
Null infinity and horizons: A new approach to fluxes and charges

Abhay Ashtekar *

Institute for Gravitation and the Cosmos, Pennsylvania State University, University Park, Pennsylvania 16802, USA
and Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, Ontario N2L 2Y5, Canada

Simone Speziale†
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We introduce a Hamiltonian framework tailored to degrees of freedom (DOF) of field theories that reside
in suitable 3-dimensional open regions, and then apply it to the gravitational DOF of general relativity.

Specifically, these DOF now refer to open regions R̂ of null infinity Iþ, and R of black hole (and
cosmological) horizons Δ representing equilibrium situations. At Iþ the new Hamiltonian framework
yields the well-known BMS fluxes and charges. By contrast, all fluxes vanish identically at Δ just as one
would physically expect. In the companion paper [Phys. Rev. D 110, 044048 (2024).] we showed that,
somewhat surprisingly, the geometry and symmetries of Iþ and Δ descend from a common framework.
This paper reinforces that theme: Very different physics emerges in the two cases from a common
Hamiltonian framework because of the difference in the nature of degrees of freedom on Iþ and Δ,
discussed in the companion paper. Finally, we compare and contrast this Hamiltonian approach with those
available in the literature.

DOI: 10.1103/PhysRevD.110.044049

I. INTRODUCTION

In a companion paper [1], we showed that the notion of
weakly isolated horizons (WIHs) h provides a common
platform to discuss both black hole horizons Δ in equi-
librium, as well as null infinityI . In particular, the familiar
geometrical structures and the BMS group of symmetries at
I can be systematically recovered from the WIH frame-
work. This seems surprising at first since WIHs are
generally associated with the black hole horizons Δ that
lie in the strong curvature region and there is no flux of
gravitational radiation (or matter fields) across them.
Therefore WIHs have had the connotation of representing
geometries of boundaries that are in equilibrium. I on the
other hand lies in the weak field, asymptotic regions of
space-time and provides the arena to analyze the physics of
gravitational waves (and zero rest mass fields). We showed
that these striking differences in the physics arises from the
fact that while Δ is a WIH in physical space-times ðM; gabÞ
where gab satisfies Einstein’s equations, I is a WIH in the
conformally completed space-time ðM̂; ĝabÞ where ĝab
satisfies the conformal Einstein’s equations.
The common underlying WIH description also allows

one to understand the symmetries of I and Δ using a
single framework [1]. Following Noether, the boundary

symmetries should be related to generators of canonical
transformations on the phase space. However this relation
is far more subtle in presence of leaky boundaries such as
Iþ and one has to carefully resolve potential ambiguities
in the definitions. There are various approaches to address
these issues, most notably the Wald-Zoupas [2] and
Barnich-Brandt prescriptions [3]. In this paper we intro-
duce a new approach in which fluxes associated with
symmetries arise as Hamiltonians generating the action of
BMS symmetries on the radiative phase space. This
procedure gives conceptual precedence to fluxes; charges
are obtained by a systematic integration of these fluxes. We
will find that very different physics arises at null infinity
Iþ and black hole horizons Δ from a common framework
for the same reason as in Ref. [1]: Δ is a WIH with respect
to ðM; gabÞ, whileI is a WIH with respect to ðM̂; ĝabÞ. For
definiteness we will focus on Iþ since physics at Iþ is
much more interesting than that at I − for isolated
gravitating systems of physical interest. But all our con-
siderations apply to I − as well. Similarly, even though we
generally refer to Δ as black hole horizons in equilibrium,
all our results continue to hold if Δ is a cosmological WIH.
In Sec. II, we introduce the new Hamiltonian framework

using a familiar example: a free scalar field in Minkowski
space-time. The strategy is to extract phase spaces ΓR
adapted to 3-dimensional open regions R that represent
degrees of freedom of the field that reside inR. In Sec. III A
we introduce phase spaces ΓR associated with regions
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R of a Cauchy surface and, in Sec. III B, phase spaces ΓR̂

associated with regions R̂ of Iþ. We show that this
framework yields the physically correct BMS fluxes, i.e.,
fluxes that agree with those obtained by using the stress-
energy tensor of the scalar field without, however, having to
refer to the stress-energy tensor anywhere. Therefore, the
strategy can be carried over the gravitational field of general
relativity, for which there is no stress-energy.
In Secs. III and IV we apply the strategy (rooted in [4]) to

the gravitational case. We begin with the covariant phase
spaceΓcov of vacuum

1 solutions toEinstein’s equations [5–7]
that admit aWIH h as a boundary, which could be eitherIþ
orΔ. From the full Γcov one can extract the phase spaces ΓR̂

and ΓR, adapted to open regions R̂ andR ofIþ andΔ, and
use Hamiltonian methods to obtain expressions of fluxes
Fξ½R̂� andFξ½R�, associated with symmetry vector fields ξa,
across R̂ andR. Although the conceptual steps are the same,
the flux expressions are dramatically different because ΓR̂
and ΓR inherit quite different symplectic currents from Γcov.
As onΓcov, the symplectic current on Γh is a 3-form, but now
pulled-back to h. If h is a black hole horizon, the pull-back of
the symplectic current to Δ simply vanishes. On the other
hand, at Iþ, the terms that would have vanished are
multiplied by inverse powers of the conformal factor Ω
relating gab to ĝab, and the pull-back is nonzero. As a direct
consequence, while fluxes Fξ½R� vanish on any open region
R of Δ,Fξ½R̂� provide nontrivial observables on the phase
spaces ΓR̂ that capture the radiative degrees of freedom at
Iþ. A notable feature of this common procedure for Δ
andIþ is that one works just with the symplectic structure.
This is in contrast to other approaches in the literature (see,
e.g., [2,8–10]), where one has to introduce additional inputs
such as a linkage or a preferred symplectic potential. In
asymptotically de Sitter space-times, for example, the
preferred symplectic potential satisfying all the requirements
spelled out in [2,10] does not exist [11] but one can use the
Hamiltonian framework introduced in this paper to arrive at
physically viable fluxes [12].

Finally, as noted above, the 2-sphere charge aspectsQðξÞ
ab

at Iþ are obtained by integrating flux aspects F̂ ðξÞ
abc using

conformal Einstein’s equations. This step requires the
full set of field equations—not just their pull-backs to
3-surfaces R̂—because while fluxes atIþ refer only to the
radiative degrees of freedom, charges refer also to the
Coulombic ones. In other words, one has to step outside
the phase spaces ΓR̂ and ΓR, that know only about fields
and equations intrinsic to R̂ and R, and return to the full

covariant phase space Γcov which accesses full Einstein’s
equations, including those that link the Coulombic and
radiative aspects.
Section V summarizes the main results and briefly

discusses some applications of this framework. In particu-
lar, we point out that the common platform that unifies the
discussion of null infinityIþ and black hole horizons Δ is
being used in a number of contexts both classical and
quantum gravity. We also provide a short overview of the
conceptual similarities and differences between our frame-
work and those available in the literature. Details of this
comparison—particularly with the approach pioneered by
Wald and Zoupas [2] and extended by Chandrasekharan
et al. [10] and others—are presented in the Appendix.
Our conventions are as follows. In the discussion of

black hole horizons Δ, the underlying physical space-times
is denoted by ðM; gabÞ. The torsion-free derivative operator
compatible with gab is denoted by ∇ and its curvature
tensors are defined via: 2∇½a∇b�vc ¼Rabc

dvd, Rac ¼ Rabc
b,

and R ¼ gabRab. The Penrose conformal completions used
in the discussion of Iþ is denoted by ðM̂; ĝabÞ and the
corresponding derivative operator and curvature tensors
carry a hat. Null normals to Δ and Iþ are assumed to be
future directed. All fields are assumed to be smooth for
simplicity but this requirement can be weakened substan-
tially (in particular to allow for the possibility that the
Newman-Penrose curvature component Ψ°

1 may violate
peeling). If there is a possibility of ambiguity, we will use b¼
to denote equality that holds only at Iþ or Δ.

II. PHASE SPACES ΓR ASSOCIATED
WITH FINITE REGIONS R

Our goal is to arrive at fluxes and charges associated with
symmetries of Iþ and Δ using a Hamiltonian framework
that is tailored to degrees of freedom that reside in their
finite subregions R̂ andR. This procedure involves several
new elements. Therefore, in this section we will make a
detour and illustrate the strategy and main constructions
using a simple and familiar example: a scalar field in
Minkowski space-time. We will then apply this procedure
to Iþ in Sec. III and to Δ in Sec. IV.
Recall that there is a well-known covariant phase space

framework for classical field theories in globally hyperbolic
space-times [2,5–7,13] (whose foundations can be traced
back all the way to Lagrange). It provides a natural platform
to define Hamiltonians generating canonical transforma-
tions associated with symmetries. The covariant phase
space Γcov consists of suitably regular solutions of field
equations. The idea now is to extract from Γcov, a phase
space ΓR associated with certain 3-dimensional regions R
in the space-time under consideration. Intuitively, ΓR can
be thought of as capturing the degrees of freedom of the
field that are registered on R. We will show that the
Hamiltonians on ΓR have the physical interpretation of

1As usual, the restriction to vacuum equations is made to avoid
the introduction of specific matter fields and the corresponding
phase spaces. The analysis can be extended to allow zero rest
mass fields as sources. In the discussion ofIþ one has to further
restrict oneself to the Λ ¼ 0 case because, to qualify as a WIH,
Iþ has to be null.
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fluxes associated with symmetries: they agree with the
standard expressions of fluxes obtained from the stress-
energy tensor of the field and symmetry vector fields.
This section is divided into two parts. In the first we

explain the main ideas using finite regions with Cauchy
surfaces in Minkowski space and in the second we extend
them to obtain fluxes of BMS momenta across finite
regions of Iþ. This approach uses some basic properties
of infinite dimensional linear topological spaces. We will
spell out the details since these structures are not commonly
used in the physics literature on systems with boundaries.
In the second part we discuss phase spaces ΓR̂ associated
with finite regions R̂ of Iþ.

A. Example: Klein Gordon field
in Minkowski space

Consider a scalar field ϕ in Minkowski space satisfying
the Klein-Gordon equation □ϕ − μ2ϕ ¼ 0. The covariant
phase space Γcov of this system consists of (suitably
regular) solutions ϕ to this equation [13]. Since Γcov is a
vector space, a tangent vector δ at any ϕ∈Γcov is also
represented by a solution to the KG equation which we will
denote by δϕ. Γcov is naturally equipped with a (weakly
nondegenerate) symplectic structure ω, a 2-form on
Γcov whose action on tangent vectors δ1, δ2 at any ϕ is
given by2

ωjϕðδ1; δ2Þ ¼
Z
Σ

�ðδ1ϕÞ∇aðδ2ϕÞ

− ðδ2ϕÞ∇aðδ1ϕÞ
�
ϵabcddSbcd

≡
Z
Σ
JbcddSbcd; ð2:1Þ

where Σ is a Cauchy surface. The 3-formJbcd is referred to
as the symplectic current. As is well known, for any Killing
field ξa, δξ ≔ Lξϕ is a tangent vector at a point ϕ∈Γcov

and, given any other tangent vector δ, using the fall-off
conditions used in the definition of Γcov one finds that there
is a function HξðϕÞ on Γcov satisfying

ωjϕðδξ; δÞ ¼ δHξjϕ ð2:2Þ

for all ϕ∈Γcov. Thus, the vector field δξ on Γcov is
the infinitesimal canonical transformation generated by
HξðϕÞ [13]. Hξ is unique up to an additive constant which
one fixes by demanding that it vanish at the solution ϕ ¼ 0.
The physical interpretation of this Hξ comes from the
fact that it equals the conserved flux Fξ across Σ

constructed from the stress-energy tensor Tab ¼∇aϕ∇bϕ−
1
2
gabð∇cϕ∇cϕÞ of the Klein-Gordon field and the given
Killing field ξa

Hξ ¼ Fξ ≔
Z
Σ
Tmaξ

mϵabcdd Sbcd: ð2:3Þ

for all solutions ϕ∈Γcov. If for example, ξa is a unit time
translation, Hξ equals the energy flux E across Σ and, since
Σ is a Cauchy surface, E is also the total energy in the field.
Thus, the Hamiltonian Hξ of the phase space framework
provides us with the physically correct expressions of
fluxes even though the procedure that led us to Hξ has
no direct knowledge of Tab. We will now show that this
interplay between the Hamiltonian framework of Γcov and
stress-energy tensor can be extended to phase spaces ΓR
associated with certain 3-dimensional finite regions R.
Let us then consider an open regionR in Σ with compact

closure. The flux Fξ½R� acrossR—constructed from Tab—
is simply the restriction of the integral in (2.3) to R. A
natural question is if this flux can also be obtained as a
Hamiltonian in a phase space framework that only knows
about R. We will first show that the answer is in the
affirmative and then transport these ideas to null infinity in
Sec. II B to calculate fluxes across local regions of Iþ.
For simplicity let us assume that Σ is a 3-plane (extension

to a general Σ is straightforward). The first step is to extract
a local phase space ΓR from Γcov by focusing on degrees of
freedom in ϕ that are intrinsic to R. These are encoded in
the initial data ðφ ≔ ϕjR; π ≔ ϕ̇jRÞ of ϕ, restricted to the
open set R. For brevity, we will denote a point in ΓR by
γ ≡ ðφ; πÞ. In the discussion of Γcov above, we did not spell
out the details of regularity conditions because there are
well-known choices (see, e.g., [13]). Since local phase
spaces are not discussed in the literature, let us spell out our
choice. ΓR will consist of pairs ðφ; πÞ on R such that

kγk2R ≔
Z
R
ðπ2 þDaφDaφþ μ2φ2Þd3x < ∞: ð2:4Þ

That is, pairs ðφ; πÞR that belong to ΓR constitute
H1ðRÞ ⊕ L2ðRÞ, where H1ðRÞ is the first Sobolev space.
Physically, the norm is simply the energy-flux of the initial
data restricted to R. However, its actual value will not play
any role for our purposes. We will only need the topology
this norm induces on ΓR (see Remark 5 below).
The symplectic structure ωR on ΓR is obtained by just

restricting the integral in (2.1) to R

ωRjγðδ1;δ2Þ¼
Z
R
JabcdSabc ¼

Z
R
ðδ1φδ2π−δ2φδ1πÞd3x:

ð2:5Þ

It is again weakly nondegenerate, and also continuous in
the topology induced by the norm (2.4). Let us consider a

2Recall that ω is said to be weakly nondegenerate if
ωðδ1; δ2Þ ¼ 0 for all δ2, if and only if δ1 ¼ 0. This property
does not imply that ω admits an inverse on Γcov. But weak
nondegeneracy suffices to discuss Hamiltonians generating
infinitesimal canonical transformations.
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Killing field ξa that is tangential to Σ and ask if the vector
field δξ represents an infinitesimal canonical transformation
also on ΓR. It suffices to evaluate ωRjγðδξ; δÞ where
δξ ≡ ðLξφ;LξπÞ, and δ are arbitrary constant vector fields
on the vector space ΓR. The domain of definition of δξ is
the dense subspace DR of ΓR on which ðLξφ;LξπÞ also
belongs to ΓR. On this subspace we have

ωjγðδξ; δÞ ¼ δ

Z
R
ðLξφÞπd3x −

I
∂R
ðπδφÞξadSa: ð2:6Þ

Thus, if ξa happens to be tangential to ∂R (e.g., if it is a
rotation and ∂R is spherical), then, δξ is indeed a
Hamiltonian vector field on DR, generated by Hξ½R� ¼R
RðLξφÞπd3x. [On any phase space, there is freedom to add
a constant Cξ to the Hamiltonian. As usual, it has been
eliminated by requiring that Hξ should vanish at the
point (φ ¼ 0; π ¼ 0).] By inspection Hξ½R� is continuous
onDR and therefore admits unique continuous extension to
all of Γcov. Furthermore, it equals the flux F ξ½R� ¼R
R Tmaξ

mϵabcddSbcd, defined by the stress-energy tensor
on ΓR. Finally, the infinitesimal canonical transformation it
generates can be exponentiated—the 1-parameter family of
finite canonical transformations is just the action of the
diffeomorphism group generated by ξa on ΓR.
What if ξa is not tangential to ∂R (e.g., a space-

translation)? Then we restrict ourselves to the subspace
D0

R of DR on which πj
∂R ¼ 0, which is also dense in ΓR.

On this subspace the surface term on the right-hand side
of (2.6) vanishes and we again have a Hamiltonian vector
field generated byHξ½R�. As before,Hξ½R� admits a unique
continuous extension to all of ΓR

Hξ½R� ≔
Z
R
ðLξφÞπd3x; ð2:7Þ

that agrees with the flux Fξ½R� given by Tab∶ Hξ½R� ¼
Fξ½R� on all of ΓR. Note, however, that in this case the
infinitesimal canonical transformation cannot be exponen-
tiated although the Hamiltonian admits a continuous
extension to ΓR. (This is analogous to a rather common
occurrence in quantummechanics, e.g. for a particle on half
line and the translation generator −iℏd=dx.) In the next
subsection we will extend these results to subregions R
of Iþ.
Remarks.
(1) Note that our considerations go through for any

smooth, divergence-free vector field ξa that is
tangential to R—it need not be a Killing field. [If
Daξ

a ≠ 0, the required integration by parts would
yield an additional contribution to the volume term
andωjγðδξ; δÞ would be no longer of the form δHξ

on a dense subspace.] Its action on the ðφ; πÞ pairs in
ΓR is again a well-defined infinitesimal canonical

transformation with the Hamiltonian given byHξ½R�
of Eq. (2.7), which again agrees with the flux Fξ½R�
determined by the stress-energy tensor and the
vector field ξa. But these integrals do not have a
simple physical interpretation since they do not
descend form observables naturally defined on the
full phase space Γcov.

(2) There is another, more interesting class of vector
fields ξa one can consider: Killing fields that are
transverse—rather than tangential—to R, such as
time-translations and boosts. One can readily extend
the strategy to include these vector fields. However
in these cases the phase space vector fields δξ on ΓR

are not expressible as Lie derivatives of ðφ; πÞ along
ξa; one to first define them using the field equations
satisfied by ϕ and the relation between Γcov and ΓR.
[For example for the unit time translation vector
field ξa orthogonal to R, we have δξðφ; πÞ ¼
ðπ; ðD2 − μ2ÞφÞ.] Then the procedure can be re-
peated and the resulting Hξ agrees with the flux Fξ.
We focused on symmetry vector fields ξa that are
tangential to the 3-D region R because our main
motivation comes from Iþ and Δ. They are
3-dimensional and symmetry vector fields are tan-
gential to them.

(3) The right side of (2.6) can also be written as

ωjγðδξ;δÞ¼−δ
Z
R
ðLξπÞφd3x−

I
∂R
ðφδπÞξadSa

ð2:8Þ

and the surface term vanishes on a dense subspace
D00

R consisting of pairs ðφ; πÞ in which π is C1 and ϕ
vanishes on ∂R. Therefore one may be tempted to
say that

R
RðLξπÞφÞd3x is also a candidate Hamil-

tonian generating the infinitesimal canonical trans-
formation δξ on ΓR. However, this is incorrect
because, since this candidate Hamiltonian involves
derivatives of π, it cannot be extended continuously
to full ΓR. That is, since the energy norm (2.4) that
endows ΓR with its topology contains only the
Klein-Gordon field ϕ and its first derivatives—
i.e., only φ; Daφ, and π—the new candidate for
Hξ fails to be a continuous function on D00

R, whence
it cannot be extended to ΓR. Thus, the Hamiltonian
on ΓR is unambiguous.

(4) We want to emphasize, however, that this discussion
does not imply that all subtleties involving boundary
terms are irrelevant. For example, they cannot be
circumvented in gauge theories simply by using
topological arguments on suitable function spaces.
In particular, the symplectic structure on Γcov is
gauge invariant because of the boundary conditions
imposed at infinity, and would typically cease to
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have this property on ΓR. The interplay between
topological arguments and subtleties associated with
gauge invariance is interesting in its own right. But it
would be a digression to discuss these issues here
because our main interest is on Iþ and, as we will
discuss in Sec. III one can isolate the gauge invariant
degrees of freedom on Iþ.

(5) It is clear from the main discussion of this subsection
that the norm (2.4) serves only to induce the top-
ology: it implies that a sequence of points ðφn; πnÞR
in ΓR converge to ðφ∘; π∘Þ if φn; πn and Daφn

converge to φ∘; π∘ andDaφ∘ in the L2-sense. The
precise value of this norm itself is not relevant; only
the topology it induces is used. This fact will be
useful in the next subsection. Finally, note that while
we introduced the phase space ΓR associated with
finite regions R to illustrate the strategy we will use
at WIHs, the idea of using phase spaces associated
with finite 3-D regions has other applications as well
since—e.g. at the future space-like infinity of
asymptotically de Sitter space-times—since they
encode the degrees of freedom just in that region.

B. Scalar field at null infinity

To extend these considerations to null infinity, let us now
consider a massless scalar field satisfying the wave equa-
tion□ϕ ¼ 0 on Minkowski space ðM; gabÞ. Let ðM̂; ĝabÞ
be any conformal completion in which Iþ is divergence-

free, i.e., its null normal n̂a satisfies b∇an̂a b¼0. Given a
ϕ∈Γcov, the conformally rescaled field ϕ̂ ≔ Ω−1ϕ̂ is well-
defined at Iþ. By pulling back the symplectic current to
Iþ, the symplectic structure ω on Γcov can be rewritten as

ωjϕðδ1; δ2Þ ¼
Z
Iþ

�ðδ1ϕ̂Þb∇aðδ2ϕ̂Þ

− ðδ2ϕ̂Þb∇aðδ1ϕÞ
�
ϵ̂abcddŜ

bcd

≡
Z
Iþ

ĴbcddŜ
bcd: ð2:9Þ

Let us now consider an open region R̂ of Iþ, with
topology S2 ×R, bounded by any two cross sections S1
and S2. Since the phase space ΓR̂ is to consist of degrees of
freedom that reside in R̂, we are led to consider restrictions
of ϕ̂ to R̂ and introduce a suitable topology on these fields.
The idea again is to introduce this topology by choosing a
norm which ensures that two elements of ΓR are close to
one another if they and their first derivatives are close in the
L2 sense. Therefore we will take the norm to be

kϕ̂k2R ¼
Z
R

�
jn̂aDaϕ̂j2þ q̂abD̂aϕ̂D̂bϕ̂þ 1

l2
jϕ̂j2

�
d3Iþ

ð2:10Þ

where l is a constant with dimensions of length, q̂ab is an
inverse of q̂ab (i.e., a field satisfying q̂cdq̂acq̂bd ¼ q̂ab), and
d3Iþ the natural volume element on Iþ in the conformal
frame ðq̂ab; n̂aÞ. This norm depends on the auxiliary
structures—a specific conformal frame, inverse metric
q̂ab, and the constant l—we introduced on Iþ, but the
topology it induces is insensitive to these choices. The
symplectic structure is given by restricting the integral
in (2.9) to R̂:ωR̂jγðδ1; δ2Þ ¼

R
R̂ ĴabcdŜ

bcd. Again, it is
weakly nondegenerate and continuous on ΓR̂.
Next, recall that the BMS vector fields ξ̂a satisfy

Lξq̂ab ¼ 2βq̂ab and Lξn̂a ¼ −βn̂a. Tangent vectors δξ
again correspond to the fields δξϕ̂≡ Lξϕ̂. However, since
the scalar fields ϕ̂ have conformal weight −1, the action of
the Lie derivative has an extra term relative to its action on
functions with zero conformal weight

Lξϕ̂ ¼ ξaDaϕ̂þ βϕ̂: ð2:11Þ

(For the supertranslation vector fields ξa ¼ ŝn̂a, we have
Lŝ n̂q̂ab ¼ 0, i.e., β ¼ 0, whence Lŝ n̂ϕ̂ ¼ ŝn̂aDaϕ̂.) The
second term in the right side of Eq. (2.11) ensures that δξϕ̂
is again a scalar field with conformal weight −1. Hence the
infinitesimal transformation generated by ξa is well-defined
on the dense subspace DR of ΓR on which Lξϕ̂ is again in
ΓR. Given any constant vector field δ on ΓR and ϕ̂∈DR̂, a
simple calculation yields

ωR̂jϕ̂ðδξ; δÞ ¼
Z
R̂

�ðLξϕ̂Þðn̂aDaδϕ̂Þ

þ ðLξδϕ̂Þðn̂aDaϕ̂Þ
�
d3Iþ

þ
I
∂R̂

�
δϕ̂ðn̂aDaϕ̂Þξm

�
dŜm: ð2:12Þ

Therefore on the subspace D0
R̂

of DR̂ on which n̂aDaϕ

vanishes on the boundary ∂R, we again have

ωR̂jϕ̂ðδξ; δÞ ¼ δ

Z
R̂
ðLξϕÞðLn̂ϕ̂Þd3Iþ ≡ δHξðϕÞ: ð2:13Þ

As before, sinceD0
R̂
is also dense in ΓR and the functionHξ

is continuous, it admits a unique continuous extension to
the full phase space ΓR. In this sense, δξ is again an
infinitesimal canonical transformation generated by the
Hamiltonian HξðϕÞ on ΓR̂. The Hamiltonian Hξ represents
the flux of the BMS momentum across the portion R̂ of
Iþ. Again, if ξa happens to be tangential to the boundary,
the Hamiltonian vector field δξ generates a 1-parameter
family of finite canonical transformations; for more general
vector fields we only have the infinitesimal canonical
transformations.
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Let us summarize. ΓR̂ captures the degrees of freedom
ϕ̂jR̂ in the scalar field ϕ that are registered in the region R̂
of Iþ. In the literature, ϕ̂jIþ is often referred to as the
radiation field because it is the coefficient of the 1=r-part in
the asymptotic expansion of ϕ in Bondi-type coordinates
u; r; ϑ;φ. Thus ΓR̂ is the space of radiative degrees of
freedom that reside in R̂. The topology on ΓR̂ ensures that
a sequence ϕ̂n converges to ϕ̂∘ as n → ∞ if and only if ϕ̂n

and their first derivatives Daϕ̂n converge to ϕ̂∘ and Daϕ̂∘ in
the L2 sense. The symplectic structure ωR̂ on ΓR̂ (obtained
by restricting ω on Γcov to the degrees of freedom captured
in ΓR̂) is weakly nondegenerate and is continuous on ΓR̂.
The action of every BMS vector field ξa on Iþ induces a
vector field δξϕ̂ on a dense subspace of ΓR̂ that preserves
ωR̂. This infinitesimal canonical transformation is gener-
ated by a unique Hamiltonian Hξ that is continuous on the
full phase space ΓR̂ and vanishes at ϕ̂ ¼ 0. Note that the
topology on ΓR̂ is precisely such that ωR̂ and Hξ are
continuous on ΓR̂. And then the Hamiltonian Hξ agrees
with the flux Fξ of the BMS momentum across R̂,
computed using the stress-energy tensor on all of ΓR̂.

III. GENERAL RELATIVITY: GRAVITATIONAL
FIELD AT NULL INFINITY

Let us now turn to the gravitational field in full, nonlinear
general relativity and consider space-times that admit a
WIH boundary. In this section we will focus on the case
when the WIH is Iþ and show that the Hamiltonian
methods introduced in Sec. II lead to the standard expres-
sions for fluxes of BMS momenta across regions R̂ ofIþ.
In Sec. IV, we will show that the same procedure implies
that the fluxes associated with symmetries of black hole
WIHs Δ vanish identically.
We begin in Sec. III A with asymptotically flat space-

times with a complete Iþ. We first recall from
Refs. [4,5,14,15] how degrees of freedom can be isolated
at Iþ to obtain a radiative phase-space Γrad and then
restrict these degrees of freedom to finite subregions R̂ of
Iþ to obtain ΓR̂. In Sec. III B we show that the BMS
vector fields ξa induce infinitesimal canonical transforma-
tions, providing us with Hamiltonians Hξ½R̂� on ΓR̂ that
represent fluxes Fξ½R̂� of the BMS momenta across R̂.
Following Refs. [4,16,17], in Sec. III C we obtain the
expressions of BMS charges by integrating the fluxes. The
passage from fluxes to charges requires one to step out of
the radiative phase space and use full Einstein equations
and Bianchi identities at Iþ that relate fields carrying
Coulombic and radiative information at Iþ. However, in
contrast to other approaches to charges and fluxes [2,8–10],
the entire analysis can be carried out at Iþ without the
need of extending symmetries or physical fields to the
space-time interior.

A. Radiative phase spaces at I +

To discuss charges and fluxes associated with sym-
metries, we have to work with the phase space consisting of
all space-times that admit Iþ as a boundary in their
conformal completion. Let us then begin with the phase
space Γcov of all vacuum solutions ðM; gabÞ of Einstein’s
equations that are asymptotically flat at null infinity (in the
sense of Definition 2 of [1]), and work with their conformal
completions ðM̂; ĝabÞ in which Iþ is divergence-free.
Then Iþ is equipped with a kinematical structure that it
is shared by all space-times in Γcov: Pairs ðq̂ab; n̂aÞ where
any two are conformally related via ðq̂0ab ¼ μ2q̂ab; n̂0a ¼
μ−2n̂aÞ with μ satisfying Ln̂μ ¼ 0. The role of this
kinematic structure is analogous to that played by the
Minkowski metric in Sec. II.
As discussed in [1], the dynamical information in the

gravitational field at Iþ is encoded in the intrinsic
connection D̂, induced by the space-time connection ∇̂.
D̂ is compatible with the kinematic structure—i.e., satisfies
D̂aq̂bc b¼0 and D̂an̂b b¼0—but varies from one space-time to
another. It captures the radiative information in the physical
metric gab that is locally registered at Iþ and is thus
analogous to the radiation field ϕ̂ of Sec. II. The phase
space Γrad adapted to Iþ consists of these degrees of
freedom.
More precisely, we have the following structure [14,15].

The curvature of D̂ on Iþ encodes the Bondi news N̂ab

and the part ⋆K̂ab ≔ limIþðΩ−1⋆Ĉacbdn̂cn̂dÞ of the asymp-
totic Weyl curvature of ĝab. The five components of ⋆K̂ab

encode the radiative modes corresponding to the Newman-
Penrose components Ψ°

4;Ψ°
3; ImΨ°

2, all of which vanish in
any stationary space-time. Because every D̂ annihilates
both q̂ab and n̂a, any 2 of our derivative operators D̂ and D̂0

on Iþ are related by

ðD̂a− D̂0
aÞf̂b ¼ ncf̂cΣ̂ab for arbitrary1-forms f̂bonIþ;

ð3:1Þ

and some symmetric tensor field Σ̂ab that is transverse to
n̂a, i.e., satisfies Σ̂abn̂a b¼0. This property brings out an
important fact: the action of all derivative operators is
the same on horizontal 1-forms ĥa satisfying ĥan̂a b¼0.
Therefore, (as discussed in [1]) D̂ is characterized by its

action on any one 1-form bla on Iþ satisfying n̂abla ¼ −1.
This fact plays an important role in phase space
considerations.
But there is gauge freedom in D̂: If we change the

conformal factor by Ω → Ω0 ¼ μΩ≡ ð1þΩfÞΩ in a
neighborhood of Iþ, then clearly q̂ab and n̂a do not
change, but D̂ → D̂0 with Σ̂ab b¼fq̂ab. Thus the pure-trace
part of Σ̂ab is gauge and we are led to consider two

ABHAY ASHTEKAR and SIMONE SPEZIALE PHYS. REV. D 110, 044049 (2024)

044049-6



connection as equivalent if they differ just by this gauge
freedom

D̂; D̂0 ∈ fD̂g iff ðD̂a − D̂0
aÞf̂b ∝ ðncf̂cÞq̂ab: ð3:2Þ

Therefore, the difference between any two equivalence
classes is characterized by the trace-free part f̂ab ≔
Σ̂ab − 1

2
q̂cdΣ̂cdq̂ab, where q̂cd is any inverse of q̂ab. Note

that this transverse traceless f̂ab has precisely two compo-
nents; they represent the two radiative modes of the
gravitational field. It is remarkable that they can be isolated
locally in a simple way in spite of the nonlinearities of full
general relativity; this is why the I -framework is so well-
adapted to the study of radiation fields. Note however that
for this very reason the connections fD̂g have no knowl-
edge of the Coulombic aspects of the gravitational field that
are encoded, e.g., in ReΨ°

2 that enters the expression of the
Bondi-Sachs 4-momentum and Ψ°

1 that enters the expres-
sion of the angular momentum charge. In terms of the
discussion of Sec. II of [1], the degrees of freedom captured
by fD̂g are freely specifiable fields on 3-dimensional Iþ.
The Coulombic information can be specified on a 2-sphere
(say in the distant past), and is then determined everywhere
on Iþ by the radiative modes. It does not have dynamical
content that freely specifiable fields have; it constitutes the
corner data.
The phase space that captures the degrees of freedom in

gab that are relevant to Iþ is thus the space Γrad of
connections fD̂g at Iþ (subject to appropriate regularity
conditions specified in [4]). Therefore it has the structure of
an affine space. For intermediate calculations, it is con-
venient to endow it a vector space-structure by choosing an
origin. Fortunately, there is a natural class of connections
that can serve as origins: fD̂g that have trivial curvature,
i.e., for which ⋆K̂ab ¼ 0 (which implies that N̂ab also
vanishes [18]). These points fD̂g∈Γrad are referred to as
classical vacua. Each classical vacuum fD̂g is left invari-
ant by the translation subgroup T of the BMS groupB, and
the quotient S=T of the supertranslation group by its
translation subgroup acts freely and transitively on the
space of classical vacua; thus there are as many classical
vacua D̂ as there are supertranslations modulo translations.
Let us fix a fD̂g and choose it as the origin in Γrad. Then,
the difference between an arbitrary element fD̂g and fD̂g
is completely characterized by a transverse, traceless,
symmetric tensor field γ̂ab [14]

γ̂ab ¼ ðfD̂ga − fD̂gaÞblb ¼ TFðD̂a − D̂aÞblb: ð3:3Þ

Here TF stands for “trace-free part of,” D̂ is any element of
fD̂g and D̂ of fD̂g, and, as before, blb is any 1-form onIþ

satisfying n̂bblb ¼ −1. The fields γ̂ab serve as convenient
coordinates in the infinite dimensional affine space Γrad. We

will refer to γ̂ab as relative shear because it represents the
difference between (generalized) shears assigned to bla by
the phase space variable fD̂g and the vacuum fD̂g.
(Generalized shears because bla does not have to be
orthogonal to a cross section). Note that the relative shear
is independent of the choice of the 1-form bla on Iþ

satisfying n̂abla ¼ −1. It is easy to verify that γ̂ab has
conformal weight 1—i.e., under q̂ab → μ2q̂ab we have
γ̂ab → μγ̂ab—which will ensure that the final results are
conformally invariant. Our results will be insensitive to the
choice of fD̂g that serves as the origin. Finally, one can
easily show that the relative shear is a natural potential for
the news tensor defined by fD̂g [4,14]:

N̂ab ¼ 2Ln̂γ̂ab: ð3:4Þ

The dependence to the origin fD̂g in the definition of γ̂ab
drops out when we take its Ln̂.
Remarks.
(1) There is a useful analogy with Minkowski space,

which is also an affine space: choice of fD̂g is the
analog of the choice of an origin in Minkowski space
that is generally made to introduce Cartesian coor-
dinates xa, and γ̂ab are the analogs of these Cartesian
coordinates. Under the change of the origin, the
Cartesian coordinates xa in Minkowski space
undergo a constant shift xa → x0a ¼ xa þ ca∘ . Sim-
ilarly, under D̂ → D̂0, the coordinate γ̂ab undergoes
a constant shift, γ̂ab → γ̂ab þ ĉ∘ab. The tensor field
ĉ∘ab on Iþ has the form ĉ∘ab ¼ TFðD̂aD̂bŝþ ŝ

2
ρ̂abÞ

where ŝ denotes the supertranslation relating the two
vacua fD̂g and fD̂0g, and ρ̂ab is the Geroch tensor
field constructed from the kinematical structure [19].
ĉ∘ab satisfies Lnĉ∘ab ¼ 0; it has no dynamical content.
It vanishes if and only of ŝn̂a is a translation.

(2) Although the relative shear γ̂ab is symmetric and
trace-free, conceptually it is quite different from the
more familiar shear σ̂ab of cross sections ofIþ. The
former does not refer to any cross section but
requires a choice of classical vacuum fD̂g, while
the latter does not refer to any vacuum fD̂g but
requires a choice of cross section. Choosing an bla
orthogonal to a cross section, one can relate the two
using the identity

D̂a
blb ¼ q̂acq̂bdD̂c

bld−blaτ̂b≡ σ̂abþ
1

2
θ̂q̂ab−blaτ̂b;

ð3:5Þ
where q̂ac is projector on the tangent space of
the chosen cross section, τ̂a ≔ Ln̂

bla and θ̂ is the
expansion of bla. Then the difference ðfDag −
fD̂agÞblb defining γ̂ab corresponds to subtracting
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from σ̂ab shear with respect to a vacuum connec-
tion fD̂g.

(3) Definition of the relative shear brings out the fact that
Γrad can be regarded as a (trivial) fibre bundle inwhich
the base space is spanned by nondynamical classical
vacua fD̂g and the fibers are coordinatized by the
curvature ⋆K̂ab of fD̂g. Given a conformal comple-
tion, a change fD̂ag → fD̂0g in the choice of the
origin can be regarded as a Goldstonemode, à la [20].
γ̂ab is also related to the covariant shear of [21].

The symplectic structure ω on Γcov [6,7] induces a
natural ωrad on Γrad [5]. Given any point fD̂g∈Γrad,
tangent vectors δ at fD̂g are represented by fields δγ̂ab
on Iþ that are by definition symmetric, transverse and
trace-free. The action of ωrad is given by [4,5]

ωradjfD̂gðδ1; δ2Þ ¼
1

8πG

Z
Iþ

�ðδ1γ̂abÞðLn̂δ2γ̂cdÞ

− ðδ2γ̂abÞðLn̂δ1γ̂cdÞ
�
q̂acq̂bdd3Iþ ð3:6Þ

where q̂ab is any inverse of q̂ab. Because δγ̂ab; n̂a; q̂ab, and
the volume element d3Iþ have conformal weights
1;−1;−2, and 3 respectively, it follows that the integral
on the right side is conformally invariant. It is also invariant
under the change of origin in the affine space Γrad because
each tangent vector δγ̂ab is itself invariant under this
displacement.
We can now introduce the phase space ΓR̂ associated

with open regions R̂ inIþ, bounded by two 2-sphere cross
sections. As before, one begins by restricting the phase
space variable fD̂g to R̂ and introducing a suitable norm on
it to specify topology

kγ̂k2
R̂
≔

Z
R̂

�
jn̂aD̂aγ̂bcj2 þ q̂abq̂cdq̂mnD̂aγ̂cmD̂bγ̂dn

þ 1

l2
jγ̂abj2

	
d3Iþ ð3:7Þ

where the conventions are the same as in Eq. (2.10). Again,
we will only use the topology induced on ΓR̂ by this norm,
and the topology is insensitive to the choices of auxiliary
structures used Eq. (3.7). The symplectic structure ωR̂ on
ΓR̂ is obtained by restricting the integral on the right side
of (3.6) to R̂. It is again weakly nondegenerate and
continuous on ΓR̂.
Note that there are two interesting contrasts with the

phase space Γcov. First, while Γcov is a genuinely nonlinear
space, Γrad and ΓR̂ have a natural affine space structure.
Second, while ω on Γcov has degenerate directions that
correspond to pure-gauge linearized fields—it is only a
presymplectic structure—ωrad and ωR̂ are both nondegen-
erate; there is no gauge freedom because fD̂g contains only
the two physical, radiative degrees of freedom of full

general relativity. These key simplifications will be
exploited in out approach to obtaining fluxes and charges.

B. BMS fluxes

Next, let us consider the action of the BMS vector fields
ξa on elements fD̂g of ΓR̂. For simplicity of presentation
let us first consider the BMS symmetries which preserve
the given conformal frame, i.e., satisfy Lξq̂ab b¼0 and
Lξn̂a b¼0 (these are linear combinations of supertranslations
and rotational Killing fields of q̂ab), and discuss general
BMS symmetries (i.e., those that also contain a boost) at
the end.
The vector δξ at a point fD̂g of Γrad represents the

infinitesimal change in that fD̂g under the diffeomorphism
generated by ξa. Recall that fD̂g is completely determined
by its action fD̂albg on a 1-form blb satisfying blbn̂b ¼ −1.
Therefore, the change δξfD̂g in fD̂g is faithfully encoded

in TFðLξD̂a − D̂aLξÞblb. Under this infinitesimal motion
on Γrad, the coordinate labels γ̂ab shift by

δξγ̂ab ¼ TFðLξD̂a − D̂aLξÞblb; ð3:8Þ

providing us the components of the vector field δξ at the

point fD̂g∈Γrad. [Since ðLξD̂a − D̂aLξÞblb is automati-
cally symmetric and transverse to n̂a, the operation of
removing trace is well-defined.] Note that the origin D̂ is
kept fixed since it not the dynamical variable: we are
computing the components of δξ in fixed coordinates γ̂ab
on Γrad.
Next, we note that

Lξγ̂ab ¼ TFLξ

h
ðD̂a − D̂aÞblb

i
¼ TF

h
ðLξD̂a − D̂aLξÞblb − ðLξD̂a − D̂aLξÞblb

i
¼ δξγ̂ab − TFðLξD̂a − D̂aLξÞblb: ð3:9Þ

In the first step we have set D̂aðLξ
blbÞ ¼ D̂aðLξ

blbÞ using
the fact that all derivative operators have the same action
on Lξ

bla because n̂aðLξ
blaÞ ¼ 0. We conclude that

δξγ̂ab ≠ Lξγ̂ab.
3 Next, the action of the BMS group maps

a connection D̂ to another connection D̂0 and the curvature
⋆K̂ab of D̂ is therefore sent to that of D̂0. Since vacuum
connections are characterized by vanishing of ⋆K̂ab ¼ 0, it
follows that D̂ is mapped to another vacuum connection
D̂0. (In terms of the analogy discussed in Remark 1 at the

3Such mismatches are sometimes referred to as anomalies in
the literature; see, e.g., [22–25]. The inequality δξγ̂ab ≠ Lξγ̂ab
simply encodes the fact that γ̂ab is a functional of both dynamical
and background fields and δξ acts only on dynamical fields while
Lξ acts on all fields.
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end of Sec. III A, this is the analog of a constant shift of
origin in Minkowski space-time.) Since all vacua are
related by a BMS supertranslation ŝn̂a it follows that
TFðLξD̂a − D̂aLξÞblb ¼ TFðD̂aD̂bŝþ 1

2
ŝρ̂abÞ for some ŝ

satisfying Ln̂ŝ ¼ 0. Next, because D̂bŝ is a horizontal
1-form, Ln̂ðD̂aD̂bŝÞ ¼ D̂aðLn̂D̂bŝÞ ¼ 0 and, by its
definition, the Geroch tensor satisfies Ln̂ρ̂ab ¼ 0.
Therefore Ln̂ððLξD̂a − D̂aLξÞblbÞ ¼ 0. Hence, although
δξγ̂ab ≠ Lξγ̂ab, we do have

Ln̂ðδξγ̂ab − Lξγ̂abÞ ¼ 0: ð3:10Þ
We also have that for any vector field δ on ΓR̂

δ
�ðδξ − LξÞγ̂ab

� ¼ 0; ð3:11Þ

because D̂aD̂bŝþ 1
2
ŝρ̂ab does not depend on the dynami-

cal variable D̂ on ΓR̂. [More precisely, the Lie-derivative of
functions

R
R̂ fabðδξ − LξÞγ̂ab along any vector field δ on

ΓR̂ vanishes for all (field independent) test fields fab on
R̂.] These properties will be useful below.
To determine if the infinitesimal motion δξγ̂ab on ΓR̂ is

Hamiltonian, we need to evaluate ωR̂ðδξ; δÞ and check if
there exists a functionHξ on ΓR̂ such thatωR̂ðδξ; δÞ ¼ δHξ

for all vector fields δ. As in Sec. II, to carry out this check it
suffices to let δ be an arbitrary constant vector field δ∘ on
the affine space ΓR̂ because constant vector fields span the
tangent space at every point of ΓR̂. A vector field δ∘ on ΓR

is said to be constant if:
(i) It shifts every phase space point fD̂g by the same

amount: δ∘ðfD̂gablbÞ ¼ γ̂∘ab, a fixed tensor field γ̂∘ab
on R̂; or, equivalently.

(ii) The action of δ∘ on the phase space coordinates is
given by δ∘γ̂ab ¼ γ̂∘ab, so that the infinitesimal
constant shift is γ̂ab → γ̂ab þ ϵγ̂∘ab for all γ̂ab.
Here the tensor field γ̂∘ab on ΓR̂ is subject only to

the condition that the norm kγ̂∘abk given by (3.7) is
finite.

With these preliminaries out of the way, let us return to
the question of whether the vector field δξ is Hamiltonian.
As in the case of a scalar field ϕ of Sec. II, the vector field
δξ is well defined on the dense subspace DR̂ of ΓR̂ on

which δξγ̂ab ¼TFðLξD̂a− D̂aLξÞblb has a finite norm (3.7),
and at any point fD̂g in DR̂ we have:

ωR̂jfD̂gðδξ; δ∘Þ ¼
1

8πG

Z
R̂

�ðδξγ̂abÞ�Ln̂ðδ∘γ̂cdÞ
�

− ðδ∘γ̂abÞ
�
Ln̂ðLξγ̂cdÞ

��
q̂acq̂bdd3Iþ;

ð3:12Þ
where we have used (3.10) in the second term on the right
side. Next we use the property Lξn̂a ¼ 0 of the BMS vector

field ξa under consideration and integrate this term by parts
to obtain

ωR̂jfD̂gðδξ;δ∘Þ¼
1

8πG

Z
R̂

�ðδξγ̂abÞ�Ln̂ðδ∘γ̂cdÞ
�

þ�
Lξðδ∘γ̂abÞ

�ðLn̂γ̂cdÞ
�
q̂acq̂bdd3Iþ

−
1

8πG

I
∂R̂

�ðδ∘γ̂abÞðLn̂γ̂cdÞq̂acq̂bdξm
�
d2Ŝm:

ð3:13Þ

As in Sec. II, the surface term vanishes if ξa happens to be
tangential to ∂R̂. If not, as before we further restrict DR̂ to
the dense subspace D0

R̂
of ΓR̂ on which Ln̂γ̂cd vanishes on

∂R̂ [i.e., the news tensor N̂ab vanishes there; see Eq. (3.4)].
On this D0

R̂
only the volume term on the right-hand side

of (3.13) survives.
Next we note two properties of constant vector fields δ∘.

Using the fact that the action of δ∘ on phase space
coordinates γ̂ab commutes with the action of Lie derivatives
with respect to vector fields that do not depend on phase
space variables, we have

(i) Ln̂ðδ∘γ̂cdÞ ¼ δ∘ðLn̂γ̂cdÞ; and
(ii) Lξðδ∘γ̂abÞ ¼ δ∘ðLξγ̂abÞ ¼ δ∘ðδξγ̂abÞ, where in the

last step we have used (3.11). Therefore on the
dense subspace D0

R̂
the right side of (3.13) can be

rewritten as

ωR̂jfD̂gðδξ;δ∘Þ¼
1

8πG

Z
R̂

�ðδξγ̂abÞ�δ∘ðLn̂γ̂cdÞ
�

þ�
δ∘ðδξγ̂abÞ

�ðLn̂γ̂cdÞ
�
q̂acq̂bdd3Iþ

¼ 1

8πG
δ∘
Z
R̂
ðδξγ̂abÞðLn̂γ̂cdÞ

× q̂acq̂bdd3Iþ. ð3:14Þ

Therefore we conclude that on the dense subspace D0
R̂
of

ΓR̂, the Hamiltonian Hξ is given by

HξðfD̂gÞ ¼ 1

8πG

Z
R̂
ðδξγ̂abÞðLn̂γ̂cdÞq̂acq̂bdd3Iþ; ð3:15Þ

where we have eliminated the freedom to add a constant by
requiring that Hξ should vanish on any classical vacuum.
[Recall that Ln̂γ̂cd ¼ 2N̂ab vanishes if fD̂g is a classical
vacuum.]
By inspection, the expression of the function Hξ on the

dense space D0
R̂

is continuous and therefore it admits a
continuous extension to all of ΓR̂. This is the Hamiltonian
that generates the infinitesimal canonical transformation δξ.
As in Sec. III, the Hamiltonian is defined on the full phase
space ΓR̂ but the Hamiltonian vector field it generates is
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defined only on a dense subspace. This is a common
occurrence on infinite dimensional phase spaces. Also, as
in Sec. III, if ξa is tangential to the boundary ∂R̂, the
1-parameter family of diffeomorphisms generated by ξa on
R̂ induces a 1-parameter family of canonical transforma-
tions on full ΓR̂. If not, we only have an infinitesimal
canonical transformation δξ, again a common occurrence in
infinite dimensions.
Finally, using the expression (3.8) of δξγ̂ab, and the

relation (3.4) between γab and the News tensor N̂ab of fD̂g,
we can rewrite the Hamiltonian directly in terms of the
phase space variable fD̂g, without reference to the phase-
space coordinate γ̂ab. We have

HξðfD̂gÞ¼ 1

16πG

Z
R̂

�ðLξD̂a−D̂aLξÞblb

�
N̂cdq̂acq̂bdd3Iþ;

ð3:16Þ

where we could drop the qualifier TF in front of the term in
the square bracket because the News tensor is already trace-
free. Note that the term ðLξD̂a − D̂aLξÞblb is precisely the
action on lb of the infinitesimal change in D̂ under the
action of the diffeomorphism generated by the BMS vector
field ξa.
So far we restricted ourselves to BMS vector fields ξa

that preserve the conformal frame ðq̂ab; n̂aÞ. These include
supertranslations ξa ¼ ŝn̂a. For these vector fields, the
expression of the Hamiltonian can be simplified and one
has [4]

HŝðfD̂gÞ ¼ 1

32πG

Z
R̂

�
ŝN̂ab þ 2D̂aD̂bŝþ ŝρ̂ab

�
× N̂cdq̂acq̂bdd3Iþ: ð3:17Þ

The term quadratic in their news tensor is often called the
hard contribution to the supermomentum flux, and the term
linear in news, the soft contribution. For BMS translations
t̂na, the coefficient t̂ satisfies TFð2D̂aD̂bt̂þ t̂ρ̂abÞ ¼ 0,
whence the soft contribution vanishes and the flux of the
Bondi-Sachs 4-momentum across R̂ is given by

Ht̂ðfD̂gÞ ¼ 1

32πG

Z
R̂
t̂N̂abN̂cdq̂acq̂bdd3Iþ ð3:18Þ

Finally, let us consider a general BMS vector field ξa,
Lξq̂ab ¼ 2βq̂ab and Lξn̂a ¼ −βn̂a. Recall that γ̂ab has
conformal weight 1 and, as we noted above, if β ¼ 0,
then δξγ̂ab ¼ TFðLξD̂a − D̂aLξÞblb again has conformal

weight 1. If β ≠ 0, then TFðLξD̂a − D̂aLξÞblb no longer
has conformal weight 1 because the diffeomorphism
generated by ξa changes the conformal frame. Therefore,
as in the case of the scalar field ϕ̂ of Sec. III B, the
expression of δξ acquires an extra term

δξγ̂ab ¼ TF½ðLξD̂a − D̂aLξÞblb þ 2blðaD̂bÞβ�: ð3:19Þ

The extra term ensures that δξγ̂ab is again of conformal
weight 1 (and symmetric, transverse and traceless), and
therefore qualifies as a tangent vector to ΓR̂.

4 With this
expression of δξ at hand, one can repeat, step by step, the
above procedure to arrive at Hamiltonians Hξ, for general
BMS vector fields ξa. However, now the intermediate
expressions are much longer because the diffeomorphisms
generated by ξa change the conformal frame. In particular,
several terms that vanished for BMS vector fields whose
action preserves the conformal frame no longer do. For
example, now ðD̂a − D̂aÞLξ

blb ≠ 0 because Lξ
blb is no

longer a horizontal 1-form (i.e., n̂bLξ
blb ¼ Lξβ ≠ 0).

However, the final expression of the Hamiltonian Hξ is
rather simple and transparent

HξðfD̂gÞ ¼ 1

16πG

Z
R̂

�ðLξD̂a − D̂aLξÞblb þ 2blðaD̂bÞβ
�

× N̂cdq̂acq̂bdd3Iþ: ð3:20Þ

As before, we made three choices to obtain this expres-
sion of HξðfD̂gÞ: a conformal frame ðq̂ab; n̂aÞ, a 1-form bla

satisfying blan̂a ¼ −1, and an inverse metric q̂ab. One can
directly check that the integral on the right side of (3.20) is
independent of all these choices. As usual there is freedom
to add a constant to Hξ and, as in Sec. III B, we have
eliminated it by asking that Hξ should vanish at vacuum
configuration fD̂g∈ΓR̂. Motivated by our findings for the
scalar field ϕ̂ in Sec. III B, we are led to interpretHξ as the
flux Fξ½R̂� across R̂ of the component of the BMS
momentum defined by ξa.
Remarks.
(1) In the literature, the expression of the Hamiltonian

Hξ is often written using shear σ̂ab (in place of
the derivative operator D̂) and equating N̂ab with
2 TFLn̂σ̂ab, where TF stands for trace-free part of,
trace being taken using the intrinsic 2-metric on
cross sections. This equality does not hold without
further qualifications since N̂ab is defined intrinsi-
cally on Iþ [19], while σ̂ab generally refers to a
foliation. Given a foliation to which blb is orthogo-
nal, the relation between σ̂ab and N̂ab can be derived
starting from (3.5) and properties of the Schouten

4Thus, the situation is completely analogous to that we
encountered in Sec. II B. The additional term can again be
systematically arrived at by examining the transformation prop-
erty of the phase space variable under conformal rescalings.
On ΓR̂ now under consideration, under a (finite) conformal
rescaling q̂ab → q̂0ab ¼ μ2q̂ab and n̂a → n̂0a ¼ μ−1n̂a we have
fD̂0

agf̂b ¼ fD̂agf̂b − 2μ−1ðD̂ðaμÞf̂bÞ.
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tensor of ĝab. We have

N̂ab ¼ 2Ln̂γ̂ab ¼ TF
�
2Ln̂σ̂ab − 2ðD̂ða þ τ̂ðaÞτ̂bÞ

− 2blðaLn̂τ̂bÞ − ρ̂ab
�
: ð3:21Þ

This general expression can be simplified by making
special choices of the conformal frame ðq̂ab; n̂aÞ on
Iþ and the 1-form bla satisfying n̂abla ¼ −1. In
particular, if q̂ab is chosen to be a unit, round 2-
sphere metric, and bla is chosen so that Ln̂

blb ¼ 0,
then τ̂a ¼ 0 and ρ̂ab ¼ q̂ab, then we would have
N̂ab ¼ 2Ln̂σ̂ab. In a general conformal frame
(q̂0ab ¼ ω2q̂ab; n̂0a ¼ ω−1n̂a) we would also obtain

N̂ab ¼ 2Ln̂σ̂ab, provided we restrict bl0
a to be tied to

the bla used in the Bondi frame via bl0
a ¼ ωbla.

However, these simplifications do not occur for
generic choices. For example, if in a non-Bondi
frame q̂0ab, one were to choose bl0

a satisfying τ̂0a ¼ 0,
we would have N̂ab ¼ TF½2Ln̂σ̂

0
ab − ρ̂0ab� and ρ0ab

would not be pure trace.
(2) The fluxes associated with every BMS vector field ξa

vanish identically on any region R̂ if the Bondi news
N̂ab vanishes there; the 2-spheres bounding R̂ are not
tied to any specific (e.g., Bondi-type) foliation.While
this is clearly a desired physical property, it is not
shared by all flux expressions available in the
literature. In particular, the flux resulting from link-
ages does not have this property [9,26]. [Note also
that if, contrary to Eq. (3.9), one were to set
δξγ̂ab ¼ Lξγ̂ab—as was done in some of the early
work—then the supermomentum flux would not
have the soft term.] Finally, there is some recent
discussion on whether there can be radiation of
angular momentum without radiation of energy
in the context of the post-Minkowskian approxima-
tion [27–30]. It follows immediately fromEqs. (3.18)
and (3.20) that in our framework the answer to this
question is in the negative for full nonlinear general
relativity. Furthermore, as we will see in Sec. III C,
the angular momentum charge that descends from
this flux is the only one among current candidates that
has all the physically viable properties.

(3) In this section we focused on finite subregions R̂
bounded by two 2-sphere cross sections of Iþ. To
incorporate full Iþ, one has to impose suitable
boundary conditions on the connections fD̂g in the
far future and past (i.e., as we move to iþ and i∘
along Iþ). A natural strategy is to consider C∞

fields and incorporate the appropriate fall-off con-
ditions by endowing the phase space Γrad with the
topology of a Fréchet space [4]. Then, the infini-
tesimal canonical transformations δξ can be defined
on the full phase space since the space of C∞ fields

on Iþ is preserved by the operation of taking Lie
derivatives. Also, the finite canonical transforma-
tions generated by the BMS vector fields are also
well-defined on entire Γrad. We could avoid the use
of rather complicated Fréchet spaces because fall-off
conditions are not needed on finite regions R̂.
Reciprocally, since the surface terms that result from
integration by parts do not vanish for finite regions
(since there are no fall-off conditions at the boundary
of R̂), results would not have been stronger had we
used Fréchet spaces.

C. BMS charges

In nongravitational field theories on given space-times—
such as the scalar field theory of Sec. II—one only has
3-dimensional flux integrals, Fξ, associated with Killing
and BMS symmetries ξa. For the gravitational field, on the
other hand, one can also define chargesQξ that are 2-sphere
integrals. Now, in Sec. III B we obtained expressions of
fluxes using phase spaces ΓR̂ of radiative degrees of
freedom of the gravitational field. The radiative modes
can be encoded in connections fD̂g defined intrinsically on
the 3-manifold Iþ equipped with pairs ðq̂ab; n̂aÞ, without
reference to 4-dimensional space-times. To discuss asso-
ciated charges, on the other hand, we need to return to
conformal completions ðM̂; ĝabÞ of asymptotically flat
space-times ðM; gabÞ and use fields that capture the
Coulombic information that is not registered in ΓR̂.
We will assume that the completions are smooth (say C4)

so that the asymptotic Weyl curvature K̂abcd ¼ Ω−1Ĉabcd is
C1 and we can use the Bianchi identities it satisfies.5 Given
Einstein’s equations, these identities link the radiative
degrees of freedom, used so far, with the Coulombic
degrees that enter the expression of charges. Thus, to
discuss charges, we need to widen our arena by switching
from Iþ as an abstract 3-manifold, to boundaries Iþ of
asymptotically flat space-times. The Hamiltonians
HξðfDgÞ on ΓR̂ will now be regarded as providing fluxes
across finite regions R̂ of these boundaries.
In this framework, charges arise as follows. Recall from

Sec. III B that the fluxes Fξ½R̂� across regions R̂ of Iþ

arise as HamiltoniansHξ, and since the expression (3.20) of
Hξ holds for any open region R̂, for each BMS vector field

ξa we have a 3-form F̂ ðξÞ
mnp on Iþ, representing the local

flux of the ξa-component of the BMS momentum:

5This requirement can be weakened so that peeling holds only
for the Newman-Penrose Weyl components Ψ°

4;Ψ°
3 and Ψ°

2 and
for the 1Y1;m part of Ψ°

1. Bieri [31] has shown that this weaker
peeling holds for a large class of initial data for vacuum solutions
that are more general than those considered in [32,33] in that the
mass aspect is now allowed to be anisotropic. The BMS charges
discussed in this subsection are well defined under this weaker
peeling.
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F̂ ðξÞ
mnp ¼ 1

16πG

�ðLξD̂a − D̂aLξÞblb þ 2blðaD̂bÞβ
�

× N̂cdq̂acq̂bdϵ̂mnp

¼ 1

16πG
ðδξγ̂abÞN̂cdq̂acq̂bdϵ̂mnp ð3:22Þ

so that the total flux across any region R̂ is given by

Hξ½R̂� ¼ Fξ½R̂� ¼
Z
R̂
F̂ ðξÞ

mnpdSmnp: ð3:23Þ

[Here ϵ̂mnp is the volume 3-form on Iþ in the conformal
frame ðq̂ab; n̂aÞ [19].] Note that although Iþ is now a
boundary in ðM̂; ĝabÞ, all fields on the right side of (3.22)
are 3-dimensional, defined intrinsically on it, using the
kinematical pairs ðq̂ab; n̂aÞ, and D̂ that carries radiative
information. The question is whether this flux 3-form is
exact. That is, given any region R̂ bounded by two cross
sections S1 and S2 of Iþ, can one write the flux across R̂
as a difference

Fξ½R̂� ¼
�I

S2

−
I
S1

�
QðξÞ

ab dS
ab ð3:24Þ

between charges associated with S1 and S2, using a charge

aspect QðξÞ
ab ? This question has been answered in the

affirmative [4,17]. However, as explained above, these
charge 2-forms involve Coulombic fields while the flux
3-forms involve only radiative degrees of freedom.
To see this interplay between the radiative and

Coulombic fields, let us begin with supertranslations
ξa ¼ ŝn̂a. Consider solutions gab ∈Γcov and corresponding
(divergence-free) conformal metrics ĝab. The metric ĝab
carries both the radiative and Coulombic information and
the two are intertwined via Einstein’s equations. Using
them (and differential geometric identities) one can sys-

tematically integrate the flux 3-form F̂ ðŝÞ
mnp step by step and

display it as the exterior derivative of a locally defined

2-form QðŝÞ
np on Iþ [4]

F ðŝÞ
mnp ¼ �

dQðŝÞ�
mnp; where ð3:25Þ

QðŝÞ
np ¼ −

1

8πG

�
ŝK̂abblb þ ðŝD̂b

blc þ blbD̂cŝÞ
× N̂deq̂ceq̂d½an̂b�

�
ϵ̂anp ð3:26Þ

and K̂ab ≔ Ω−1K̂acbdn̂cn̂d is the electric part of the asymp-
totic Weyl curvature. The component K̂abbla

blb that
contributes to the integral is denoted by ReΨ°

2 in the
Newman-Penrose framework. It is Coulombic; the con-
nections fD̂g∈ΓR̂ have no knowledge of it. This is why

the integration procedure requires access to full ĝab and its
derivatives at Iþ, and not just D̂ and its curvature.

Since F̂ ðŝÞ ¼ dQðŝÞ, the desired balance law (3.24) is
satisfied for supertranslations. The 2-sphere charge integral

Qŝ½S� ¼
I
S
QðŝÞ

npdSnp ð3:27Þ

is the component of the supermomentum charge corre-
sponding to ξa ¼ ŝn̂a. It is conformally invariant, and does
not depend on the choice of the inverse metric q̂ab. Two
features of the charge aspect are noteworthy. First, althoughbla appears in the expression of QðŝÞ

np , as in (3.22) it can be
any 1-form satisfying n̂abla ¼ −1; it is not tied to the cross
section on which the charge integral is evaluated. The
charge Qŝ½S� is independent of the choice of bla. Thus, for

any choice of bla satisfying n̂abla ¼ −1, QðŝÞ
np is a local

2-form on Iþ. Second, while QðŝÞ
np contains Coulombic

information through K̂abbla
blb, this information disappears

once we take the exterior derivative of QðŝÞ
np ; the resulting

flux 3-form contains purely radiative information.
Next, let us address the question of uniqueness of the

supermomentum charge Qŝ½S�. By inspection, the charge

aspect QðŝÞ
np of (3.26) satisfies the following viability

criteria:
(i) it is a 2-form whose exterior derivative is the flux

3-form;
(ii) it is locally constructed from fields at Iþ, is linear

in ŝ, and has zero conformal weight; and
(iii) in Minkowski space, it leads to zero supermomenta

on any cross section S of Iþ.
Is there another candidate Q̃ðŝÞ

ab that also satisfies them?

Suppose there is. Then the difference ðΔQÞabðŝÞ ≔ Q̃ðŝÞ
ab −

Q̃ðŝÞ
ab also satisfies (ii) and (iii), and (i) implies that it is a

closed 2-form on Iþ of every asymptotically flat solution.
In particular, then, in any given space-time, the value of the

difference between two charges,ΔQŝ ≔
H
S ΔQ

ðŝÞ
ab dS

ab,
does not depend on the cross section S. Let us introduce
a foliation of Iþ by u ¼ const cuts. Since any 2-form can

be expanded in a coordinate basis, we can expand ðΔQÞðŝÞab

as ðΔQÞðŝÞab ¼ ŝðf1ϵ̂ab þ f2v½aD̂b�uÞ for some 1-form va.
Let us evaluate the charge on a u ¼ u∘ 2-sphere S∘. Since
the pull-back of D̂bu to S∘ vanishes, we have ΔQŝ ¼H
S∘ ŝf1ϵab where, by condition (ii), f1 is a locally defined

field at S∘. Since ðΔQÞðŝÞξ is time independent for all

supertranslations ŝ, it follows that Ln̂f1 ¼ 0 for all space-
times in Γcov. Therefore f1 cannot depend on local
dynamical variables; it must be constructed from the
universally available kinematical fields. It follows that
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the value of ΔQŝ is the same for all space-times under
consideration, including Minkowski space-time. Finally,
condition (iii) implies that this value is zero in Minkowski
space-time, hence ΔQŝ ¼ 0. We conclude that the super-

momentum charges defined by Q̃ðŝÞ
np are the same as those

defined by our QðŝÞ
np.

Let us now consider a general BMS vector field ξa. The

charge aspect QðξÞ
np can also be obtained by integrating the

flux Fξ½R̂� [17] but, as we discuss below, there is a
conceptual difference. Let us fix a cross section S of
Iþ. Then any BMS vector field ξa can be decomposed as
ξa ¼ ŝn̂a þ ζa, where ŝn̂a is a supertranslation and ζa is
tangential to S, and is thus a generator of a Lorentz
transformation. (Note that this split refers to a single cross
section, not to a foliation ofIþ.) Since we already have the
expression of the charge aspect for supertranslations, let us

focus on ζa. It turns out that, in contrast to QðŝÞ
np , the

definition ofQðζÞ
np requires us to tie the choice of the 1-formbla to the surface S on which the charge is to be computed.

Given a cross section S, let us choose bla to be the normal to

that cross section satisfying n̂abla ¼ −1 as before. Then, the
shear of S is given by σ̂ab ¼ TFq̂acq̂bdD̂ðcbldÞ, where q̂ac is
the projection operator on the 2-sphere S. Finally, let us

introduce the 1-form K̂d ¼ K̂abc
d
blan̂bblc using the asymp-

totic Weyl tensor. These fields are used to define the charge
aspect satisfying the balance law (3.24) [16,17]:

Qζ½S� ¼ −
1

8πG

I
S
ζa
�
K̂a þ σ̂ab

2D̂cσ̂
bc þ 1

4
2D̂aðσ̂bcσ̂bcÞ

	
× ϵ̂npdSnp

≡ −
1

8πG

I
S
QðζÞ

npdSnp ð3:28Þ

where indices are raised and lowered using the intrinsic
metric on S and 2D̂ is the 2-sphere derivative operator
compatible with this metric. Combining Eqs. (3.26) and
(3.28), we now have the expression of the charge Qξ½S�
associated with a general BMS vector field ξa at any
2-sphere cross section S of Iþ,

Qξ½S� ¼ Qŝ½S� þQζ½S�; ð3:29Þ

which satisfies the balance law (3.24) with the flux given
by (3.22) and (3.23). Note, however, that, in contrast to the

supermomentum charge aspect QðŝÞ
np , the angular momen-

tum charge aspectQðζÞ
np cannot be specified once and for all,

but only once the cross section has been specified.
Therefore verification of the balance law (3.24) is a bit
more involved (see Remark 1 below).

Remarks.
(1) The expression of the supermomentum charge as-

pect (3.26) was first postulated by Geroch in [19],
motivated by its properties. Subsequently, fluxes
(3.20) for all BMS vector fields were derived using
the phase space of radiative modes and the super-
momentum charge was obtained by a step by step
integration of the flux expression in [4]. The angular
momentum charge was first was postulated by Dray
and Streubel in [16] using considerations from
twistor theory. Dray [17] then showed that it arises
from the flux expression (3.20) (that was already
available in the literature [4]) using the following
procedure. The boundary cross sections S1 and S2
bounding any R̂ are related by a supertranslation.
The generator of this supertranslation was used to

foliate the given R̂. The charge aspect QðξÞ
np was

introduced on R̂ using the normal bla to the leaves of
this foliation, and the balance law (3.24) was verified
using the Newman-Penrose formalism. More recent
treatments [25,34–37] also introduce a foliation and
the associated null normal la, but do not require the
extra structure of the Newman-Penrose formalism.
We presented a self-contained summary of these

results that is conceptually more complete in that
it brings out the distinction between fluxes and
charges, as well as the subtle difference between
the nature of charge 2-forms for supermomenta
versus angular momenta. Fluxes require only radi-
ative degrees of freedom that are encoded intrinsi-
cally in R̂. For them, the 4-metric and the full field
equations are excess baggage. Charges on the other
hand refer to Coulombic aspects that are intertwined
with the radiative aspects through field equations;
one needs to step out of ΓR̂ and use information
from full Γcov. Similarly, while the supermomentum
charge aspect can be specified once and for all on all
of Iþ, the angular momentum charge aspect is tied
to the cross sections under consideration. This
difference has not been emphasized in the literature.
Finally, we also took this opportunity to correct
minor errors in some of the older literature.

(2) All contemporary literature uses the expression (3.26)
of supermomentum. For angular momentum, on the
other hand, alternate candidates have also been
proposed. Proposals in which the charges constitute
BMS momentum—i.e. is linear in the BMS gener-
ators ξa, as in (3.29)—are summarized in [38,39]. The
alternate expressions have two types of drawbacks.
First, in general axisymmetric space-times with non-
vanishing N̂ab, they lead to nonzero angular momen-
tum fluxes around the symmetry axis. Second, they do
not admit a local flux, whence their angular momen-
tum charge does not change continuously with con-
tinuous deformations of the cross section S [40].
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There is also a more recent candidate angular mo-
mentum charge that stemmed from a well-developed
quasilocal charges framework [41]. However, this
strategy does not provide a linear map from all BMS
generators to reals.6 Rather, on any given cross section
S ofIþ, the procedure selects a rotation subgroup of
the BMS group using physical fields at that cross
section and associates angular momentum charges
with them. But in axisymmetric space-times, this
procedure generically excludes the rotations gener-
ated by the exact Killing field from its rotation
subgroup, whence these angular momentum charges
do not include the generally accepted notion physical
angularmomentum.Among expressions of fluxes and
charges available in the literature, (3.29) is the only
one that is free from all these limitations.

(3) Finally, note that in the passage from fluxes to
charges, we used the fact that Γcov is sufficiently
rich. For example, if we had restricted ourselves to
its nonradiative sector Γ0

cov consisting only of sol-
utions gab ∈Γcov for which ⋆K̂ab vanishes on Iþ,
all flux 3-forms F̂ ðξÞ

mnp would have vanished
although, as is clear from their expressions (3.26)
and (3.28), charges do not vanish on Γ0

cov. If we had
restricted ourselves to Γ0

cov from the start, our
procedure would have yielded the correct—namely
zero—fluxes. However, the uniqueness argument for
charges, given above, would not have sufficed
because, while the only fields at Iþ that are time
independent on the full phase space Γcov are kin-
ematical, there are physical fields (such as ReΨ°

2)
that are time-independent on entire Γ0

cov. They
provide nontrivial candidate charges on Γ0

cov that
are compatible with zero fluxes. More physical
inputs would have been necessary to arrive the
correct charge expressions. While this is a rather
trivial observation, it is of direct relevance to our
discussion of charges on Δ in the next section since
all fields on Δ are nonradiative.

IV. BLACK HOLE (AND COSMOLOGICAL)
HORIZONS Δ

Structure of black hole and cosmological horizonsΔwas
discussed in detail in the companion paper [1]. We will now

apply the Hamiltonian framework introduced in Sec. II to
these horizons Δ, drawing heavily on [1].
Since these horizons Δ are null 3-manifolds in physical

space-times, no conformal completion is involved. In this
case, Γcov consists of solutions gab to Einstein’s equations
that admit a WIHΔ as internal boundary. The detailed
construction of this Γcov, spelled out in [43], can be
abbreviated as follows. Let M be a 4-manifold with an
internal boundary Δ with topology S2 × R. Equip Δ with
the universal structure of a WIH: a 3-parameter family
of pairs of fields ðq̊ab; ½l̊a�Þ, where q̊ab is a unit, round,
2-sphere metric, and ½l̊a� is an equivalence class of vector
fields (along the R direction, where l̊a ≈ cl̊a for any
positive constant c), such that any two pairs are related
by ðq̊0ab; ½l̊0a�Þ ¼ ðα̊2q̊ab; ½α̊−1l̊a�Þ. [α̊ is constrained to
ensure that q̊ab and q̊0ab are both unit round metrics; see
Eq. (3.2) of [1].] These fields will provide the kinematical
structure on Δ. The phase space Γcov now consist of
solutions gab on M in which7:

(i) Δ is a WIH and, given an la from the canonical
equivalence class ½la� induced by gab on Δ, the
1-form la ≔ gabla is the same for all gab ∈Γcov; and

(ii) the metric qab and the canonical null normal ½la�
induced on Δ by any gab ∈Γcov are conformally
related to any given pair ðq̊ab; ½l̊a�Þ in the kinemati-
cal structure: qab ¼ ψ̊−2q̊ab and ½la� ¼ ½ψ̊ l̊a�, for
some positive function ψ̊ satisfying Ll̊ψ̊ ¼ 0.

Our next task is to extract from Γcov the phase space ΓΔ
tailored to degrees of freedom that reside on Δ. Recall that
the metric gab induces on Δ a triplet of fields, qab; ½la�, and
D, that constitute the WIH geometry (see Sec. II A of [1]).
As at Iþ, they capture the information in gab that resides
on Δ. Recall that at Iþ the fields ðq̂ab; n̂aÞ are part of the
kinematical structure, and D̂ carries the physical informa-
tion that varies from one space-time to another. By contrast,
since Δ is a submanifold of the physical space-time, rather
than of a conformal completion thereof, now there is
physical information in qab as well; the kinematical
structure is confined to the fields ðq̊ab; ½l̊a�Þ. As at Iþ,
it is convenient to isolate the freely specifiable data onΔ by
fixing fiducial fields. Let us fix a kinematical pair ðq̊ab; l̊aÞ.
Then the fields ðqab;laÞ induced by the physical metric gab
are completely determined by the positive function ψ̊ . As
discussed in Sec. II of [1], D is completely determined by
the 1-form ω̊a and a symmetric tensor field ̊cab that is
transverse to l̊a.8 Thus, a point of ΓΔ can be conveniently
labeled by the triplet ðψ̊ ; ω̊a; ̊cabÞ of fields on Δ that are all

6Any definition of angular momentum that is free of super-
translation ambiguity cannot be a linear map from all BMS
generators to the reals. It is sometimes argued that such a
definition of angular momentum is needed in order to obtain
the standard transformation law of special relativity for a boosted
stationary solution. This expectation is incorrect: Our BMS
charge (3.29) does have the correct transformation property.
Indeed, if the boost is implemented in a (coordinate) invariant
manner (3.29) has this property in any stationary space-time [42].

7The second condition in (i) can always be imposed by a gauge
transformation on gab, i.e., using a diffeomorphism on M that is
identity on Δ [10]. It simplifies the subsequent analysis [43].

8ω̊a is defined by Dal̊
b ¼ ω̊al̊

b, and ̊cab is obtained by
replacing na in Eq. (2.9) of [1] by n̊a ¼ ψ̊na.
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Lie-dragged by l̊a and, in addition, ω̊a and ̊cab are
transverse to l̊a. Thus, ΓΔ admits a single global chart.
While Γcov is a highly nonlinear space, the phase space ΓΔ
of degrees of freedom that reside on Δ is essentially linear,
just as Γrad is at Iþ.
However, as noted in Sec. II of [1], in striking contrast to

fields γab labeling points fD̂g of Γrad, the triplet of fields
ðψ̊ ; ω̊a; ̊cabÞ labeling points ofΓΔ are nondynamical: they are
time independent and therefore carry 2-dimensional—rather
than 3-dimensional—degrees of freedom. Mathematically
they constitute the corner data and physically they carry
Coulombic rather than radiative information. This fact has a
key consequence on the phase space structure. Recall that the
symplectic current Jmnp of Γcov is evaluated at any gab and
depends linearly on two tangent vectors hab; h0ab at this gab.
As usual, the symplectic current onΓΔ is obtained by pulling
back Jmnp of Γcov to the 3-manifold Δ. Let us restrict
ourselves to gab ∈ΓΔ and to tangent vectors that preserve the
properties that these gab have to satisfy. Then, one finds that
the pull-back of JmnpjΓΔ

to Δ vanishes identically [10,44].
This is in striking contrast to the situation at Iþ but just
what one would physically expect, given that ΓΔ does not
have any fields that carry 3-dimensional (radiative) degrees
of freedom.
Finally, as at Iþ, we can introduce candidate phase

spaces ΓR½Δ� associated with regions R of Δ. They are
obtained by restricting the triplet ðψ̊ ; ω̊a; ̊cabÞ to R.
Obviously, the restriction JmnpjΓR½Δ� of the symplectic

current vanishes identically. It then immediately follows
that fluxes Fξ associated with all symmetry vector fields ξa

also vanish. Therefore, it is no longer necessary to take the
additional step of equipping ΓΔ with a topology. To
summarize, the strategy of using the Hamiltonian frame-
work associated with finite regionsR of Δ again yields the

flux 3-forms F ðξÞ
mnp, but they all vanish. This is exactly what

one would expect from physical properties of Δ.
Our next task is to find expressions of charges. At Iþ

we could just begin with the flux 3-forms F̂ ðξÞ
mnp and use

field equations and Bianchi identities to express them as

exterior derivatives of the charge aspectsQðξÞ
np . As remarked

at the end of Sec. III C, this is possible at Iþ because the
phase space was sufficiently rich; had we restricted
ourselves to the nonradiative subspace Γ0

cov of Γcov from

the beginning, F̂ ðξÞ
mnp would have been identically zero and

a priori there would be many distinct candidates for the

charge aspect QðξÞ
np . As in any other approach, one would

have needed additional inputs to find the physically
appropriate charges.

At Δ we face the same situation. Our task is to find QðξÞ
np

that depend locally on fields induced on Δ by gab, and are
closed for all gab ∈Γcov (so that all fluxes vanish, as
desired). It is clear that the fields that enter the expression

of QðξÞ
np have to be time-independent on full Γcov associated

with Δ. At Iþ, such fields have to be kinematical. By
contrast now every gab ∈Γcov provides us with time-
independent fields—such as qab and ωa—that carry physi-
cal information. In fact they carry precisely the Coulombic
information that is needed to introduce charges. And, since
the fields are time independent, the charges they define
would be automatically conserved, leading to zero fluxes as
desired. One would have to impose additional physical

criteria in order to single out charge aspects QðξÞ
np .

Instead, we will use another strategy that also serves to
make contact with the Wald-Zoupas one: we will use the
phase spaces ΓΣ associated with partial Cauchy surfaces Σ
that join cross sections S of Δ to i∘. This strategy is
suggested by the fact that while the cross sections S of Δ
are boundaries of Σ—just as they are of regions R within
Δ—the flux of the symplectic current does not vanish
across Σ. Let Xa be a vector field on M that is tangential to
Δ and generates diffeomorphisms that map each gab ∈Γcov
to a g0ab ∈Γcov. In order to avoid specifying boundary
conditions at i∘, let us also assume that Xa vanishes outside
a spatially compact world-tube in M. Then, as discussed in
Sec. III of [1], in any conformal frame ðq̊ab; l̊aÞ from the
universal structure on Δ, the restriction ξa of Xa to Δ has
the form

ξa b¼Va
ξ þHa

ξ ð4:1Þ

where the vertical and horizontal components of ξa are
given by

Va¼ �ðϖ̊þ β̊Þv̊þ s̊Þ�l̊a; and Ha
ξ ¼ ϵ̊abD̊bχ̊− q̊abD̊bβ̊:

ð4:2Þ

Here: (i) v̊ is an affine parameter of l̊a and ̊ϵab; q̊ab are the
inverses of the area 2-form and the metric on the v̊ ¼ const
cross sections, respectively; (ii) s̊ðϑ;φÞ is a general
function on the 2-sphere of null generators of Δ and
s̊l̊a represents a supertranslation; (iii) ̊χðθ;φÞ and
β̊ðϑ;φÞ are both linear combinations of first three spherical
harmonics defined by q̊ab and ̊ϵabD̊b ̊χ and ðβ̊ v̊ l̊a −
q̊abD̊bβ̊Þ are generators of rotations and boosts; and, (iv) ϖ̊
is a constant and ϖ̊l̊a is a generator of dilations (a
symmetry of Δ that has no counterpart at Iþ).
Using the fact that gab satisfies Einstein’s equations on

M, one can show that for any gab ∈Γcov and tangent vectors
δ and δX [44],

ωΣjgðδX; δÞ ¼
1

8πG
δ

I
S
ðϖ̊ þHa

ξωaÞϵnpdSnp

≕
1

8πG
δ

I
S
QðξÞ

npdSnp: ð4:3Þ
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Note that: (i) the right side depends only on the restriction
ξa of Xa to Δ, and (ii) all other fields in the integrand are
also evaluated on Δ, and are furthermore time-independent.

Therefore, it follows that the 2-form integrand QðξÞ
np ¼

ðϖ̊ þHa
ξωaÞϵnp is closed, whence we (trivially) have

dQξ ¼ F ξ. Note also that QðξÞ
np is built from fields that

are intrinsically defined and locally constructed from gab,
and linear in the symmetry generator. Therefore we are led
to define charges on Δ as

Qξ½S� ¼
1

8πG

I
S
ðϖ̊ þHa

ξωaÞϵnpdSnp ð4:4Þ

for all Δ-symmetry generators ξa. A priori, the Eq. (4.3)
determines the Qξ½S� only up to the addition of a constant.
We have eliminated this freedom by demanding that, along
the 1-parameter family of Schwarzschild WIHs, all charges
should vanish in the limit in which area of the WIH
vanishes, following [10].
Note that the supertranslation descriptor s̊ does not

appear on the right side, whence all supermomentum
charges vanish on Δ. This may seem surprising at first
because one might expect that the static Killing field in the
Schwarzschild space-time, for example, would be a super-
translation onΔ. However, that is not correct; as we pointed
out in Sec. III A of [1], it is a dilation field on Δ and the
dilation descriptor ϖ̊ does appear, whence the dilation
charge is nonzero. Similarly, in nonextremal Kerr space-
times, the linear combination of the two Killing fields that
is normal to the horizon is a dilation. In the extremal case, it
is a supertranslation, but the linear combination of the
asymptotic time translation and the rotational Killing field
that is null at the horizon is such that the corresponding
chargeQξ is the linear combination of the mass and angular
momentum that vanishes, in agreement with our finding
that all supermomentum charges vanish on Δ. More
generally, this definition of charges passes a number of
nontrivial physical criteria discussed in [44]. It also agrees
with the charges obtained by the extension of the Wald-
Zoupas procedure given in [10] when restricted to a WIH.
However, our procedure does not need a preferred sym-
plectic potential: the detailed examination shows that it
bypasses this step by taking advantage of the fact that
fluxes across Δ vanish.
Remarks.
(1) Equation (4.3) implies that Qξ½S� is the Hamiltonian

generating the canonical transformation δX, induced
by the vector field Xa on ΓΣ. As discussed in the
Appendix, charges defined atIþ by contrast, do not
admit the analogous interpretation on full phase
spaces ΓR̂. This difference arises because while the

fluxes F̂ ðξÞ
mnp are generically nonzero across Iþ, the

fluxes F ðξÞ
mnp vanish identically on Δ.

(2) Note that while the left side of Eq. (4.3) features the
vector field Xa in M, the right side is sensitive only
to its restriction ξa to Δ. In the calculation, to begin
with the right side does feature a directional deriva-
tive of Xa that is transversal to Δ. However, because
Xa has to preserve property (i) in the definition of
Γcov, this term is constrained: it is determined by the
restriction ξa of Xa to Δ. That is, Xa can be any
space-time vector field that preserves the universal
structure on Δ that is common to all gab ∈Γcov. This
is why, the charge Qξ½S� is insensitive to the
extension Xa of ξa away from Δ; it depends only
on ξa just as one would physically expect. For details
on this subtlety, see Appendix B of [44] and [10,45].

(3) The WZ strategy was applied in [10] to an arbitrary
null hypersurface, identifying a unique symplectic
potential which is covariant and vanishes on NEHs in
vacuum. One can apply the new strategy described in
Secs. II–IV to this case as well. Remarkably, the
analog of the norm (3.7) in this case identifies again
the uniqueWZ symplectic potential, as one can easily
check. Therefore the new strategy and the WZ one
give consistent results in different physical settings
such as Iþ and arbitrary null hypersurfaces.

V. DISCUSSION

The fact that null infinity is a WIH seems very surprising
at first because WIHs are commonly associated with black
hole (and cosmological) horizons Δ in equilibrium. Indeed,
Iþ and Δ have almost the opposite connotations. Iþ lies
in the asymptotic, weak field region, while Δ lies in a
strong curvature region. Iþ is the arena for discussing
gravitational waves, while Δ is generally used to discuss
the Coulombic properties of black holes in equilibrium.
The companion paper [1] showed that, in spite of these
striking contrasts, they share a number of geometrical
properties. In particular, one can systematically arrive at
the BMS groupB atIþ starting from the symmetry group
G of WIHs. In this paper we continued our exploration of
unity that underlies apparent diversity. We showed that,
while fluxes associated with the BMS groupB ofIþ have
a rich structure and those associated with G at Δ simply
vanish, these diverse conclusions arise from the same
conceptual setting.
To this end, we introduced a new Hamiltonian frame-

work that could be useful also in other contexts. (For
example, as pointed out in the Introduction, it is well-suited
to future space-like infinity Iþ in asymptotically de Sitter
space-times.) It has three novel features:
(1) It introduces Hamiltonian methods for degrees of

freedom that reside in finite subregions of suitably
chosen 3-dimensional surfaces.

(2) Since Iþ and Δ are null surfaces, it is possible to
extract the unconstrained degrees of freedom of
general relativity that lie in their subregions R̂ and
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R. Consequently, while the covariant phase space
Γcov is highly nonlinear, the local phase spaces ΓR̂
and ΓR are essentially linear.

(3) Fluxes Fξ½R̂� associated with the BMS symmetries
ξa emerge as Hamiltonians generating canonical
transformations on ΓR̂, induced by the action of
ξa on Iþ.

Most discussions of charges and fluxes associated with
the BMS symmetries of general relativity is based on the
covariant phase space Γcov. However one typically works
only formally with this infinite dimensional nonlinear
space; its underlying manifold structure is rarely made
precise. In the case of ΓR̂ on the other hand it is relatively
straightforward to spell out their manifold structure and
topology. It is instructive to compare and contrast Γcov with
the phase space of ΓR̂ of local degrees of freedom. While
the covariant phase space Γcov of general relativity carries
only a (formally defined) pre-symplectic structure, ΓR̂ is
endowed with a continuous, weakly nondegenerate sym-
plectic structure ωR̂. Non-degeneracy is a consequence of
the fact that, in contrast to the covariant phase space Γcov,
there are no gauge degrees of freedom in ΓR̂. Topology on
ΓR̂ and continuity of ωR̂ provide a degree of mathematical
control in the following sense. The action of any BMS
vector field ξa naturally leads to a Hamiltonian vector field
δξ on a dense subspace D0

R̂
of ΓR̂: it satisfies ωR̂ðδξ; δÞ ¼

δHξ on D0
R̂
.9 [As usual, there is freedom to add a constant

to Hξ which is eliminated by requiring that HξðfD̂gÞ
should vanish at points fD̂g of ΓR̂ for which Nab ¼ 0.]
Since the symplectic structure on Γcov has infinitely many
degenerate directions, there is a corresponding gauge
ambiguity in the infinitesimal canonical transformation
generated by any given Hamiltonian on Γcov. By contrast,
thanks to the nondegeneracy of ωR̂ this ambiguity dis-
appears and δξ is the unique Hamiltonian vector field
generated by Hξ. Finally, Hξ is continuous on D0

R̂.
Therefore, it can be uniquely extended function all of ΓR̂.
Since continuity is determined by the choice of topology,

it is natural to ask whether our choice is natural. As
explained in Sec. II, the choice is initially motivated by
examining zero rest-mass scalar fields in asymptotically flat
space-times. In that case, the choice of topology is such that
a sequence ϕ̂n of radiation fields in ΓR̂ converges to a field

ϕ̂ if and only if ϕ̂n and their first derivatives converge to ϕ̂
and its first derivative in an L2 sense on R̂. (This topology
is insensitive to the additional structures needed to define
the L2-sense; it depends only those structures that are
naturally available at Iþ.) This choice of topology leads
one to a unique Hamiltonian Hξ on ΓR̂ that agrees with the
physically correct flux Fξ½R̂� that is defined by the stress-
energy tensor: Fξ½R̂� ¼ R

R̂ Tabξ
adSb for all BMS vector

fields ξa. Thus, the strategy leads to the physically correct
fluxes using Hamiltonian methods, without having to
assume the existence of the stress-energy tensor. It is thus
extremely well suited to general relativity where there is no
stress-energy tensor for the gravitational field. But topo-
logical considerations go through and provide a strategy to
define fluxes: since ΓR̂ again consists of radiative modes
that reside in R̂, we can equip ΓR̂ with the same topology
and calculate Hamiltonians Hξ and interpret them as fluxes
Fξ½R̂� of BMS momenta across R̂. The fact that these
fluxes agree with those in the literature reenforces the
motivation for choosing this topology. Note that this
procedure to arrive at fluxes Fξ½R̂� uses (fields and)
symmetry vector fields ξa that are intrinsically defined
on Iþ; one does not need to extend them into the space-
time interior.
The BMS fluxes Fξ½R̂� can be obtained as Hamiltonians

generating canonical transformations induced by BMS
vector fields on ΓR̂ because the expressions of Fξ½R̂� refer
only to radiative modes that are captured in ΓR̂. Charges,
on the other hand, are 2-sphere integrals that refer also to
the Coulombic information in Γcov that is filtered out in the
passage to ΓR̂. Therefore, to recover charges from fluxes,
one needs to return to Γcov and use field equations and
Bianchi identities at Iþ. One then obtains the charge

2-forms QðζÞ
np by integrating the flux 3-forms F̂ ðξÞ

mnp. As
discussed in Sec. III C, this was in fact the procedure used
to arrive at the Dray-Streubel charges [4,17]. Thus, in the
present approach one first obtains fluxes Fξ½R̂� using
radiative phase spaces ΓR̂ and Hamiltonian considerations,
and then arrives at chargesQξ½S� in a second step. However,
this step is also carried out atIþ, without having to extend
fields or symmetry generators to the space-time interior.
This concludes our summary of the underlying strategy and
main results.
Next, let us briefly compare and contrast this framework

with other frameworks that also discuss null infinity (for
details, see the Appendix).

(i) Expressions of fluxes and charges satisfy a variety of
physical requirements both on Iþ and Δ. In
particular, all fluxes across Δ vanish, just as one
would physically expect. AtIþ, the fluxes vanish if
the News N̂ab vanishes, and, even when N̂ab is
nonzero, if the symmetry vector field arises from a
Killing field in space-time. All charges vanish in

9If the symmetry vector field ξa is tangential to the boundary of
R̂, the action can be integrated to finite symplectic transforma-
tions; if not, we only have a densely defined Hamiltonian vector
field. There is an analog situation in quantum theory: generators
of space-time symmetries are represented by densely defined
operators on the Hilbert space of quantum states. If the operator is
self-adjoint, the action can be integrated to unitary transforma-
tions. Sometimes—as in the case of the infinitesimal action of
translations on the Hilbert space of a particle on the half line—the
operator is only symmetric and not self-adjoint, and we only have
infinitesimal motions.
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Minkowski space-time, and, the angular momentum
charges agree with the Dray-Streubel charges on
general space-times. These requirements are not
alwaysmet in other approaches (see, e.g., [9,38–41]).

(ii) In the discussion of null infinity, the procedure
does not need auxiliary structures such preferred
symplectic potentials that have to be selected in
the Wald-Zoupas (WZ) procedure and its exten-
sions [2,25,37]. One works with just the symplectic
2-form. The physical fields that feature in the
discussion are all intrinsically defined on Iþ, using
only the region R̂ for fluxes Fξ½R̂� and 2-spheres S
for charges Qξ½S�. Additional structures that are
often used—such as tetrads or coordinates on Iþ
(and sometimes also in its neighborhood)—are not
needed. Similarly, one only uses symmetry vector
fields ξa at Iþ alone. In contrast to other ap-
proaches, one does not need prescriptions to extend
them to a neighborhood in the space-time interior.

(iii) Reciprocally, our approach requires an ingredient
that is not needed in other approaches: local phase
spaces ΓR̂ with appropriate topology. Thanks to the
characteristic initial value problem in general rela-
tivity [46], one can extract the degrees of freedom
that reside in open regions of null hypersurface and
construct local phase spaces with the required top-
ology. The resulting fluxes agree with those obtained
using the preferred symplectic 1-form required in the
WZ procedure. Thus, there is considerably synergy.
However, there are also differences. As remarked
above, our procedure can also be used at future
space-like infinity Iþ for asymptotically de Sitter
space-times, where the preferred symplectic poten-
tial satisfying all requirements does not exist [11].
Reciprocally, while the procedure discussed in this
paper is well-developed only for general relativity,
the WZ procedure offers an avenue to incorporate
higher derivative gravity theories as well. The open
issue for our procedure is whether one can introduce
the required local phase spaces. This could be
difficult because, while in general relativity we
relied on results from the characteristic initial value
problem, typically this problem has not been studied
in higher derivative theories. In the WZ framework
the open issue is whether there is a unique sym-
plectic potential with desired properties.

Finally, this unified treatment of black hole (and cos-
mological) horizons Δ and null infinity Iþ opens new
directions for further research both in classical general
relativity and quantum gravity. We will conclude with a few
illustrations. For binary black hole mergers, our framework
provides an avenue to correlate horizon dynamics in the
strong field regime with waveforms at infinity, paving the
way to gravitational tomography [47,48]. For example, in
the late time, quasi-normal mode regime, the time evolution

of mass multipole moments of the horizon appears to be
strongly correlated with the flux of supermomentum across
Iþ. This intertwining of observables associated with
horizons with those associated with Iþ has the potential
for providing fresh insights. In the analysis of isolated
gravitating systems in presence of a positive cosmological
constant one can use certain cosmological horizons as local
I� [49,50]. The present unified treatment suggests concrete
avenues to develop a framework to analyze gravitational
waves emitted by these systems and registered at these local
I�. In quantumgravity, this framework is likely to be useful
to sharpen the analysis of the black hole evaporation process.
It takes some 1067 years for a solar mass black hole to shrink
to lunarmass. During this very long phase of the evaporation
process, the time-evolution of the dynamical horizon should
be well-approximated by a perturbed WIH [51]. For this
regime, the unified framework developed in this paper opens
avenues to correlate dynamics of quantum observables
defined at the perturbed horizon with those associated with
the quantum radiation at Iþ. Availability of these two
algebras of time-dependent Heisenberg observables will
likely deepen our understanding of entanglement (at least) in
this semiclassical phase [52]. In particular, it would help
clarify whether anything dramatic happens to entanglement
in the physical space-time at the Page time.
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APPENDIX: COMPARISON

In this appendix we compare our method to compute
Hamiltonian fluxes and charges atIþ to some of the other
approaches in the literature, in particular those based on
the Wald-Zoupas (WZ) strategy [2,25,37,45,53,54]. (See
also [21,34,35]). The main differences can be summarized
as follow. The WZ prescription makes reference not only to
the symplectic 2-form, but also to a choice of symplectic
potential for it, and its associated Noether charges.
Consequently, in contrast to the strategy discussed in
Sec. III for Iþ, the WZ procedure requires extensions
of the BMS vector fields on Iþ to the space-time interior.
On the other hand, while the WZ procedure can be
potentially applied systematically to general covariant
theories, it is not clear whether this is possible within
our framework. For, the simplifications in this framework
can be traced back to the fact that one can isolate the
radiative degrees of freedom at Iþ in general relativity,
and this may not be possible for more general gravitational
theories.
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Given a Lagrangian density 4-form L in space-time, its
variation δL ≐ dðΘðδÞÞ provides us with Θ–a 1-form in the
field space and a 3-form in space-time. Θ serves as a
potential for the symplectic current J–a 2-form in field
space and a 3-form in space-time. Here δ denotes a vector
field on the field space as in the main text, and ≐ stands for
“equals on-shell,” i.e., when the field equations are sat-
isfied. We know from the seminal paper of Emmy Noether
that, given a space-time vector field ξa, and a covariant
Lagrangian L, there is a current jξ that is exact on-shell. In
the contemporary language, the 3-form jξ is given by

jξ ≔ ΘðδξÞ − iξL ≐ dQðξÞ ðA1Þ

(see, e.g. [55]). For the Einstein-Hilbert Lagrangian L, the
standard choice for Θ is

Θbcd¼
1

3!
Θaϵabcd; whereΘaðδÞ¼ 1

8πG
ga½cgb�d∇bδgcd:

ðA2Þ

With this choice, QðξÞ ¼ QðξÞ
K is the Komar 2-form

QðξÞ
K cd ¼ −

1

16πG
ϵabcd∇aξb: ðA3Þ

Let us now focus on Iþ and restrict ξa to be the BMS
vector fields (which are tangential toIþ). The pull-back to
Iþ of (A1) gives

dQðξÞ
K

⟵
≐ Θ

←
ðδξÞ: ðA4Þ

If one interprets the 2-forms QðξÞ
K as charge aspects, then

Θ
←
ðδξÞ can be interpreted as the flux 3-form: Eq. (A4)

provides flux-balance laws relating the difference between
charges evaluated on two different 2-sphere cuts of the
hypersurface and the integral of ΘðδξÞ over the 3-D region
bounded by them. The problem with this construction is
that Θ

←
ðδξÞ does not vanish at nonradiative solutions ̊gab of

Einstein’s equations for all ξ’s (namely solutions with
vanishing news). Therefore, one cannot interpret Θ

←
ðδξÞ

as the physical flux associated with a BMS vector field ξa,

whence QðξÞ
K cannot be interpreted as the physical charge

aspect either. However, there is an inherent ambiguity in the
choice of symplectic potential Θ, and the WZ strategy
exploits this freedom to find another one whose charges
have better properties. The key idea is to seek another
symplectic potential Θ̄, a 3-form defined intrinsically
at Iþ

Θ̄ðδÞ¼̂ Θ
←
ðδÞ þ δb; ðA5Þ

where b is a 3-form intrinsic to Iþ and chosen so that Θ̄
satisfies locality, analyticity, and covariance, and vanishes
at nonradiative solutions. The last condition is sometimes
referred to as the stationarity condition, but intended in a
looser sense than requiring the existence of a time-trans-
lation Killing vector. The importance of these requirements
can be understood by looking at the Hamiltonian one-form
associated with a diffeomorphism, given by10

Jðδξ; δÞ ¼ δΘðδξÞ − δξΘðδÞ − Θð½δ; δξ�Þ
≐ d

�
δQðξÞ

K −QðδξÞ
K − iξΘðδÞ

�
: ðA6Þ

The symplectic current Jðδξ; δÞ is independent of the
choice of symplectic potential. If we pull it back to Iþ

we can replace Θ with Θ̄, and field-independence of the
BMS vector fields at Iþ guarantees Θ̄ð½δ; δξ�Þ ¼ 0. Then
covariance of Θ̄ guarantees that J

←
ðδξ; δÞ þ diξΘ̄ðδÞ ¼

δΘ̄ðδξÞ is exact in both spacetime and field-space. It follows
that we can define

dQðξÞ
WZ∶ ≐ Θ̄ðδξÞ ðA7Þ

up to a field-space constant that can be fixed looking at a
reference solution. The flux-balance law is obtained inte-
grating (A7) over a region of Iþ. The stationarity con-
dition guarantees that the charges are conserved on
nonradiative solutions. The covariance requirement is also
crucial to ensure that both the fluxes and the charges
reproduce the symmetry algebra [57], removing for in-
stance field-dependent 2-cocyles as the one found in [34].
In general, there is no guarantee that the required Θ̄

exists in all situations of physical interest, and even if it
does, that it is unique. However at Iþ of asymptotically
flat space-times, Θ̄ has been shown to exist and is uniquely
determined by the conditions above [2]. Furthermore its
action Θ̄ðδξÞ is precisely the flux 3-form obtained in
Sec. III B using Hamiltonian considerations on radiative
phase spaces [see Eq. (3.22)]:

½Θ̄ðδξÞ�abc ¼ F ðξÞ
abc: ðA8Þ

Note that (A8) does not hold for any other symplectic
potential. Thus, there is unforeseen synergy between our
approach and that of WZ. The origin of this synergy is the
fact that diξΘ̄ vanishes precisely on the dense subspace of
ΓR̂ defined in Sec. III B, and this vanishing occurs only if
one uses the preferred WZ potential. As a consequence,

10The term QðδξÞ
K was absent in [2,55], where the identity

first appeared. It was included indirectly in [56] and explicitly
in [3,34]. The latter references use a symplectic 2-form that
differs by a corner term, but the difference vanishes in the limit
to I .
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ωR̂jfD̂gðδξ; δÞ ¼ δFξ½R̂� ðA9Þ

on that dense subspace, hence we can identify the flux as
the Hamiltonian generator of the symmetry δξ. We see that
the topological argument we used to construct Hamiltonian
fluxes in Sec. III B serves two purposes: it naturally selects
the preferred WZ flux, and enables us to define a
Hamiltonian on the full radiative phase space ΓR̂ as the
continuous extension from the dense subspace. This
provides a precise sense in which the flux Fξ½R̂� is the
generator of the BMS symmetry ξa on the radiative
phase space.
It follows from (A8) that one could just proceed

integrating the fluxes as done in the main text to obtain

QðξÞ of (3.29), and identify QðξÞ
WZ ≡QðξÞ. The WZ paper

offered an alternative procedure to determine the charges,
based on the introduction of an hyperbolic space-like
manifold Σ intersecting Iþ at some cross section S, and
without internal boundaries. If we pull-back (A6) to Σ and
use (A5), we find

ωΣðδξ; δÞ ≐
I
S

�
δðQðξÞ

K þ iξbÞ −QðδξÞ
K − iξΘ̄ðδÞ

�
: ðA10Þ

Let us suppose that

QðδξÞ
K ½S� ¼ δsξ; ðA11Þ

for some sξ to be determined. It then follows from dJ ≐ 0

that we can identify

QðξÞ
WZ ¼ QðξÞ

K þ iξb − sξ; ðA12Þ

up to a field-space constant fixed by the reference solution.
Notice that (A12) fixes the ambiguity of adding closed

2-forms to QðξÞ
WZ, something that one has to do independ-

ently in the integrating the fluxes procedure. The

formula (A12) has the nice feature of determining QðξÞ
WZ

in terms of the Komar 2-form and b, which is arguably
simpler than the procedure of integrating the fluxes.
However the detailed implementation of this strategy
requires some care. If the left-hand side of (A12) is to
be identified with the charges obtained integrating the
fluxes as in the main text, it has to be independent of the
extension of the symmetry vector fields in the bulk. On the
right-hand side, we have iξbwhich is manifestly extension-
independent. On the other hand, the integral on cross
sections of Iþ of the Komar 2-form,

QðξÞ
K cd

←

¼ −
1

16πG
ϵ̂abcd

←

�
Ω−2b∇a

ξ̂b − 2Ω−3n̂aξ̂b
�
; ðA13Þ

depends on the OðΩ2Þ and OðΩ3Þ extension of ξa to the
bulk, as was already observed in [9]. Now, one can prove

that δQðξÞ
K −QðδξÞ

K depends only on the first-order exten-
sion, which is canonical and field-independent thanks to the
universal structure and its embedding in the covariant

phase space.11 Therefore the term QðδξÞ
K compensates the

extension dependence of the Komar 2-form. We can thus

obtain the charges QðξÞ
WZ using (A12) provided the

assumption (A11) holds, a property which is not guaran-
teed a priori. If it does, the resulting charges are indepen-
dent of the symmetry vector field extension, in agreement
with the fact that they match the one derived in the main
body of the paper where no extension was required to
begin with.
As an example of implementation of this procedure, let

us fix the bulk extension of ξ using the Tamborino-
Winicour condition [8]. This extension preserves Bondi
coordinates in the bulk, and it is the most common choice
in the literature (see, e.g., [21,30,34,35,38,39,58–64] and
references therein). In this case δξ ¼ OðΩ2Þ, and an
explicit calculation shows that (A11) holds with [25]

sξ ≔ −
1

32πG
ðξcblcÞ2D̂a

2D̂bσ̂
abϵS ðA14Þ

(up to a closed 2-form irrelevant for the charges), where blc

and its shear σ̂ab are adapted to the cross section. One can
then evaluate the integral of (A12) and verify that it
reproduces exactly the BMS charges of the main text.
Including the contribution of (A14) is crucial to obtain this
result.
The bottom line is that once the physical flux is

identified, nontrivial work is still required to obtain the
charges. One can use the integration procedure of the main
text that requires a careful use of Einstein’s equations and
Bianchi identities, or one can bootstrap the Komar expres-
sion following the WZ procedure, in which case one must
deal with the subtlety of its extension dependence by

including the QðδξÞ
K .

Remarks.
(1) Looking at the right-hand side of (A10), we learn

that the surface charges for vector fields tangent to
the corner S are Hamiltonian generators, whereas
those for the remaining vector fields tangent to Iþ
but not to S can only be interpreted as generalized
Hamiltonians in the weaker sense that they generate
symmetry transformations at nonradiative solutions
where the obstruction iξΘ̄ðδÞ vanishes. The situation
is therefore that charges generate all symmetries on
the phase space associated to Σ only on nonradiative

11A proof when δξ ¼ 0, i.e., when the extension of ξa to space-
time interior is field independent, is given in [37], Lemma 5.2. It
is straightforward to generalize to δξ ≠ 0 if δQðξÞ is replaced by
δQðξÞ −QðδξÞ. Alternatively, with the caveat that ξa is always a
c-number for δ, as proposed in [56].
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cuts, and the fluxes only on dense subspaces of the
radiative phase space ΓR̂, which however can be
continuously extended to full R̂. These caveats are
due to the fact that Iþ is a leaky boundary. In both
case the covariant phase space needs to be equipped
with information in addition to the symplectic
2-form: a prescription for a preferred symplectic
potential, or a topology.

(2) It follows from Eq. (A14) that the contribution sξ to
the charges has the structure of a soft term. Its
contribution is nontrivial in that it ensures that the
super-translation charges vanish in Minkowski
space-time and that the boost charges have vanishing
flux in the absence of radiation in divergent-free
frames that are not round spheres.

(3) It is natural to ask if (A7) can be understood in terms of

Noether’s theorem, in other words, if QðξÞ
WZ can be

derived as an improvedNoether charge. The answer is
in the affirmative, but the extension dependence of the
Komar integral affects also this derivation, making it
nontrivial [25] (see also [57,62]). The extension
dependence of the Komar integral makes the
pull-back at I of Θ anomalous, in the sense
that δξΘ

←
≠ £ξΘ

←
, and as a consequence b is also

anomalous, meaning that δξb ≠ diξb. It is however
possible to identify a corner improvement c such that
b0 ≔ bþ dc and b0 transforms covariantly under

BMS symmetries. ThenQðξÞ
WZ is the improvedNoether

charge determined by Θ̄ and b0.
(4) There are situations in which there is no symplectic

potential Θ̄ on Γcov satisfying all the requirements of
the WZ procedure. An example is provided by
asymptotically de Sitter space-times mentioned ear-
lier. In this case, one can also carry out a conformal
completion to obtain Iþ which is now space-like.
At Iþ, there is a unique Θ̄ that is selected by the

requirements of locality, analyticity and covariance
but it does not vanish at nonradiative backgrounds;
Θ̄ does not vanish already at the Schwartzschild-
deSitter space-time [11].

(5) There are other instances in which the stationarity
condition required in the WZ procedure is not
satisfied by any symplectic potential for the initial
symplectic 2-form. This happens for conservative
boundary conditions at timelike boundaries with
nonorthogonal corners [65,66], and for weaker
fall-off conditions at I associated with larger
symmetry groups [21,57,60,61,67,68]. In these ex-
amples it is possible to satisfy the stationarity
condition by allowing in the selection process a
larger class of symplectic potentials, in which a
corner term dϑ is added. This changes the symplec-
tic 2-form, but in a way compatible with the field
equations and part of the covariant phase space
ambiguities [69,70]. Of this type are for instance the
differences between the Einstein-Hilbert symplectic
2-form and the ADM one [71] or the tetrad one [72].

(6) Another situation to consider is when the stationarity
condition is too restrictive for some physical appli-
cations. For instance the WZ prescription applied to
arbitrary null hypersurfaces in [10] treats as stationary
only shear and expansion-free null surfaces [53]. As
pointed out in [73], it excludes situations that are
manifestly nonradiative, such as a null cone in
Minkowski. This shortcoming can be dealt with by
weakening the stationarity requirement to be the
vanishing of the Noether flux Θ̄ðδξÞ, as opposed to
the vanishing of the full symplectic flux, and this leads
to select a different and again unique symplectic
potential whose charges are conserved on both non-
expanding horizons and null light cones [45,74].

For other approaches to charges at Iþ see also [59–
64,75–82].
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aux dérivées partielles (Polytechnique) dit aussi” Séminaire
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