PHYSICAL REVIEW D 110, 044052 (2024)

Angular correlation and deformed Hellings-Downs curve
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The pulsar timings are sensitive to both the nanohertz gravitational-wave background and the oscillation
of ultralight dark matter. The Hellings-Downs angular correlation curve provides a criterion to search for
stochastic gravitational-wave backgrounds at nanohertz via pulsar timing arrays. We study the angular
correlation of the timing residuals induced by the spin-2 ultralight dark matter, which is different from the
usual Hellings-Downs correlation. At a typical frequency, we show that the spin-2 ultralight dark matter can
give rise to the deformation of the Hellings-Downs correlation curve induced by the stochastic gravitational

wave background.
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I. INTRODUCTION

The detection of gravitational waves (GWs) has opened a
new era for both theoretical and observational astronomy
and cosmology [1]. In different frequency ranges, there
exist several different approaches for the detection of
GWs [2-5]. With the help of pulsar timing arrays
(PTAs), we can detect the signals of stochastic gravitational
wave background (SGWB) at frequencies around nano-
hertz. According to theoretical predictions, there are differ-
ent physical processes that can contribute to SGWB,
including supermassive black hole binaries [6], domain
walls [7], scalar curvature perturbations [8], etc. Compared
with other physical effects which may also induce pulsar
timing residuals, SGWB has the unique feature that the
cross-correlation for different pulsars shows a Hellings-
Downs pattern [9], which can help the recognition of
SGWB in data analysis.

Recently, several collaborations have reported their
newest PTA data analysis independently [10—-13], showing
the evidence of detection for SGWB. In particular, the
cross-correlation pattern resembles the Hellings-Downs
correlation, which increases the reliability of the results.
On the other hand, it turns out that ultralight dark matter
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(ULDM) may also have effects on PTAs [14-21]. ULDM
has drawn much attention in recent years. Compared with
cold dark matter, ULDM can suppress the structure for-
mation on subgalactic scales [22]. The oscillation fre-
quency of ULDM is their mass, and for ULDM with
mass m ~ 10722 eV, the corresponding frequency range is
around nanohertz. Therefore, the oscillation of gravitational
potential induced by ULDM can also induce pulsar timing
residuals with a particular kind of angular dependence,
which may contaminate the Hellings-Downs pattern.

The spin nature of ULDM plays a vital role on its
angular correlation on pulsar timing residuals. For exam-
ple, the scalar ULDM has equal effects on pulsar at each
direction [14], while the vector ULDM has strongly
anisotropic behavior [15]. Here we focus on the spin-2
ULDM, which has gained much attention in recent
years [23-29]. The theoretical origin of spin-2 ULDM
comes from the bimetric theory [23]. In the bimetric
theory, there are two kinds of gravitons in the mass
spectrum, one of which is massless, and the other one is
massive. This kind of massive graviton can be a dark
matter candidate [25-35].

The spin-2 ULDM has both gravitational effects [19] and
coupling effects [16,17] on PTAs. In this paper, we focus on
the coupling effects. We calculate the cross-correlation of
pulsar timing residuals induced by spin-2 ULDM and the
resulting angular pattern is purely quadrupole. We also
show that certain parameter choices would cause the
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Hellings-Downs curve to be slightly or strongly deformed,
so the PTA data may help constrain the parameter space.

This paper is organized as follows. In Sec. II, we show
the homogeneous background solution of the spin-2
ULDM. In Sec. III, we calculate pulsar timing residuals
induced by spin-2 ULDM. In Sec. IV, we evaluate the
deformation of spin-2 ULDM on the Hellings-Downs
curve, and we summarize the result in Sec. V.

II. HOMOGENEOUS BACKGROUND
OF SPIN-2 ULDM

The spin-2 ULDM may come from the bimetric
theory [23-27]. We begin with the following action

Syins = / dxV/[gIMAR () + Lol (D)

where the Lagrangian density

1 m?

£M = _Elegm/ﬂKMﬂK - 4 (M;WM”D - Mz)’ (2)

and the Lichnerowicz operator is given by & M,/K =
~3 (0480 = gug* O+ g*V,V, + g, VIV = 2V*V 55 ).
Since the cosmic expansion is negligible on galactic scales
and m > H, we assume the background metric to be flat,
so that g,, = 1,,. The equation of motion for M, from the
Lagrangian density is

1
gyuAKMﬂK + Emz(Mﬂv - rluvM> = O’ (3)

where M =n**M . Applying ¢" on (3) gives M, = o, M,
and thus 0"9"M,, = [UM. Taking trace of (3) and
considering r]"”gﬂy’“‘M w =0, we can get M =0. Then
the equation of motion (3) can be rewritten as
(0 —m*)M,,, = 0. Together we obtain

M=0, (O-m*)M

M, =0, w=0. (4)
Since the typical velocity of dark matter in the galaxy is
v/c ~ 1073, My, and My; components are all suppressed and
can be ignored. The homogeneous background solution is

then [16]

v 2ppm(X)

M;; :TCOS (mt+(p(x))eij(x), (5)
where ¢;; is the polarization tensor, ppy(X) is the energy
density of dark matter at position x, and ¢(x) represents the
phase. Since the occupation number in our galaxy is

s & 107 () (10} (195)°, the spin-2 field

can be described by a classical wave, and note that the de

Broglie wavelength for the spin-2 massive particle with
mass m is

2 1073 eV /1073
ADM:—ENA‘-kpC( ¢ )( ), (6)
muv

m v

soinhomogeneities within this distance can be smoothed out.
A way to parametrize ¢;; is to separate it in terms of the
spin states [36,37]

gij = Z{:‘s fj’ (7)

where s represents the 5 different spin states (x,+,L,R,S),
with

£ =€rCOSy, &, =ersiny, (8)

£, =¢&ycosy, &g =eysing. 9)

Here y and 5 determine the azimuthal direction of the tensor

part and vector part of the spin-2 field, respectively.
Moreover, €, is normalized such that

e
e =1. (10)

N

The corresponding tensors are

1
Vi = \ﬁ(p;qj +4,p) (11)
- 12
y,-j—ﬁ(l’ipj—%%)v (12)
YE = ! 13
ij_E(Qirj"f'rin)’ (13)
R 1
Vij :ﬁ(l?ﬁ'*"’il’j)v (14)
1
Vi = 76(3”5",‘ = dij), (15)

which represent —2, 2, —1, 1, O spin states, respectively, r;
is the unit vector with propagation direction of the massive
spin-2 field, and p;, ¢; are two unit vectors orthogonal to r;
and to each other. Note that in general, spin-2 fields can
have at most 6 degrees of freedom, while in the case of
bimetric theory [26], the traceless condition restricts the
number to 5.
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III. PULSAR TIMING RESIDUALS
INDUCED BY SPIN-2 ULDM

To study the effects on the PTA signal, a convenient
way to calculate is to change the frame as in [16],
G = G — 312 Myw» Where a is the coupling constant
characterizing the strength of the direct coupling between
normal matter and the spin-2 ULDM. Then we evaluate the
geodesics of photons based on the new metric g,,. Here we
assume a flat background since m > H and work with
9ij = 6;; — 3;=M,;. For a photon traveling along the geo-
desic from the pulsar a to the Earth with 4-momentum
p* = v(1,n}), the geodesic equation gives

d av?
dl; o, laM nt na, (16)
where u is the affine parameter. Treating o as a small
parameter and keeping first order terms in a, we get

1/_17<1+2A04[P1/ duvo,M;;n na> (17)

where the integral is evaluated from the pulsar a to the
Earth(E), and ¥ is the frequency of the photon if not
perturbed.

By making use of vd, =

1/:17(1

a
_ZMpl/ duvon*o,M;jn na> (18)

4 _ pnlg,, it becomes

M, (M} = M¢)nini

Compared with the second term, the last term can be
ignored since it contains space derivatives which introduce
a factor v/c ~ O(1073). The resulting redshift z, = (7, —
v,)/D, for signals from the pulsar a is

=T 2MP1 (M = M il

= F3¥,(xg) cos(mt + ¢g)
— FP¥ (x,) cos(mt —mL, + ¢,), (19)

where L, is the distance between the pulsar a and the Earth,
and the corresponding beam pattern functions are

FE = —8ij(XE)”é”£7 (20)
Fi = _8ij(xa)n£1n{17 (21)

which contain the dependence of z, on angles, while

__a\/pPpbm (XE) (22)

lPO(XE) - \/EmMPI ’
_ay/ Pom(Xa)
lP()(Xa) - \/EmMpl ’ (23)

represent the amplitude of z,, which depends on local
energy density of dark matter.
The timing residuals

t
AT, (1) = / dr'z,(t) (24)
0
are then integrated to be

1
AT (1) = — [FEW, (xg) sin(mt + g)
m

= Fo¥o(x,) sin(mt —mL, +¢,)].  (25)

with the origin of time chosen to cancel constant terms for
simplicity.

IV. ANGULAR CORRELATION CURVE

For pulsar a and pulsar b, the cross-correlation between
their timing residuals can be written as

Cap(7) = (AT 4()AT (14 7)) = (AT ())(AT (2 + 7))

(26)

For the stochastic gravitational wave background, the
cross-correlation it induces can be described by [9,20]

CGW

ZFHD )Paw(fi) cos2zfiz, (27

where ['yp describes the Hellings-Downs curve

1 1/1-=cosl
Ip==——————
HD ™ » 4( 2 )

3/1—-cos( 1—cos¢
(=), oy

and

1

PR

q)GW (fl)

The frequency integral is discretized based on the obser-
vation time T, [10], and 4, is the characteristic strain of
SGWB, which usually can be parametrized as

he(f) = Acy (140) (30)
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A. Angular correlation of spin-2 ULDM
For the spin-2 ULDM, the angular -correlation
(AT (AT, (t + 7)) = 7— fo AT, (t)AT,(t 4 7)dt can

be obtained by using the t1m1ng residuals in (25). Notice
that, since the observational period for PTAs is

Ty 2 10 yr, and the oscillation period for ultralight dark
matter with mass m > 10724 eV is m™! < T,.. Thus, when
we take the time average over T, oscillating terms with
cos(mt) can be ignored. The dominant cross-correlation
terms are

(AT (1)AT, (1 + 7))

= S FEFE) (W (xe)) cos(me)

. # (FPFR) (%, (X)W, (x,))

x cos(mz +mL, —mL, —Y,+Y})
1

2 22

x cos(mt —mL;, + Y, — Tg)

: o(%,))
T,).

<FEFP> <T0<XE)\PO<Xb)>

= S FLFEN (W, (xe)

x cos(mz + mL, + Vg — (31)
On the other hand, most of the terms are associated with the
distance between the pulsars and the earth, which ranges
from 0.1 kpc to 10 kpc. Then, for typical ULDM with
m =~ 107>* eV, these terms have a contribution to the phase
as 10 < mL, ~mL, < 1000, which is far more than 2z and
can be treated as random noise and averaged out. Thus, the
final result is

m L (FEFE) (W2 (xg)) cos(mr).  (32)

Cspin—2
ab (7 22

The angular dependence of C5"* is contained in

(FEFE), we set the coordinate frame in which nf =
(0,0,1) and nj, = (sin¢, 0, cos §). Since observable pulsars
are distributed all over the sky, effectively, we can assume
the polarization for the massive spin-2 field as isotropic and
integrate over possible directions [20] and also integrate
over azimuthal directions of tensor and vector parts. For
convenience, we set

= (sin 6 cos ¢, sin @ sin ¢, cos ), (33)
p = (sing, —cos ¢, 0), (34)
g = (cos@cos ¢, cosOsin ¢, —sin ). (35)

The Hellings-Downs-like curve for massive spin-2 back-
ground can be derived from &;n'n/,

0.6

04 ¢
o 02 ]
=

0.0 / 1

~02 — Hellings—Downs |

spm -2 DM
0.0 05 10 s 20 25 30
¢

FIG. 1. The blue and orange curves represent the angular

correlation of the timing residuals induced by stochastic GW
background (Hellings-Downs curve) and spin-2 ULDM, respec-
tively. Both curves are normalized at { = 0 such that I'(0) = 1/2.

dn dy d*Q
EpE\ _
<Fan>— Zﬂﬂz‘: y n' nazle,lyklnbnb
1 4
:E(1+3COSZC):BFDM(C)7 (36)
where
1 1
%MQ=§%®%Q=§U+3wQQ (37)

is the angular correlation curve normalized to be compared
with Hellings-Downs curve in Fig. 1. Here we can see that
the effect of spin-2 ULDM follows a purely quadrupole
pattern.

The total result for the correlation is

Coy'(7) = @ppIpm(§) cos(mz), (38)

where @p); denotes the amplitude of the correlation

Ppy = <\P2(XE)> (39)

2
15m?

B. Deformation of Hellings-Downs curve

When SGWB and spin-2 ULDM are both considered,
the total cross-correlation is

Cop(7) = ZFHD(C )®w(fi) cos2xfiz

+ Ipm(¢)Ppm cos(2zf 7). (40)

where the effect of spin-2 ULDM at frequency f,, = m/2x
can be incorporated into I'({) as [20]
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FIG. 2. Effective cross-correlation curves with @ = 107 and
mass ranging from 1072 eV to 10722 eV. It can be seen that in
this range and at the typical frequencies f,, = m/2xz, the
deformation of spin-2 ULDM on the Hellings-Downs curve is
relatively small.

N Pw (m/2x)
Lt (§) = By (1)27) + Py Tup(4)
+ Pou Tpm(¢).  (41)

Dgw (m/27) + Ppy

In the case of SGWB, according to the observation of
NANOGrav reported in [10], for y = —2agw + 3 = 13/3,
Agw = 2.4 x 1071 with the observation time T, ~ 15 yr
and f,s = 1 yr!, so the amplitude of the correlation is

13
_ m =5 (15yr
Oy (m/27) ~1x 10732 yr? <10_22 eV> < T > . (42)

For the effects of ultralight dark matter, the amplitude of
correlation can be derived from (22) and (39) as

_ o Pom(Xg)
DM 5 M3

(43)
so that

Dy ~ 6 x 10733 yp2 [ POM___
RN Y\ 0.4 Gev/em?

x (15—6>2<10—$ ev> R (44)

Different choices of the parameters @ and m give
different deformations of the Hellings-Downs curve, shown
in Figs. 2-4. It can be seen from these figures that,
compared with the mass of dark matter m, the order of
magnitude of the coupling constant a has a significant
impact on the deformation of the Hellings-Downs curve at
certain frequencies. For example, for @ > 107>, the shape
of the curve is almost determined by the spin-2 ULDM. It is

0.6 [~

— Hellings—-Downs

— m=102eV

0.4 N — m=10"2eV

— m=10"2eV

0.2 F

Tetr(D)

0.0 |

-0.2 +

0.0 0.5 1.0 1.5 2.0 2.5 3.0

FIG. 3. Effective cross-correlation curves with & = 107> and
mass ranging from 1072 eV to 1072? eV. The deformation is
very strong in this parameter range, suggesting that if the
coupling constant a is above this magnitude, existing ultralight
spin-2 ULDM would have considerable effects on the deforma-
tion of the Hellings-Downs curve at the typical frequencies

fm = m/2m.

0.6 — :
— Hellings—Downs
m=10"2*eV
0.4 — m=10"2eV
— m=10"2eV
S 02
£
5
—
0.0+
-0.2
0.0

FIG. 4. Effective cross-correlation curves with o = 107> and
mass ranging from 10724 eV to 10722 eV. In this range of a, the
curves are dominated by the spin-2 ULDM at the typical
frequencies f,, = m/2x.

also interesting that with larger mass parameter of the
ultralight dark matter, the deformation is larger and easier
to be observed.

V. CONCLUSION AND DISCUSSION

In summary, we show that spin-2 ULDM can induce the
deformation of Hellings-Downs curve at the frequency of
the mass parameter. Since the residuals induced by spin-2
ULDM is monochromatic, the deformation of Hellings-
Downs curve is expected to happen only in a narrow
frequency range around f,, = m/2z. Both the mass of
spin-2 ULDM and the coupling constant @ have impact on
the deformation, so the observational data of PTAs can help
to constrain the parameter space.
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Compared with the spin-1 case in [20], the spin-2 ULDM
has a pure quadrupole effect on the correlation, which is
expected from its tensorial nature. According to PTA
data [19], the coupling constant a is constrained at
107°-1073 for mass m < 5 x 10723 eV. The constraint is
set merely according to the amplitude of gravitational
strain. The angular correlation we have found gives a more
concrete understanding on how the spin-2 ULDM can
affect the PTA signal, causing angular correlation of the
timing residuals, and deforming the correlation curve of
stochastic gravitational wave background.

The spin-2 ULDM has different effects on pulsar timing
residuals, compared with the stochastic gravitational wave
background. The PTA residuals are induced by the local
homogeneous background from pulsars to the Earth, and
the Hellings-Downs curve is caused by isotropic gravita-
tional waves coming from all over space. The spin-2
ULDM is massive, which makes the frequency of the
homogeneous background fixed to its mass. For gravita-
tional wave background from gravity theories beyond
general relativity, the Hellings-Downs curves are also
deformed but in a broad frequency region [38-42].
However, the deformation in our case is different from
them. In [38-42], the deformation is present in all fre-
quency ranges. In our case, the deformation is only in a
narrow frequency range, which corresponds to the mass of
the spin-2 ULDM. In addition, our angular correlation
function is different from them. In their case, extra
polarization modes are considered for the gravitational
waves. Therefore, in the calculation of integrating over
all directions, terms like 1/[(1 +7a-7,)(1 + 7 -fy)] and
(1 — e~ 2mifra(14Rha) ) (] — @27if7(1477)) need to be care-
fully treated for longitudinal or mixed polarization modes.
In our case, such terms do not exist, because the spin-2
ULDM acts as a background to influence pulse signals
coming from pulsars.

The deformed Hellings-Downs curve can be used to give
an intuitive comparison with observational data and esti-
mate the constraint on spin-2 ULDM. If apparent defor-
mation of Hellings-Downs curve is observed in a certain
frequency range, it can be compared with our results to
verify whether the deformation is caused by the spin-2
ULDM. In this sense, PTAs act as a distinct dark matter
detector for spin-2 ULDM. In [15], the angular correlation
of spin-2 ULDM for different modes are obtained with
several undetermined coefficients. In our case, we use the
method of derivation for the Hellings-Downs curve, and all
the coefficients are summed up. Thus, our result can be
directly compared with the PTA data. In [19], the pure
gravitational effects of the spin-2 ULDM are considered,
which is different from our case on the coupling effects of «
in spin-2 ULDM. In other words, the PTA effect they have
discussed is the gravitational oscillation caused by the
energy-momentum tensor of spin-2 ULDM. In our case,
the direct coupling between matter and spin-2 ULDM is

considered. It is also interesting to analyze other effects of
spin-2 ULDM, e.g., in the solar system astrometry that was
proposed more recently [43].

From Refs. [41,42], we can see that the angular corre-
lation pattern of SGWB caused by massive gravity is
different from those caused by spin-2 ULDM. If there is
spin-2 ULDM signal in observational data of PTA, the
detection of an anomalous shape of angular correlation
curve at a specific frequency compared with curves at other
frequencies would certainly help a lot with the detection of
spin-2 ULDM effects. Based on these considerations, one
strategy is to scan over the frequencies and characterize the
deviation from the Hellings-Downs curve. For example,
from the dataset of CPTA [13], the angular correlation
curves are fitted with the data at a fixed frequency. Then we
can choose certain frequencies at which the deviation
maximizes, and fit such data with the deformed Hellings-
Downs curve in our result (41). Besides, the second data
release from EPTA shows considerable ability to constrain
the mass parameter space for scalar ULDM [44]. As in our
case, it will help to constrain the parameter space for both
mass and coupling constant & for spin-2 ULDM. Also, from
Figs. 2-4, we can see that with a larger coupling constant o
of the spin-2 ULDM, the deformation is larger and easier to
distinguish. In future work, we will constrain and fit the
theoretical results with the observational dataset.
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APPENDIX: THEORETICAL MODEL
OF SPIN-2 ULDM

The theory of massive spin-2 ULDM can originate from
bimetric theory [23,24], which was constructed originally
in order to generalize Fierz-Pauli massive gravity in a
nonlinear way. Later it was found that this theory could
provide a reasonable origin for spin-2 ULDM [25-27]. The
total action is given by

Mlz:‘l 2
S= 5 |g|R(G) +a*\/|fIR(f
l+a
aM = -
M ra V1V ( gfﬂn] /d“xvlglﬁm(g‘l’

(A1)

where My, is the reduced Planck mass, f, is introduced as
a new spin-2 field, while  is a dimensionless constant to
regulate the difference of interactions for two spin-2 fields,
and V (g, f;p,) stands for interaction terms between the
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two fields in order to avoid ghosts [23-25]. This action can
be linearized by considering perturbations

5 _ 1
G = G + (g,uy - aM/w)’ (AZ)
Mp,
_ 1 -
f;w = 9w + (gﬂu +a Mﬂl/)’ (A3)
MPI

where g, is the background metric, G,, and M, are the
small perturbations. Furthermore, the resulting action can
be diagonalized by this linear combination of the two
metric perturbations. Then the quadratic part of the total
action (A1) becomes

s = [ @/l [cgli(g)u%?w)

1
- 1‘/[—1)1 (gﬂl/ - aM/w)TW(\P)] >

(A4)
where L',gl){ (X) is 2nd-order perturbation expansion of
Einstein-Hilbert action, described by the Lichnerowicz
operator, as

1
2 v IS
‘Cg}l){(x) = _EM%’lxﬂ 5;41//1 X

1 o K AK
=~ MEX (8550 = 5,50 + 7,9,

+ 5 VAVS = 2V, 55X, (AS)

while £1(:2P> (M) represents the Fierz-Pauli Lagrangian,
which describes a massive spin-2 field

2

m
L (M) = LGg (M) =~ (M, W™ = M2). (A6)

and m = +/f; + 2, + f3Mp can be identified as the

mass for the mass eigenstate M,,. Terms in G,, can be
combined with background metric g, = g,, + MLHQW and
resummed to recover Einstein-Hibert action. The resulting

total action is

Spin2 = M3y | d*x\/[gl[R(g) + L (M) + O(M3,)].

(A7)
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