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Short-duration noise transients in LIGO and Virgo detectors significantly affect the search sensitivity of
compact binary coalescence (CBC) signals, especially in the high-mass region. In a previous work by the
authors [P. Joshi et al., Phys. Rev. D 103, 044035 (2021)], a χ2 statistic was proposed to distinguish them,
when modeled as sine-Gaussians, from nonspinning CBCs. The present work is an extension where we
demonstrate the better noise-discrimination of an improved χ2 statistic—called the optimized sine-Gaussian
χ2—in real LIGO data. The extension includes accounting for the initial phase of the noise transients and use
of a well-informed choice of sine-Gaussian basis vectors selected to discern how CBC signals and some of the
most worrisome noise transients project differently on them [S. Choudhary et al., Phys. Rev. D 107, 024030
(2023)]. To demonstrate this improvement, we use data with blip glitches from the third observational run
(O3) of LIGO-Hanford and LIGO-Livingston detectors. Blips are a type of short-duration non-Gaussian noise
disturbance known to adversely affect high-mass CBC searches. For CBCs, spin-aligned binary black hole
signals were simulated using the IMRPhenomPv2 waveform and injected into real LIGO data from the same run.
We show that in comparison to the sine-Gaussian χ2, the optimized sine-Gaussian χ2 improves the overall true
positive rate by around 6% in a lower-mass bin (m1; m2 ∈ ½20; 40�M⊙) and by more than 3% in a higher-mass
bin (m1; m2 ∈ ½60; 80�M⊙). On the other hand, we see a larger improvement—of more than 20%—in both
mass bins in comparison to the traditional χ2.
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I. INTRODUCTION

Gravitational-wave (GW) astronomy has achieved sev-
eral feats in recent years, following up on the first detection
of the binary black hole merger GW150914 [1]. After that
first breakthrough detection, two LIGO detectors (in
Livingston and Hanford) [2] along with the Virgo detector
(in Cascina) [3] have observed more than 90 compact
binary coalescence (CBC) signals from various kinds of
binaries involving black holes (BHs) and neutron stars
(NSs) in their first three observation runs [4]. The fourth
observation (O4) run began in 2023, and is expected to
include KAGRA [5]. The GW community is expecting the
CBC detection rate to increase significantly in O4. It is,

therefore, important to find ways to effectively handle data
quality and detector characterization to improve the search
sensitivity so as not to miss interesting signals. Currently,
high-mass CBC searches (for component mass >60M⊙)
are adversely affected by noise transients [6,7] and
some works have developed techniques to improve the
search sensitivity in that part of the CBC parameter space
[6,8–14]. These works include statistical, instrumental and,
recently, a few machine-learning efforts.
All studies about CBC search sensitivity in the high-mass

region typically mention the impact of blip glitches [15] as a
major source of deterioration. These glitches are a type of
short-duration non-Gaussian noise artifact found in both
LIGO detectors as well as in the Virgo detector. The duration
of these glitches is around 10 ms. In the frequency domain
they are over 100Hzwide. Studies on the blips in O2 andO3
[15,16] mention that they occur 2–3 times per hour in both
LIGO detectors. The reason behind blips affecting the CBC
search sensitivity is that their time-frequency morphology
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has a lot of similarity with GW signals from CBCs with high
total mass. These are essentially signals from binary black
holes (BBHs).
According to recent blip studies, their source is still not

fully known [15]. These types of glitches do not showmuch
correlation with any of the auxiliary channels (i.e., noise
source monitoring channels). Therefore, it is tricky to
confirm them as nonastrophysical in origin and remove
them from short-duration signal searches. One way to veto
blips from GW data is to develop a statistical test that can
differentiate them from CBC signals based on their differ-
ent time-frequency characteristics, e.g., in spectrograms.
There are χ2 statistics, such as the traditional (or power)
χ2 [17] and sine-Gaussian χ2 [6], that are implemented in
GW search pipelines to tackle glitches, with, especially, the
latter showing some success in discriminating against blips.
There are yet other χ2s that check for signal consistency by
employing expected SNR variation in time or across a CBC
template bank [18–21]. Still, there remains room for
improving current blip discrimination methods.
In this work, we exploit the unified χ2 formalism [8] to

develop a new χ2 statistic that incorporates information
about how blip glitches and BBH signals project differently
on a basis of sine-Gaussian functions. Following that work,
we call it the optimized sine-Gaussian χ2 statistic. We also
tune it in real data to specifically reduce the adverse
impact of blip glitches on the sensitivity of spinning
BBH searches. Previous work on this χ2 statistic in
Ref. [8] had targeted simulated sine-Gaussian transients
and nonspinning BBH signals.
This paper is organized as follows. In Sec. II, we discuss

theoretical aspects of the optimized SG χ2, including a
brief introduction to the general framework of χ2 statistics.
Section III describes the procedure for constructing the
optimized SG χ2. In particular, we show how to identify the
basis vectors for this statistic and how to employ singular-
value decomposition to choose from them the most
effective ones—a limited few. Section IV presents the
results and performance of optimized SG χ2 in discrimi-
nating simulated spin-aligned BBH signals in real LIGO
data from its third observation run (O3), which includes
thousands of real blip glitches. Finally, in Sec. V we discuss
the future applicability and prospects of this work.

II. χ 2 DISCRIMINATORS AND THEIR
OPTIMIZATION

A. General framework

The general framework for χ2 discriminators has been
described in Ref. [22]. It shows how the various χ2

discriminators can be unified into a single discriminator,
which can be appropriately termed as the unified χ2. In this
framework, a data train xðtÞ defined over a time interval
½0; T� is viewed as a vector x. Such data trains form a vector
space D. Vectors in D will be denoted in boldface, namely,

x; y ∈D. Since the detector strain is typically sampled at a
high rate, ofOð103Þ Hz, and the signals studied here can be
as long as Oð103Þ sec, the data vectors can have large
number of components, i.e., N ∼ 106 or larger. Hence, D is
essentially the N-dimensional real setRN . When additional
structure is added to D, namely, that of a scalar product,
then it becomes a Hilbert space.
Next consider the detector noise nðtÞ, which is a

stochastic process defined over the time segment ½0; T�.
It has an ensemble mean of zero, and is stationary in the
wide sense. A specific noise realization is a vector n∈D,
where n is in fact a random vector. Its one-sided power
spectral density (PSD) is denoted by SnðfÞ. If x̃ðfÞ and
ỹðfÞ are the Fourier representations of the vectors x and y,
respectively, then the scalar product of two vectors x and y
in D is given by

ðx; yÞ ¼ 4ℜ
Z

fupper

flower

df
x̃�ðfÞỹðfÞ
ShðfÞ

; ð1Þ

where the integration limits usually demarcate the signal
band of interest, ½flower; fupper�. We have used an integral for
the scalar product because the number of components of a
data vector is very large, as argued above, and the
continuum limit may be taken from a sum to an integral.
The χ2 discriminator is a mapping from D to positive

real numbers and is defined so that its value for the signal is
zero and for Gaussian noise has a χ2 distribution with a
reasonable number of degrees of freedom, p. Typically, the
number of degrees of freedom is a few tens to a hundred. If
a template h is triggered, then the χ2 for h is defined by
choosing a finite-dimensional subspace S of dimension p
that is orthogonal to h, i.e., for any y ∈S, we must have
ðy;hÞ ¼ 0. Then the χ2 for the template h is defined as just
the square of the L2 norm of the data vector x projected
onto S. Specifically, we perform the following operations.
Take a data vector x∈D and decompose it as

x ¼ xS þ xS⊥ ; ð2Þ

where S⊥ is the orthogonal complement of S in D. xS and
xS⊥ are projections of x into the subspaces S and S⊥,
respectively. We may write D as a direct sum of S and S⊥,
that is, D ¼ S ⊕ S⊥.
Then, the required statistic χ2 is

χ2ðxÞ ¼ kxSk2: ð3Þ

The χ2 statistic so defined has the following properties.
Given any orthonormal basis of S, say eα, with α ¼
1; 2;…; p and ðeα; eβÞ ¼ δαβ, we obtain the following:
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(1) For a general data vector x∈D, we have

χ2ðxÞ ¼ kxSk2 ¼
Xp
α¼1

jðx; eαÞj2. ð4Þ

(2) Clearly, χ2ðhÞ ¼ 0 because the projection of h into
the subspace S is zero, i.e., hS ¼ 0.

(3) Now, the noise n is taken to be stationary and
Gaussian, with PSD SnðfÞ and mean zero. There-
fore, the following is valid:

χ2ðnÞ ¼ knSk2 ¼
Xp
α¼1

jðn; eαÞj2: ð5Þ

Observe that the random variables ðn; eαÞ are inde-
pendent and Gaussian, with mean zero and variance
unity. This is because hðeα;nÞðn;eβÞi¼ðeα;eβÞ¼δαβ,
where the angular brackets denote ensemble average
(see [23] for proof). Thus, χ2ðnÞ possesses a χ2

distribution with p degrees of freedom.
For convenience, one is free to choose any orthonormal

basis of S. In an orthonormal basis the statistic is
manifestly χ2 since it can be written as a sum of squares
of independent Gaussian random variables, with mean
zero and variance unity.
In the context of CBC searches, however, we have a

family of waveforms that depend on several parameters,
such as masses, spins and other kinematical parameters. We
denote these parameters by λa; a ¼ 1; 2;…; m. The tem-
plates corresponding to these waveforms are normalized,
i.e., khðλaÞk ¼ 1. Then the templates trace out a manifold
P—the signal manifold—which is a submanifold of D.
We now associate a p-dimensional subspace S orthogonal
to the template hðλaÞ at each point of P—we have a
p-dimensional vector-space “attached” to each point of P.
When done in a smooth manner, this construction produces
a vector bundle with a p-dimensional vector space attached
to each point of manifold P. We have, therefore, found a
very general mathematical structure for the χ2 discrimina-
tor. Any given χ2 discriminator for a signal waveform hðλaÞ
is the square of the L2 norm of a given data vector x
projected onto the subspace S at hðλaÞ.
It can be easily shown that the traditional χ2 falls under

the class of unified χ2. This is done by exhibiting the
subspaces S or by exhibiting the basis vector field for S
over P; the conditions mentioned above must be satisfied
by S. In [24] such a basis field has been exhibited explicitly.

B. Optimizing the χ 2 discriminator

The χ2 discriminator must produce as large a value as
possible for a glitch in the data. In our framework we
achieve this, on average, given the collection of glitches.
The optimization is therefore carried out for a family
of glitches, say, G. Here we will model the glitches as

sine-Gaussians and select a family of such glitches based
on the ranges of the parameters describing the sine-
Gaussians. The subspace S then must be chosen in such
a way as to have maximum projection on an average. Also
one must keep in mind that S must be orthogonal to the
trigger template. These two criteria essentially guide us to
obtain the subspaces S. The third criterion is that its
dimension should be kept small in order to keep the
computational cost at a reasonable level.
More specifically for a given trigger template h, we

perform the following steps:
(1) Sample the parameter space G of the glitches (sine-

Gaussians) sufficiently densely so that the sample is
representative. We call the subspace of D spanned
by these sampled vectors as VG. This is done
efficiently and conveniently with the help of a
metric, as will be described in Sec. III A.

(2) Since S should be orthogonal to h, we remove the
component parallel to h from each of the sample
vectors spanning VG. Thus, if v∈VG, then we define
v⊥ ¼ v − ðv;hÞh. These vectors v⊥ by construction
are orthogonal to h. The space spanned by these
clipped vectors v⊥ is called V⊥.

(3) Next we apply singular value decomposition (SVD)
to the row vectors of V⊥ to obtain the best possible
approximation of lower dimension say p. We will
put a cutoff on the singular values so that projection
obtained is as large as desired, say, 90%. The
singular vectors corresponding to the singular values
obtained by applying the cut-off generate the sub-
space S.

Steps 1 and 2 above were also described in the
construction of χ2 tests in Ref. [25] where the vectors v
were taken to be gravitational waveforms. In our formu-
lation, however, the sampled vectors in principle could be
any vectors in D, the only condition being that they be
orthogonal to h. Further, in order to construct an effective
χ2, the vital step is to choose these vectors in the direction
of the glitches. This is distinct and different from the
waveforms suggested in Ref. [25]. For more details on our
formulation, we refer to Ref. [24], where we also proved
that statistically independent χ2 discriminators, such as the
traditional one and the optimized SG χ2, can be straight-
forwardly added to form new discriminators with a larger
number of degrees of freedom that continue to have the χ2

distribution in Gaussian noise. Such discriminators will
tend to be effective against a broader class of glitches. In the
next section, Sec. III A, we describe how one can define a
metric on G to obtain the sample vectors that span VG.

III. CONSTRUCTING THE OPTIMIZED
SINE-GAUSSIAN χ 2 DISCRIMINATOR

A. Selection of vectors that span VG

In order to form an optimal χ2, it is important that we
select appropriate vectors in VG to project the GW data on.
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In order to improve the sensitivity of CBC searches, we
specifically target the blip glitches in this work, which are a
major source of reduction in CBC search sensitivity. A
recent work [8] demonstrates how transient bursts repre-
sented by sine-Gaussian waveform [26] can be vetoed with
the help of an optimal χ2 from the GW data. Since the blip
glitches are also known to have a time-domain morphology
similar to the sine-Gaussian waveforms, we use these
waveforms to form the vectors in VG for constructing
the optimized SG χ2 here. To allow for an arbitrary phase in
the noise transient, we use a complex-valued sine-Gaussian
waveform. This is an improvement over our earlier
work [8], especially relevant in dealing with the general
scenario. In the time domain the sine-Gaussian waveform
can be defined as

ψðt; t0; f0; QÞ ¼ A exp
�
−
4π2f20
Q2

ðt − t0Þ2
�

× exp ½−i2πf0ðt − t0Þ�: ð6Þ

In the frequency domain, it is

ψ̃ðf; t0; f0; QÞ ¼ Ã exp

�
−

Q2

2πf20
ðf − f0Þ2

�

× exp ½−i2πt0ðf − f0Þ�; ð7Þ

where t0 is central time, f0 is central frequency, Q is the

quality factor, and the amplitudes are A ¼ ð8πf20Q2 Þ14 and

Ã ¼ ð Q2

2πf2
0

Þ14. It is important to note that this model for

the glitches is different from the one considered in [8]
because this model considers sine-Gaussians with arbitrary
phase, which is more general. Therefore, the results that
follow here are markedly different, and the resulting
discriminator is effective more generally.
To calculate the metric in the (t0; f0; Q) space we begin

by considering two neighboring sine-Gaussian waveforms
in that space; namely, ψ1ðf; t0; f0; QÞ and ψ2ðf; t0 þ dt0;
f0 þ df0; Qþ dQÞ. A metric may then be introduced on
this space as a map from the differences in the parameters
of these waveforms to the fractional change in their match,

ds2 ¼
�
4π2f20
Q2

�
dt20 þ

�
2þQ2

4f20

�
df20 þ

�
1

2Q2

�
dQ2

−
�

1

2f0Q

�
df0dQ: ð8Þ

We do not consider the noise power spectral density (PSD)
to calculate the metric since it has a negligible effect on the
arrangement of the vectors in VG [26]. The above metric [in
Eq. (8)] can be reduced to its diagonal form using the
transformations,

ωo ¼ 2πf0 ð9Þ

and

ν ¼ ωo

Q
: ð10Þ

In the new coordinates, ðt0;ω0; QÞ, the metric takes the
form

ds2 ¼ ν2dt20 þ
1

4ν2
dω2

0 þ
1

2ν2
dν2: ð11Þ

In comparison to the metric in Ref. [8], this metric has no
ω0 term multiplying dt20. This results from our accounting
for the aforementioned arbitrary phase of the sine-Gaussian
waveform in this work.
As mentioned in Ref. [27], a CBC template is triggered

with a time lag td after the occurrence of a glitch, i.e., after
t0. The time td is given by [27]

td ≃ τ0

�
1 −

16

3Q2

�
ζ þ 2

3

��
; ð12Þ

where the second term inside the parentheses determines
the magnitude of the “correction” beyond the chirp time τ0,
which is given by

τ0 ¼
5

256πf0
ðπMf0Þ−5=3; ð13Þ

and ζ is negative of the logarithmic derivative of the noise
PSD [ShðfÞ] evaluated at f0.
The metric in Eq. (11) can be reduced to a more

simplified form with the help of transformations

z ¼ ðω0MÞ−5=3 and y ¼ lnðν=rad= secÞ; ð14Þ

such that

ds2 ¼
�
2−14=3

Q2
þ 9Q2

100z2

�
dz2 þ 1

2
dy2: ð15Þ

By examining Eq. (12), one may reckon that for Q ∼ 2 the
td would be significantly affected. This is in fact so but it
turns out that it makes little difference to the metric. This
can be seen as follows. In Eq. (12) the correction term is
inversely proportional to Q2; therefore, for high Q, say,
with Q≳ 5, it is negligible. Also, at high central frequen-
cies, i.e., f0 ≳ 500 Hz, the factor ðζ þ 2=3Þ is small for the
aLIGO design PSD. Thus, in either case one has td ≈ τ0.
The remaining case is one where f0 ∼ 100 Hz and Q ∼ 2.
Now the term arising from td is the second term multiplying
dz2 in the metric expression Eq. (15). It turns out that this
term is small compared to the first one in the same metric
expression; about 14% at this frequency. Hence, even if the
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td is changed significantly, it makes a small difference to the
metric. To summarize, in most of the parameter space we
consider, the metric given in Eq. (15) applies and our
sampling based on this metric valid to a good approximation.
From a broader perspective, the main idea is to sample

the parameter space of glitches adequately, so that they are
not misidentified. Thus, any inadequacy resulting from
inaccuracies of the metric can be easily remedied by more
densely sampling the parameter space. This can be
achieved by just increasing the match between neighboring
points. We have explored this possibility and find that it
does not lead to dissimilar results.
To choose the appropriate vectors in VG for the optimal-

χ2, we take help from the sine-Gaussian projection maps
introduced in Ref. [9]. The SGP maps are a projection of
GW data onto the sine-Gaussian parameter space. We
experimented with several real blips and simulated CBC
signals to model their projections on the sine-Gaussian
parameter space. As seen in Fig. 1, blips and CBC signals
show projection in distinct regions of the sine-Gaussian
parameter space. Blips project strongly in the frequency
region above 100 Hz, whereas for the CBC signals with
component masses above 10M⊙ the projection lies mostly
below 100 Hz. Along the Q coordinate, the CBC signals
show more elongated features than the blips. This differ-
ence in the projections of blips and CBCs on sine-
Gaussians paves the way for selecting appropriate vectors
in VG to formulate an optimal-χ2 following the unified χ2

formalism [22]. We choose parameter ranges such that the
blips have a high projection on these vectors that lead to

higher values of the χ2 statistic for blips than CBC signals.
In our case, we find f0 ∈ ½100; 500� Hz and Q∈ ½2; 8�.
To construct the VG vectors in the chosen region of the

sine-Gaussian parameter space we first use Eq. (15) to
sample points in the z-y space. The coefficients of dz2

depend on Q, f0 and the chirpmass M through the
parameter z. To get a flat metric in z-y space, we fix
Q ¼ 8 and f0 ¼ 500 Hz. The choice of Q and f0 is made
after observing that it provides sufficiently dense sampled
points such that the mismatch between two neighboring
vectors is not more than 0.20. After sampling points in the
z-y space, we transform them back to the Q-f0 space. The
top panel of Fig. 2 shows points sampled in the z-y space,
while the bottom panel shows the same points after trans-
forming to the Q-f0 space. Sine-Gaussian waveforms are
chosen corresponding to each of these sampled points. The
number of total points can vary depending on the chirp mass
M of the triggered template. This can lead to a large number
of vectors. To reduce that number, note that most of them are
not linearly independent. We, therefore, use SVD (discussed
below in Sec. III B) to obtain the (much smaller number of)
basis vectors from that sample. The resultant SVD vectors
are then used to project the GW data upon them using
Eq. (1). As it turns out, we require just about three vectors—
on which the data show maximum projection—to compute
the optimal-χ2, which is then defined as

χ2opt ¼
X3
α¼1

jðx;gαÞj2; ð16Þ

FIG. 1. The sine-Gaussian projection map of a blip with SNR ¼ 16 (left) from the O3 LIGO-Hanford data and a simulated BBH signal
with the same SNR (right) injected in real noise from adjacent quieter data. Here the SNRs for the blip and the CBC signal are obtained
via identical matched-filtering computations using the same BBH template-bank. The colorbar represents relative strength of the
projections [9]. Note, however, that there is a variation among blips regarding how their power projects on sine-Gaussians across f0.
How well they can be discriminated from BBH signals in any mass range, therefore, is best studied for a wide population of blips as
pursued below.
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where x is the data vector and gα are the three aforemen-
tioned basis vectors.

B. Reducing the number of degrees of freedom of the χ 2

The selected vectors (sine-Gaussians) as described in
Sec. III A usually turn out to be quite large in number. After
time-shifting the sine-Gaussians and clipping their compo-
nents parallel to the template, they span the subspace V⊥
(see Sec. II B). We could in principle use V⊥ on which to
project the data vector and compute the χ2 statistic but the
dimension of V⊥ is usually large and in practice it would
involve too much computational effort and slow down the
search pipeline; the χ2 would involve too many degrees of
freedom, namely, the dimension of V⊥. Therefore, we look

for the best p-dimensional approximation to V⊥, where p is
reasonably small. The SVD algorithm allows us to achieve
just this; this is the essence of the Eckart-Young-Mirsky
theorem [28].
However, the SVD cannot be applied directly to the

selected vectors in VG. The input matrix, say,M needs to be
first prepared. We briefly describe the procedure here since
the full details can be found in [8]. The following are the
salient steps needed:

(i) The sine-Gaussians have central time t0 ¼ 0 and
they need to be appropriately time-shifted with
respect to the time of occurrence of the trigger.
We will always take the trigger to occur at t ¼ 0, and
so the glitch must have occurred at time −td.
Accordingly the sine-Gaussians have to be shifted

FIG. 2. Sampled points in the z − y space (top) for a triggered template with component masses ð70; 70ÞM⊙, and a chirp mass of
60.9M⊙. The rectangular region f0 ∈ ½100; 500� Hz and Q∈ ½2; 8�, in the f0 −Q space (bottom), transforms to a trapezium in the z-y
space. Neighboring points have a minimum match of 80% and are essentially uniformly placed in the z–y plane. There are a total of 58
sampled points in this plot. This number can vary with the chirp mass of the triggered template.
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by the time −td. Since we write the input matrix in
the Fourier domain, this is achieved by multiplying
each row vector by the phase factor e2πiftd.

(ii) The selected vectors need to be clipped by sub-
tracting out from each sine-Gaussian its component
parallel to the template. The clipped and time-shifted
sine-Gaussians span the subspace V⊥ of D. The
desired subspace S is a subspace of V⊥.

(iii) The usual SVD algorithm “sees” the Euclidean
scalar product. However, here we have a weighted
scalar product inversely weighted by the PSD ShðfÞ.
So in order to apply the usual SVD algorithm we
need to whiten each row vector. This is achieved by
dividing each Fourier component of the row vector
by

ffiffiffiffiffiffiffiffiffiffiffi
ShðfÞ

p
.

(iv) The input matrix is now ready to be fed into the SVD
algorithm.

This is however not the end of the story. We have to also
modify the output which are the right singular vectors. We
need to unwhiten these vectors by multiplying by the factorffiffiffiffiffiffiffiffiffiffiffi
ShðfÞ

p
. The unwhitened singular vectors are orthonormal

in the weighted scalar product.
The SVD algorithm also yields singular values

σi; i ¼ 1; 2;…; r. The Frobenius norm of the input matrix
is just kMkF ¼ P

r
i¼1 σ

2
i . The number of degrees of free-

dom p are chosen so that,

Xp
i¼1

σ2i ≳ ð1 − δÞkMkF; p ≤ r; ð17Þ

where δ may be chosen to be, say, 0.1% or 10%. The
subspace S is generated by the first p right singular vectors
and so has dimension p. This also means that we have a
projection of about 90%, on the subspace S. S is the best
p dimensional approximation to V⊥; it is essentially a
p-dimensional least-square fit to V⊥ (see [8] for more
discussion). We have also succeeded in reducing the
number of degrees of freedom of the χ2 to p. Typically,
for the ranges of parameters f0; Q;M, etc., considered
here, the number of selected vectors in VG is about a few
hundred while p < 10. Thus, p is much smaller than the
number of selected vectors in VG.

IV. RESULTS

A. Performance on blips

In this study, we tuned the optimized SG χ2 specifically
for the blip glitches. In order to test the effectiveness of that
χ2 in differentiating blips from aligned spin BBH signals,
we chose real blips from LIGO’s O3 run, as identified by
the Gravity Spy tool [29–33]. Blips were selected from
both Hanford and Livingston detectors when they had a
confidence level of 0.6 on a scale of 0 to 1, as rated by
Gravity Spy. A total of 4000 strain data segments, each of

length 16 sec and containing a blip with a matched-filtering
signal-to-noise ratio (SNR) between 4 and 12, as registered
by the loudest BBH template, were chosen. The BBH data
sample is prepared by simulating BBH signals using the
family of IMRPhenomPv2 waveforms [34]. These simulated
signals also span the same SNR range, namely, 4 to 12,
uniformly. We first divide the signals into two bins based on
their component masses; one bin consists of signals with
component masses m1; m2 ∈ ½20; 40�M⊙ and the other
consists of those with m1; m2 ∈ ½60; 80�M⊙. In both cases,
the aligned spins s1z and s2z are distributed uniformly in the
range [0.0, 0.9]. The purpose of this division is to compare
the performance of the optimal SG χ2 in the two mass bins
and use it to understand which part of the BBH parameter
space benefits more from its use in reducing the adverse
impact of the blips. For the studies in this section, we
needed three (complex) basis vectors in Eq. (16) for the
construction of the optimized SG χ2, which amounts to six
degrees of freedom for that statistic.
To compute the matched-filtering SNRs of both blips and

spin-aligned BBH signals, we use different CBC template
banks for the two mass bins. For the lower mass bin,
m1; m2 ∈ ½20; 40�, we use a template bank with component
masses ðm1; m2Þbank ∈ ½10; 50�M⊙ and for the higher mass
bin, m1; m2 ∈ ½60; 80�M⊙, we use a template bank with
component masses ðm1; m2Þbank ∈ ½50; 90�M⊙. The tem-
plate banks are intentionally chosen to cover a broader
range of masses than the injections. For both mass bins, the
templates had the same range of spins as the injections;
namely, s1z; s2z ∈ ½0.0; 0.9�. Templates banks were gener-
ated with a minimum mismatch of 0.97 using the stochastic
bank code of PyCBC [35]. We used the same IMRPhenomPv2

waveform for templates as was used for simulating the
CBC injections. The BBH signals so prepared are injected
into 16 sec long data segments from O3 that are not known
to have any astrophysical signals in them. These data
segments are multiplied with the Tukey window to make a
smooth transition to zero strain at the edges, which
mitigates spectral leakage during the analysis.
We use the receiver-operating characteristic (ROC)

curves to assess the performance of the optimal χ2 and
compare it with that of the traditional χ2 and sine-Gaussian
χ2 statistics. First, the optimal, traditional and sine-
Gaussian χ2s are computed for the chosen sample of
BBHs and blips, in addition to their respective SNRs.
We then use the ranking statistic defined in Ref. [36,37] to
rank the triggers in case of traditional χ2. On the other hand,
for sine-Gaussian and optimal χ2 we use the new ranking
statistic defined in Ref. [6]. The ranking statistics used here
for the traditional χ2 and the sine-Gaussian χ2 are the usual
ones, respectively. The decision to use the new ranking
statistic for the optimized SG χ2 was made after finding
how both ranking statistics performed for the optimal χ2.
As one can see from the ROC curves in Fig. 3, prima facie,
for these choices of the ranking statistics the optimized
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SG χ2 appears to perform better than the traditional and
sine-Gaussian χ2 at all false alarm probabilities in both
mass bins. Specifically, the optimized SG χ2 achieves an
improvement in sensitivity of around 4% over the tradi-
tional χ2 at a false alarm probability of 10−2. For higher
masses m1; m2 ∈ ½60; 80�M⊙ too we see that the optimized
SG χ2 shows notable improvement in at and around the
same false alarm probability.

Here, it is important to note that one is not discounting
the possibility that further tuning of the power and sine-
Gaussian χ2s on the same injections and glitches would
improve their performance. In fact, we did not exhaustively
tune the optimized SG χ2 either.
To check if the aforementioned performance improve-

ment is limited to only a specific SNR bin, we repeated
the above study for somewhat higher SNRs, namely

FIG. 3. The ROC plots for blips vs BBH signals for lower (left) and higher (right) mass bins. Here, we use 2000 blips from real LIGO-
Hanford O3 data and 2000 simulated CBC signals with component masses uniformly distributed in range ½20; 40�M⊙ (left) and
½60; 80�M⊙ (right). The aligned spins are in the range [0.0, 0.9]. To calculate the SNR in this case we have used a CBC template bank
with component masses in ðm1; m2Þbank ∈ ½10; 50�M⊙ and ðm1; m2Þbank ∈ ½50; 90�M⊙, respectively. The SNRs are kept in the range [4,8].

FIG. 4. This figure is similar to Fig. 3 but for the higher SNR range of [8,12]. Here too we use 2000 blips from real LIGO-Hanford O3
data and 2000 simulated CBC signals with component masses uniformly distributed in range ½20; 40�M⊙ (left) and ½60; 80�M⊙ (right).
The aligned spins are in the range [0.0, 0.9]. To calculate the SNR in this case we used a CBC template bank with component masses
ðm1; m2Þbank ∈ ½10; 50�M⊙ and ðm1; m2Þbank ∈ ½50; 90�M⊙, respectively.
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SNR∈ ½8; 12� in Fig. 4 (as compared to SNR∈ ½8; 12� in
Fig. 3). To further test if the improvement of the new
statistic was limited in source distance, we analysed its
performance in a couple of broad distance bins in Fig. 5.
With the aforementioned caveat about tuning, we observe
that the optimized SG χ2 is found to improve the sensitivity
in each of these cases, although in the more distant bin the
improvement tends to vanish at low false-alarm probabil-
ities, as expected; weak signals are noise dominated and are
difficult to discern from noise transient by any statistic. We
also compare the volume-time sensitivities [38–40] as
functions of the inverse false-alarm rate for three different
χ2 statistics in Figs. 6 and 7. For this study, we performed

signal injections in O3 data, for various component mass
ranges, up to a maximum distance of 6 Gpc, uniformly
distributed within the comoving volume. The volume-time
sensitivity is then calculated by dividing the number of
recovered injections by the total number of injected signals,
as detailed in [38].
As can be observed in these results, the optimized SG χ2

performs at least as good as or somewhat better than the
other statistics. This is likely because it accounts for both
the differences and the similarities between blips and BBH
waveforms quantitatively by utilizing the metric in the
sine-Gaussian space [8]. The performance improvement is
superior for higher mass BBHs because those signals

FIG. 5. Comparison of the three χ2s for different source distance bins. For m1; m2 ∈ ½20; 40�M⊙ we have divided the source distance
into two bins, namely, [3000, 4000] Mpc and [4000, 5000] Mpc. For m1; m2 ∈ ½60; 80�M⊙, the source distance is divided into distance
bins [5000, 6000] Mpc and [6000, 7000] Mpc. The blips chosen for analysis are in the SNR range [4, 10]. We have specially chosen low-
SNR blips since these are more difficult to distinguish from BBH signals.
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occupy a lower part of the frequency band compared to the
blips. The improvement over the sine-Gaussian χ2 can be
understood in terms of the choice of Q and f0 range while
sampling the sine-Gaussian waveforms to construct the VG
vectors and then subtracting the triggered templates from
them. This work makes a few advances compared to the
previous implementation of the optimal χ2 [8]. For in-
stance, here we utilized the complex form of the sine-
Gaussian waveforms to account for the phase of the signal.
Moreover, the sine-Gaussian projection maps [9] helped us
in identifying appropriate regions in the sine-Gaussian
parameter space to choose the VG vectors from for the
construction of the optimized SG χ2 statistic. These

advances also helped in bringing about appreciable
improvement in CBC search sensitivity over traditional
and sine-Gaussian χ2.
It must be emphasized that just like for the traditional χ2,

the computation of the optimized SG χ2 uses the parameter
values of the triggered template. Therefore, the choice of
template-bank boundaries while doing the matched-filtering
operation can play an important role in its effectiveness. As
we can see in the Fig. 8, blips can trigger a wide variety of
templates, and a narrow template bank choice can adversely
affect the performance of the optimized SG χ2.

B. Performance on other noise transients

So far we focused on applying the optimized SG χ2 for
distinguishing BBH signals from the blip glitch and
demonstrated its utility via ROC curves. In realistic
observation scenarios, however, noise transients that trigger
BBH templates are of a wider variety, and not limited to
blips. To test the performance of the optimized SG χ2 on
such a class, we compared the same three χ2s statistics as
before on a set of mixed glitches, which include 500 each of
koifish, tomte, low-frequency blip, scattered-light glitches,
in addition to 1000 blips which are known to occur more
frequently. The performance comparison is shown as ROC
plots in Fig. 9. We observe that even in the presence of

FIG. 6. Volume-time sensitivity (VT) vs the inverse false-alarm
rate (iFAR) compared for three different χ2 statistics in the higher
mass bin of m1; m2 ∈ ½60; 80�M⊙.

FIG. 7. Here we show how the optimized SG χ2 compares with
power χ2 in three different mass bins in terms of volume-time
sensitivity. The component mass values are in units of M⊙.

FIG. 8. The component masses of all templates employed are
shown in green. In contrast, the red ones (which are their subset)
show the templates that are triggered by any of the (real) blips
from a sample of 4000 taken from Livingston and Hanford
detectors’ O3 run. Corresponding to each mass axis, there is a
histogram showing the number of templates triggered at each
component mass value.
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other kinds of noise transients in significant numbers, the
optimized SG χ2 does slightly better than other two χ2’s
overall. Figure 10 shows the improvement in the true posi-
tive rate by optimized SG χ2 over SG χ2 and traditional χ2.
It is important to mention here that this improvement of
optimized SG χ2 over other two χ2s is found without any
tuning specific to these additional glitches. To construct the
basis vectors in this study, the sine-Gaussianwaveformswere

chosen from the region, Q∈ ½2; 8� and f0 ∈ ½100; 500�, as
was done in the previous sections for blips.

V. DISCUSSION

Owing to their time-frequency morphological similarity
with high-mass BBH signals, the short-duration noise
transients like blips affect the search sensitivity of those

FIG. 9. ROC comparison between three χ2s for a set of short-duration (koi fish, tomte, blip, low-frequency blip) and scattered-light
glitches mixed against the simulated CBC signals in two component mass bins ½20; 40�M⊙ (left) and ½60; 80�M⊙ (right). Here the SNRs
for CBC samples are uniformly distributed in the range [4,12].

FIG. 10. Here we show the improvement in detection probability (true positive rate) of optimized SG χ2 over SG χ2 (left) and over
traditional or power χ2 (right). The glitch sample in this case contain a mixture of 500 each of koifish, tomte, low-frequency blip,
scattered-light glitches and 1000 blips totaling 3000 glitches. Here the SNRs for the CBC samples are uniformly distributed in the
range [4,12].
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signals adversely. In this study, we showed how the
optimized SG χ2 can be constructed in real LIGO data
so as to reduce that impact. The previous version of this χ2

statistic, introduced in Ref. [8], is extended here to better
discriminate blip glitches in searches for spin-aligned BBH
signals in real data. A few advances have been made here
compared to the past work in Ref. [8] that possibly helped
in achieving further improvement. The first one was
accounting for the phase of the signal in the construction
of the basis vectors by using complex sine-Gaussian
waveforms. The second contributor was the use of projec-
tion maps [9], which guide us in locating the region in
sine-Gaussian parameter space from which the initial sine-
Gaussians should be chosen for constructing the basis
vectors used in computing the optimized SG χ2.
The computational cost per trigger of the optimized SG χ2

is higher than that of the traditional χ2 and the sine-Gaussian
χ2. A major fraction of this cost arises from the construction
of orthonormal basis vectors described in Sec. III B. This
makes the implementation of the optimized SG χ2 in an
online search less efficient computationally. A straightfor-
ward way to reduce this inefficiency is to construct the
orthonormal basis vectors beforehand for a set of template
masses. In case of a high-mass template bank, this advance
preparation can be done for all the templates, as their number
is relatively small. In case of low-mass template banks, a
more sparsely populated fraction of templates can be selected
for precomputation of the orthonormal basis vectors. The
optimized SG χ2 is then computed using the basis vectors of
the nearest template.
As noted before, there have been some attempts to veto

blip glitches from the data with the help of a χ2 like statistic

[6] and machine learning networks [9,41] claiming varying
degrees of improvement in the BBH search sensitivity.
Some of these works exploit certain insights provided by
the unified χ2 formalism [22] but so far none of them fully
leverages the power afforded by it. The work reported in
this paper attempted to bridge that gap for nonspinning as
well as spin-aligned BBH signals. One could possibly
extend this work to explore possible mitigation of the blips’
effect on more general spinning CBC searches.
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