the shape parameter η. The marginal density follows a
Beta distribution with shape parameters α ¼ β ¼ η − 1þ K=2,
such that larger values of η disfavor correlations more strongly. A
dashed trace highlights our choice of η ¼ 2 for the analyses in
Secs. IV and IV B.

1As an implementation detail, we usually rescale all our
parameters by a (potentially dimensionful) constant before
sampling, bringing all coefficients to unit scale and allowing
us to set ςμ;k ¼ 1. This can be beneficial for nonaffine samplers.
We confirm that the prior does not affect subsequent results in
Appendix C.
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pðfdigNi¼1jφ̂Þ ¼
YN
i¼1

pðdijφ̂Þ: ð7Þ

Each factor in this product is a K-dimensional likelihood
obtained by applying the test of GR to a single event in
isolation. Other parameters that may have been measured
jointly with the φ̂k’s have been implicitly marginalized
over, assuming some fixed prior; it is often more
appropriate to simultaneously model those parameters
with the φ̂k’s at the population level [22], as we revisit
in Sec. III B below.
The individual-event likelihoods are typically estimated

by reweighting posterior samples obtained under some
fiducial sampling prior; then Eq. (6) can be estimated via a
Monte Carlo sum [29,30]. To further increase computa-
tional efficiency, we instead leverage the fact that the

population model is a Gaussian and represent each
individual-event likelihood through a Gaussian mixture
model (GMM). That is, we express the multidimensional
single-event likelihood distribution for the ith event as a
weighted sum of Ng;i Gaussians, such that

pðdijφ̂Þ ≈
XNg;i

j¼1

wjN ðμðjÞi ;CðjÞ
i Þ½φ̂�: ð8Þ

Similar GMM representations of individual event
likelihoods have been used in the GW literature before
[e.g., [49]]. We can then analytically evaluate Eq. (6) for
each term in the GMM and the hierarchical log-likelihood
becomes

logLðfdigNi¼1jμ;ΣÞ ¼
XN
i¼1

�
log

�XNg;i

j¼1

wj
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2πÞKjΣþ CðjÞ
i j

q exp

�
−
1

2
ðμ − μðjÞi Þ⊺ðΣþ CðjÞ

i Þ−1ðμ − μðjÞi Þ
���

: ð9Þ

We provide a detailed derivation of Eq. (9) in Appendix A.
Given this likelihood and the hyperprior discussed

above, we sample the posterior for μ and Σ per Eq. (1).
The amount of support for GR can be inferred by
computing the probability for μ ¼ σ ¼ 0; on the other
hand, to the extent that there is support for σ > 0, the
posterior for the correlation coefficients Cjk (j ≠ k) will
encode information about the nature of the deviation.

C. Population-marginalized distribution

The result of the multidimensional hierarchical analysis
is fully encompassed by the hyperposterior on μ and Σ.
Nevertheless, as is the case for the 1D case [16,19], it is
sometimes useful to further compute a population-margin-
alized expectation for the deviation parameters, φ. This
K-dimensional distribution, also known as the observed
population predictive distribution, represents our expect-
ation for φ conditioned on the population properties
inferred by the hierarchical analysis, marginalized over
hyperparameters. In arbitrary dimensions, this is formally

pðφjfdigNi¼1Þ ¼
Z

dμdΣpðφjμ;ΣÞpðμ;ΣjfdigNi¼1Þ; ð10Þ

and can be easily estimated by taking a draw fromN ðμ;ΣÞ
for each value of ðμ;ΣÞ in the hyperposterior. As in the 1D
case, although convenient, this estimate has important
limitations. First, the shape of this distribution is directly
related to the assumed Gaussian ansatz, i.e., φ ∼N ðμ;ΣÞ,
and therefore should not be taken to generally represent the
shape of the true underlying distribution of deviation

parameters. Second, consistency with φ ¼ 0 is not a
guarantee of consistency with GR, as this can be satisfied
even if σk > 0. In spite of these limitations, the population
expectation has been used to compare different catalog
analyses in a succinct way [16,17,19], so we demonstrate
it below.
In the remainder of this paper, we apply this framework

to the IMR consistency test to demonstrate the advantages
of the multidimensional hierarchical model in obtaining
improved observational constraints. We also validate our
implementation with simulated data in Appendix B and
further sanity checks in Appendix C.

III. INSPIRAL-MERGER-RINGDOWN TEST

A. Traditional formulation

In this section, we provide an overview of the IMR
test [50,51], which we will use to showcase our method.
The basic idea is to split the GW data for each event into
low- and high-frequency parts to obtain independent
measurements of the source parameters, and then compare
the two estimates for consistency. The cut is performed in
the Fourier domain to leverage the fact that the likelihood is
diagonal in this space and so the two measurements are
statistically independent, even though this does not tech-
nically separate the inspiral and merger-ringdown regimes
exactly [52,53]. The cutoff frequency, fIMR

c , is chosen for
each event based on the merger frequency estimated from
an analysis of the entire signal [17,50,51].
Once a value of the cutoff has been chosen, the low

(f < fIMR
c ) and high (f > fIMR

c ) frequency data are ana-
lyzed using a standard, Fourier-domain waveform model
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based in GR, typically of the IMRPhenom family [54–60].
The resulting posteriors are used to estimate the (detector-
frame) remnant mass Mf and remnant spin χf for each
event; the estimates from low-frequency data are labeled
ðMpre

f ; χpref Þ, whereas those from high-frequency data are
labeled ðMpost

f ; χpostf Þ.
If GR is correct and the waveform is a good description

of the data, we expect these two independent estimates of
the remnant parameters to be in agreement. We quantify
departures from this expectation through the fractional
deviations

δMf ≡ 2
Mpre

f −Mpost
f

Mpre
f þMpost

f

; ð11aÞ

δχf ≡ 2
χpref − χpostf

χpref þ χpostf

; ð11bÞ

so that GR is recovered for δMf ¼ δχf ¼ 0. Since δMf and
δχf are not parameters we control in waveform models, we
cannot directly obtain posterior estimates for these quan-
tities. Instead, their joint posterior is estimated by comput-
ing Eq. (1) for independent draws from the ðMpre

f ; χpref Þ and
ðMpost

f ; χpostf Þ posterior [15,17]; the likelihood on ðδMf ; δχfÞ
is estimated by doing the same for the prior on ðMpre

f ; χpref Þ
and ðMpost

f ; χpostf Þ, and then reweighting the posterior
accordingly [16,17].
The result of this process is an estimate of the two-

dimensional likelihood function for ðδMf ; δχfÞ for each
event. Although these objects contain information about
potential correlations between the two parameters, previous
catalog analyses consider only one parameter at a time, i.e.,
they infer the population distribution of δMf and δχf
separately [16,17]. However, in doing so, they ignore
potential correlations, with the drawbacks highlighted
above. To remedy this, we preserve the two-dimensional
likelihood information for each event and apply our
multidimensional hierarchical formalism, as encompassed
by Eq. (1).

B. Extended formulation

The previous subsection describes the IMR test as it has
been formulated in the literature so far, yielding a two-
dimensional parameter space ðδMf ; δχfÞ. However, we may
go one step further by noting that, intrinsically, this is not a
two-dimensional problem but a four-dimensional one: there
are four basic quantities in this problem ðMpre

f ; χpref ;
Mpost

f ; χpostf Þ, not two. By considering only the fractional
differences of Eq. (11), we have disregarded half of the
relevant parameters.
To take advantage of all the information inherent in the

original test, we introduce two additional parameters, M
and X , defined as

M≡Mpre
f þMpost

f

2
; ð12aÞ

X ≡ χpref þ χpostf

2
: ð12bÞ

With this extension, the parameter space spanned by
fδMf ; δχf ;M;Xg is equivalent to the initial parameter
space spanned by fMpre

f ;Mpost
f ; χpref ; χpostf g up to a coor-

dinate transformation.
Restricting the hierarchical analysis to the ðδMf ; δχfÞ

subspace would only be appropriate if these quantities were
fully decoupled from M and X at the individual-event
level, i.e., if the single-event likelihoods displayed no
correlations across the two subspaces. However, there is
no reason a priori to expect this to be the case, and indeed
this is not the case for existing events, see Fig. 4. If any
degree of correlation is present across the two subspaces,
ignoringM andX is equivalent to marginalizing over these
quantities by assuming a fixed prior distribution, cf.,
Eq. (7). This distribution is determined by the prior chosen
for ðMpre

f ; χpref ;Mpost
f ; χpostf Þ when projected onto this sub-

space, and is not physically meaningful or guaranteed to
match the observed data. As long as there are any
correlations across ðδMf ; δχfÞ and ðM;XÞ, this will bias
the catalog test of GR.
This situation is similar to that identified by

Payne et al. [22], who noted that parameters controlling
deviations from GR may couple to astrophysical parame-
ters, like the black hole (BH) masses and spins. The
solution in that case, as well as here, is to simultaneously
model all relevant degrees of freedom hierarchically at the
population level. In our case, this means that we not only
model the two-dimensional ðδMf ; δχfÞ subspace, but rather
the full ðδMf ; δχf ;M;XÞ space, applying the framework in
Sec. II in four dimensions.2 Consistency with GR is still
established for μk ¼ σk ¼ 0 in the ðδMf ; δχfÞ subspace
alone, after marginalizing over all other (nuisance) hyper-
parameters, including those controlling M and X .
In the following, we present results for both the tradi-

tional (2D) and extended (4D) formulations of this test.

IV. ANALYSIS OF GWTC EVENTS

Here we apply our method to the events analyzed in
Ref. [17] to obtain higher-dimensional IMR-test constraints
on deviations from GR. Reference [17] considered 18 CBC
signals and combined them using a one-dimensional
framework applied to δMf and δχf separately. That analysis
found preference for a nonzero variance in the δχf
population, i.e., low support for σ ¼ 0 in Fig. 5 of

2Future studies could consider alternative parametrizations for
the M population to match the observed structure of compact-
binary masses, e.g., a power law plus a Gaussian peak [12].
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Ref. [17]. The spread in the δχf distribution was found to be
driven by GW190814 [61], which yields nonvanishing δMf
and δχf measurements with high credibility (possibly
because of the lack of a sufficiently loud merger-ringdown
[16]); removing this event from the set restored consistency
with GR [17].
We revisit those results with a multi-dimensional analy-

sis of both the traditional (2D) and extended (4D) for-
mulations of the IMR test outlined above, with and without
the inclusion of GW190814. We make use of prior and
posterior samples for individual events made available by
the LIGO-Virgo-KAGRA collaborations [62]. Our hyper-
prior is as described in Sec. II, with η ¼ 2 and ςμ ¼ ςσ ¼ 1
for all parameters except M, for which we set ςμ ¼
ςσ ¼ 100M⊙. We summarize our results with medians
and 90% credible intervals for all hyperparameters from
all analyses in Table I.

A. Traditional 2D formulation

We start by applying a two-dimensional version of
the formalism to the traditional formulation of the test,
in which only δMf and δχf are explicitly considered
(Sec. III A). This analysis introduces five hyperparameters
consisting of two population means (μδMf

, μδχf ), two
standard deviations (σδMf

, σδχf ), and one correlation coef-
ficient (ρδMfδχf ). In the notation of Sec. II, the mean vector is
μ ¼ ðμδMf

; μδχf Þ, the scale vector is σ ¼ ðσδMf
; σδχf Þ, and

the only off-diagonal component of the 2 × 2 correlation
matrix is C12 ¼ C21 ¼ ρδMfδχf . Consistency with GR is
represented by μδMf

¼ μδχf ¼ σδMf
¼ σδχf ¼ 0, irrespective

of ρδMfδχf .

1. Including GW190814

We first show the result of the 2D analysis applied to all
18 events in our set, including GW190814. Figure 2 shows
posteriors for all four hyperparameters in the collective
analysis (blue). For comparison, we also display the result
of 1D analyses that treat δMf and δχf separately (orange),
as was done in Ref. [17].
As in Ref. [17], we find that including GW190814 in our

sample leads to mild support for a deviation from GR
through a nonvanishing σδχf (fourth diagonal panel). This
deviation is more apparent under the multidimensional
formalism that models correlations between δMf and
δχf , which also results in a preference for μδχf < 0 (third
diagonal panel). Accordingly, the 2D analysis recovers GR
at the 92% credible level, as opposed to 81% for the 1D δχf
analysis (64% for the 1D δMf analysis).

3

The reason for the difference between the 2D and 1D
analyses stems from the fact that there is evidence for
correlations between the two deviation parameters,
ρδMfδχf > 0. This is encoded in the structure of the 2D
individual-event measurements: the 1D analyses, unable to
access information contained in the 2D individual-event

TABLE I. Medians and 90% credible intervals for all hyperparameters and from all analyses. The first column indicates the
hyperparameter, and the following columns shows their recovered values in each analysis. The superscript ⋆ indicates that we ignore
GW190814 in that particular analysis. The 1D results we quote here are from our own reanalyses on the GWTC-3 events which are
consistent to the results reported in Ref. [17]. The remaining columns are 2d and 4d results with and without GW190814 respectively.

Hyperparameter

Parameters considered in the analysis

δMf δχf δM⋆
f δχ⋆f fδMf ; δχfg fδMf ; δχfg⋆ fδMf ; δχf ;M;Xg fδMf ; δχf ;M;Xg⋆

μδMf 0.04þ0.08
−0.07 � � � 0.05þ0.08

−0.07 � � � 0.00þ0.07
−0.07 0.02þ0.07

−0.06 −0.02þ0.06
−0.06 −0.02þ0.07

−0.06
μδχf � � � −0.04þ0.11

−0.11 � � � 0.01þ0.10
−0.10 −0.09þ0.10

−0.10 −0.02þ0.08
−0.08 −0.11þ0.09

−0.10 −0.07þ0.08
−0.07

μM=M⊙ � � � � � � � � � � � � � � � � � � 74.04þ7.96
−7.87 77.67þ7.21

−6.86
μX � � � � � � � � � � � � � � � � � � 0.75þ0.04

−0.05 0.80þ0.02
−0.03

σδMf 0.04þ0.09
−0.04 � � � 0.04þ0.09

−0.04 � � � 0.05þ0.09
−0.04 0.03þ0.06

−0.03 0.04þ0.07
−0.03 0.02þ0.05

−0.02
σδχf � � � 0.14þ0.16

−0.12 � � � 0.06þ0.11
−0.06 0.14þ0.12

−0.10 0.03þ0.06
−0.03 0.13þ0.11

−0.11 0.02þ0.05
−0.02

σM=M⊙ � � � � � � � � � � � � � � � � � � 18.59þ7.27
−4.61 15.75þ6.91

−4.25
σX � � � � � � � � � � � � � � � � � � 0.09þ0.06

−0.04 0.02þ0.03
−0.02

ρδMfδχf � � � � � � � � � � � � 0.43þ0.49
−0.96 0.15þ0.67

−0.82 0.25þ0.53
−0.72 0.15þ0.58

−0.69
ρδMfM � � � � � � � � � � � � � � � � � � 0.20þ0.52

−0.68 0.14þ0.55
−0.66

ρδMfX � � � � � � � � � � � � � � � � � � 0.07þ0.60
−0.65 0.02þ0.62

−0.64
ρδχfM � � � � � � � � � � � � � � � � � � 0.46þ0.34

−0.60 0.11þ0.57
−0.67

ρδχfX � � � � � � � � � � � � � � � � � � 0.57þ0.30
−0.67 0.00þ0.63

−0.62

3A higher value for this credible level (quantile) corresponds to
less support for GR, since it means that the posterior mass is
distributed further away from the GR point. As elsewhere in the
literature [16,17], we estimate it in practice as the fraction of
posterior samples with probability density higher than the μδMf

¼
σδMf

¼ μδχf ¼ σδχf ¼ 0 point (marginalized over ρ); for the 1D
analyses, this reduces to either the μδMf

¼ σδMf
¼ 0 point or the

μδχf ¼ σδχf ¼ 0 point. We use 2D Gaussian kernel density
estimation to approximate the posterior, which may slightly
underestimate support for σ ¼ 0 due to edge effects.
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likelihoods, cannot distinguish such correlations from stat-
istical uncertainty in either δMf or δχf, leading to broader
hyper-posteriors and, correspondingly, degraded confidence
in a deviation fromGR (fourth diagonal panel). As a result of
neglecting correlations, the 1D analyses also infers a
potential offset from μδMf

¼ 0 (top left panel).
On the other hand, the 2D analysis is able to infer that

there are correlations between the δMf and δχf measure-
ments at the individual-event level and that, typically, some
linear combination of the two parameters is better measured
than each parameter alone. The 2D measurement can pin
down both the δMf and δχf quantities simultaneously, thus
inferring that there are actually no clear anomalies in the
δMf distribution (top left panel), but that there are indeed
anomalies in δχf (third and fourth diagonal panels).
Furthermore, it also directly reveals that there are likely
correlations between the two parameters (bottom right
panel), and that this interaction is the dominant cause of
variance in δMf (bottom row, second column). This can be
gleaned from the structure of the 2D likelihoods for

individual events, and in particular the large negative value
of δχf for GW190814, see Fig. 3 in Ref. [16], or Fig. 4.
All information about 2D correlations is destroyed when

we first marginalize either quantity, as we do for the 1D
δMf or δχf analyses. This highlights the power of the new
method to better model deviations from GR in multidi-
mensional tests: when there is a departure from the null
hypothesis (as is indeed the case here due to GW190814),
the 2D analysis is not only better able to pick that up, but
also sheds light on the nature of the putative deviation.

2. Excluding GW190814

We repeat the analysis, but now excluding GW190814.
Figure 3 shows the results, again comparing the 2D
framework (blue) to the traditional 1D framework (orange),
as we did in Fig. 2. The exclusion of GW190814 has done
away with what support there was for μδχf < 0 or σδχf > 0
in both the 2D and 1D analyses. However, only the 2D
analysis also displays reduced support for μδMf

> 0, as well
as increased precision in the measurement of all parameters
overall, i.e., tightening of blue versus orange distributions,
as well as credible intervals in Table I. This leads to
heightened credibility in GR: the 2D analysis recovers GR
at the 60% credible level; the 1D analyses at 71% and 55%
for δMf and δχf , respectively.
As discussed above, the 2D analysis is able to determine

that the measurement process induces correlations in the
joint δMf and δχf likelihoods for individual events, so that

FIG. 3. Same as in Fig. 2 but for an analysis that excludes
GW190814. Exclusion of GW190814 removes the support seen
in Fig. 2 for σδχf > 0 and μδχf < 0. The 2D analysis (blue) is able
to ascertain consistency with GR with higher precision than the
1D analyses (orange).

FIG. 2. Result of the 2D hierarchical analysis on δMf and δχf
joint measurements (Sec. III A) from 18 GWTC-3 events includ-
ing GW190814 (blue), compared to 1D analyses of the same
events looking at δMf and δχf separately (orange). The parameters
are the mean and spread of δMf (μδMf

, σδMf
), the mean and spread

of δχf (μδχf , σδχf ), and the correlation between the two (ρδMfδχf ); the
1D analyses only has access to marginals for δMf and δχf , so it can
only measure their respective means and variances assuming no
cross-correlation (orange subcorners). Blue contours enclose
probability mass at increments of 10%, starting at 90% for the
outermost contour; orange contours enclose 90%, 50%, and 10%
of the probabilitymass. GR is recovered for μδMf

¼ σδMf
¼ μδχf ¼

σδχf ¼ 0 (gray dashed line). Inclusion of GW190814 leads to mild
support for a deviation in δχf .
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some linear combination of the two parameters is typically
better measured than either quantity alone. This allows the
2D analysis to conclude that, in the absence of GW190814,
the set of measurements is fully consistent with zero mean
and no intrinsic spread in either deviation parameter
(μδMf

¼ μδχf ¼ σδMf
¼ σδχf ¼ 0). It does so with better

precision than the 1D analyses because it can disentangle
contributions to the observed variance in δMf or δχf that are
due to the correlations in the measurement process rather
than an intrinsic spread in the population of true parameters.
Even in the absence of a deviation from GR, the

correlation structure in the δMf and δχf joint likelihoods
leaves an imprint in the 2D hierarchical posterior, mani-
festing as a correlation in the inferred joint distribution for
μδMf

and μδχf (second row, first column; also visible in
Fig. 2). Irrespective of this correlation structure, there is no
evidence for deviations from GR in the set without
GW190814, and μδMf

¼ μδχf ¼ 0 is well supported.
Since the posterior also favors vanishing variances
(σδMf

¼ σδχf ¼ 0), there are no strong preferences for
positive or negative correlations and the posterior for
ρδMfδχf resembles the prior (bottom right panel).
In summary, Fig. 3 again demonstrates the advantages of

the 2D hierarchical framework, this time on a set of
detections that show consistency with GR. Under these

circumstances, the 2D analysis is able to achieve greater
precision than the traditional 1D analysis by extracting
information from the 2D likelihoods of individual events
that is inaccessible to the 1D analyses. Figure 3 also
confirms that GW190814 is the cause for the deviations
from GR seen when analyzing the full GWTC-3 set, as was
pointed out in Refs. [16,17].

B. Extended 4D formulation

We now turn to a hierarchical analysis of GWTC-3 over
the full 4D parameter space comprised of fδMf ; δχf ;
M;Xg, as described in Sec. III B. Figure 4 shows the 4D
individual-event likelihoods that make up the starting point
for this analysis.Whereas the 2D analysis marginalized over
some ad hoc implicit prior for the nuisance parameters
average remnant mass M and average remnant spin X , we
here infer those populations simultaneously with δMf and
δχf . This analysis thus introduces 14 hyperparameters
consisting of four population means (μδMf

, μδχf , μM, μX ),
four standard deviations (σδMf

, σδχf , σM, σX ), and six corre-
lation coefficients (ρδMfδχf , ρδMfM, ρδMfX , ρδχfM, ρδχfX ,
ρMX ). As before, consistency with GR is represented by
μδMf

¼ μδχf ¼ σδMf
¼ σδχf ¼ 0, irrespective of the other

parameters.

1. Including GW190814

We begin with the full set of 18 GWTC-3 events,
including GW190814, and analyze it under the 4D hier-
archical framework. Figure 5 displays a subspace of the
posterior from the 4D analysis (green), excluding correla-
tion coefficients for ease of display; the complete corner
plot containing all 14 hyperparameters can be found in
Fig. 11 in Appendix D. In addition to the 4D result, Fig. 5
also shows the 2D result obtained in Fig. 2 for reference
(blue). Credible intervals for all hyperparameters can be
found in Table I.
The subspace of the IMR test corresponds to the upper

left corner of Fig. 5, showing the means and variances for
the δMf and δχf populations. In relation to the 2D result,
there is a slight reduction in overall variance, i.e., shrinkage
of green contours relative to blue, and the 4D analysis
recovers the null at a higher credible level of 80%, as
opposed to 92% for the 2D analysis. This suggests that
there are correlations in the 4D likelihoods at the individ-
ual-event level, which was indeed the motivation for this
extended analysis, see Sec. III B and Fig. 4.
The existence of correlations across the ðδMf ; δχfÞ

and ðM;XÞ subspaces is apparent in Fig. 5. In particular,
the 4D analysis identifies a clear correlation between the
variances of δχf and X , as can be seen from the ðσX ; σδχf Þ
panel in Fig. 5 (bottom row, fourth column). Roughly
speaking, there are two scenarios consistent with Fig. 5:
either (1) there is larger variance in the average spin
parameter X across the population of events (σX ≳ 0.1)

FIG. 4. Four-dimensional likelihoods for each of the 18 events
considered in the hierarchical IMR test analysis of GWTC data.
The parameters correspond to the extended version of the IMR
consistency test defined in Sec. III B. Contours enclose 90% of
the likelihood, colored by the inferred mean of the M parameter
(labeled M̄), which is a proxy for the remnant mass; the null
hypothesis requires δMf ¼ δχf ¼ 0 (dashed lines), irrespective of
M and X . The filled distribution highlights GW190814, an
outlier in this population (Sec. IV B).

ZHONG, ISI, CHATZIIOANNOU, and FARR PHYS. REV. D 110, 044053 (2024)

044053-8



and there is no variance in the δχf population or (2) the X
population has standard deviation σX ≲ 0.1 and there is a
markedly nonzero variance in δχf , which would imply a
violation from GR per this test. The first of these scenarios
also corresponds to a mean δχf closer to zero (bottom row,

third column), and a likely lower variance in δMf (bottom
row, second column).
The structure in the 4D result helps further elucidate the

anomalies in δχf in the 2D and 1D analyses when including
GW190814 (Fig. 2, as well as Refs. [16,17]). Unable to

FIG. 5. Subspace of the posterior measurement obtained from the 4D hierarchical analysis (Sec. III B) of 18 GWTC-3 events including
GW190814 (green), compared to the 2D analysis of the same events from Fig. 2 (blue). The parameters are the mean and spread of δMf
(μδMf

, σδMf
), the mean and spread of X (μX , σX ), the mean and spread of δχf (μδχf , σδχf ), and the mean and spread of M (μM, σM); we

omit posterior for the cross correlation parameters, which we show in Fig. 11 of Appendix D. Green contours enclose probability mass at
increments of 10%, starting at 90% for the outermost contour; blue contours enclose 90%, 50% and 10% of the probability mass. GR is
recovered for μδMf

¼ σδMf
¼ μδχf ¼ σδχf ¼ 0 (gray dashed line). Inclusion of GW190814 leads to two largely distinct solutions per the

4D analysis: higher variance in X and no variance in δχf , or a lower variance in X and a nonzero variance in δχf—the latter of which
corresponds to a deviation from GR (or other systematic).
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directly access information about X , the 2D analyses
effectively average over the possible scenarios outlined
above, with some implied weighting imposed by the
sampling prior on X and M. Accordingly, the result of
the 2D analysis for σδχf does not correspond to either of the
twomodes exactly (σδχf ¼ 0 is disfavored but not excluded),
although the second scenario appears to be upweighted.
We can understand the above observations by referring

to the individual event likelihoods (Fig. 4). The

measurement for GW190814 stands out in all dimensions,
with the exception of δMf . In particular, the structure of this
likelihood shows clear correlations in the (X ; δχf ) sub-
space: if X were to take on a value closer to the bulk of the
population (i.e., X ≈ 0.5 or higher, closer to the population
concentrated around X ≈ 0.75), then we must have
δχf ≈ −1; on the other hand, if δχf were to be closer to
zero, then we must have that X is much lower than the bulk
of the population (i.e., X ≈ 0.35).

FIG. 6. Same as Fig. 5 but now excluding GW190814. We show both a subspace of the posterior from the 4D hierarchical analysis
(green) and the 2D result from Fig. 3 for comparison (blue); the corresponding full 14D corner plot including correlation parameters for
the 4D hierarchical analysis is shown in Fig. 11. Excluding GW190814 gets rid of the bimodalities in the posterior from the 4D analysis.
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2. Excluding GW190814

We repeat the 4D hierarchical analysis, but now exclud-
ing GW190814 from our set of detections. Figure 6 shows
the result (green), in full analogy to Fig. 5, but this time
displaying the corresponding 2D analysis without
GW190814 from Fig. 3 for reference (blue). The full
posterior including correlation coefficients for this analysis
is shown in Fig. 11 of Appendix D.
Without GW190814, the 4D hyperposterior is now

unimodal, without outstanding interactions across the
ðδMf ; δχfÞ and ðM;XÞ subspaces. Now σδχf ¼ 0 is pre-
ferred (fourth diagonal panel) and, although the μδMf

and
μδχf are slightly offset from zero (third row, first column),
the overall posterior is broadly consistent with GR, with the
null hypothesis recovered at 76% credibility. Further
observations will be required to determine whether the
slight shift in the means is simply due to statistical
uncertainty or whether it represents a true systematic in
the measurement or event selection process.
Although it does not directly factor into the test of GR,

this analysis infers low or vanishing variance in the X
parameter, with a typical mean value of μX ≈ 0.8. In terms
of mass, the 17 events in this set are inferred to have a
mean of μM ≈ 80M⊙, with a spread of σM ≈ 15M⊙, see
Table I. With a remnant mass and spin of Mf ≈ 25M⊙ and
χf ≈ 0.28 [61], GW190814 would be a clear outlier for this
population.

C. Population-marginalized expectations

As described in Sec. II C, we may cast the hierarchical
analysis result in a different light by computing the
population-marginalized expectation (also known as the

observed population predictive distribution) for δMf and
δχf . Although these derived distributions contain less
information than the hyperposteriors, we compute them
to facilitate comparison to past work and to derive con-
straints in directly in the δMf and δχf space. Figure 7 shows
the joint population expectation for δMf and δχf derived
from all the hierarchical analyses of GWTC-3 data pre-
sented in this section: 4D (green), 2D (blue), and 1D
(orange), both with (left) and without (right) GW190814.
In all cases, these distributions are computed from a
Monte Carlo estimate, as described below Eq. (10).
The population-marginalized distributions reveal some

of the same features already described in the discussion of
Figs. 2–6, but now directly in the space of δMf and δχf ,
rather than the hyperparameters. The most obvious feature
is the increased precision achieved by excluding
GW190814 in the sample set, regardless of the dimension-
ality of the analysis, and particularly with regards to δχf . It
is also notable that the population expectations derived

FIG. 7. Population-marginalized distribution for the IMR test parameters δMf and δχf , Eq. (10), as derived from all of the hierarchical
analyses of GWTC-3 data presented in this paper: 4D (green), 2D (blue), and 1D (orange), with GW190814 (left) and without
GW190814 (right). The results on the left correspond to the hyperposteriors in Figs. 2 and 5, while those on the right correspond to
Figs. 3 and 6. Contours enclose 90%, 50%, and 10% of the probability mass; dashed lines mark the null expectation, δMf ¼ δχf ¼ 0.
Excluding GW190814 leads to tighter population-marginalized distributions, especially for δχf. See Table II for constraints derived from
these distributions.

TABLE II. Population-marginalized constraints (median and
90% credible symmetric interval).a

Analysis δMf δχf M=M⊙ X

1D 0.04þ0.14
−0.12 −0.04þ0.28

−0.29 � � � � � �
1D� 0.05þ0.13

−0.12 0.01þ0.17
−0.17 � � � � � �

2D 0.00þ0.14
−0.12 −0.09þ0.28

−0.27 � � � � � �
2D� 0.02þ0.10

−0.09 −0.02þ0.11
−0.10 � � � � � �

4D −0.02þ0.11
−0.10 −0.10þ0.23

−0.28 73.80þ32.28
−32.75 0.75þ0.16

−0.17
4D� −0.02þ0.09

−0.09 −0.07þ0.10
−0.09 77.78þ28.12

−27.91 0.80þ0.05
−0.05

aDenotes the analyses excluding GW190814.

MULTIDIMENSIONAL HIERARCHICAL TESTS OF GENERAL … PHYS. REV. D 110, 044053 (2024)

044053-11



from the multidimensional analyses (4D and 2D) carry
information about the correlations in the inferred popula-
tion means μδMf

and μδχf , which here manifest as corre-
lations between δMf and δχf themselves. These results also
yield direct constraints on the δMf and δχf values. We
report such constraints in Table II, including for M and X
which are not shown in Fig. 7.

V. CONCLUSION

In this paper, we have generalized the hierarchical
inference framework for testing GR with gravitational
wave observations from a single deviation parameter to
an arbitrary number of parameters. For tests that are
formulated in terms of more than a single parameter,
e.g., the ringdown and IMR tests, this generalization gains
access to potential correlations between the test parameters
both at the individual-event level, i.e., correlated like-
lihoods, and at the population level, i.e., correlated
hyperparameters.
We applied the multidimensional framework to the IMR

consistency test using GWTC-3 events. The IMR test
divides a CBC signal into high- and low-frequency portions
and estimates the remnant mass and spin independently
from each. The test is parametrized via two deviation
parameters, δMf and δχf , and two parameters that encode
the remnant mass and spin, M and X . Formulations of the
IMR test with reduced dimensionality, i.e., considering the
population distribution of only δMf and δχf separately,
have previously yielded mild evidence for a violation of GR
or other systematics (cf., Fig. 2), attributed to the
GW190814 event. Restoring the full four-dimensional
formulation resolves this apparent deviation which is
attributed to a correlation between X and δχf , cf.,
Fig. 4. This application emphasizes the need to expand
the dimensionality of tests of GR to all relevant parameters
in order to avoid potential systematics from improper
assumptions, such as ignoring correlations.
The expanded dimensionality means that more param-

eters need to be included in the analysis models and
selection terms. This analysis focuses on multivariate
Gaussian population distributions for all hyperparameters.
Although this model is reasonable for deviation parameters
whose distribution cannot be motivated otherwise [19],
extended formulations could explore more complex dis-
tributions for the remnant mass and spin parameters. This
situation is akin to the analysis of Payne et al. [22] that
extended the parametrized phase deviation test to include
the BHmasses and spins and made use of distributions such
as power laws. Moreover, the nature of the IMR test (that
hinges on events with informative post- and premerger
data) makes estimating its selection effect particularly
involved. We leave such extensions to future work with
the expectation that their importance will increase as more
events are detected and constraints are becoming more
stringent.
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APPENDIX A: HYPERPRIOR AND
LIKELIHOOD DERIVATION

In this appendix, we provide a visualization of the
covariance matric hyperprior in Fig. 8, detail the derivation
of Eq. (9), and provide further details on constructing the
GMM for each event. We determine the number of
Gaussians in the GMM, Ng;i, and their parameters μðjÞi

and CðjÞ
i by optimizing the Bayesian information criterion

(BIC) [63]

BIC ≔ k lnðnÞ − 2 lnðL̂Þ; ðA1Þ

where k is the number of model parameters, n is the sample
size, and L̂ is the maximized likelihood function value of
the chosen model given the data. For each event, we
employ a grid search [64,65] to identify the optimal Ng;i

that minimizes the BIC. Subsequently, we compute the

best-fit μðjÞi and CðjÞ
i for each chosen Ng;i. Typically, Ng

ranges from Oð3–10Þ.
To evaluate the integral in Eq. (6), we leverage the fact

that the product of two Gaussians of arbitrary dimension
can be refactored into the product of two different
Gaussians as [66,67]

N ðxjμ1;Σ1ÞN ðxjμ2;Σ2Þ ¼ CN ðxjμ3;Σ3Þ; ðA2Þ

where x denotes data samples, μi and Σi (i ¼ 1; 2; 3) are the
mean vectors and covariance matrices of the corresponding
multivariate Gaussians, and C is a normalization factor.
Explicitly, C; μ3 and Σ3 are given by

C ¼ N ðμ1jμ2;Σ1 þ Σ2Þ; ðA3aÞ

μ3 ¼ ðΣ−1
1 þ Σ−1

2 Þ−1ðΣ−1
1 μ1 þ Σ−1

2 μ2Þ; ðA3bÞ

Σ3 ¼ ðΣ−1
1 þ Σ−1

2 Þ−1; ðA3cÞ

where the Gaussian represented by C becomes a factor
independent of the data x and, in that sense, can be thought

ZHONG, ISI, CHATZIIOANNOU, and FARR PHYS. REV. D 110, 044053 (2024)

044053-12



FIG. 8. Visualization of 4 × 4 correlation matrices C drawn from an LKJ prior for different values of the shape parameter η per Eq. (5).
For each η (rows), we display five random draws (columns), with the color of each cell encoding the value of the corresponding Cjk
entries: blues (reds) represents positive correlations Cjk > 0 (Cjk < 0), and the intensity of the color encodes the magnitude of the
correlation such that dark blue represents full positive correlation (Cjk ¼ 1), white represents no correlation (Cjk ¼ 0), and dark red
represents full anticorrelation (Cjk ¼ −1). The diagonal of C is always unity; the off-diagonal entries follow the marginal distributions
shown in Fig. 1. Larger values of η favor the identity, i.e., lack of correlations, more strongly. (a) η ¼ 0.1. (b) η ¼ 1. (c) η ¼ 2.
(d) η ¼ 10. (e) η ¼ 100.
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of as a normalizing constant. With the help of Eq. (A3a),
plugging Eqs. (7) and (8) back into Eq. (6) yields Eq. (9).

APPENDIX B: SIMULATED DATA

To verify the implementation of the multi-dimensional
hierarchical analysis, we consider two simulated data
scenarios: (a) GR is correct, and (b) GR is violated. The
hyperparameters μ and Σ are μ ¼ ðμ1; μ2Þ and

Σ ¼
�

σ21 ρσ1σ2

ρσ1σ2 σ22

�
: ðB1Þ

For the GR is correct case, μ̂ ¼ 0 and Σ̂ ¼ 0, while for the
second case, we simulate deviations in both μ and Σ. We
simulate measurement uncertainty through a covariance
matrix Σobs, such that the simulated posterior samples,
φdata, are drawn from

8>><
>>:

φ̂ ∼N ðμ;ΣÞ;
φobs ∼N ðφ̂;ΣobsÞ;
φdata ∼N ðφobs;ΣobsÞ:

ðB2Þ

To simulate the population, we set

Σobs ¼
�

1 0.9

0.9 1

�
: ðB3Þ

which corresponds to two strongly correlated beyond-GR
parameters.
Results are show in Fig. 9. For the case where GR is

correct (left), we simulate 20 events and 1000 likelihood
samples for each event. The true values of μ and Σ are
recovered at the 90% credible level. For the case where GR
is incorrect (right), we simulate μ and Σ as follows:

μ̂ ¼ ð1; 2Þ; Σ̂ ¼
�

1 0.5

0.5 1

�
: ðB4Þ

Compared to the case where GR is correct where Σ̂ and
Σobs differ significantly, Σ̂ is now comparable to Σobs. We
simulate 100 events and 1000 likelihood samples for each
and again recover the true parameters to within the 90%
credible level.

APPENDIX C: ANALYSIS SANITY CHECKS

In this appendix, we confirm that (a) the choice of
hyperprior η does not affect the hyperposteriors, and (b) we
recover the 1D results from the 2D analysis in the
appropriate limit, i.e., for ρ → 0 and no correlation between
the individual-event δMf and δχf likelihoods. For the latter,
we start with individual-event 2D samples denoted as
fðδMf;i; δχf;iÞgNs

i¼1. We then independently shuffle the sets
fδMf;igNs

i¼1 and fδχf;igNs
i¼1 and create a new set of paired

samples, fðδMf;i0 ; δχf;i0 ÞgNs
i0¼1

. This process removes
any correlations between these two parameters in the
individual-event likelihood.

FIG. 9. Marginalized posterior distributions on the hyperparameters μ and Σ of mock beyond-GR parameters φ1 and φ2 assuming GR
is correct (left) or incorrect (right). The gray dashed lines indicate the location of true values. The correct parameters are always
recovered within the distributions.
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We repeat the hierarchical analysis and show results in
Fig. 10. Each subplot shows hyperparamater posterior
distributions from analyses with varying configurations.
The blue curves show the results from 1D analyses, while
other curves give results from 2D analyses. Orange and
green curves correspond to the prior η ¼ 2 and η ¼ 100
cases, respectively. Dashed curves are results of 2D
analyses on shuffled samples. Comparing the orange and
green curves indicates that varying the prior η has minimal

impact on the resulting posterior distributions. When the
samples are shuffled, the 1D results and 2D results are
identical.

APPENDIX D: FULL 4D RESULTS

In this appendix we show corner plots for all hyper-
parameters of the full 4D analysis with (purple) and without
(light blue) GW190814 in Fig. 11.

FIG. 10. Hyperparameter posterior distributions derived from GWTC IMR analyses with varying configurations with (left) and
without (right) GW190814. The blue curves correspond to 1D analyses, while the orange and green curves show results from 2D
analyses, with priors of η ¼ 2 and η ¼ 100 respectively. Dashed curves show 2D results from shuffled individual-event likelihoods
(Appendix C). When the individual-event likelihoods are informative, hyperposteriors are not sensitive to the choice of η (solid orange
versus green orange); 1D results can be recovered by erasing correlation information from the individual-event likelihoods through
sample shuffling (dashed orange and green versus solid blue).
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