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The pulsar timings are sensitive to both the nanohertz gravitational-wave background and the oscillation
of ultralight dark matter. The Hellings-Downs angular correlation curve provides a criterion to search for
stochastic gravitational-wave backgrounds at nanohertz via pulsar timing arrays. We study the angular
correlation of the timing residuals induced by the spin-2 ultralight dark matter, which is different from the
usual Hellings-Downs correlation. At a typical frequency, we show that the spin-2 ultralight dark matter can
give rise to the deformation of the Hellings-Downs correlation curve induced by the stochastic gravitational
wave background.
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I. INTRODUCTION

The detection of gravitational waves (GWs) has opened a
new era for both theoretical and observational astronomy
and cosmology [1]. In different frequency ranges, there
exist several different approaches for the detection of
GWs [2–5]. With the help of pulsar timing arrays
(PTAs), we can detect the signals of stochastic gravitational
wave background (SGWB) at frequencies around nano-
hertz. According to theoretical predictions, there are differ-
ent physical processes that can contribute to SGWB,
including supermassive black hole binaries [6], domain
walls [7], scalar curvature perturbations [8], etc. Compared
with other physical effects which may also induce pulsar
timing residuals, SGWB has the unique feature that the
cross-correlation for different pulsars shows a Hellings-
Downs pattern [9], which can help the recognition of
SGWB in data analysis.
Recently, several collaborations have reported their

newest PTA data analysis independently [10–13], showing
the evidence of detection for SGWB. In particular, the
cross-correlation pattern resembles the Hellings-Downs
correlation, which increases the reliability of the results.
On the other hand, it turns out that ultralight dark matter

(ULDM) may also have effects on PTAs [14–21]. ULDM
has drawn much attention in recent years. Compared with
cold dark matter, ULDM can suppress the structure for-
mation on subgalactic scales [22]. The oscillation fre-
quency of ULDM is their mass, and for ULDM with
mass m ∼ 10−22 eV, the corresponding frequency range is
around nanohertz. Therefore, the oscillation of gravitational
potential induced by ULDM can also induce pulsar timing
residuals with a particular kind of angular dependence,
which may contaminate the Hellings-Downs pattern.
The spin nature of ULDM plays a vital role on its

angular correlation on pulsar timing residuals. For exam-
ple, the scalar ULDM has equal effects on pulsar at each
direction [14], while the vector ULDM has strongly
anisotropic behavior [15]. Here we focus on the spin-2
ULDM, which has gained much attention in recent
years [23–29]. The theoretical origin of spin-2 ULDM
comes from the bimetric theory [23]. In the bimetric
theory, there are two kinds of gravitons in the mass
spectrum, one of which is massless, and the other one is
massive. This kind of massive graviton can be a dark
matter candidate [25–35].
The spin-2 ULDM has both gravitational effects [19] and

coupling effects [16,17] on PTAs. In this paper, we focus on
the coupling effects. We calculate the cross-correlation of
pulsar timing residuals induced by spin-2 ULDM and the
resulting angular pattern is purely quadrupole. We also
show that certain parameter choices would cause the
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Hellings-Downs curve to be slightly or strongly deformed,
so the PTA data may help constrain the parameter space.
This paper is organized as follows. In Sec. II, we show

the homogeneous background solution of the spin-2
ULDM. In Sec. III, we calculate pulsar timing residuals
induced by spin-2 ULDM. In Sec. IV, we evaluate the
deformation of spin-2 ULDM on the Hellings-Downs
curve, and we summarize the result in Sec. V.

II. HOMOGENEOUS BACKGROUND
OF SPIN-2 ULDM

The spin-2 ULDM may come from the bimetric
theory [23–27]. We begin with the following action

Sspin−2 ¼
Z

d4x
ffiffiffiffiffi
jgj

p
½M2

PlRðgÞ þ LM�; ð1Þ

where the Lagrangian density

LM ¼ −
1

2
MμνEμν

λκMλκ −
m2

4
ðMμνMμν −M2Þ; ð2Þ

and the Lichnerowicz operator is given by Eμν
λκ ≡

− 1
2
ðδλμδκν□− gμνgλκ□þ gλκ∇μ∇νþ gμν∇λ∇κ − 2∇λ∇ðμδκνÞÞ.

Since the cosmic expansion is negligible on galactic scales
and m ≫ H, we assume the background metric to be flat,
so that gμν ¼ ημν. The equation of motion for Mμν from the
Lagrangian density is

Eμν
λκMλκ þ

1

2
m2ðMμν − ημνMÞ ¼ 0; ð3Þ

whereM¼ ημνMμν. Applying ∂μ on (3) gives ∂μMμν¼ ∂νM,
and thus ∂

μ
∂
νMμν ¼ □M. Taking trace of (3) and

considering ημνEμν
λκMλκ ¼ 0, we can get M ¼ 0. Then

the equation of motion (3) can be rewritten as
ð□ −m2ÞMμν ¼ 0. Together we obtain

M¼ 0; ∂
μMμν ¼ 0; ð□−m2ÞMμν¼ 0: ð4Þ

Since the typical velocity of dark matter in the galaxy is
v=c ∼ 10−3,M00 andM0i components are all suppressed and
can be ignored. The homogeneous background solution is
then [16]

Mij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ρDMðxÞ

p
m

cos
�
mtþ φðxÞ�εijðxÞ; ð5Þ

where εij is the polarization tensor, ρDMðxÞ is the energy
density of dark matter at position x, and φðxÞ represents the
phase. Since the occupation number in our galaxy is
ρDM

m·ðmvÞ3 ≈ 1095ð ρDM
0.4 GeV=cm3Þð10−23 eV

m Þ4ð10−3v Þ3, the spin-2 field

can be described by a classical wave, and note that the de

Broglie wavelength for the spin-2 massive particle with
mass m is

λDM ¼ 2π

mv
≈ 4 kpc

�
10−23 eV

m

��
10−3

v

�
; ð6Þ

so inhomogeneitieswithin this distance can be smoothed out.
A way to parametrize εij is to separate it in terms of the

spin states [36,37]

εij ¼
X
s

εsYs
ij; ð7Þ

where s represents the 5 different spin states ð×;þ;L;R;SÞ,
with

ε× ¼ εT cosχ; εþ ¼ εT sinχ; ð8Þ

εL¼ εV cosη; εR ¼ εV sinη: ð9Þ

Here χ and η determine the azimuthal direction of the tensor
part and vector part of the spin-2 field, respectively.
Moreover, ϵμν is normalized such that

X
s

ε2s ¼ 1: ð10Þ

The corresponding tensors are

Y×
ij ¼

1ffiffiffi
2

p ðpiqj þ qipjÞ; ð11Þ

Yþ
ij ¼

1ffiffiffi
2

p ðpipj − qiqjÞ; ð12Þ

YL
ij ¼

1ffiffiffi
2

p ðqirj þ riqjÞ; ð13Þ

YR
ij ¼

1ffiffiffi
2

p ðpirj þ ripjÞ; ð14Þ

YS
ij ¼

1ffiffiffi
6

p ð3rirj − δijÞ; ð15Þ

which represent −2, 2, −1, 1, 0 spin states, respectively, ri
is the unit vector with propagation direction of the massive
spin-2 field, and pi, qi are two unit vectors orthogonal to ri
and to each other. Note that in general, spin-2 fields can
have at most 6 degrees of freedom, while in the case of
bimetric theory [26], the traceless condition restricts the
number to 5.
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III. PULSAR TIMING RESIDUALS
INDUCED BY SPIN-2 ULDM

To study the effects on the PTA signal, a convenient
way to calculate is to change the frame as in [16],
g̃μν ¼ gμν − α

MPl
Mμν, where α is the coupling constant

characterizing the strength of the direct coupling between
normal matter and the spin-2 ULDM. Then we evaluate the
geodesics of photons based on the new metric g̃μν. Here we
assume a flat background since m ≫ H and work with
g̃ij ¼ δij − α

MPl
Mij. For a photon traveling along the geo-

desic from the pulsar a to the Earth with 4-momentum
pμ ¼ νð1; niaÞ, the geodesic equation gives

dp0

du
¼ αν2

2MPl
∂tMijnian

j
a; ð16Þ

where u is the affine parameter. Treating α as a small
parameter and keeping first order terms in α, we get

ν ¼ ν̄

�
1þ α

2MPl

Z
E

a
duν̄∂tMijnian

j
a

�
; ð17Þ

where the integral is evaluated from the pulsar a to the
Earth(E), and ν̄ is the frequency of the photon if not
perturbed.
By making use of ν̄∂t ¼ d

du − ν̄nia∂i, it becomes

ν ¼ ν̄

�
1þ α

2MPl
ðME

ij −Ma
ijÞnianja

−
α

2MPl

Z
E

a
du ν0nk∂kMijnian

j
a

�
: ð18Þ

Compared with the second term, the last term can be
ignored since it contains space derivatives which introduce
a factor v=c ∼Oð10−3Þ. The resulting redshift za ¼ ðν̄a −
νaÞ=ν̄a for signals from the pulsar a is

za ¼ −
α

2MPl
ðME

ij −Ma
ijÞnianja

¼ FE
aΨoðxEÞ cosðmtþ φEÞ

− FP
aΨoðxaÞ cosðmt −mLa þ φaÞ; ð19Þ

where La is the distance between the pulsar a and the Earth,
and the corresponding beam pattern functions are

FE
a ¼ −εijðxEÞnianja; ð20Þ

FP
a ¼ −εijðxaÞnianja; ð21Þ

which contain the dependence of za on angles, while

ΨoðxEÞ ¼
α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρDMðxEÞ

p
ffiffiffi
2

p
mMPl

; ð22Þ

ΨoðxaÞ ¼
α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρDMðxaÞ

p
ffiffiffi
2

p
mMPl

; ð23Þ

represent the amplitude of za, which depends on local
energy density of dark matter.
The timing residuals

ΔTaðtÞ ¼
Z

t

0

dt0zaðt0Þ ð24Þ

are then integrated to be

ΔTaðtÞ ¼
1

m
½FE

aΨoðxEÞ sinðmtþ φEÞ
− FP

aΨoðxaÞ sinðmt −mLa þ φaÞ�; ð25Þ

with the origin of time chosen to cancel constant terms for
simplicity.

IV. ANGULAR CORRELATION CURVE

For pulsar a and pulsar b, the cross-correlation between
their timing residuals can be written as

CabðτÞ¼ hΔTaðtÞΔTbðtþ τÞi− hΔTaðtÞihΔTbðtþ τÞi:
ð26Þ

For the stochastic gravitational wave background, the
cross-correlation it induces can be described by [9,20]

CGW
ab ðτÞ ¼

X
i

ΓHDðζÞΦGWðfiÞ cos 2πfiτ; ð27Þ

where ΓHD describes the Hellings-Downs curve

ΓHD ¼ 1

2
−
1

4

�
1 − cos ζ

2

�

þ 3

2

�
1 − cos ζ

2

�
ln

�
1 − cos ζ

2

�
; ð28Þ

and

ΦGWðfiÞ ¼
1

12π2f3i

1

Tobs
h2cðfiÞ: ð29Þ

The frequency integral is discretized based on the obser-
vation time Tobs [10], and hc is the characteristic strain of
SGWB, which usually can be parametrized as

hcðfÞ ¼ AGW

�
f
f0

�
αGW

: ð30Þ
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A. Angular correlation of spin-2 ULDM

For the spin-2 ULDM, the angular correlation
hΔTaðtÞΔTbðtþ τÞi ¼ 1

Tobs

R Tobs
0 ΔTaðtÞΔTbðtþ τÞdt can

be obtained by using the timing residuals in (25). Notice
that, since the observational period for PTAs is
Tobs ≳ 10 yr, and the oscillation period for ultralight dark
matter with mass m≳ 10−24 eV is m−1 ≲ Tobs. Thus, when
we take the time average over Tobs, oscillating terms with
cosðmtÞ can be ignored. The dominant cross-correlation
terms are

hΔTaðtÞΔTbðtþ τÞi

¼ 1

2m2
hFE

aFE
bihΨ2

oðxEÞi cosðmτÞ

þ 1

2m2
hFP

aFP
bihΨoðxaÞΨoðxbÞi

× cosðmτ þmLa −mLb −ϒa þϒbÞ

−
1

2m2
hFE

aFP
bihΨoðxEÞΨoðxbÞi

× cosðmτ −mLb þϒb −ϒEÞ

−
1

2m2
hFP

aFE
bihΨoðxEÞΨoðxaÞi

× cosðmτ þmLa þϒE −ϒaÞ: ð31Þ

On the other hand, most of the terms are associated with the
distance between the pulsars and the earth, which ranges
from 0.1 kpc to 10 kpc. Then, for typical ULDM with
m ≃ 10−24 eV, these terms have a contribution to the phase
as 10 ≤ mLa ≃mLb ≤ 1000, which is far more than 2π and
can be treated as random noise and averaged out. Thus, the
final result is

Cspin−2
ab ðτÞ ≈ 1

2m2
hFE

aFE
bihΨ2

oðxEÞi cosðmτÞ: ð32Þ

The angular dependence of Cspin−2
ab is contained in

hFE
aFE

bi, we set the coordinate frame in which nia ¼
ð0; 0; 1Þ and nib ¼ ðsin ζ; 0; cos ζÞ. Since observable pulsars
are distributed all over the sky, effectively, we can assume
the polarization for the massive spin-2 field as isotropic and
integrate over possible directions [20] and also integrate
over azimuthal directions of tensor and vector parts. For
convenience, we set

r⃗ ¼ ðsin θ cosϕ; sin θ sinϕ; cos θÞ; ð33Þ

p⃗ ¼ ðsinϕ;− cosϕ; 0Þ; ð34Þ

q⃗ ¼ ðcos θ cosϕ; cos θ sinϕ;− sin θÞ: ð35Þ

The Hellings-Downs-like curve for massive spin-2 back-
ground can be derived from εijninj,

hFE
aFE

bi ¼
Z

dη
2π

dχ
2π

d2Ω
4π

X
s

εsYs
ijn

i
an

j
a

X
λ

ελYλ
kln

k
bn

l
b

¼ 1

30
ð1þ 3 cos 2ζÞ ¼ 4

15
ΓDMðζÞ; ð36Þ

where

ΓDMðζÞ ¼
1

2
P2ðcos ζÞ ¼

1

8
ð1þ 3 cos 2ζÞ ð37Þ

is the angular correlation curve normalized to be compared
with Hellings-Downs curve in Fig. 1. Here we can see that
the effect of spin-2 ULDM follows a purely quadrupole
pattern.
The total result for the correlation is

CDM
ab ðτÞ ¼ ΦDMΓDMðζÞ cosðmτÞ; ð38Þ

where ΦDM denotes the amplitude of the correlation

ΦDM ¼ 2

15m2
hΨ2

oðxEÞi: ð39Þ

B. Deformation of Hellings-Downs curve

When SGWB and spin-2 ULDM are both considered,
the total cross-correlation is

CabðτÞ ¼
X
i

ΓHDðζÞΦGWðfiÞ cos 2πfiτ

þ ΓDMðζÞΦDM cosð2πfmτÞ; ð40Þ

where the effect of spin-2 ULDM at frequency fm ¼ m=2π
can be incorporated into ΓðζÞ as [20]

FIG. 1. The blue and orange curves represent the angular
correlation of the timing residuals induced by stochastic GW
background (Hellings-Downs curve) and spin-2 ULDM, respec-
tively. Both curves are normalized at ζ ¼ 0 such that Γð0Þ ¼ 1=2.
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ΓeffðζÞ ¼
ΦGWðm=2πÞ

ΦGWðm=2πÞ þΦDM
ΓHDðζÞ

þ ΦDM

ΦGWðm=2πÞ þΦDM
ΓDMðζÞ: ð41Þ

In the case of SGWB, according to the observation of
NANOGrav reported in [10], for γ ¼ −2αGW þ 3 ¼ 13=3,
AGW ¼ 2.4 × 10−15 with the observation time Tobs ∼ 15 yr
and fref ¼ 1 yr−1, so the amplitude of the correlation is

ΦGWðm=2πÞ∼1×10−32 yr2
�

m
10−22 eV

�
−13

3

�
15 yr
Tobs

�
: ð42Þ

For the effects of ultralight dark matter, the amplitude of
correlation can be derived from (22) and (39) as

ΦDM ¼ α2

15m4

ρDMðxEÞ
M2

Pl

; ð43Þ

so that

ΦDM ∼ 6 × 10−33 yr2
�

ρDM
0.4 GeV=cm3

�

×

�
α

10−6

�
2
�

m
10−22 eV

�
−4
: ð44Þ

Different choices of the parameters α and m give
different deformations of the Hellings-Downs curve, shown
in Figs. 2–4. It can be seen from these figures that,
compared with the mass of dark matter m, the order of
magnitude of the coupling constant α has a significant
impact on the deformation of the Hellings-Downs curve at
certain frequencies. For example, for α > 10−5, the shape
of the curve is almost determined by the spin-2 ULDM. It is

also interesting that with larger mass parameter of the
ultralight dark matter, the deformation is larger and easier
to be observed.

V. CONCLUSION AND DISCUSSION

In summary, we show that spin-2 ULDM can induce the
deformation of Hellings-Downs curve at the frequency of
the mass parameter. Since the residuals induced by spin-2
ULDM is monochromatic, the deformation of Hellings-
Downs curve is expected to happen only in a narrow
frequency range around fm ¼ m=2π. Both the mass of
spin-2 ULDM and the coupling constant α have impact on
the deformation, so the observational data of PTAs can help
to constrain the parameter space.

FIG. 2. Effective cross-correlation curves with α ¼ 10−6 and
mass ranging from 10−24 eV to 10−22 eV. It can be seen that in
this range and at the typical frequencies fm ¼ m=2π, the
deformation of spin-2 ULDM on the Hellings-Downs curve is
relatively small.

FIG. 4. Effective cross-correlation curves with α ¼ 10−5 and
mass ranging from 10−24 eV to 10−22 eV. In this range of α, the
curves are dominated by the spin-2 ULDM at the typical
frequencies fm ¼ m=2π.

FIG. 3. Effective cross-correlation curves with α ¼ 10−5.5 and
mass ranging from 10−24 eV to 10−22 eV. The deformation is
very strong in this parameter range, suggesting that if the
coupling constant α is above this magnitude, existing ultralight
spin-2 ULDM would have considerable effects on the deforma-
tion of the Hellings-Downs curve at the typical frequencies
fm ¼ m=2π.
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Compared with the spin-1 case in [20], the spin-2 ULDM
has a pure quadrupole effect on the correlation, which is
expected from its tensorial nature. According to PTA
data [19], the coupling constant α is constrained at
10−6–10−5 for mass m < 5 × 10−23 eV. The constraint is
set merely according to the amplitude of gravitational
strain. The angular correlation we have found gives a more
concrete understanding on how the spin-2 ULDM can
affect the PTA signal, causing angular correlation of the
timing residuals, and deforming the correlation curve of
stochastic gravitational wave background.
The spin-2 ULDM has different effects on pulsar timing

residuals, compared with the stochastic gravitational wave
background. The PTA residuals are induced by the local
homogeneous background from pulsars to the Earth, and
the Hellings-Downs curve is caused by isotropic gravita-
tional waves coming from all over space. The spin-2
ULDM is massive, which makes the frequency of the
homogeneous background fixed to its mass. For gravita-
tional wave background from gravity theories beyond
general relativity, the Hellings-Downs curves are also
deformed but in a broad frequency region [38–42].
However, the deformation in our case is different from
them. In [38–42], the deformation is present in all fre-
quency ranges. In our case, the deformation is only in a
narrow frequency range, which corresponds to the mass of
the spin-2 ULDM. In addition, our angular correlation
function is different from them. In their case, extra
polarization modes are considered for the gravitational
waves. Therefore, in the calculation of integrating over
all directions, terms like 1=½ð1þ n̂ · n̂aÞð1þ n̂ · n̂bÞ� and
ð1 − e−2πifτað1þn̂·n̂aÞÞð1 − e2πifτbð1þn̂·n̂bÞÞ need to be care-
fully treated for longitudinal or mixed polarization modes.
In our case, such terms do not exist, because the spin-2
ULDM acts as a background to influence pulse signals
coming from pulsars.
The deformed Hellings-Downs curve can be used to give

an intuitive comparison with observational data and esti-
mate the constraint on spin-2 ULDM. If apparent defor-
mation of Hellings-Downs curve is observed in a certain
frequency range, it can be compared with our results to
verify whether the deformation is caused by the spin-2
ULDM. In this sense, PTAs act as a distinct dark matter
detector for spin-2 ULDM. In [15], the angular correlation
of spin-2 ULDM for different modes are obtained with
several undetermined coefficients. In our case, we use the
method of derivation for the Hellings-Downs curve, and all
the coefficients are summed up. Thus, our result can be
directly compared with the PTA data. In [19], the pure
gravitational effects of the spin-2 ULDM are considered,
which is different from our case on the coupling effects of α
in spin-2 ULDM. In other words, the PTA effect they have
discussed is the gravitational oscillation caused by the
energy-momentum tensor of spin-2 ULDM. In our case,
the direct coupling between matter and spin-2 ULDM is

considered. It is also interesting to analyze other effects of
spin-2 ULDM, e.g., in the solar system astrometry that was
proposed more recently [43].
From Refs. [41,42], we can see that the angular corre-

lation pattern of SGWB caused by massive gravity is
different from those caused by spin-2 ULDM. If there is
spin-2 ULDM signal in observational data of PTA, the
detection of an anomalous shape of angular correlation
curve at a specific frequency compared with curves at other
frequencies would certainly help a lot with the detection of
spin-2 ULDM effects. Based on these considerations, one
strategy is to scan over the frequencies and characterize the
deviation from the Hellings-Downs curve. For example,
from the dataset of CPTA [13], the angular correlation
curves are fitted with the data at a fixed frequency. Then we
can choose certain frequencies at which the deviation
maximizes, and fit such data with the deformed Hellings-
Downs curve in our result (41). Besides, the second data
release from EPTA shows considerable ability to constrain
the mass parameter space for scalar ULDM [44]. As in our
case, it will help to constrain the parameter space for both
mass and coupling constant α for spin-2 ULDM. Also, from
Figs. 2–4, we can see that with a larger coupling constant α
of the spin-2 ULDM, the deformation is larger and easier to
distinguish. In future work, we will constrain and fit the
theoretical results with the observational dataset.
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APPENDIX: THEORETICAL MODEL
OF SPIN-2 ULDM

The theory of massive spin-2 ULDM can originate from
bimetric theory [23,24], which was constructed originally
in order to generalize Fierz-Pauli massive gravity in a
nonlinear way. Later it was found that this theory could
provide a reasonable origin for spin-2 ULDM [25–27]. The
total action is given by

S¼ M2
Pl

1þα2

Z
d4x

� ffiffiffiffiffi
jg̃j

p
Rðg̃Þþα2

ffiffiffiffiffiffi
jfj

p
RðfÞ

−2
α2M2

Pl

1þα2
ffiffiffiffiffi
jg̃j

p
Vðg̃;f;βnÞ

�
þ
Z

d4x
ffiffiffiffiffi
jg̃j

p
Lmðg̃;ΨÞ;

ðA1Þ
whereMPl is the reduced Planck mass, fμν is introduced as
a new spin-2 field, while α is a dimensionless constant to
regulate the difference of interactions for two spin-2 fields,
and Vðg̃; f; βnÞ stands for interaction terms between the
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two fields in order to avoid ghosts [23–25]. This action can
be linearized by considering perturbations

g̃μν ¼ ḡμν þ
1

MPl
ðGμν − αMμνÞ; ðA2Þ

fμν ¼ ḡμν þ
1

MPl
ðGμν þ α−1MμνÞ; ðA3Þ

where ḡμν is the background metric, Gμν and Mμν are the
small perturbations. Furthermore, the resulting action can
be diagonalized by this linear combination of the two
metric perturbations. Then the quadratic part of the total
action (A1) becomes

Sð2Þ ¼
Z

d4x
ffiffiffiffiffi
jḡj

p �
Lð2Þ
GRðGÞ þ Lð2Þ

FP ðMÞ

−
1

MPl
ðGμν − αMμνÞTμνðΨÞ

�
; ðA4Þ

where Lð2Þ
GRðXÞ is 2nd-order perturbation expansion of

Einstein-Hilbert action, described by the Lichnerowicz
operator, as

Lð2Þ
GRðXÞ ¼ −

1

2
M2

PlX
μνEμν

λκXλκ

¼ −
1

4
M2

PlX
μνðδλμδκν□ − ḡμνḡλκ□þ ḡλκ∇μ∇ν

þ ḡμν∇λ∇κ − 2∇λ∇ðμδκνÞÞXλκ; ðA5Þ

while Lð2Þ
FP ðMÞ represents the Fierz-Pauli Lagrangian,

which describes a massive spin-2 field

Lð2Þ
FP ðMÞ ¼ Lð2Þ

GRðMÞ −m2

4
ðMμνMμν −M2Þ; ðA6Þ

and m ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β1 þ 2β2 þ β3

p
MPl can be identified as the

mass for the mass eigenstate Mμν. Terms in Gμν can be
combined with background metric gμν ¼ ḡμν þ 1

MPl
Gμν and

resummed to recover Einstein-Hibert action. The resulting
total action is

Sspin−2 ¼ M2
Pl

Z
d4x

ffiffiffiffiffi
jgj

p
½RðgÞ þ Lð2Þ

FP ðMÞ þOðM3
μνÞ�:

ðA7Þ
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