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Null infinity, Iþ, arises as a boundary of the Penrose conformal completion ðM̂; ĝabÞ of an
asymptotically flat physical space-time ðM; gabÞ. We first note that Iþ is a weakly isolated horizon
(WIH) in ðM̂; ĝabÞ, and then show that its familiar geometric properties can be derived from the general
WIH framework. This seems quite surprising because physics associated with black hole (and
cosmological) WIHs Δ is very different from that extracted at Iþ. We show that these differences can
be directly traced back to the fact that Iþ is a WIH in the conformal completion rather than the physical
space-time. In particular, the BMS group at Iþ stems from the symmetry group of WIHs. In a companion
paper [Phys. Rev. D 110, 044049 (2024).] we obtain fluxes and charges associated with symmetries
associated with Iþ and Δ using a new Hamiltonian framework. The fact that is there is a single
mathematical framework underlying Δ and Iþ paves the way to explore the relation between horizon
dynamics in the strong field region and waveforms at infinity. It should also be useful in the analysis of
black hole evaporation in quantum gravity.
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I. INTRODUCTION

This is the third in a series of papers whose goal is to
investigate the geometry and physics of quasilocal horizons
(QLHs) and relate them to structures available at Iþ.
QLHs have been analyzed extensively in the literature
(for reviews, see, e.g., [1–4]). The first two papers in this
series [5,6] revisited weakly isolated horizons (WIHs) Δ,
and perturbed WIHs, that lie in the physical space-time.1

Using a new perspective, these papers discussed the
universal structure and symmetry group G of Δ, as well
as the associated charges and fluxes across perturbed Δ.
That discussion showed that, even thoughWIHs in physical
space-times lie in strong curvature regions, there is a
surprising similarity between G and the BMS group B
that refers to the asymptotic region, and also between
the expressions of fluxes across perturbed WIHs and
those across Iþ, associated with the respective symmetry
generators.

In this paper we will investigate the complementary
issue: Recovering the structure at Iþ starting from the WIH
framework. We will show that Iþ is naturally endowed
with the structure of a WIH—not a perturbed WIH but a
proper WIH—even when there is a large flux of radiation
across it. This seems very surprising at first since WIHs are
generally associated with the black hole (or cosmological)
horizons Δ that lie in the strong curvature region and
there is no flux of gravitational radiation (or matter fields)
across them. Therefore WIHs have had the connotation of
representing geometries of boundaries that are in equilib-
rium; indeed WIHs are often regarded as being only
slightly weaker than Killing horizons.
The goal of this paper is to resolve this apparent tension. In

a nutshell, wewill show that the difference can be traced back
to the fact that,whereas blackhole (or cosmological)WIHsΔ
are submanifolds of the physical space-time ðM; gabÞ, Iþ is
not. It is a submanifold of the Penrose completion ðM̂; ĝabÞ,
and therefore a WIH in ðM̂; ĝabÞ. Nonetheless, Δ and Iþ
share a number of key geometric features. In particular, they
both inherit from the 4-dimensional space-time metric a
preferred family of null normals, a degenerate metric, and an
intrinsic connectionwith properties that endow themwith the
structure of a WIH. Furthermore, their universal structures
and symmetry groups are essentially the same. However, as
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1Titles of [5,6] referred to nonexpanding horizons (NEHs)

rather than WIHs. However, while the starting point was indeed
NEHs, the subsequent discussion was based on the canonical
WIH structure that NEHs naturally inherit.

PHYSICAL REVIEW D 110, 044048 (2024)

2470-0010=2024=110(4)=044048(13) 044048-1 © 2024 American Physical Society

https://orcid.org/0000-0003-0616-2206
https://ror.org/04p491231
https://ror.org/013m0ej23
https://ror.org/035xkbk20
https://ror.org/02m9kbe37
https://ror.org/02m9kbe37
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.110.044048&domain=pdf&date_stamp=2024-08-26
https://doi.org/10.1103/PhysRevD.110.044049
https://doi.org/10.1103/PhysRevD.110.044048
https://doi.org/10.1103/PhysRevD.110.044048
https://doi.org/10.1103/PhysRevD.110.044048
https://doi.org/10.1103/PhysRevD.110.044048


wewill show, becauseΔ is aWIHwith respect to the physical
metric gab, the time dependence of the intrinsic connectionD
is entirely determined fromEinstein’s equations by thevalues
of certain fields on a 2-sphere cross section ofΔ. In this sense
D does not carry 3-dimensional degrees of freedom, and the
physical information encoded in it is purely Coulombic. By
contrast, at Iþ we have conformal Einstein’s equations and
they constrain the intrinsic connection D̂ on Iþ only mildly:
Now it carries precisely the two freely specifiable, radiative
degrees of freedom per point of the 3-manifold Iþ. In
striking contrast to the connection onD onΔ, the connection
D̂ on Iþ has no information about the Coulombic aspects of
the gravitational field. Thus the mathematical difference
between Einstein’s equations satisfied by gab and conformal
Einstein’s equations satisfied by ĝab translates to a striking
difference between the physics they capture! It is rather
astonishing that very different physics can emerge from a
common WIH framework.
These results are presented in Secs. II and III. In Sec. II

we begin by recalling the WIH framework in a general
space-time ðM̄; ḡabÞ that does not refer to any field
equations and summarize the structure on a generic
WIH h. We then discuss the additional structure that
arises on the black hole (or cosmological) WIHs Δ which
are submanifolds of the physical space-times ðM; gabÞ
satisfying Einstein’s equations (possibly a cosmological
constant and/or matter). Finally we show that Iþ is a WIH
in the conformal completion ðM̂; ĝabÞ of an asymptotically
flat space-time in which the stress-energy tensor has the
standard fall-off. It is a rather special WIH: When
equipped with the standard null normal n̂a endowed by
the conformal completion, it is a nonrotating, extremal
WIH in ðM̂; ĝabÞ. The geometrical fields one is accus-
tomed to see on Iþ (summarized, e.g., in [7,8]) are all
directly induced by its WIH structure [5,9,10]. In Sec. III
we discuss the universal structure and associated sym-
metries. The symmetry group G of a generic WIH is a 1-
dimensional extension of the BMS group B [5]. We
pinpoint the extra structure that Iþ naturally inherits vis a
vis generic WIHs that reduces G to B. Thus the BMS
group can be arrived at from a WIH perspective. In the
companion paper [11] we introduce a new phase-space
framework tailored to degrees of freedom that “reside in
local 3-D regions.” By specializing this framework to
regions of Iþ and Δ we will obtain the expressions of flux
and charge observables associated with the corresponding
symmetries. Again, one and the same framework leads to
dramatically different predictions: At Iþ we recover the
standard BMS charges and fluxes while on Δ the fluxes
vanish identically, just as one would physically expect.
This occurs because of the difference in the nature of
degrees of freedom in the two cases which, in turn, arises
because while we have conformal Einstein’s equations at
Iþ, we have Einstein’s equations at Δ.

Our conventions are as follows. While discussing the
general framework, we denote space-times by ðM̄; ḡabÞ and
WIHs by h. In the discussion of black hole and cosmo-
logical horizons Δ, the underlying physical space-times is
denoted by ðM; gabÞ, and the Penrose conformal comple-
tions used in the discussion of Iþ is denoted by ðM̂; ĝabÞ.
The torsion-free derivative operator compatible with ḡab is
denoted by ∇ and its curvature tensors are defined via:
2∇½a∇b�vc ¼ R̄abc

dvd, R̄ac ¼ R̄abc
b, and R̄ ¼ gabR̄ab. All

fields are assumed to be smooth for simplicity but this
requirement can be weakened substantially (in particular to
allow for the possibility that the Newman-Penrose curva-
ture component Ψ°

1 may violate peeling). If there is a
possibility of ambiguity, we will use ≙ to denote equality
that holds only at the WIHs. Finally, null normals of h are
assumed to be future directed. In the discussion of null
infinity, we will focus on Iþ for definiteness. But it is
obvious that all our considerations apply to I− as well.
The main results of this paper are summarized in a brief

report [12]. After this work was completed and reported
there, we learned of another work that discusses the relation
between null infinity and horizons from a different
perspective [13].

II. GEOMETRY OF WIHS

The structure of quasilocal horizons has been discussed
extensively in the literature (e.g., [1–4,9,10]). However,
since the primary focus of these works was on black hole
and cosmological horizons Δ, these discussions begin by
restricting themselves to horizons that lie in the physical
space-time. In Sec. II A we drop this assumption: the
structure we discuss is common to both Δ and Iþ. In
Sec. II B we discuss the additional structure that becomes
available on Δ, and in Sec. II C, on Iþ.

A. General framework

Consider a 4-manifold M̄ equipped with a metric ḡab of
signature −;þ;þ;þ. We will begin with a simpler and
more general notion of nonexpanding horizons and then
arrive at WIHs.
Definition 1. A null 3-dimensional submanifold h of M̄

will be said to be a nonexpanding horizon (NEH) if [5]:
(i) Its topology is S2 ×R.
(ii) Every null normal k̄a to h is expansion free: θðk̄Þ≙0

where ≙ stands for equality at points of h. For
definiteness, we will assume that the null normals k̄a

are all future pointing.
(iii) The Ricci tensor R̄a

b of ḡab satisfies R̄a
bk̄a≙αk̄b for

some function α.
An NEH can be a proper submanifold of M̄, or a part of its
boundary. Motivation behind the first two conditions is
obvious. The last condition (iii) is a restriction only on
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geometry; it does not refer to matter fields. It is motivated
by the following two considerations:
(a) if h were to be an NEH Δ in the physical space-time in

which the 4-metric satisfies Einstein’s equation, then
(iii) is necessary and sufficient for the local flux
Tabξ

ak̄b across Δ to vanish for all vector fields ξa

that are tangential to Δ (which, in particular include
the symmetry vector fields of Δ [5]); and

(b) it automatically holds at Iþ for the conformally
rescaled metric, if the physical metric satisfies Ein-
stein’s equations with stress-energy that has the
standard fall-off.

NEHs have several interesting properties that follow
directly from the definition:
(1) One can always choose the null normals to h to be

affinely parametrized geodesic vector fields k̄a. Any
two of them are related by k̄0a≙fk̄a where f satisfies
Lk̄f≙0. Let us restrict ourselves to such null
normals.

(2) The pull-back q̄ab of the space-time metric ḡab to h
has signature 0;þ;þ. The Raychaudhuri equation,
together with condition (iii) of Definition 1, implies
that q̄ab satisfies: q̄abk̄b≙0 and Lk̄q̄ab≙0. Thus the
shear σðk̄Þab of every null normals also vanishes.2

(3) Since the expansion and shear of k̄a vanish on h, it
follows that the space-time derivative operator ∇
compatible with ḡab induces a unique derivative
operator D̄ on h via pull-back. D̄ interacts with the
degenerate metric q̄ab and the null normals k̄a in an
interesting fashion. On h we have

D̄aq̄bc≙0 and D̄ak̄b≙ω̄ak̄b; ð2:1Þ

for some 1-form ω̄a. Under k̄a → k̄0a ¼ fk̄a (with
Lk̄f≙0), we have ω̄a → ω̄0

a ¼ ω̄a þDa ln f. Thus,
ω̄a depends on the choice of the geodesic null
normal k̄a. But we will suppress this dependence
for notational simplicity. For any choice of k̄a, the
corresponding ω̄a also satisfies

ω̄ak̄a≙0; and Lk̄ω̄a≙0: ð2:2Þ

Thus, q̄ab and ω̄a are pull-backs to Δ of covariant
tensor fields q

ab
and ω̄a on the 2-sphere h of integral

curves of the null normals k̄a.

In the literature on null hypersurfaces one often
introduces a rigging derivative defined using a
choice of auxiliary 1-form, see, e.g., [15,16]. This
is also referred to as Carrollian connection [17]. It is
easy to show that when the hypersurface is shear and
expansion-free—as is the case for h—this rigging/
Carollian connection becomes independent of the
rigging vector and coincides with our D̄.

(4) One can essentially exhaust the rescaling freedom in
the choice of (the affinely parametrized geodesic null
normals) k̄a on h by requiring that ωa be divergence-
free on h. This selects a small equivalence class of
null normals, where two are equivalent if they are
related by rescaling by a positive constant. All k̄a in
this equivalence class share the same 1-form ω̄a that
satisfies D̄aω̄a ≡ q̄abD̄aω̄b≙0 on h (where q̄ab is any
inverse of q̄ab). There is no natural structure on a
generic h to eliminate the freedom of constant
rescalings. This fact will turn out to be important
in Sec. III A. We will denote the equivalence class of
these preferred geodesic null normals by ½k̄a�. From
now on wewill restrict ourselves to k̄a that belong to
this 1-parameter family.

In the terminology used in the literature [1–4,9,10] a
weakly isolated horizon is defined as an NEH h equipped
with an equivalence class ½k̄a� of null normals satisfying
Lk̄ω̄a≙0. (Note that normals k̄a in this equivalence class
need not be affinely parametrized geodesics, i.e., while
ω̄ak̄a is constant because Lk̄ω̄a≙0, the constant need not be
zero.) On these horizons both q̄ab and the part of the
connection D̄ encoded in ω̄a are time-independent. WIHs
have been extensively studied in the literature on mechanics
of quasi-local horizons (see, e.g., [9,18]) and on charac-
terization of horizon geometries using multipoles (see,
e.g., [5,14]). In our case we did restrict k̄a to be affinely
parametrized geodesic vector, whence it follows from
Eq. (2.2) that our choice of null normals k̄a endows h
with the structure of a WIH. Furthermore, since integral
curves of any of our null normals k̄a are affinely para-
metrized null geodesics—i.e., since ω̄ak̄a≙0—the resulting
WIH is said to be extremal. Properties (1–4) reviewed
above show that any NEH can be naturally endowed with
the structure of an extremal WIH. This is the class of the
WIHs we will work with. For a list of geometrical symbols
associated with WIHs and their meanings, see Table I.
TheWIH geometry is encoded in the triplet ðq̄ab; ½k̄a�; D̄Þ.

As noted above, q̄ab and ω̄a are time-independent. However,
they do not determine D̄ uniquely. In fact, D̄ is generically
time-dependent. Because of this key feature, WIHs cannot
be regarded as stationary horizons. Let us analyze the
time dependence of D̄. Properties discussed under points
(2) and (3) above imply that if a 1-form h̄a is horizontal—
i.e., satisfies h̄ak̄a≙0, then the action D̄ah̄b of D̄ is com-
pletely determined by q̄ab and is time independent:

2Many of the properties of NEHs continue to hold if condition

(iii) is replaced by a weaker requirement σðk̄Þab≙0. However, then
the Raychaudhuri equation only implies that R̄abk̄ak̄b≙0 which is
insufficient for some of the results, e.g., the characterization of
the geometry of black hole and cosmological horizons in terms of
multipoles [6,14]. In vacuum, NEHs coincide with expansion-
free null surfaces (which are automatically shear-free) but are a
subset of expansion and shear-free surfaces in the presence of
matter and/of a cosmological constant.
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ðLk̄D̄a − D̄aLk̄Þh̄b≙0. Thus, the time dependence of
D̄ is encoded in the action D̄a|̄b on any 1-form |̄b on h
satisfying |̄bk̄b≙ − 1. Now, k̄bD̄a|̄b≙ω̄bwhich is again time-
independent. However, the rest of D̄a|̄b is not. To evaluate
this time dependence, let us consider any 1-form ¯̄|b in a
neighborhood of h whose pull-back to h is |̄b, and use the
fact that D̄a|̄b is the pull-back to h of∇a ¯̄|b to relate curvature
of D̄ to that of∇. Then it it follows that the time derivative of
D̄ is given by

˙̄Da|̄b∶ ≙ðLk̄D̄a− D̄aLk̄Þ|̄b≙D̄aω̄bþ ω̄aω̄bþ k̄cR̄cab
←

d|̄d

ð2:3Þ

where, on the right-hand side, the indicesa, b are pulled back
to h. Expanding the Riemann tensor of ḡab in terms of the
Weyl and Schouten tensors, Cabcd and S̄ab ¼ R̄ab − 1

6
R̄ḡab,

recalling that |̄bk̄b≙ − 1, and using condition (iii) of
Definition 1, namely, R̄a

bk̄a ¼ αk̄b, one obtains

˙̄Da|̄b≙D̄aω̄b þ ω̄aω̄b þ k̄cC̄cab
←

d|̄d

þ 1

2

�
S̄ab

←
þ
�
α −

1

6
R̄

�
q̄ab

�
: ð2:4Þ

On a generic WIH, none of the terms on the right side are
zero, whence D̄ has time dependence. By contrast, on
isolated horizons (IHs), ˙̄D≙0 by definition [19]; IHs are
much more restrictive. In particular, as we saw, one can
always choose a null normal on an NEH to endow it with the
structure of a WIH. However, generically there is no null
normal that can endow it with an IH structure. Stationary or
Killing horizons are even more restrictive than IHs because
the full 4 metric ḡab and its derivative operator ∇ as well as
curvature tensors—not just q̄ab and D̄—is now time inde-
pendent on h.

Finally, let us note an interesting fact that will be useful
especially in our analysis of Iþ. Suppose we are given a
space-time ðM̄; ḡabÞ that admits a WIH h. Then, h is also a
WIH in a conformally related space-time ðM̄; ḡ0ab ¼ μ2ḡabÞ
for a smooth, nonzero conformal factor μ if and only if
Lk̄μ≙0 for any null normal k̄a to h. Thus, the property that a
submanifold h is a WIH is shared by a conformal family of
4-metrics, related by a conformal factor that is time
independent on h. Of course, the two WIH-geometries
would be distinct because ðq̄0ab; D̄0Þ ≠ ðqab; D̄Þ.
Remark. As noted above, a general WIH is an NEH

equipped with equivalence classes ½k̄a� of null normals—
where k̄0a ≈ k̄a iff k̄0a ¼ ck̄a for a positive constant c—for
which Lk̄ω̄a≙0. Then it follows that ω̄ak̄a ¼ κ, a constant
on h [9]. WIHs are naturally divided into two classes:
the extremal WIHs, considered so far, on which κ ¼ 0,
and, nonextremal WIHs on which κ ≠ 0. The main
differences between these two cases can be summarized
as follows:

(i) On the extremal WIHs, the acceleration of any null
normal in the equivalence class ½k̄a� is the same,
namely zero, while in the nonextremal case if
k̄0a ¼ ck̄a, then κ0 ¼ cκ. In the nonextremal case,
the value of κ is not a property of the WIH itself but
of a specific null normal in the equivalence class one
chooses; and

(ii) While every NEH h naturally admits a canonical
extremal WIH structure, there is no natural pro-
cedure to select an equivalence class of null normals
½k̄a� that endows the given h with a nonextremal
WIH structure.

Note that whether a given NEH is extremal or not depends
on which null normals ½k̄a� one chooses to emphasize. For
instance, since the Schwarzschild horizon is also a Killing
horizon, it is natural to ask that ½k̄a� be the restriction to h of
a Killing field, and, in the Λ ¼ 0 case, to fix also the

TABLE I. Symbols associated with WIHs and their meaning.

Notions General spacetimes Physical spacetimes Conformal completions

Field equations None Einstein’s equations Conformal Einstein’s equations
4-Manifolds and metrics thereon M̄; ḡab M; gab M̂; ĝab
Horizons h Δþ Iþ
Induced metrics q̄ab qab q̂ab
Null normals k̄a la n̂a

Dual 1-forms |̄a na bla
Intrinsic derivative operators D̄ D D̂
Local degrees of freedom ðqab;DanbÞjS2

purely Coulombic
fD̂g

purely radiative
Universal structure q̊ab; ½̊ka� q̊ab; ½l̊a� ˆq̊ab; ˆn̊

a or q̂ab; n̂a

Symmetry vector fields ξa ξa ξa

Symmetry groups G ¼ B ⋉ D G B

ABHAY ASHTEKAR and SIMONE SPEZIALE PHYS. REV. D 110, 044048 (2024)

044048-4



rescaling freedom by demanding that the Killing field
be unit at infinity. We then have a nonextremal IH.3

Being NEHs, the nonextremal WIHs also inherit a
canonical derivative operator D̄ from space-time whose
action is again completely determined by D̄a|̄b. But now
Eq. (2.4) providing its time dependence acquires an extra
term proportional to κ [10]. However, the structure of the
equation is the same and our main conclusions of Sec. II B
continue to hold also in the nonextremal case. The
symmetry group in the nonextremal case is also the same
as that in the extremal case discussed in Sec. III A.
In this paper the focus is on extremal WIHs because:

(i) As we saw, one can naturally endow any NEH horizon
with a canonical extremal WIH structure, and, (ii) As we
will show in II C, in the conformal completions ðM̂; ĝabÞ
commonly used in the literature, Iþ is an extremal WIH.

B. WIHs Δ in physical space-times

Let us now apply the general framework of Sec. II A to the
black hole and cosmological WIHs. These lie in a physical
space-time satisfyingEinstein’s equations. There is extensive
literature on these WIHs (see, e.g., [1–4,9,10]). In these
investigations, physical considerations led to the assumption
that the space-time metric satisfies Einstein’s equations,
possibly with a cosmological constant, with Maxwell and
Yang-Mills fields as sources. In this subsection,wewill show
that this restriction results in certain simplifications and
provides some additional structures vis a vis our discussion
of Sec. II A. Interestingly, these in turn imply that there are no
radiative degrees of freedom on Δ. This reflects the fact that
there is no flux of radiation across these WIHs.
Let us then restrict ourselves to WIHs that are submani-

folds of the physical space-time ðM; gabÞ which satisfies
Einstein’s equations (possibly with a cosmological constant
and matter sources). To facilitate comparison with the
existing literature, in this subsection we will use notation
introduced there. Let us now denote the WIHs by Δ (rather
than h) and the preferred equivalence class of null normals
by ½la� (rather than ½k̄a�). Given a specific null normal
la ∈ ½la�, the conjugate 1-form on the WIH will now be
denoted by na (rather than |̄a), so that lana≙ − 1, and, if
l0a≙cla for a positive constant c, then n0a≙c−1na. There is
considerable freedom in the choice of na but the main
results are insensitive to the specific choice. As in the
existing literature, we will denote the intrinsic derivative
operator on Δ by D (rather than D̄), so that the 1-form
ωa is now given by Dalb≙ωalb, or ωa≙ − nbDalb.
Equation (2.2) now implies that Δ is in fact an extremal,

weakly isolated horizon (WIH), i.e., a WIH on which
Llωa≙0 and surface gravity κðlÞ ≔ ωala vanishes.
There are some interesting constraints on the space-time

Weyl curvature at Δ. (These are also present on the WIHs h
of Sec. II A.)Wewill nowmake them explicit by introducing
a standard Newman-Penrose null tetrad. Pick an la in the
equivalence class ½la�. So far the 1-form na is defined
intrinsically on Δ. Let us begin by extending it to the 4-d
tangent space as a null 1-form which, for simplicity of
notation, we will again denote by na. Then the vector field
na≙gabnb is null on Δ, where it satisfies gablanb≙ − 1.
While referring to the Newman-Penrose framework, wewill
assume that na≙ −Davwhere v is an affine parameter ofla,
so thatΔ is foliated by v ¼ const 2-sphereswithla andna as
its null normals.We can introduce aNewman-Penrose tetrad
by supplementing the pair ðla; naÞ with a complex null
vectorma, tangential to these 2-spheres, satisfyingLlma≙0
and ϵab ¼ 2im½am̄b�. Then the quadruplet ðla; na;ma; m̄aÞ
provides the desired null tetrad on Δ. Constraints on the
Weyl tensor can now bemade explicit as follows. Let us first
pull back toΔ the indices ab of 2∇½a∇b�ld≙ − Rabc

dlc and
use the fact that Ra

bla is proportional to lb on Δ to obtain

ðDaωb −DbωaÞlc≙ − 2Cabc
←

dlc: ð2:5Þ

Transvecting both sides with md and m̄d, one finds

Ψ0 ≔Cabcdlamblcmd≙0 and Ψ1≔Cabcdlamblcnd≙0

ð2:6Þ

These conditions are insensitive to the specific choice
of ðna;ma; m̄aÞ used to complete the null tetrad.
Equation (2.6) also implies that Ψ2 is insensitive to this
choice as well. Finally, similar direct calculation shows (see,
e.g., [5]):

ReΨ2≙ −
1

4
Rþ 1

24
R and ImΨ2ϵab≙D½aωb� ð2:7Þ

whereR is the 4-d scalar curvature, andR and ϵab denote the
pull-back to Δ of the scalar curvature R and the area
2-form ϵab on the 2-sphereΔ of null generators ofΔ. If there
are Maxwell or Yang-Mills fields on Δ, since the stress
energy tensor is trace-free, R≙4Λ is a constant. Therefore
ReΨ2 has essentially the same information as R—that
determines the shape of the horizon—and is time indepen-
dent; LlReΨ2 ¼ 0. The shape multipoles of Δ are con-
structed from ReΨ2. SinceLlωa ¼ 0 it follows that ImΨ2 is
also time independent. It determines the rotational multi-
poles. Since ωa is a potential for ImΨ2, it is referred
to the rotational 1-form. Note that the barred analogs of
Eqs. (2.6) and (2.7) hold on all WIHs discussed in Sec. II A.
However, physical interpretations associated with the scalar
curvature R, the 1-form ωa, and various parts of the Weyl

3But the null normals k̄a that endow the Schwarzschild horizon
with an extremalWIH structure also have interesting applications,
e.g., in the definition of the Unruh vacuum in quantum field theory
on the Schwarzschild background. By contrast, the standard
nonextremal null normal k̄a that descends from the normalized
static Killing field corresponds to choosing the Boulware vacuum.
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tensor use Einstein’s equations, and are thus tied to the black
hole and cosmological WIHs considered in this subsection.
For example, as we noted at the end of Sec. II A, if Δ is a
WIH in a given physical space-time ðM; gabÞ, then it is also a
WIH with respect to g0ab ¼ μ2gab if Llμ≙0. But if gab
satisfies Einstein’s vacuumequations, g0abwould not, and the
g0-multipoles of Δ will not carry any physical significance
in general.
Finally, if Einstein’s vacuum equations hold atΔ, Eq. (2.4)

governing the time dependence ofD also simplifies, provid-
ing us with a simple statement of freely specifiable data that
determines theWIHgeometry. (A characterization of the free
data was first obtained in [10] using a foliation of Δ). Let us
first consider the case when the matter stress-energy tensor
Tab vanishes on Δ. Then Eq. (2.4) becomes:

Ḋanb∶ ≙ðLlDa −DaLlÞnb ¼ Daωb þ ωaωb

þ lcCcab
←

dnd þ
1

3
Λqab

≙Daωb þ ωaωb þ ReΨ2qab − ImΨ2ϵab þ
1

3
Λqab

ð2:8Þ

Wealreadyknow thatΨ2 is time independent. SinceLlωa≙0
and laωa≙0, it follows that Daωb is the pull-back to Δ of
Daωb on the 2-sphere Δ of generators of Δ, whence
LlðDaωbÞ≙0. Therefore, each term on the right side is time
independent and we can trivially integrate (2.8) to obtain:

Danb≙cab þ
�
Daωb þ ωaωb þ ReΨ2qab

− ImΨ2ϵab þ
1

3
Λqab

�
v ð2:9Þ

where cab is the integration constant; LlðcabÞ≙0. Thus,
while D is time-dependent, that dependence is completely
determined by the specification of ðDanbÞjv¼v° on a 2-D
cross section v ¼ v° of Δ. Consequently, the free data
determining the geometry ðqab; DÞ of Δ consists of the pair
ðqab; DanbÞjv¼v° (This includes ωa≙ − lbDanb.) In this
precise sense, the local degrees of freedom in the geometry
of Δ are only 2-dimensional; there are no 3-D degrees of
freedom inD.4 Note that the lack of 3-Ddegrees of freedom is

a consequence of Einstein’s equations; it embodies the
intuition that there is no flux of gravitational radiation
across Δ. We will see in Sec. II C that the situation is very
different if conformal Einstein’s equations are satisfied at
the WIH.
Let us now allow for Maxwell fields as sources.

Then condition (iii) of Definition 1 implies that the
stress-energy tensor Tab is such that Tablb ∝ lb on Δ.
Since Tablalb≙0, it follows that the radiative part
Φ0≙Fablamb of the Maxwell field on Δ vanishes iden-
tically. Maxwell’s equations then imply that the other 4
components Φ1 and Φ2 are determined by their values on
a cross section v≙v

°
of Δ. Thus there are no 3-D degrees

of freedom in the Maxwell field either. Returning to the
gravitational free data on Δ, in presence of a Maxwell
field equation (2.8) acquires an extra term on the right side
but it is again time independent. Hence the free data
determining geometry of Δ continues to consist of 2-D
fields, specified on a cross section. Situation with Yang-
Mills fields is completely analogous.
To summarize, although the intrinsic derivative operator

D is time dependent on generic black hole and cosmo-
logical WIHs Δ, there are no 3-D radiative degrees of
freedom either of the gravitational field nor of Maxwell or
Yang-Mills fields. This is why these WIHs have been
regarded as representing surfaces whose geometry is in
equilibrium. Note, however, that this notion of equilibrium
is much weaker than that embodied in the notion of
Killing horizons. Indeed, as mentioned in Sec. III A one
can always endow an NEH with a WIH structure, but not
an IH structure, and Killing horizons are even more
restrictive than IHs. In particular, there exist explicit
examples—the Robinson-Trautmann vacuum solutions
and Kastor-Traschen electrovac solutions [22,23]—
that admit an IH that is not a Killing horizon.
Furthermore, using the characteristic initial value problem,
Lewandowski [24] has shown that a generic IH is not a
Killing horizon. These results show that a widespread
belief that WIHs are only slightly weaker than Killing
horizons is misplaced.
Finally, the weak notion of equilibrium encapsulated by

Δ was directly traced back to the fact that gab satisfies
Einstein’s equations with Maxwell or Yang-Mills sources
on Δ. Iþ, on the other hand, is a WIH in the conformally
completed space-time ðM̂; ĝabÞ and ĝab does not satisfy this
condition. Therefore, as we now show, its geometry does
not carry any connotation of being in equilibrium. Even
though it is a WIH, the physics of Iþ is very different from
that on Δ considered in this subsection.

C. I + as a WIH

Let us then consider the complementary case where
ðM̄; ḡabÞ of Sec. II A is taken to be the conformal
completion ðM̂; ĝabÞ of an asymptotically flat space-time

4The notion of 3-D versus 2-D DOF can be traced back to the
characteristic initial value problem on two intersecting 3-D null
surfaces first analyzed by Sachs and Randall [20,21]. The data
that can be freely specified on the 3-D null surfaces is radiative,
while the data that has to be specified on the 2-D intersection is
Coulombic. For any given radiative data, the value of the
Coulombic fields along the null hypersurfaces is uniquely
determined by Einstein’s equations. Hence they correspond to
2-D degrees of freedom or corner data. On Δ there are no 3-D
degrees of freedom at all; the radiative fields vanish and the 2-D
fields are transported to full Δ by (2.8).
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and h is replaced by Iþ. In this section we will set Λ ¼ 0
since Iþ is null only in this case. We will show that Iþ is
then aWIH, and explain why its physics is nonetheless very
different from that of black hole and cosmological hori-
zons Δ.
Let us begin by recalling from [25] the notion of

asymptotic flatness that is relevant to our analysis.
Definition 2. A physical space-time ðM; gabÞwill be said

to be asymptotically flat (at null infinity) if there exists a
Manifold M̂ with boundary Iþ equipped with a metric ĝab
such that M̂ ¼ M ∪ Iþ and ĝab ¼ Ω2gab on M for a
nowhere vanishing function Ω, and,

(i) Iþ has topology S2 × R and its causal past contains
a nonempty portion of M.

(ii) Ω≙0, where ≙ will now refer to equality at points of
Iþ, while ∇̂aΩ is nowhere vanishing on Iþ.

(iii) The physical metric gab satisfies Einstein’s equations
Rab − 1

2
Rgab ¼ 8πGTab where Ω−1Tab admits a

smooth limit to Iþ.
ðM̂; ĝabÞ will be referred to as the Penrose completion of
the physical space-time ðM; gabÞ. The asymptotic condition
(iii) on the stress energy tensor is the standard one; it is
satisfied by matter sources normally used in general
relativity, in particular, the Maxwell field.
Let us set n̂a ≔ ∇̂aΩ. Then, by rewriting the field

equations in terms of the conformally rescaled metric,
we obtain

R̂ab −
1

2
R̂ĝab þ 2Ω−1ð∇̂an̂b − ð∇̂cn̂cÞĝabÞ

þ 3Ω−2ðn̂cn̂cÞĝab ¼ 8πGTab ð2:10Þ

As is well-known, Eq. (2.10) and the assumption (iii) on the
fall-off of stress-energy tensor have several important
implications (see, e.g., [7,8])
(1) n̂an̂a≙0. Since n̂a is normal to Iþ, this implies that

Iþ is a null 3-manifold.
(2) There is considerable conformal freedom in the

Penrose completion. Given a completion satisfying
condition (iii) of Definition 2, Ω0 ¼ μΩ is also
an allowable conformal factor, if μ is nowhere
vanishing on Iþ. One can use this freedom to
set ∇̂an̂a≙0. Then the restricted conformal freedom
is Ω → μΩ, with Ln̂μ≙0. This choice of diver-
gence-free conformal frame can be made without
any loss of generality and removes unnecessary
complications in calculations that can obscure the
geometrical and physical significance of various
fields and properties. Therefore it is widely used in
the literature on null infinity.

We will restrict ourselves to these divergence-free con-
formal frames. With this restriction, (2.10) further implies
that the full derivative of n̂a vanishes at Iþ: ∇̂an̂b≙0.

(3) The Schouten tensor Ŝa
b ¼ R̂a

b − 1
6
R̂δab of ĝab

satisfies: Ŝa
bn̂a≙ − f̂n̂b, with f̂ ¼ Ω−2n̂an̂a. There-

fore condition (ii) in Definition 2 is satisfied:
R̂a

bn̂a≙αn̂b with α≙ 1
6
R̂ − f̂.

(4) The Weyl tensor Ĉabc
d of ðM̂; ĝabÞ vanishes on Iþ.

Hence if ĝab is C3 at Iþ, then K̂abcd ≔ Ω−1Ĉabcd
admits a continuous limit to Iþ.

Let us examine the consequences of these properties
of fields at Iþ. Property (1) ensures that Iþ is a null
3-dimensional manifold in the conformally completed
space-time ðM̂; ĝabÞ with n̂a as a normal; (2) implies that
expansion θn̂ of n̂a vanishes on Iþ; and (3) implies that R̂a

b

satisfies condition (iii) in Definition 1. Therefore, Iþ is an
NEH in ðM̂; ĝabÞ in every divergence-free conformal
completion of the given physical space-time.
Let us denote by D̂ the derivative operator induced by ∇̂

on Iþ. From our discussion of Sec. II A it follows that
D̂an̂b≙ω̂an̂b. However, we know from (2) that ∇̂an̂b≙0.
Hence, the 1-form ω̂a on Iþ in fact vanishes for all
asymptotically flat space-time. In particular, ω̂a is diver-
gence-free. Thus n̂a is a preferred geodesic null normal on
the NEH Iþ, and since Ln̂ωa≙0 trivially, it follows that Iþ

endowed with n̂a is a WIH. Note that on a general WIH, we
only have an equivalence class ½k̄a� of preferred null
normals with this property, where two are equivalent if
they differ via rescaling by a positive constant. At Iþ, the
given conformal completion naturally selects for us canoni-
cal vector field in this class: n̂a ≔ ĝab∇̂aΩ. If we use
Ω0 ¼ cΩ for a positive constant c, we obtain another
space-time ðM̂; ĝ0ab ¼ c2ĝabÞ. Even though the two com-
pletions refer to the same physical space-time, in
Definition 1 they have to be regarded as distinct space-
times that share a WIH.
More generally, ðM̂; ĝabÞ and ðM̂; ĝ0ab ¼ μ2ĝabÞ, where

μ (is nowhere vanishing on Iþ and) satisfies Ln̂μ≙0
present us with two divergence-free conformal comple-
tions of the same physical space-times. But in the WIH
perspective, they are to be regarded as distinct space-
times, in both of which Iþ is a WIH but with distinct
NEH geometries ðq̂ab; n̂a; D̂Þ and ðq̂0ab; n̂0a; D̂0Þ. Put differ-
ently, while the fact that Iþ is an extremal WIH is a
property of the given physical space-time, the geometry of
this WIH varies from one (divergence-free) conformal
completion to another. Now, in the discussion of asymp-
totic symmetries and associated charges and fluxes, one
has to consider not just a fixed ĝab but the entire
conformal class of space-times and ensure that physical
results are insensitive to this conformal freedom. We will
do so, mirroring the procedure followed in the standard
treatment of Iþ where one first works with a fixed
conformal completion and then shows that the results
are insensitive to this choice.
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Let us return to Eq. (2.4) satisfied on generalWIHs h of
Sec. II A:

˙̄Da|̄b≙D̄aω̄b þ ω̄aω̄b þ k̄cC̄cab
←

d|̄d

þ 1

2

�
S̄ab

←
þ
�
α −

1

6
R̄

�
q̄ab

�
: ð2:11Þ

As we saw in Sec. II B, on black hole and cosmological
horizons Δ, the Ricci part (encoded in Sab and α) is
nondynamical and in fact vanishes if vacuum equations
hold (withΛ ¼ 0). Therefore dynamics ofD is governed by
ωa and Ccab

←

d. At Iþ, the situation is just the opposite! Now

both ω̂a and Ĉabcd vanish while the Ricci part R̂ab of ĝab is
now nonzero even when the physical metric satisfies
vacuum Einstein’s equations (with Λ ¼ 0). Therefore
dynamics of D̂ is governed by the Ricci part, precisely
the term that vanishes on Δ when vacuum Einstein’s
equations hold.
For agreement with the terminology used in the literature

on Iþ, let us replace |̄b by a 1-form bla on Iþ satisfying
n̂al̂a≙ − 1. Then we have

˙̂Dal̂b≙
1

2

�
Ŝab

←
þ
�
α −

1

6
R̂

�
q̂ab

�
ð2:12Þ

where α≙ 1
6
R̂ − f ≡ 1

6
R̂ − limIþΩ−2n̂an̂a. Now, as is well-

known (see, e.g., [7,8,26,27]), the Bondi news resides in
Ŝab

←
: It is given by N̂ab≙Ŝab

←
− ρ̂ab where ρ̂ab is the

kinematical Geroch tensor field [7] that serves to remove
the unphysical information contained in Ŝab

←
through our

choice of Ω. Therefore, not only is D̂ time-dependent at
Iþ, but the time-dependence is now encoded in Bondi-
news—a field with two degrees of freedom per point in 3
dimensions. Thus, in sharp contrast to what we found in
Sec. II B for Δ, the freely specifiable data in the WIH
geometry ðq̂ab; n̂a; D̂Þ of Iþ includes a field with 3-D
degrees of freedom. While the connection D on Δ can be
specified by providing fields just on a cross section of Δ,
this is not possible at Iþ because the curvature of D̂
contains the Bondi news N̂ab which can be freely specified
on entire Iþ.
To summarize, Δ and Iþ are WIHs and therefore they

both inherit the rich structure discussed in Sec. II A, as
well as the dynamical equation (2.11). Still they contain
very different physics because complementary terms of
Eq. (2.11) trivialize in the two cases. In vacuum space-
times (with Λ ¼ 0) the Ricci contribution vanishes and the
time dependence of D is dictated by ω̄a and C̄cab

←

d on Δ
(both of which are themselves time independent). By
contrast, both these terms vanish identically at Iþ and
the time dependence of D̂ is now dictated by R̂ab

←
(which

has 3-D degrees of freedom). Thus every term that
contributes to the time derivative of D on Δ vanishes on
Iþ and vice versa. It is because of this subtle and surprising
complementarity that both Iþ and Δ can be realized as
distinct special cases of WIHs, sharing in detail a large
number of properties, and yet carrying very different
physics.

III. UNIVERSAL STRUCTURE
AND SYMMETRY GROUPS

A. General WIHs h

Let us begin by recalling (from [5]) the universal
structure and the symmetry group of a general WIH h.
Each WIH is equipped with an intrinsic metric q̄ab and an
equivalence class of preferred null normals ½k̄a�. However,
these fields are not universal; for example, the curvature of
q̄ab varies from one black hole WIH to another. On the
other hand, each WIH admits a 3-parameter family of unit,
round 2-sphere metrics q̊ab that are conformally related to
its q̄ab: q̊ab≙ψ̊2q̄ab.

5 While the conformal factors ψ̊ relating
the metrics q̊ab and q̄ab vary from one WIH to another, the
relative conformal factors α̊ between any two round metrics
is universal:

q̊0ab≙α̊2q̊ab where α̊ satisfies D̊2 ln α̊þ 1≙α̊−2: ð3:1Þ

α̊ is time-independent since all 2-sphere metrics are, and the
last equation admits precisely a 3-parameter family of
solutions, given by

α̊−1 ¼ α0þ
X3
i¼1

αir̂i; where α0 and

αi are realconstants;satisfying

−α20þ
X3
i¼1

ðαiÞ2¼−1; and

r̂i ¼ðsinϑcosφ;sinϑsinφ;cosϑÞ: ð3:2Þ

Here ðϑ;φÞ are spherical polar coordinates adapted to the
first round metric q̊ab. Motivated by the transformation
properties of vectors under conformal rescalings, and also
by multipole moment considerations,6 one carries out a

5More precisely, the 2-sphere h (of null generators of h) admits
a unique 3-parameter family of unit round metrics q̊

ab
confor-

mally related to q
ab
, and q̊ab are the pull-backs to h of ̊q

ab
. For

brevity, we will not explicitly mention h and freely pass between
fields on h and their pull-backs to h.

6With this rescaling, the 1-form ω̊a defined by Da
̊kb ¼ ω̊a

̊kb

can be written as ω̊a ¼ −ðD̊aEþ ̊ϵabD̊bBÞ, where E and B serve
as scalar potentials for the real and imaginary part of Ψ2. The
shape and rotational multipoles are obtained by a spherical
harmonic decomposition of E and B defined by q̊ab.
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parallel rescaling of the vector fields ½k̄a�, and sets
½̊ka�≙½ψ−1k̄a� [5]. Then every WIH is naturally equipped
with a 3-parameter family of pairs ðq̊ab; ½̊ka�Þ related
by conformal factors α̊ of Eq. (3.2): ðq̊0ab; ½̊k0a�Þ≙
ðα̊2q̊ab; α̊−1 ½̊ka�Þ. The relation is the same for all WIHs.
Thus, the pairs capture the kinematical structure that is
universal, leaving out fields such as q̄ab; ½k̄a�; ω̄a carrying
(physical) information that varies from oneWIH to another.
In view of this universal structure shared by all WIHs, we

are led to introduce an abstract 3-manifold h̊, topologically
S2 ×R, equipped with a 3-parameter family of pairs
ðq̊ab; ½̊ka�Þ of unit round metrics q̊ab, and equivalence
classes of vector fields ̊ka, where two are equivalent if
they are rescalings of one another with a positive constant
c, such that

(i) the space of integral curves of the chosenvector fields
̊ka is diffeomorphic to S2, and any two vector fields
are related by ̊k0a≙cα̊−1 ̊ka, where c is a positive
constant and functions α̊−1 are given by (3.2); and

(ii) any two metrics are related by q̊0ab≙α̊2q̊ab.
Thus, the 3-manifold h̊ is equipped with the structure that is
common to all WIHs. The symmetry group G of WIHs is
the subgroup of the diffeomorphism group of h̊ that
preserves this universal structure. Given any concrete
WIH h that resides in a space-time ðM̄; ḡabÞ, there is a
diffeomorphism from h to h̊ that sends the pairs ðq̊ab; ½̊ka�Þ
on h to those we fixed on h̊. Any two such diffeomorphisms
are related by an WIH symmetry in G.
By definition, G is generated by vector fields ξa on h̊,

whose action preserves the universal structure: Their
defining property is:

Lξq̊ab≙2β̊q̊ab and Lξ
̊ka≙ − ðβ̊ þ ϖ̊Þ̊ka ð3:3Þ

where ϖ̊ is a constant and β̊ satisfies ðD̊2 þ 2Þβ̊ ¼ 0; it is a
linear combination of the first three spherical harmonics of
q̊ab. G has a rich structure that has been spelled out in [5],
and is a subgroup of the symmetry group of a general null
hypersurface studied in [15] (see also [16,28–36]). We will
focus just on those aspects that are needed to understand the
relation between symmetries of general WIHs h and those
of Iþ. A key property of G is that, as we show below, it
admits a normal subgroupB that is isomorphic to the BMS
group, and the quotient G=B is a 1-d Lie group D of
dilations. Thus G ¼ B ⋉ D; it has one more generator
than the BMS group. This is because, as explained in
Sec. III B, the universal structure on a general WIH h is
slightly weaker than that on Iþ.
To explore the structure of G, let us begin with an

explicit expression of generators ξa defined by (3.3). Fix a
round metric q̊ab, the associated ½̊ka� in the universal
structure on h̊, and a cross section C of h̊. Let v̊ denote

the affine parameter of an ̊ka ∈ ½̊ka� with v̊ ¼ 0 on C.
Finally, introduce a set of spherical coordinates ϑ;φ defined
by q̊ab on C and Lie-drag them by ̊ka. Thus, h̊ is now
endowed with a global chart ðv̊; ϑ;φÞ. In terms of this
structure, the general symmetry vector field ξa can be
expanded out as

ξa≙ððϖ̊ þ β̊Þv̊þ s̊Þ̊ka þ ̊ϵabD̊b ̊χ − q̊abD̊bβ̊; ð3:4Þ

where s̊ðϑ;φÞ is a general function on the 2-sphere of null
generators of h̊; ̊χðθ;φÞ and β̊ðϑ;φÞ are both linear
combinations of first three spherical harmonics defined
by q̊ab; and ̊ϵab; q̊ab are the inverses of the area 2-form and
the metric on the v̊ ¼ const cross sections, respectively.
Given this explicit form, one can readily check that ξa

satisfies Eq. (3.3) that define infinitesimal WIH sym-
metries. Conversely, given a pair ðq̊ab; ̊kaÞ from the
universal structure, every symmetry vector ξa has this
form. (Note, incidentally, that a sign error has percolated
in several papers on the subject, including [12], where the
last term in (3.4) appears with a positive sign.)
The terms in the decomposition can be interpreted as

follows: da ≔ ϖ̊ v̊ ̊ka is a dilation; Sa ≔ ̊s̊ka a supertrans-
lation; Ra ≔ ̊ϵabD̊b ̊χ a rotation; and Ba ≔ q̊abD̊bβ̊ − v̊ β̊ ̊ka
a boost. Thus, ξa ¼ ðda þ SaÞ þ Ra þ Ba. As in the BMS
case the descriptors ̊sðϑ;φÞ of supertranslations Sa are
conformally weighted functions: under ðq̊ab; ½̊ka�Þ →
ðα̊2q̊ab; α̊−1 ½̊ka�Þ we have s̊ → α̊ s̊; the rest is invariant.
The Lie algebra g of horizon symmetries admits a
4-dimensional Lie-ideal of translations consisting of those
supertranslations whose descriptors s̊ðϑ;φÞ are linear
combinations of the first four spherical harmonics of
any round metric q̊ab on h̊ in our collection. Under
q̊ab → α̊2q̊ab, this 4-dimensional space is left invariant,
just as in the BMS Lie-algebra b. While these features are
shared by g and b, the WIH symmetry Lie algebra g
contains an extra generator: the dilation ξa ¼ ϖ̊ v̊ ̊ka that is
a vertical vector field like supertranslations, but depends on
v̊ rather than on ðϑ;φÞ.
The decomposition (3.4) of the general symmetry vector

field is tied to the choices we made to provide its explicit
expression. If we keep ðq̊ab; ½̊ka�Þ the same but change the
cross sectionC, then the affine parameter vo will change via
vo → vo þ fðϑ;φÞ and the new dilation vector field would
be a linear combination of the old dilation and a super-
translation.7 Thus, while the notion of a pure supertransla-
tion is well defined—i.e., does not depend on the choice of
the auxiliary structure we introduced—the notion of a
“pure” dilation is not. Put differently, while supertranslation

7On the other hand, if we keep the cross section the same but
change ̊ka via ̊ka → α̊−1 ̊ka, then the dilation da is left unchanged
because v̊ → α̊vo.
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vector fields constitute a canonical subalgebra of g, dilations
are in 1-1 correspondence with the elements of the quotient
g=b of the Lie algebra g by its BMS subalgebra b; one needs
extra structure to embed them in the Lie algebra ofG. These
properties of the Lie algebra ofG imply that, as noted above,
G admits B as a normal subgroup, with G=B ¼ D, the
1-dimensional group of dilations. Finally, as in the BMS
group, the choice of the cross section C provides us with a
preferred Lorentz subgroup of G generated by the six
symmetry vector fields ξa that are tangential to C.
Therefore, under v̊ → v̊þ fðϑ;φÞ this subgroup changes
by a supertranslation, just as in the BMS group.
Finally note that one does not acquire any extra

structure in the passage from general WIHs h to the
black hole and cosmological horizons Δ. Therefore the
symmetry group and its detailed structure discussed above
is the same for Δ as it is for general WIHs h. However, as
we show in Sec. III B, the situation at Iþ is different.
Remark. There is a conceptual point about the notion of

symmetries that one has to keep in mind. Symmetries of a
given space-time are generated by a Killing vector and a
generic metric ḡab does not admit any Killing vectors.
Nonetheless, the space of asymptotically flat space-times
does admit a symmetry group; it preserves only the
asymptotic universal structure that is shared by the collec-
tion of space-times satisfying the specified asymptotic
conditions. Similarly, a generic metric ḡab admitting WIH
h will not carry any vector field ξa whose action preserves
ḡab even at h. What the symmetry generators ξa discussed
above preserve is only the universal structure that is common
to all space-times that admit an WIH h.

B. I + as a special case of h

Each divergence-free conformal completion ðM̂; ĝabÞ of
an asymptotically flat space-time endows Iþ with an
intrinsic (degenerate) metric q̂ab and a null normal n̂a

and as one changes the conformal factor Ω, these fields on
Iþ change via ðq̂ab; n̂aÞ → ðμ2q̂ab; μ−1n̂aÞ, where μ sat-
isfies Ln̂μ ¼ 0. Universal structure of Iþ is generally taken
to consist these pairs ðq̂ab; n̂aÞ (see, e.g., [7,8,37,38]). From
the geometrical WIH perspective of Sec. II A, on the other
hand, the intrinsic metrics q̄ab on h are not a part of the
universal structure because, e.g., they vary from one black
hole or cosmological horizon to another, encoding physical
properties that distinguish these horizons from one another.
Similarly, the symmetry group G is not isomorphic to the
BMS groupB but to a 1-D extension thereof. Thus, at first,
there seems to be a tension between the two perspectives.
We will now show that this tension is only apparent: If one
restricts oneself to the subclass of WIHs that are boundaries
Iþ in Penrose conformal completions of asymptotically
flat space-times, then the WIHs acquire a small additional
structure that reduces G to the BMS group B, with the
familiar concrete action on Iþ.

Let us begin by recalling a key feature of general WIHs.
As discussed in Sec. II A, in general we can single out only
an equivalence class ½k̄a� of preferred geodesic null normals
to h—where two differ from each other by rescaling with a
positive constant—rather than a specific null normal k̄a. It
is this fact that forces one to allow dilations—which are
absent in the BMS group—as WIH symmetries. Could this
be because we just left out some structure on h inadvert-
ently? The answer is in the negative. Additional structure to
select a preferred element of this equivalence class simply
does not exist on a general WIH [5]. For example, the
action of the static Killing field ta in the Schwarzschild
space-time rescales our geodesic null normals k̄a on the
Schwarzschild horizon by a positive constant. Since the
action of the Killing field leaves the entire 4-geometry
invariant, already in this case one cannot invariantly single
out a preferred k̄a.
The situation changes when we restrict the general

ðM̄; ḡabÞ to be conformal completions ðM̂; ĝabÞ of physical
space-times ðM; gabÞ, and focus on the WIHs provided by
Iþ. Since each completion comes with a conformal factor
Ω, it provides a canonical null normal n̂a≙ĝab∇aΩ to the
WIH Iþ, rather than an equivalence class ½n̂a�. Recall that
on a general WIH, the unit round metrics q̊ab are con-
formally related to the q̄ab induced by physical metrics ḡab
via q̊ab≙ψ̊2q̄ab, and come paired with null normals ̊ka that
are related to the null normals ½k̄a� selected by ḡab via
½̊ka�≙½ψ̊−1k̄a�. Since there is now a canonical n̂a, we have a
3-parameter family of pairs ð ˆq̊ab; ˆn̊aÞ that feature vector
fields ˆn̊a, rather than equivalence classes ½ ˆn̊a�. Any two
pairs are again related by ð ˆq̊0ab; ˆn̊0aÞ≙ðα̊2 ˆq̊ab; α−1 ˆn̊aÞ, with α̊
given by (3.2). The WIH perspective puts these pairs
on the forefront. By contrast, the emphasis in the usual
discussions of universal structure is on ðq̂ab; n̂aÞ, where
ðq̂0ab; n̂0aÞ≙ðμ2q̂ab; μ−1n̂aÞ and μ only satisfies Ln̂μ≙0) (see,
e.g., [7,8,37]). In spite of this shift of emphasis, as we now
show, the group of asymptotic symmetries is again the
BMS group.
For the restricted class of WIHs provided by Iþ, vector

fields ξa on the abstract WIH h̊ are symmetries if the
diffeomorphisms they generate preserve the collection of
pairs ð ˆq̊ab; ˆn̊aÞ. Consequently, they must satisfy a slightly
stronger version of (3.3):

Lξ
ˆq̊ab≙2β̊ ˆq̊ab and Lξ

ˆn̊a≙ − β̊ ˆn̊a; ð3:5Þ

the constant ϖ̊ in (3.3) is now set to zero because the
rescaling freedom in each ½̊ka� no longer exists. Put
differently, on a general WIH, a symmetry vector field
ξa can leave each metric q̊ab invariant, but rescale the null
normals ̊ka by a constant ϖ̊ [see Eq. (3.3)]. That is no
longer possible; now rescalings of ˆq̊ab and of ˆn̊

a must occur
in tandem. Thus, now symmetry generators are given by
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setting ϖ̊ ¼ 0 in (3.4)

ξa≙ðs̊þ β̊ ůÞn̂a þ ˆ̊ϵabD̊b ̊χ − ˆq̊abD̊bβ̊ ð3:6Þ

where ů is now an affine parameter of the null normal n̂a.
By inspection, these are the standard BMS vector fields
written out in a Bondi conformal frame ð ˆq̊ab; ˆn̊aÞ [39], and
their action on Iþ regarded as an WIH is the same as the
familiar one without the WIH perspective.
Consequently, the symmetry group G of general WIHs

and their concrete action on h̊ reduces to the BMS groupB
with its standard action on Iþ. The difference with treat-
ments of Iþ that focus on the pairs ðq̂ab; n̂aÞ induced on Iþ

by ĝab and ∇̂aΩ is that the WIH perspective puts the Bondi
conformal frames ð ˆq̊ab; ˆn̊aÞ at the forefront. It is these pairs,
with ˆq̊ab the unit, round 2-sphere metrics, that specify the
universal structure now. In this sense, for Iþ, the notion of
symmetries that descends from the WIH perspective is
somewhat more closely related to the way it was first
introduced by Bondi et al. [40,41] and Sachs [41] (although
one now works in conformally completed space-times and
makes no reference to coordinate systems).
To conclude, let us recall that inclusion of the dilation

symmetry ξa≙ϖ̊ v̊ ̊ka in the Lie algebra g is essential in the
case of black hole and cosmological horizons because in
the case when the WIH is a nonextremal Killing horizon,
the restriction of the Killing vector field to the WIH is a
dilation [6]. Had the dilation been absent, the framework
would have implied that Killing symmetries of the full
space-time ðM̄; ḡabÞ that are tangential to h need not be
WIH symmetries! Is there an analogous problem at Iþ
now, since dilation is no longer a symmetry of this WIH?
The answer is in the negative: every Killing symmetry of
the physical space-time admits a well-defined limit to Iþ
which is tangential to Iþ and belongs to the BMS Lie
algebra b [25]. In particular, if an asymptotically flat space-
time is stationary and admits a nonextremal black hole
WIH, then the restriction of the Killing field to the black
hole WIH is a dilation, while its restriction to the Iþ WIH
belongs to the translation sub-Lie-algebra of b. Thus, there
is an interesting and rather subtle interplay between what
happens at horizons in the physical space-time and at Iþ,
allowing one to consistently treat both in a single, general
WIH framework.
Remark. Recall from the remark at the end of Sec. III A

that an WIH-symmetry does not preserve the metric ḡab on
general WIHs h, but only the conformal class of intrinsic
metrics. What is the situation for Iþ? To regard Iþ as an
WIH we have to fix a conformal completion ðM̂; ĝabÞ of an
asymptotically flat space-time ðM; gabÞ and the space-time
extension of a general BMS symmetry does not preserve
the given ĝab even at Iþ, but only the conformal class of
intrinsic metrics. Thus, for the metric the situation at Iþ is
the same as that for Δ. The only difference is that the

rescaling of the metric and the null normal are not as tightly
intertwined at Δ as they are at Iþ.
In both cases, to arrive at charges and fluxes associated

with symmetries, we have towork with a phase space which
carries a well-defined action of the symmetry group—i.e.,
all space-times that admit the desiredWIH as a boundary. As
wewill see in there companion paper [11], if the phase space
includes a ðM̂; ĝabÞ that arises from a divergence-free
conformal completion of a physical space-time ðM; gabÞ,
it will include all other divergence-free completions as well.

IV. DISCUSSION

The fact that null infinity is a WIH seems very surprising
at first because WIHs are commonly associated with black
hole (and cosmological) horizons Δ. Indeed, Iþ and Δ
have almost the opposite connotations. Iþ lies in the
asymptotic, weak curvature region, while Δ lies in a strong
field region. Iþ is the arena for discussing gravitational
waves, while Δ is generally used to discuss the Coulombic
properties of black holes in equilibrium. The goal of this
paper was to probe this tension. We began in Sec. II by
showing that the resolution lies in three facts that are rather
subtle:

(i) First, the general notion of a weakly isolated horizon
h refers only to a metric, say ḡab, of signature
−;þ;þ;þ on a manifold M̄. The notion does not
require ḡab to satisfy either Einstein’s equations or
conformal Einstein’s equations. The only condition
on the Ricci tensor R̄a

b is that, if k̄a is a null normal
to h, then R̄a

bk̄a be proportional to k̄b at points of h.
As a consequence, the existence of commonly used
geometrical fields on h and their basic properties—
investigated extensively in, e.g. [5,9,10]—do not use
Einstein’s or conformal Einstein’s equations. Each
WIH comes equipped with a degenerate metric q̄ab
and a (torsion-free) connection D̄ defined intrinsi-
cally on h, satisfying D̄aq̄bc≙0. Because q̄ab is
degenerate, it does not determine D̄; the connection
has extra information.

As we saw, the condition on the Ricci tensor is
satisfied on both: (i) the standard black hole and
cosmological WIHs where ðM̄; ḡabÞ is the physical
space-time ðM; gabÞ and h is denoted by Δ, and,
(ii) at null infinity with the standard fall-off of matter
stress-energy, where now ðM̄; ḡabÞ is the conformal
completion ðM̂; ĝabÞ of the physical space-time and
h is denoted by Iþ. Therefore both Δ and I are
WIHs, and each is equipped with an intrinsically
defined degenerate metric and a connection.

(ii) Second, in sharp contrast to stationary horizons dis-
cussed in the literature (e.g., in [15]), the intrinsically
defined D̄ onWIHs is generically time-dependent. At
Iþ, the time derivative of this connection—now
denoted by D̂—has direct physical significance: it
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determines the Bondi news [26,27,38]. Consequently,
D̂ encodes the radiative modes of the gravitational
field—twoper point of 3-dimensionalIþ.Hence there
can be flux of gravitational waves carrying BMS-
momentum across Iþ.

(iii) Third, a subtle but key difference arises for generic
black hole and cosmologicalWIHsΔ because they lie
in physical space-times ðM; gabÞ: even though the
time derivative of the intrinsic connectionD is again
nonzero, there is no flux of gravitational radiation
across Δ. We saw that the vacuum Einstein’s equa-
tionsRab ¼ 0 imply that the first time derivative ofD
can be expressed entirely in terms of geometrical
fields which are themselves time independent. Con-
sequently, the freely specifiable data onΔ consists of
fields that can be specified on a 2-dimensional cross
section; there are no volume degrees of freedom inD.
Gravitational waves on the other hand correspond to
geometric fields that carry 3-dimensional, local
degrees of freedom. Because these degrees of free-
domare absent, there is no flux of gravitationalwaves
across Δ. Finally, if there are matter fields, then
Einstein’s equation atΔ guarantee that no matter flux
falls acrossΔ either. By contrast, the metric ĝab at Iþ
satisfies conformal Einstein’s equations and they
allow the intrinsic derivative D̂ to carry 2 degrees
of freedom per point of 3-D Iþ, even though ĝab
endows Iþ with a WIH structure. Note also that it is
critical that while Iþ is a WIH, it is not an IH. Had it
been an IH then the connection D̂would have been so
constrained that its News tensor N̂abwould have been
forced to vanish. Thus, the difference between WIH
and IH structures—that may seem like a minor
technicality—makes a profounddifference to physics
at Iþ.

In Sec. III we examined the symmetry groups on WIHs.
The groupG on a general h is a 1-dimensional extension of
the BMS group by dilations. This extension is essential
because, in stationary, nonextremal black hole solutions,
for example, the restriction of the Killing field to the
horizon is a dilation. The presence of this dilation is directly
related to the fact that a generic WIH is naturally equipped
with a null normal that is unique only up to a constant
rescaling whence a symmetry vector field can rescale this
normal by a constant. On the other hand Iþ is an WIH in a
conformal completion of the physical space-time and each
completion endows Iþ with a specific null normal without
the rescaling freedom. Because of this extra structure, the
symmetry group G reduces to the B group.
In the companion paper [11], we will introduce a new

Hamiltonian framework tailored to degrees of freedom that

reside in 3-D open regions and apply it to regions R of Δ
and R̂ of Iþ to obtain expressions of fluxes across these
regions associated with respective symmetries. Again we
will find that while one and the same framework can be
applied to both types of WIHs, it leads to strikingly
different results in the two cases: At Iþ we obtain the
standard BMS fluxes while at Δ all fluxes vanish. The
origin of this difference can be traced back to the fact that
at Iþ we have 3-D (radiative) degrees of freedom, while at
Δ we only have 2-D (Coulombic) degrees of freedom.
Moreover, in contrast to other approaches, the BMS fluxes
(and charges) at Iþ are obtained without having to extend
the BMS vector fields ξa to the space-time interior. We
will compare and contrast the relative merits of this
method vis a vis those that have been widely used in
the recent literature. Our Hamiltonian framework could be
useful also other contexts. For example, it is well-suited to
the future space-like infinity in asymptotically de Sitter
space-times.
This unified treatment of black hole (and cosmological)

horizons Δ and null infinity Iþ may open new directions
for further research both in classical general relativity and
quantum gravity. For example, it was shown in [6] that the
expressions of fluxes on perturbed black hole and cosmo-
logical horizons Δ are completely analogous to those of
perturbations of stationary black holes at Iþ. This finding
paves the way to gravitational tomography at late times in
compact binary mergers [42,43], enabling one to read off
the late time horizon dynamics from the waveform at Iþ,
even though the dynamical horizon is causally inaccessible
to observers in the asymptotic region. Similarly, in the
analysis of isolated gravitating systems in presence of a
positive cosmological constant, one can use certain cos-
mological horizons as local I� [44,45]. The present unified
treatment suggests concrete avenues to develop a frame-
work to extract the physics of gravitational waves emitted
by these systems. Finally, the availability of a single
framework encompassing black hole horizons and null
infinity is likely to be useful also in quantum gravity.
Specifically, it offers sharper tools to analyze correlations
between horizon dynamics and quantum radiation at Iþ
during the long semiclassical phase [46] of black hole
evaporation [47].
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