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The Uð1Þ gauge-invariant scalar-vector-tensor theories, which catches 5 degrees of freedom, are
valuable for its implications to inflation problems, generation of primordial magnetic fields, new black hole
(BH), and neutron star solutions, etc. In this paper, we derive conditions for the absence of ghosts and
Laplacian instabilities of nontrivial BH solutions dressed with scalar hair against both odd- and even-parity
perturbations on top of the static and spherically symmetric background in the most general Uð1Þ gauge-
invariant scalar-vector-tensor theories with second-order equations of motion. In addition to some general
discussions, several typical concrete models are investigated. Specially, we show that the stability against
even-parity perturbations is ensured outside the event horizon under certain constraints to these models.
This is a crucial step to check the self-consistency of the theories and to shed light on the physically
accessible models of such theories for future studies.
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I. INTRODUCTION

Over the past decades, general relativity (GR) has passed
all the experimental tests with flying colors (see, e.g.,
Ref. [1]). From the theoretical point of view, it is quite an
elegant, robust, and systematic theory to describe the
gravity. Nonetheless, there are still many crucial open
questions left by the framework of GR. For instance, the
accelerated expansion of the Universe, the origin and
inherence of dark matter/energy, the possibility to construct
a quantum theory of gravity, etc., are some outstanding
ones [2]. To solve these problems and approach to the
nature of gravity, many modified gravitational theories
were constructed by introducing additional interactions and
fields. For the purposes of justifying and confining those
modified gravitational theories, they have to be subjected to
experimental tests, including those from the solar system
[3] as well as strong-field regimes, e.g., the gravitational
waves (GWs) led by compact celestial bodies [4–6].
The detection of the first GW from the coalescence of

two massive black holes (BHs) by advanced LIGO/Virgo
marked the beginning of a new era—the GWastronomy [7].
Following this observation, more than 90 GW events have
been identified by the LIGO/Virgo/KAGRA (LVK) scien-
tific collaborations (see, e.g., Refs. [8–11]). In the future,
more ground- and space-based GW detectors will be

constructed [12], which will enable us to probe signals with
a much wider frequency band and larger distances. As a
result, more types of GW sources will be realized, including
those from a final remnant BH [13]. BH is one of the most
mysterious phenomena in the Universe. The existence of
BHs provides us a perfect way to test gravitational effects
under extremely strong gravity as we pursued and men-
tioned above.On the other hand, from the theoretical point of
view,BHs are also unique laboratories to test the deviation of
modified theories of gravity from GR. The outbreak of
interest on BHs has further gained momenta after the
detection of the shadowof the supermassive compact objects
in the center of galaxy M87 and Sagittarius A* (Sgr A*) in
the center of theMilkyWaygalaxy,which are themost likely
black hole candidates, with the Event Horizon Telescope
(EHT) [14–17].
The development of the GW astronomy as well as the

interest on BHs have triggered the interest in the quasi-
normal mode (QNM) of BHs, as GWs emitted in the
ringdown phase can be considered as the linear combination
of these individual modes [18]. From the classical point
of view, QNMs are eigenmodes of dissipative systems.
The information contained in QNMs provides the keys to
revealing whether BHs are ubiquitous in our Universe, and
more importantly, whether GR is the correct theory to
describe gravity even in the strong field regime [19].
In addition to the observational purposes, QNM is also*Contact author: r.kase@rs.tus.ac.jp
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an important indicator of the stability of a specific space-
time [20,21]. Under certain circumstance, the results from
QNMs will exhibit a manifest consistency with those from
the Lagrangian-based stability analysis [22,23].
In GR, according to the no-hair theorem, an isolated and

stationary BH is completely characterized by only three
quantities, mass, angular momentum, and electric charge.
Astrophysically, we expect BHs to be electrically neutral,
so they are uniquely described by the Kerr solution.
Nonetheless, in theories that beyond GR, the existence
of additional degrees of freedom (d.o.f.) can give rise to
new hairs to the field configuration and spacetime metric
[24]. The theories containing a scalar field ϕ coupled to
gravity besides two tensor polarizations arising from the
gravity sector are dubbed scalar-tensor theories. In par-
ticular, Horndeski constructed most general scalar-tensor
theories with second-order equations of motion [25–27].
On the other hand, for a vector field coupled to gravity,
it is known that generalized Proca theories are the most
general vector-tensor theories with second-order equations
of motion [28–30] (see also Refs. [31,32]). These two
important classes of field theories, Horndeski and gener-
alized Proca theories, can be unified in the framework of
scalar-vector-tensor (SVT) theories with second-order
equations of motion [33]. The SVT theories can be
classified into two cases depending on whether they respect
the Uð1Þ gauge symmetry or not. In the presence of Uð1Þ
gauge symmetry, the longitudinal component of a vector
field vanishes, so that the propagating d.o.f. are five in total
(one scalar, two transverse vectors, two tensor polariza-
tions). The breaking of Uð1Þ gauge symmetry leads to
the propagation of the longitudinal scalar besides the
5 d.o.f. Although a canonical scalar field in the Einstein-
Maxwell theories cannot have nontrivial profile under the
assumption of static and spherically symmetric configura-
tion, i.e., the no-hair theorem [34–36] holds in the theories,
this is not the case in SVT theories due to the existence of
the coupling between scalar and vector d.o.f. Indeed, one
can construct a hairy, static and spherically symmetric BH
solutions in Uð1Þ gauge-invariant SVT theories in which
the scalar field can possess nontrivial profile [37,38].
In this paper, we study the stability of static and

spherically symmetric BHs in the Uð1Þ gauge-invariant
(GI) SVT theory. The one against the odd-parity perturba-
tions has been studied in Ref. [24]. This paper is a successor
that turns to the even-parity sector [39–42], which com-
pletes this kind of Lagrangian-based stability analysis. By
demanding the self-consistency of the theory, Ref. [24] has
already brought some constraints to the phase space of the
theory-dependent coupling parameters for certain models
of the Uð1Þ GI SVT theory. As will be seen later, in
combining with the even-parity analysis, the corresponding
phase space will be further confined.
The rest of the paper is organized as following: Sec. II

provides the necessary fundamental information of the
Uð1Þ GI SVT theory. The corresponding background field
equations are discussed there. After that, we quickly review

the stability analysis against the odd-parity perturbations
in Sec. III. Taking advantages of the results led by the odd-
parity sector, we further run the stability analysis for the
even-parity case in Sec. IV. Notice that, the analysis is
divided into three parts according to l ≥ 2, l ¼ 0, and
l ¼ 1. We apply our general stability conditions to the three
typical models in Sec. V for the background solutions
studied in Ref. [37]. Finally, some of the concluding
remarks will be given in Sec. VI.
As a usual treatment, in the following we shall set the

speed of light as well as the reduced Planck constant to
one, viz., c ¼ ℏ ¼ 1.1 All the Greek letters in indices
run from 0 to 3. Other usages of indices will be explained
when it is necessary. The whole paper is working under the
signature ð−þþþÞ.

II. BACKGROUND EQUATIONS IN Uð1Þ
GAUGE-INVARIANT SVT THEORIES

We consider theUð1Þ gauge-invariant (GI) scalar-vector-
tensor (SVT) theories described by the action,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

pl

2
Rþ

X4
i¼2

Li
SVT

�
; ð2:1Þ

where g is a determinant of the metric tensor gμν,M2
plR=2 is

the Einstein-Hilbert term composed of the reduced Planck
mass Mpl associated with Newton’s gravitational constant

G as Mpl ¼ 1=
ffiffiffiffiffiffiffiffiffi
8πG

p
, and R denotes the Ricci scalar. The

Lagrangians Li
SVT with i ¼ 2, 3, 4 representing theUð1ÞGI

SVT interactions [33] between a scalar field ϕ and a vector
field Aμ are given by

L2
SVT ¼ f2ðϕ; X; F; F̃; YÞ; ð2:2Þ

L3
SVT ¼ ½f3ðϕ; XÞgρσ þ f̃3ðϕ; XÞ∇ρϕ∇σϕ�F̃μρF̃νσ∇μ∇νϕ;

ð2:3Þ

L4
SVT ¼ f4ðϕ; XÞLμναβFμνFαβ þ

�
1

2
f4;Xðϕ; XÞ þ f̃4ðϕÞ

�
× F̃μνF̃αβ∇μ∇αϕ∇ν∇βϕ; ð2:4Þ

where ∇μ is the covariant derivative operator. The function
f2 depends on ϕ and the following quantities:

X ≡ −
1

2
∇μϕ∇μϕ; F≡ −

1

4
FμνFμν;

F̃≡ −
1

4
FμνF̃μν; Y ≡∇μϕ∇νϕFμαFν

α; ð2:5Þ

1Notice that, after this unit selection, there is still one d.o.f. left
for the unit system of ½L;M; T�. As an example, one can further
set the radii of metric horizon to the Planck mass (rh ¼ Mpl) to fix
the unit system.
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where

Fμν ≡∇μAν −∇νAμ; F̃μν ≡ 1

2
EμναβFαβ: ð2:6Þ

Here, the antisymmetric Levi-Civita tensor Eμναβ satisfies
the normalization EμναβEμναβ ¼ −4!. We denote the deriva-
tive of f2 as f2;Z ¼ ∂f2=∂Z where Z is any of ϕ, X, F, F̃,
and Y. Meanwhile, f3; f̃3; f4 are functions of ϕ; X with
the same notation such as f3;ϕ ¼ ∂f3=∂ϕ, f3;X ¼ ∂f3=∂X,
etc., and f̃4 depends on ϕ alone as seen from Eq. (2.4). The
double dual Riemann tensor Lμναβ is defined by

Lμναβ ≡ 1

4
EμνρσEαβγδRρσγδ; ð2:7Þ

where Rρσγδ is the Riemann tensor.
In this paper, we study the stability of the hairy BH

solutions in theUð1ÞGI theories studied in Ref. [37] on top
of the static and spherically symmetric background given
by the line element [under the Boyer-Lindquist coordinate
ðt; r; θ;φÞ],

ds2 ¼−fðrÞdt2þh−1ðrÞdr2þ r2ðdθ2þ sin2 θdφ2Þ; ð2:8Þ

where f and h depend on the radial coordinate r. According
to the underlying symmetry of the spacetime, we consider
the scalar field ϕ depending on r alone at the level of
background, such that

ϕ ¼ ϕðrÞ: ð2:9Þ

Similarly, the background components of Aμ are given as

Aμ ¼ ðA0ðrÞ; 0; 0; 0Þ; ð2:10Þ

where the radial component is absent due to the Uð1Þ
gauge invariance [24]. We note that one can introduce
the magnetic charge P by setting Aφ ¼ −P cos θ as in
Refs. [43–45]. However, we do not include such a term in
this paper since we focus on the stability analysis of the
solutions given in Ref. [37] in which the magnetic charge is
absent. Denoting the quantities X, F, F̃, and Y evaluated on
the background with the overbar, they reduce to

X̄ ¼ −
h
2
ϕ02; F̄ ¼ hA02

0

2f
; ¯̃F ¼ 0; Ȳ ¼ 4X̄ F̄ : ð2:11Þ

Here, a prime in the superscript denotes the derivative with
respect to r. Since the dependence on F̃ and Y in f2 under a
static and spherically symmetric background either van-
ishes or can be expressed in terms of X and F, it can be
omitted at the background level [46,47]. However, since
the above relations hold only at the background level, the
dependence on F̃ and Y in f2 may give rise to specific

effect on the dynamics of the odd- and even-parity
perturbations. Thus, we keep the full dependence in f2,
i.e., f2 ¼ f2ðϕ; X; F; F̃; YÞ, in this paper.2 We omit the
overbar in the following discussion before stimulating any
confusions.
By the variation of the action (2.1) with respect to

f; h;ϕ; A0, we obtain background equations of motion,
respectively, as3

E00 ≡M2
plrfh

0 − ½M2
plfð1 − hÞ

þ r2fff2 − hA02
0 ðf2;F − 2hϕ02f2;YÞg − 2rh2ϕ0A02

0 f3

þ hA02
0 f4ðh − 1Þf4 − h2ϕ02ðf4;X þ 2f̃4Þg� ¼ 0;

ð2:12Þ

E11 ≡M2
plrhf

0 − ½M2
plfð1 − hÞ

þ r2fff2 þ fhϕ02f2;X − hA02
0 ðf2;F − 4hϕ02f2;YÞg

− 2rh2ϕ0A02
0 ð3f3 − hϕ02f3;XÞ

þ hA02
0 f4ð3h − 1Þf4 − hð9h − 4Þϕ02f4;X

þ h3ϕ04f4;XX − 10h2ϕ02f̃4g� ¼ 0; ð2:13Þ

Eϕ ≡ J0ϕ − Pϕ ¼ 0; ð2:14Þ

EA ≡ J0A ¼ 0; ð2:15Þ

where

Jϕ ≡ −

ffiffiffi
h
f

s
½r2ðff2;X þ 2hA02

0 f2;YÞϕ0

− 2hA02
0 ð2hf̃4 þ 3hf4;X − 2f4;XÞϕ0 þ 2rh2A02

0 f3;Xϕ
02

þ h3A02
0 f4;XXϕ

03 − 2rhA02
0 f3�; ð2:16Þ

Pϕ ≡ 1ffiffiffiffiffiffi
fh

p ½r2ff2;ϕ þ hA02
0 f4f4;ϕ þ 2hðrϕ0f3;ϕ − 2f4;ϕÞ

þ h2ðf4;Xϕ þ 2f̃4;ϕÞϕ02g�; ð2:17Þ

2In fact, as seen from Sec. III, the quantity F̃ will hold the
linear-order contributions in the odd-party sector. In contrast, F̃ is
a quantity with a magnitude at most the third order of the
gravitational perturbation in the even-parity sector and hardly
affects the linear perturbation calculations as we will see in
Sec. IV.

3We notice that the explicit dependence of f2 on Y was not
considered in the counterparts of Eqs. (2.12)–(2.18) in Ref. [37]
by assuming that Y has been spelled out as Ȳ ¼ 4X̄ F̄ at the
background as we can see in Eq. (2.11). In this paper, we
explicitly include such a dependence in f2 to be consistent with
the fact that the relation Ȳ ¼ 4X̄ F̄ does not hold at the
perturbation level. Thus, Eqs. (2.12)–(2.18) look slightly different
in comparing to the equations in Ref. [37].
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JA ≡
ffiffiffi
h
f

s
A0
0½r2ðf2;F − 2hϕ02f2;YÞ þ 4rhϕ0f3 þ 8ð1− hÞf4

þ 2h2ϕ02ðf4;X þ 2f̃4Þ�: ð2:18Þ

From Eq. (2.15), the current JA of vector field is conserved
by virtue of the Uð1Þ gauge symmetry. In addition, if we
demand the shift symmetry of the scalar field, the current
Jϕ will also be conserved. In such a case, this current
vanishes at the horizon, and hence, it should be zero
everywhere as we will see in Sec. II. Interested readers can
check these field equations out in [48]. We note that the
coupling f̃3 never appears in Eqs. (2.12)–(2.15) due to the
underlying symmetry of background spacetime.

III. STABILITY CONDITIONS AGAINST
ODD-PARITY PERTURBATIONS

In this section, we revisit the stability conditions against
odd-parity perturbations in the Uð1Þ GI SVT theories
which is studied in Ref. [24]. We consider the perturbed
metric gμν ¼ ḡμν þ hμν, where ḡμν is the background
metric defined by Eq. (2.8) and hμν is the perturbation
satisfying jhμνj ≪ jḡμνj. The perturbations hμν can be
expanded in terms of the spherical harmonics Ylmðθ;φÞ
due to the underlying symmetry of the background
spacetime. In doing so, the perturbations are classified
into odd- and even-parity modes where the former changes
the sign as ð−1Þlþ1 under the parity transformation
ðθ;φÞ → ðπ − θ;φþ πÞ and the latter as ð−1Þl [49]. The
components of hμν in the odd-parity perturbations are
expressed as follows:

htt ¼ htr ¼ hrr ¼ 0;

hta ¼
X
l;m

Qlmðt; rÞEab∇bYlmðθ;φÞ;

hra ¼
X
l;m

Wlmðt; rÞEab∇bYlmðθ;φÞ;

hab ¼
1

2

X
l;m

Ulmðt; rÞ

× ½Ec
a∇c∇bYlmðθ;φÞ þ Ec

b∇c∇aYlmðθ;φÞ�; ð3:1Þ

where a, b represent either θ or φ, Qlm, Wlm, and Ulm
are functions of t and r. The tensor Eab is associated
with the antisymmetric symbol εab satisfying εθφ ¼ 1 as
Eab ≡ ffiffiffi

γ
p

εab, where γ ≡ sin2 θ is the determinant of
the metric γab defined on the surface of two-dimension
unit sphere. The scalar filed ϕ does not contribute to the

odd-parity perturbations; i.e., it has contributions only at
the background level as long as we consider odd-parity
perturbations. The odd-parity vector field perturbations δAμ

on top of the background value Āμ satisfying jδAμj ≪ jĀμj
are given by [41,50,51]

δAt ¼ δAr ¼ 0; δAa ¼
X
l;m

δAlmðt; rÞEab∂
bYlmðθ;φÞ;

ð3:2Þ

where δAlm depends on t and r.
Under a infinitesimal gauge transformation xμ →

xμ þ ξμ, where ξt ¼ 0 ¼ ξr, and ξa ¼
P

l;m Λlmðt; rÞ×
Eab∇bYlmðθ;φÞ, the metric perturbations transform as
Qlm → Qlm þ Λ̇lm, Wlm → Wlm þ Λ0

lm − 2Λlm=r, and
Ulm → Ulm þ 2Λlm, where a dot on top represents the
derivative with respect to t. We choose the Regge-Wheeler
gauge [52] satisfying Λlm ¼ −Ulm=2 in which hab in
the odd-parity sector merely vanishes. In the following,
we omit the labels l and m of the quantities Qlm, Wlm, and
δAlm for simplicity.
We expand the action (2.1) up to quadratic order in

odd-parity perturbations and perform the integration with
respect to θ and φ. In doing so, we can focus on the
perturbations of m ¼ 0 mode without loss of generality by
virtue of the underlying background symmetry [53]. After
repetitively using the integration by parts and the integral
formulas for spherical harmonics (see, e.g., Ref. [21] and
references therein), the second-order action reduces to

Sð2Þ
odd ¼

X
l;m

L
Z

dtdrLð2Þ
odd; ð3:3Þ

where

L≡ lðlþ 1Þ; ð3:4Þ

and

Lð2Þ
odd ¼ α1

�
Ẇ −Q0 þ 2

r
Q

�
2

þ 2ðα2δA0 þ α3δAÞ
�
Ẇ −Q0 þ 2

r
Q

�
þ α4δ̇A2 þ α5δA02 þ ðL − 2Þðα6W2 þ α7Q2

þ α8QδAÞ þ Lα9δA2: ð3:5Þ

The coefficients αi (i ¼ 1;…; 9) are given by
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α1 ≡
M2

pl

ffiffiffi
h

p

4
ffiffiffi
f

p ; α2 ≡ h3=2A0
0

2r
ffiffiffi
f

p ½rϕ0f3 − 4f4 þ hϕ02ðf4;X þ 2f̃4Þ�;

α3 ≡ −
ffiffiffi
h

p
A0
0

2r2
ffiffiffi
f

p ½r2ðf2;F − 2hϕ02f2;YÞ þ 4hðrϕ0f3 − 2f4Þ þ 2h2ϕ02ðf4;X þ 2f̃4Þ�;

α4 ≡ 1

2r
ffiffiffiffiffiffi
fh

p ½rf2;F þ 2hϕ0ðf3 þ hϕ02f̃3Þ − 4h0f4 þ ð2hϕ00 þ ϕ0h0Þfrf3 þ hϕ0ðf4;X þ 2f̃4Þg�;

α5 ≡ −
ffiffiffiffiffiffi
fh

p
2r

�
rðf2;F − 2hϕ02f2;YÞ þ 2hϕ0f3 þ

hf0

f
frϕ0f3 − 4f4 þ hϕ02ðf4;X þ 2f̃4Þg

�
;

α6 ≡ −
ffiffiffiffiffiffi
fh

p
4r2

�
M2

pl −
hA02

0

f
f4f4 − hϕ02ðf4;X þ 2f̃4Þg

�
;

α7 ≡ 1

4r2
ffiffiffiffiffiffi
fh

p
�
M2

pl −
4hA02

0 f4
f

�
; α8 ≡ 4

r2

 ffiffiffi
h
f

s
A0
0f4

!0
;

α9 ≡ −
1

2r2
ffiffiffiffiffiffi
fh

p
"
ff2;F − hA02

0 f2;F̃ F̃ þ 2
ffiffiffiffiffiffi
fh

p
ð
ffiffiffiffiffiffi
fh

p
ϕ0Þ0f3 þ h2f0ϕ03f̃3 − 4

ffiffiffiffiffiffi
fh

p  ffiffiffi
h
f

s
f0
!0

f4

þ h3=2f0ϕ0ð
ffiffiffi
h

p
ϕ0Þ0ðf4;X þ 2f̃4Þ

#
: ð3:6Þ

Notice that, in the absence of the dependence of F̃ and Y in
f2, the above coefficients αi (i ¼ 1;…; 9) reduce to those
defined in Ref. [50] up to an overall factor, which are

denoted as αðpreÞi (i ¼ 1;…; 9), such that

αi ¼ r2
ffiffiffi
f
h

r
αðpreÞi : ð3:7Þ

The second-order action (3.3) identically vanishes for the
monopole mode l ¼ 0, i.e., L ¼ 0. For the dipole mode
characterized by l ¼ 1 (L ¼ 2), the vector field perturba-
tion δA is the only propagating d.o.f., and it is shown that
the stability conditions for δA are the same as those for
l ≥ 2 in Ref. [24]. Thus, we focus only on the modes
characterized by l ≥ 2 and revisit their stability conditions
in this paper.
The dynamical variables in the Lagrangian (3.5) are W

and δA. In order to integrate out the remaining non-
dynamical variable Q, we introduce an auxiliary field χ
to the Lagrangian as

Lð2Þ
odd ¼ α1

�
2χ

�
Ẇ −Q0 þ 2

r
Qþ α2δA0 þ α3δA

α1

�
− χ2

�

−
ðα2δA0 þ α3δAÞ2

α1
þ α4δ̇A2 þ α5δA02

þ ðL − 2Þðα6W2 þ α7Q2 þ α8QδAÞ þ Lα9δA2:

ð3:8Þ
Varying the above Lagrangian with respect to χ, we find
that the auxiliary field χ satisfies

χ ¼ Ẇ −Q0 þ 2

r
Qþ α2δA0 þ α3δA

α1
; ð3:9Þ

which guarantees the equivalence between Eqs. (3.5) and
(3.8). Meanwhile, the variation of the Lagrangian (3.8) with
respect to W and Q leads

α1χ̇ − ðL − 2Þα6W ¼ 0; ð3:10Þ

α1χ
0 þ 1

r2
ðr2α1Þ0χ þ ðL − 2Þ

�
α7Qþ α8

2
δA
�

¼ 0; ð3:11Þ

respectively. The above algebraic equations can be solved
for W and Q, respectively. We substitute these solutions
into the Lagrangian (3.8) and eliminate the perturbations Q
andW from the second-order action. In doing so, the role of
gravitational d.o.f. carried by Q and W in the original
Lagrangian (3.5) is transferred to the auxiliary field χ in the
resultant Lagrangian of the form,

ðL − 2ÞLð2Þ
odd ¼ ˙X⃗

t
K ˙X⃗ þ X⃗ 0tGX⃗ 0 þ X⃗ 0tSX⃗ þ X⃗ tMX⃗ ;

ð3:12Þ

where K;G; S;M are 2 × 2 matrices with the nonvanishing
components given by

EVEN-PARITY STABILITY OF HAIRY BLACK HOLES IN … PHYS. REV. D 110, 044047 (2024)

044047-5



K11 ¼ −
α21
α6

; K22 ¼ ðL − 2Þα4;

G11 ¼ −
α21
α7

; G22 ¼
ðL − 2Þðα1α5 − α22Þ

α1
;

S12 ¼ −S21 ¼ −ðL − 2Þ
�
α2 þ

α1α8
2α7

�
;

M11 ¼ −ðL − 2Þα1 −
½ðr2α1Þ0�2
r4α7

þ
�
α1ðr2α1Þ0
r2α7

�0
;

M22 ¼ −ðL − 2Þ
�ðL − 2Þα28

4α7
− Lα9 þ

α23
α1

−
�
α2α3
α1

�0�
;

M12 ¼ M21 ¼ ðL − 2Þ
�
α3 −

α8ðr2α1Þ0
2r2α7

−
1

2

�
α2 −

α1α8
2α7

�0�
;

ð3:13Þ

and X⃗ is the vector defined by

X⃗ t ≡ ðχ; δAÞ: ð3:14Þ

The no-ghost conditions, K11 > 0 and K22 > 0, are guar-
anteed for

α6 < 0; α4 > 0: ð3:15Þ

By assuming the solution of the form X⃗ t ∝ eiðωt−krÞ in
the small-scale limit characterized by k → 0, the pro-
pagation speed of perturbations along the radial direc-
tion is expressed as cr ¼ ω=ð ffiffiffiffiffiffi

fh
p

kÞ in proper time.
Substitution of this expression into the dispersion relation,
det ðω2K þ k2GÞ ¼ 0, leads

c2r1;odd ¼ −
G11

fhK11

¼ −
α6

fhα7
; ð3:16Þ

c2r2;odd ¼ −
G22

fhK22

¼ α22 − α1α5
fhα1α4

; ð3:17Þ

where cr1;odd and cr2;odd are the propagation speeds of the
odd-parity perturbations arising from the gravity sector and
the vector field perturbation, respectively. On the other

hand, by assuming the solution of the form X⃗ t ∝ eiðωt−lθÞ in
the limit that L ¼ lðlþ 1Þ ≫ 1, the squared propagation
speed along the angular direction is expressed as c2Ω ¼
r2ω2=ðl2fÞ in proper time. We substitute this expression
into the dispersion relation of the form detðω2K þMÞ ¼ 0.
Picking up the dominant contributions for l ≫ 1, we obtain

c2Ω1;odd ¼ −
r2M11

l2fK11

¼ −
r2α6
fα1

; ð3:18Þ

c2Ω2;odd ¼ −
r2M22

l2fK22

¼ r2ðα28 − 4α7α9Þ
4fα4α7

: ð3:19Þ

Here, cΩ1;odd is the propagation speed along the angular
direction for the perturbation arising from gravity sector,
while cΩ2;odd is that arising from the vector perturbation.
We note that the expressions of Eqs. (3.15)–(3.19) are all
the same as those derived in Ref. [24] while the dependence
of F̃ and Y in f2 alters the coefficients α3, α4, α5, and α9.
For the absence of Laplacian instabilities, we require

the conditions c2r1;odd ≥ 0, c2r2;odd ≥ 0, c2Ω1;odd ≥ 0, and
c2Ω2;odd ≥ 0. Among these conditions, Eq. (3.18) shows
that the condition c2Ω1;odd ≥ 0 is automatically satisfied
under the no-ghost condition (3.15) since α1 is non-
negative by definition [cf., (3.6)]. From Eqs. (3.16),
(3.17), (3.19), the other three conditions for the absence
of Laplacian instabilities are translated to give

α7 ≥ 0; α22 − α1α5 ≥ 0; α28 − 4α7α9 ≥ 0: ð3:20Þ

The above stability conditions will assist us below in
understanding those for the even-parity sector.

IV. STABILITY CONDITIONS AGAINST
EVEN-PARITY PERTURBATIONS

We proceed to derive the stability conditions against
even-parity perturbations. On top of the background space-
time characterized by Eq. (2.8), the components of metric
perturbation hμν in the even-parity sector are given by

htt ¼ fðrÞ
X
l;m

H0;lmðt; rÞYlmðθ;φÞ; htr ¼ hrt ¼
X
l;m

H1;lmðt; rÞYlmðθ;φÞ;

hrr ¼ hðrÞ−1
X
l;m

H2;lmðt; rÞYlmðθ;φÞ;

hta ¼ hat ¼
X
l;m

h0;lmðt; rÞ∇aYlmðθ;φÞ; hra ¼ har ¼
X
l;m

h1;lmðt; rÞ∇aYlmðθ;φÞ;

hab ¼
X
l;m

½Klmðt; rÞgabYlmðθ;φÞ þ Glmðt; rÞ∇a∇bYlmðθ;φÞ�; ð4:1Þ
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where H0;lm, H1;lm, H2;lm, h0;lm, h1;lm, Klm, and Glm are
scalar quantities depending on t and r [one should avoid
confusing the K andG in here with those appearing in, e.g.,
(3.13)]. Similarly, we consider the perturbations of scalar
and vector fields on top of their background values as4

ϕ ¼ ϕ̄þ
X
l;m

δϕlmðt; rÞYlmðθ;φÞ; ð4:2Þ

Aμ ¼ Āμ þ δAμ; ð4:3Þ

with

δAt ¼
X
l;m

δA0;lmðt; rÞYlmðθ;φÞ;

δAr ¼
X
l;m

δA1;lmðt; rÞYlmðθ;φÞ;

δAa ¼
X
l;m

δA2;lmðt; rÞ∇aYlmðθ;φÞ; ð4:4Þ

where ϕ̄ and Āμ are background values given by Eqs. (2.9)
and (2.10), respectively. The scalar quantities δϕlm, δA0;lm,
δA1;lm, and δA2;lm are functions of t and r, which are, as
usual, assumed to be much smaller than the background
quantities.
Let us consider the infinitesimal gauge transformation

xμ → xμ þ ξμ with

ξt ¼
X
l;m

T lmðt; rÞYlmðθ;φÞ; ξr ¼
X
l;m

Rlmðt; rÞYlmðθ;φÞ;

ξa ¼
X
l;m

Θlmðt; rÞ∇aYlmðθ;φÞ; ð4:5Þ

where T lm, Rlm, and Θlm are the scalar quantities depend-
ing on t and r. In the following, we omit the subscripts l and
m of the scalar quantities in Eqs. (4.1) and (4.5) for
simplicity. Under the above transformation, the scalar
quantities in Eq. (4.1) transform as

H0 → H0 þ
2

f
Ṫ −

f0h
f

R; H1 → H1 þ Ṙþ T 0 −
f0

f
T ;

H2 → H2 þ 2hR0 þ h0R;

h0 → h0 þ T þ Θ̇; h1 → h1 þRþ Θ0 −
2

r
Θ;

K → K þ 2

r
hR; G → Gþ 2

r2
Θ;

δϕ → δϕ − ϕ0hR; ð4:6Þ

where we have dropped the lm in subscripts for the cor-
responding quantities for simplicity. For l ≥ 2, we choose
the gauge given by T ¼ −h0 þ r2Ġ=2, R ¼ −rK=ð2hÞ,
and Θ ¼ −r2G=2 so that the perturbations h0, K, G5

identically vanish. This gauge fixing is equivalent to
setting

h0 ¼ 0; K ¼ 0; G ¼ 0; ð4:7Þ

in Eq. (4.1) from the beginning (This is sometimes
referred as the EZ gauge [39]). We also consider the
Uð1Þ gauge transformation,

δAμ → δAμ þ ∂μδχ with δχ ¼
X
l;m

χ̃ðt; rÞYlmðθ;φÞ;

ð4:8Þ

under which the scalar quantities in Eq. (4.4) transform
as

δA0 → δA0 þ ˙̃χ; δA1 → δA1 þ χ̃0; δA2 → δA2 þ χ̃:

ð4:9Þ

For the gauge choice χ̃ ¼ −δA2, the quantity δA2

identically vanishes. This corresponds to setting

δA2 ¼ 0; ð4:10Þ

in Eq. (4.4) from the beginning. Thus, with all the gauge
choices mentioned above, we are now left with seven
variables, i.e., fδϕ; δA0; δA1; h1; H0; H1; H2g (and at this
point, they themselves, as well as their combinations,
represent gauge invariants).

A. Second-order action and perturbation equations
of motion

We expand the action (2.1) up to second order in terms
of the even-parity perturbations given in Eqs. (4.1), (4.2),
and (4.3) under the gauge choices (4.7) and (4.10). In
doing so, we can focus on the m ¼ 0 mode without loss
of generality for the same reason as in the case of odd-
parity perturbations. After lengthy but straightforward
calculation, the second-order action in the even-parity
sector reduces to

Seven ¼
X
l

Z
dt drðLu þ LAÞ; ð4:11Þ

where
4We note that we shall in general omit the overbar in writing

background quantities like ϕ̄ and Āμ in the following, since the
order of a quantity can be easily identified by the context and
counting the perturbation terms, just like what we have done in,
e.g., Eq. (2.12).

5One should avoid confusing the G in here with the gravita-
tional constant mentioned previously.
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Lu ≡H0½a1δϕ00 þ a2δϕ0 þ a3H0
2 þ La4h01 þ ða5 þ La6Þδϕþ ða7 þ La8ÞH2 þ La9h1�

þ Lb1H2
1 þH1ðb2δ̇ϕ0 þ b3δ̇ϕþ b4Ḣ2 þ Lb5ḣ1Þ þ c1δ̇ϕḢ2 þH2½c2δϕ0 þ ðc3 þ Lc4Þδϕþ Lc5h1�

þ c6H2
2 þ Ld1ḣ

2
1 þ Lh1ðd2δϕ0 þ d3δϕÞ þ Ld4h21 þ e1δ̇ϕ

2 þ e2δϕ02 þ ðe3 þ Le4Þδϕ2; ð4:12Þ

LA ≡ v1ðδA0
0 − δ̇A1Þ2 þ ðδA0

0 − δ̇A1Þðv2H0 þ v3H2 þ v4δϕ0 þ v5δϕþ Lv6h1Þ þ
1

2
Lv6h1δ̇A1 þ v7H2

0

þ Lðv8h1δA0 þ v9δA2
0 þ v10δA2

1 þ v11H1δA1 þ v12H2δA0 þ v13δϕδA0Þ: ð4:13Þ

The coefficients a1; a2;…; v9 are given in Appendix A. In Refs. [54] as well as [48], the even-parity perturbations in
Horndeski theories with the interaction between scalar and Maxwell fields characterized by the Lagrangian G2ðϕ; X; FÞ
are studied. Compared to that, the presence of the Uð1Þ GI SVT interactions characterized by f3, f̃3, f4, and f̃4 in
Eq. (2.1) gives rise to the new terms with the coefficients v6, v11, v12, and v13, in Eq. (4.13). For f2 ¼ G2ðϕ; X; FÞ,
f3 ¼ 0, f̃3 ¼ 0, f4 ¼ 0, and f̃4 ¼ 0, these coefficients identically vanish and the Lagrangian LA coincides with that
derived in Refs. [54,55]. Since the Lagrangian LA possesses the similar structure to that in Ref. [54], we can resort to
the analogous method in order to identify the dynamical vector d.o.f. in the even-parity sector. Let us introduce an
auxiliary field Vðt; rÞ and rewrite Eq. (4.13) as follows:

LA ¼ v1

�
2V

�
δA0

0 − δ̇A1 þ
1

2v1
ðv2H0 þ v3H2 þ v4δϕ0 þ v5δϕþ Lv6h1Þ

�
− V2

�

−
1

4v1
ðv2H0 þ v3H2 þ v4δϕ0 þ v5δϕþ Lv6h1Þ2 þ

1

2
Lv6h1δ̇A1 þ v7H2

0

þ Lðv8h1δA0 þ v9δA2
0 þ v10δA2

1 þ v11H1δA1 þ v12H2δA0 þ v13δϕδA0Þ: ð4:14Þ

By varying this action with respect to V, we find that

V ¼ δA0
0 − δ̇A1 þ

1

2v1
ðv2H0 þ v3H2 þ v4δϕ0 þ v5δϕþ Lv6h1Þ; ð4:15Þ

which shows the equivalence between Eqs. (4.13) and
(4.14). Nevertheless, the auxiliary field V plays a key role
to find out the dynamical vector d.o.f. on the point that
the quadratic derivative terms δA02

0 and δ̇A2
1 in Eq. (4.13)

do not appear in Eq. (4.14). The disappearance of these
derivative terms in Eq. (4.14) allows us to solve the
perturbation equations of δA0 and δA1 for themselves
explicitly in analogy with what we did in Eqs. (3.10)–
(3.11). On using these solutions, the dynamical property
of vector field perturbations can be aggregated into the
auxiliary field V as we will see later. Moreover, the
quadratic term H2

0 in Eq. (4.14) identically vanishes by
virtue of the relation among the coefficients v1, v2, and
v7, of the form,

v7 ¼
v22
4v1

: ð4:16Þ

This shows that the perturbation H0 appears only linearly
in the total action (4.11) with Eqs. (4.12) and (4.14). In
other words, the perturbation H0 corresponds to a
Lagrange multiplier. The variation of the action with
respect to H0 gives constraint on other perturbation
variables, and H0 simply disappears once the constraint
is applied to the action.
We vary the total action (4.11) represented by Eqs. (4.12)

and (4.14) with respect to H0, H1, H2, h1, δA0, δA1,
and δϕ, so as to obtain the following linear perturbation
equations:

0 ¼ a3H0
2 þ La4h01 þ

�
a2 −

v2v4
2v1

�
δϕ0 þ

�
La6 þ a5 −

v2v5
2v1

�
δϕþ

�
La8 þ a7 −

v2v3
2v1

�
H2 þ L

�
a9 −

v2v6
2v1

�
h1 þ v2V;

ð4:17Þ

0 ¼ 2Lb1H1 þ b3δ̇ϕþ b4Ḣ2 þ Lb5ḣ1 þ Lv11δA1; ð4:18Þ
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0 ¼ −b4Ḣ1 þ
�
c2 −

v3v4
2v1

�
δϕ0 þ

�
c3 þ Lc4 −

v3v5
2v1

�
δϕþ L

�
c5 −

v3v6
2v1

�
h1 þ

�
2c6 −

v23
2v1

�
H2

− a3H0
0 þ

�
a7 − a03 þ La8 −

v2v3
2v1

�
H0 þ v3V þ Lv12δA0; ð4:19Þ

0 ¼ −2d1ḧ1 þ
�
d2 −

v4v6
2v1

�
δϕ0 þ

�
d3 −

v5v6
2v1

�
δϕþ

�
2d4 −

Lv26
2v1

�
h1 − a4H0

0 þ
�
a9 − a04 −

v2v6
2v1

�
H0

− b5Ḣ1 þ
�
c5 −

v3v6
2v1

�
H2 þ v6V þ 1

2
v6δ̇A1 þ v8δA0; ð4:20Þ

0 ¼ −2ðv1VÞ0 þ Lðv8h1 þ 2v9δA0 þ v12H2 þ v13δϕÞ; ð4:21Þ

0 ¼ 2v1V̇ þ L

�
−
1

2
v6ḣ1 þ 2v10δA1 þ v11H1

�
; ð4:22Þ

0 ¼ −2e1δ̈ϕ −
�
2e2 −

v24
2v1

�
δϕ00 þ

�
2e3 þ 2Le4 þ

�
v4v5
2v1

�0
−

v25
2v1

�
δϕ −

�
a2 −

v2v4
2v1

�
H0

0

þ
�
a5 þ La6 − a02 þ

�
v2v4
2v1

�0
−
v2v5
2v1

�
H0 − b3Ḣ1 −

�
c2 −

v3v4
2v1

�
H0

2

þ
�
c3 þ Lc4 − c02 þ

�
v3v4
2v1

�0
−
v3v5
2v1

�
H2 − L

�
d2 −

v4v6
2v1

�
h01 þ L

�
d3 − d02 þ

�
v4v6
2v1

�0
−
v5v6
2v1

�
h1

−
�
2e02 −

�
v24
2v1

�0�
δϕ0 − v4V 0 þ ðv5 − v04ÞV þ Lv13δA0; ð4:23Þ

where we used the relation (4.16) and substituted in the
coefficients being 0 in Appendix A. In the following, we
study the linear stability conditions for the three cases
(1) l ≥ 2, (2) l ¼ 0, and (3) l ¼ 1, in turn.

B. Linear stability conditions for l ≥ 2

We introduce the following quantity:

ψ ≡H2 −
L
r
h1; ð4:24Þ

which corresponds to the propagating d.o.f. of gravitational
sector as in the case of GR. Now, we have all the
representations for the 3 d.o.f., i.e., gravitational (ψ), vector
(V), and scalar (δϕ), in hand. We replace the H2, Ḣ2, and
H0

2 in (4.17)–(4.22) with ψ and its derivatives. In doing so,
the quantity h01 disappears from Eq. (4.17) on account of the
relation a3 ¼ −ra4, and the resultant equation can be
explicitly solved for h1 as a combination of ψ , δϕ0, δϕ,
and V. Substituting this solution into Eqs. (4.18), (4.21),
(4.22) and combining them, we can also express H1,

δA0, and δA1 in terms of ψ , δϕ, V, and their derivatives.
Finally, by substituting these solutions back into the total
action (4.11) with Eqs. (4.12) and (4.14), the perturbations
H1, H2, h1, δA0, δA1 are removed. The quantity H0 is also
removed from the action as we discussed below Eq. (4.16).
As a consequence, the resultant action is composed of the
only three dynamical perturbations ψ , δϕ, and V. Denoting

the reduced Lagrangian asLð2Þ
even by mimicking (3.12), it can

be written as

Lð2Þ
even ¼ ˙Y⃗

t
K̃ ˙Y⃗þY⃗0tG̃Y⃗0 þ Y⃗0tS̃ Y⃗þY⃗tM̃ Y⃗; ð4:25Þ

where Y⃗ is the vector defined by

Y⃗t ¼ ðψ ; δϕ; VÞ: ð4:26Þ

Here, the matrices K̃, G̃ and M̃ are symmetric while S̃ is
antisymmetric. Putting together the 2 d.o.f. from the odd-
parity sector [cf., (3.14)] and the 3 d.o.f. from the even-
parity sector [cf., (4.26)], we obtain 5 d.o.f. in total, as once
promised.
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1. No-ghost conditions

The components of kinetic matrix K̃ are given as

K̃11 ¼
1

L

�
K1 þ

�
a04
a4

þ 1

r
þ L
2rh

�
K2 −

1

2
K0

2

�
;

K̃12 ¼
1

2L

�
fb3
ra4

�
K1 þ

1

2

�
a04
a4

þ 1

r
þ L
2rh

�
K2

�
−

1

ra4

�
a5 þ La6 −

A0
0

2
v5

�
K2 −

1

2

�
fb3
ra4

K2

�0�
;

K̃22 ¼ e1 þ
1

4L

�
fb3
r2a24

�
fb3K1 − 2

�
a5 þ La6 −

A0
0

2
v5

�
K2

�
−
1

2

��
fb3
ra4

�
2

K2

�0�
;

K̃13 ¼
v1

4Lra4

�
fv6
v10

K1 − 2A0
0K2

�
; K̃23 ¼

fb3
2ra4

K̃13; K̃33 ¼
fv21

2Lr2a4v10
K1; ð4:27Þ

where we used the relations among the coefficients given in Appendix A and introduced

K1 ≡ −
2r2a4
f

�
1 −

fv26
8a4v10

�−1
; K2 ≡ 4r2a4

f

�
f0

f
þ L
rh

−
2

r
þ A0

0v6
2a4

�
−1
: ð4:28Þ

The ghost instabilities are absent if the kinetic matrix K̃ is positive definite, which is translated to requiring the following
three no-ghost conditions:

K̃33 > 0; ð4:29Þ

K̃11K̃33 − K̃13K̃31 > 0; ð4:30Þ

det K̃ > 0: ð4:31Þ

On using the relations among the coefficients shown in Appendix A, the expression of the first no-ghost condition (4.29)
reduces to

K̃33 ¼
α1v21

Lðα22 − α1α5Þ
> 0: ð4:32Þ

Remembering that α1 is positive by definition, this shows that the first no-ghost condition automatically gets satisfied
provided the odd-parity stability conditions given in Eq. (3.20). Although the remaining two no-ghost conditions are
slightly complicated, they can be simplified by the use of the following relation:

K0
2 ¼

ðr2fhÞ0
r2fh

K2 −
1

8rf2a4

�
L

�
f3

r2h

�0
þ 2fðrf0 − 2fÞ2

r3
−
4f2ð2f2α7 þ A02

0 v10Þ
ra4

�
K2

2; ð4:33Þ

where we used Eq. (A2) in Appendix A for the derivation of this relation. Eliminating K0
2 in Eq. (4.27) by using the above

relation and substituting the definition of K1 and K2, the second and third no-ghost conditions (4.30)–(4.31) reduce to

K̃11K̃33 − K̃13K̃31 ¼
8r4hv21a

3
4½Lð2

ffiffiffiffiffiffi
fh

p
P1 þ rA0

0v6Þ − 8r2fhα7�
L2f2ð4Lra4 þ 2r2hA0

0v6 þ
ffiffiffiffiffiffi
fh

p
P2Þ2ðα22 − α1α5Þ

> 0; ð4:34Þ

det K̃ ¼ 32r6hv21a
3
4α7ðL − 2Þð2 ffiffiffiffiffiffi

fh
p

P1 þ rA0
0v6 − 4r2fhα7Þ

L2f2ϕ02ð4Lra4 þ 2r2hA0
0v6 þ

ffiffiffiffiffiffi
fh

p
P2Þ2ðα22 − α1α5Þ

> 0; ð4:35Þ

respectively, where

P1 ≡ 1

f

�
r
ffiffiffi
f

pffiffiffi
h

p
�0
a4; P2 ≡ 8r3

ffiffiffi
h

p

f

� ffiffiffi
f

p
r

�0
a4: ð4:36Þ
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Under the stability conditions in the odd-parity sector
given in Eq. (3.20), the no-ghost conditions (4.34) and
(4.35) are satisfied if Lð2 ffiffiffiffiffiffi

fh
p

P1 þ rA0
0v6Þ − 8r2fhα7 > 0

and 2
ffiffiffiffiffiffi
fh

p
P1 þ rA0

0v6 − 4r2fhα7 > 0 hold, respectively.
Since L ≥ 2 and α7 ≥ 0, we notice that the former is always
ensured as long as the latter holds. Hence, the second and
third no-ghost conditions converge to

K≡ 2

�
P1 þ

v6A0
0r

2
ffiffiffiffiffiffi
fh

p
�
− 4

ffiffiffiffiffiffi
fh

p
α7r2 > 0: ð4:37Þ

In conclusion, the no-ghost conditions in the even-parity
sector give rise to only one additional constraint (4.37) to
the stability conditions in the odd-parity sector.

2. Radial and angular Laplacian stability conditions

By assuming the solution of the form Y⃗t ∝ eiðωt−krÞ
in the small-scale limit characterized by k → 0, the
propagation speed of perturbations along the radial
direction is expressed as cr ¼ ω=ð ffiffiffiffiffiffi

fh
p

kÞ in proper
time. Substitution of this expression into the dispersion
relation reads

det ðfhc2rK̃ þ G̃Þ ¼ 0: ð4:38Þ

The components of matrix G̃ are given as

G̃11 ¼ −
f2K2

2

16r4a24

�
1

v1

�
A0
0v1 þ

ϕ0

2
v4

�
2

− 4ðrc5 þ c6Þ −
4r2

L
d4 þ

ð2rhv8 þ Lv6Þ2
4Lh2v9

�
;

G̃12 ¼
A0
0v4 − 2a2
2ra4

G̃11 −
fK2

4r4a4

�
c2 þ rd2 þ

v4
2v1

�
A0
0v1 þ

ϕ0

2
v4

��
;

G̃22 ¼ e2 −
v24
4v1

þ A0
0v4 − 2a2
ra4

�
G̃12 −

A0
0v4 − 2a2
4ra4

G̃11

�
;

G̃13

K̃13

¼ G̃23

K̃23

¼ G̃33

K̃33

¼ −
fv26 − 8a4v10

8a4v9
: ð4:39Þ

By virtue of the relation between G̃i3 and K̃i3 (i ¼ 1, 2, 3),
the propagation speed of the vector d.o.f. decouples from
the other two in the dispersion relation (4.38). On using the
relations among the coefficients given in Appendix A, it
reduces to

c2r3;even ¼
α22 − α1α5
fhα1α4

: ð4:40Þ

Although the remaining two propagation speeds look being
coupled with each other in the dispersion relation (4.38),
they decouples on the use of the relations among coef-
ficients given in Appendix A such that

c2r1;even ¼ −
α6

fhα7
; ð4:41Þ

c2r2;even ¼
ϕ0½v4ð2A0

0v1þϕ0v4Þþ 4v1ðc2þ 4rd2Þ�
4v1ð2

ffiffiffiffiffiffi
fh

p
P1þ rA0

0v6− 4r2fhα7Þ
: ð4:42Þ

They correspond to the radial propagation speeds of the
tenor and scalar mode, respectively. For the absence
of Laplacian instabilities along the radial direction, we
require

c2r1;even ≥ 0; c2r2;even ≥ 0; c2r3;even ≥ 0: ð4:43Þ

By observation, we notice that the squared radial propa-
gation speeds of vector (4.40) and tensor d.o.f. (4.41) are
equivalent to those in the odd-parity sector given by (3.17)
and (3.16), respectively. Thus, the first and third radial
Laplacian stability conditions are automatically satisfied as
long as the odd-parity sector is stable.
On the other hand, by assuming the solution of the

form Y⃗t ∝ eiðωt−lθÞ in the limit that L ¼ lðlþ 1Þ ≫ 1,
the squared propagation speed along the angular direction
(which is dimensionless) is expressed as c2Ω ¼ r2ω2=ðl2fÞ
in proper time. We substitute this expression into the
dispersion relation of the form,

det

�
fl2c2Ω
r2

K̃ þ M̃

�
¼ 0: ð4:44Þ

Weexpand this equation forL ≫ 1 and pick up the dominant
contribution so as to derive the propagation speeds along the
angular direction. As we will see later, the leading order
contribution possesses the linear dependence in L, but this
contribution identically vanishes after the substitution of
relations among coefficients. This shows that we need to
extract the subleading order contribution from Eq. (4.44). In
order to do so, we expand each component of matrices K̃ and
M̃ for L ≫ 1 up to the subleading order and find that the
components possess the following L-dependence:
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K̃11 ¼
K̃ð0Þ

11

L
þ K̃ð1Þ

11

L2
; K̃12 ¼

K̃ð0Þ
12

L
þ K̃ð1Þ

12

L2
; K̃13 ¼

K̃ð0Þ
13

L
þ K̃ð1Þ

13

L2
;

K̃22 ¼ K̃ð0Þ
22 þ K̃ð1Þ

22

L
; K̃23 ¼

K̃ð0Þ
23

L
þ K̃ð1Þ

23

L2
; K̃33 ¼

K̃ð0Þ
33

L
;

M̃11 ¼ M̃ð0Þ
11 þ M̃ð1Þ

11

L
; M̃12 ¼ M̃ð0Þ

12 þ M̃ð1Þ
12

L
; M̃13 ¼ M̃ð0Þ

13 þ M̃ð1Þ
13

L
;

M̃22 ¼ LM̃ð0Þ
22 þ M̃ð1Þ

22 ; M̃23 ¼ M̃ð0Þ
23 þ M̃ð1Þ

23

L
; M̃33 ¼ M̃ð0Þ

33 þ M̃ð1Þ
33

L
; ð4:45Þ

where the quantities with superscripts (0) and (1) correspond to the coefficients of leading and subleading contributions for
L ≫ 1, respectively, which do not contain L themselves. We note that K̃33 cannot be expanded further as seen from
Eq. (4.27). Substituting these expressions into the dispersion relation (4.44) and expanding it, the leading order contribution

is in proportion to L. As mentioned above, this contribution identically vanishes since the quantities M̃ð0Þ
ij ði; j ¼ 1; 2; 3Þ

satisfy

M̃ð0Þ
11

K̃ð0Þ
11

¼ M̃ð0Þ
13

K̃ð0Þ
13

¼ M̃ð0Þ
33

K̃ð0Þ
33

¼ 8a4v10 − fv26
8a4v1

; M̃ð0Þ
11 M̃

ð0Þ
33 − ðM̃ð0Þ

13 Þ2 ¼ 0; ð4:46Þ

under the use of relations among the coefficients given in Appendix A. We then pick up the next-to leading order
contribution proportional to L0 in Eq. (4.44). Although the resultant equation is complicated, we can simplify it by using the
following relations among coefficients appearing in Eq. (4.45):

K̃ð0Þ
23

K̃ð0Þ
13

¼ K̃ð1Þ
23

K̃ð1Þ
13

¼ fb3
2ra4

; K̃ð0Þ
12 M̃

ð0Þ
33 − K̃ð0Þ

23 M̃
ð0Þ
13 ¼ rhϕ0K̃ð0Þ

22 K̃
ð0Þ
33 ;

K̃ð1Þ
11 M̃

ð0Þ
33 − 2K̃ð1Þ

13 M̃
ð0Þ
13 ¼ r2h2M̃ð0Þ

33 ðϕ02K̃ð0Þ
22 þ 4r2α7Þ; ð4:47Þ

together with Eq. (4.46). We also introduce the following two quantities:

M1 ≡ M̃ð0Þ
11 M̃

ð1Þ
33 − 2M̃ð0Þ

13 M̃
ð1Þ
13 þ M̃ð0Þ

33 M̃
ð1Þ
11

4r2fh2α7M̃
ð0Þ
33

; ð4:48Þ

M2 ≡ ϕ0ðrhϕ0M̃ð0Þ
22 M̃

ð0Þ
33 þ 2M̃ð0Þ

13 M̃
ð0Þ
23 − 2M̃ð0Þ

12 M̃
ð0Þ
33 Þ

4rfhv1α7M̃
ð0Þ
33

: ð4:49Þ

Then, the next-to leading order contribution proportional to L0 in Eq. (4.44) can be expressed as

�
c2Ω þ r2M̃ð0Þ

33

fK̃ð0Þ
33

�"
ðc2Ω þM1 þM2Þ

 
c2Ω þ r2M̃ð0Þ

22

fK̃ð0Þ
22

!
−
r2ð4fα7M2 þ ϕ02M̃ð0Þ

22 Þ2

4f2ϕ02α7K̃
ð0Þ
22

#
¼ 0; ð4:50Þ

where the matrix components appearing in the above expression and M1, M2 are given by

Kð0Þ
22 ¼ e1; Mð0Þ

11 ¼ −
r2v26
4v1

; Mð0Þ
13 ¼ −

rv6
2

; Mð0Þ
33 ¼ −v1;

Mð1Þ
11 ¼ r2d4 −

m2
1

4a24v9
þ rhðm1 − ra4v8Þm2

a4v1v6
þ 1

4

�
rv6m1

a4v9
−
2r2hm2

v1

�0
;

Mð1Þ
33 ¼ −

m2
3

a24v9
−
hA0

0v1m4

a4
þ
�
v1m3

a4v9

�0
;
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Mð1Þ
13 ¼ −

m1m3

2a24v9
−
rhA0

0m2

2a4
þ hðm1 − ra4v8Þm4

2a4v6
þ 1

4

�
v1m1 þ rv6m3

a4v9
− rhm4

�0

Mð0Þ
22 ¼ e4 þ

2hc4a6
a4

−
m2

5

4a24v9
;

Mð0Þ
12 ¼ −

rd3
2

−
hc4ðm1 − ra4v8Þ

a4v6
−
rha6m2

2a4v1
þ rv5v6

4v1
þ m1m5

4a24v9
þ 1

4

�
2rhc4 þ

rð2d2v1 − v4v6Þ
2v1

−
rv6m5

2a4v9

�0
;

Mð0Þ
23 ¼ hA0

0c4v1
a4

þ v5
2
þm3m5

2a24v9
−
ha6m4

2a4
−
1

4

�
v4 þ

v1m5

a4v9

�0
; ð4:51Þ

with the shortcut notations,

m1 ≡ ra4v8 þ
�
a4 þ ra9 −

rA0
0v6
2

�
v6; m2 ≡ 2c5v1 þ

�
A0
0v1 þ

ϕ0v4
2

�
v6;

m3 ≡ a4v01 −
A0
0v1v6
2

; m4 ≡ 2A0
0v1 þ ϕ0v4; m5 ≡ a6v6 þ a4v13: ð4:52Þ

In a manner analogous to the radial propagation speeds,
the angular propagation speed of the vector d.o.f. decouples
from the other two propagation speeds in Eq. (4.50).
Denoting the vector propagating speed as cΩ3;even, it is
given by

c2Ω3;even ¼ −
r2M̃ð0Þ

33

fK̃ð0Þ
33

¼ r2ðfv26 − 8a4v10Þ
8fa4v1

≥ 0; ð4:53Þ

whose positivity is required for the Laplacian stability of
the perturbation V. This forms our third angular Laplacian
stability condition, as indicated in the subscript.6 The
remaining two propagation speeds associated with the
gravitational and scalar d.o.f. generally couple with each
other and can be expressed as

c2Ω�;even

¼ 1

2

2
64−�M1 þM2 þ

r2M̃ð0Þ
22

fK̃ð0Þ
22

�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
M1 þM2 −

r2M̃ð0Þ
22

fK̃ð0Þ
22

�
2

þ r2ð4fα7M2 þϕ02M̃ð0Þ
22 Þ2

f2ϕ02α7K̃
ð0Þ
22

vuut
3
75

ð4:54Þ

For the absence of Laplacian instabilities associated with
the perturbation ψ and δϕ, we require that the squared
propagation speeds given in Eq. (4.54) are real and non-
negative. These conditions [with the assistance of the
Vieta’s formula and Eq. (4.50)], with the nearest two below
referred as the first and second angular Laplacian stability
condition, respectively, are translated to give

M1 ≡ −
�
M1 þM2 þ

r2M̃ð0Þ
22

fK̃ð0Þ
22

�
≥ 0; ð4:55Þ

M2 ≡ r2ðM1 þM2ÞM̃ð0Þ
22

fK̃ð0Þ
22

−
r2ð4fα7M2 þ ϕ02M̃ð0Þ

22 Þ2

4f2ϕ02α7K̃
ð0Þ
22

≥ 0;

ð4:56Þ

and

M2
1 − 4M2 ¼

�
M1 þM2 −

r2M̃ð0Þ
22

fK̃ð0Þ
22

�2

þ r2ð4fα7M2 þ ϕ02M̃ð0Þ
22 Þ2

f2ϕ02α7K̃
ð0Þ
22

≥ 0; ð4:57Þ

with (4.57) guaranteeing that c2Ω�;even are real. Imposing
the Laplacian stability condition (3.20) in the odd-parity
sector, the quantity α7 in the third condition can not be
negative. Moreover, on using the relations of coefficients in
Appendix A and the definition of P1 given in Eq. (4.36),

the quantity K̃ð0Þ
22 in the third condition can be written as

K̃ð0Þ
22 ¼ e1 ¼

Kffiffiffiffiffiffi
fh

p
ϕ02 ; ð4:58Þ

6This is referred as the third angular Laplacian stability
condition since it belongs to the vector d.o.f., which appears
as the third one in (4.26). For a more convenient way of narration,
this one is discussed before the first and second angular Laplacian
stability conditions.
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which must be positive sinceK corresponds to the no-ghost
condition derived in Eq. (4.37). These facts show that the
last condition (4.57) is automatically guaranteed as long as
the Laplacian stability in the odd-parity sector and the no-
ghost condition in the even-parity sector are satisfied.
In spite of the complexity of stability conditions (4.37),

(4.43), (4.53), (4.55), and (4.56), some of the stability
conditions against even-parity perturbations can be omitted
since they are redundant with those against odd-parity
perturbations as we have already seen. Let us summarize
that before closing this subsection. For the absence of
ghosts, we found that only one additional condition,K > 0,
to the odd mode stability is required, where K is given in
Eq. (4.37). The tensor, scalar, and vector propagation
squared speeds along the radial direction, i.e., c2r1;even,
c2r2;even, and c2r3;even, are given in Eqs. (4.41), (4.42), and
(4.40), respectively. Among them, we find that the tensor
and vector propagation speeds are equivalent to the radial
propagation speeds of corresponding d.o.f. against odd-
parity perturbations given in Eqs. (3.16) and (3.17),
respectively. Hence, the radial Laplacian stability condition
against even-parity perturbations gives rise to only one
additional condition c2r2;even ≥ 0 to the odd mode stability.
On the other hand, the angular propagation speeds against
even-parity perturbations are independent of the odd mode

stability. Hence, the angular Laplacian stabilities require
three conditions. The positivity of c2Ω3;even is satisfied under
the condition (4.53). The tensor and scalar propagation
squared speeds, c2Ω�;even, are guaranteed to be positive
under the two conditions (4.55) and (4.56).
In summary, we need to consider five additional con-

ditions (4.37), (4.42), (4.53), (4.55), and (4.56),7 to the
stability of odd-parity sector. Nevertheless, it would be still
very hard to carry out the stability analysis for the most
general case. Instead, we shall process to next section and
consider several concrete models.

C. Linear stability conditions for l = 0

We consider the monopole perturbation characterized
by l ¼ 0, i.e., L ¼ 0, in which case the quantities h0, h1,
and G identically vanish away from the second-order
action of the even-parity sector [54]. This means that one
can use the gauge d.o.f. on T and Θ for our purpose other
than to eliminate h0 and G as in Eq. (4.7). However, the
gauge d.o.f. will not be completely fixed in such a case.
Thus, we adopt the same gauge characterized by Eq. (4.7)
as in the case for l ≥ 2. Substituting L ¼ 0 into the
second-order action (4.11) with Eqs. (4.12) and (4.14),
it reduces to

Sl¼0
even ¼

Z
dtdr

�
v1

�
2V

�
δA0

0 − δ̇A1 þ
v3H2 þ v4δϕ0 þ v5δϕ

2v1

�
− V2

�
−
ðv3H2 þ v4δϕ0 þ v5δϕÞ2

4v1

þ ðΦ0 þ A0
0v1VÞH0 −

2

f
Φ̇H1 þ ðc2δϕ0 þ c3δϕÞH2 þ c6H2

2 þ e1δ̇ϕ
2 þ e2δϕ02 þ e3δϕ2

�
; ð4:59Þ

where we introduced

Φ≡ a1δϕ0 þ
�
a2 − a01 −

1

2
A0
0v4

�
δϕþ a3H2; ð4:60Þ

and used the relations among coefficients in Appendix A.
Compared to Eqs. (4.12) and (4.14) for l ≠ 0, the pertur-
bations H1, δA0, δA1 do not possess the quadratic terms in
Eq. (4.59). This fact shows that, in addition to H0, these
variables also reduce to Lagrange multipliers giving rise to
constraints on the other variables for l ¼ 0. Indeed, the
variation of the action (4.59) with respect to δA0, δA1, H0,
and H1 lead to the following constraints:

ðv1VÞ0 ¼ 0; ð4:61Þ

V̇ ¼ 0; ð4:62Þ
Φ0 þ A0

0v1V ¼ 0; ð4:63Þ

Φ̇ ¼ 0; ð4:64Þ

respectively. Integrating Eqs. (4.61) and (4.62), we obtain

V ¼ C1
v1

; ð4:65Þ

where C1 denoting an integration constant. Substituting this
solution into Eq. (4.63) and integrating it together with
Eq. (4.64), we obtain

Φ ¼ C2 − C1A0; ð4:66Þ
where C2 is an integration constant. From the definition of
Φ in Eq. (4.60), the above solution leads a constraint on the
perturbation H2 as

H2 ¼
1

a3

�
C2 − C1A0 − a1δϕ0 −

�
a2 − a01 −

1

2
A0
0v4

�
δϕ

�
:

ð4:67Þ

7The relative algebraic expressions of all the nine stability
conditions mentioned in this section can be found in [48].
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We substitute Eqs. (4.65), (4.66), and (4.67) into the
second-order action (4.59) for l ¼ 0. This operation
removes all the metric perturbations, i.e., H0, H1, and
H2, and the vector perturbation V from the action. In
other words, we find that the monopole perturbation is
governed by the scalar perturbation δϕ as a single d.o.f.
Omitting the integration constants C1 and C2 irrelevant to
the dynamics of perturbations, the resultant action is
expressed as

Sl¼0
even ¼

Z
dtdr

�
e1δ̇ϕ

2 þ
�
e2 −

v24
4v1

�
δϕ02 þM0δϕ

2

�
;

ð4:68Þ

where M0 is given by

M0 ≡ e3 þ
b3ðb3c6 − b4c3Þ

b24
−
ðb3v3 − b4v5Þ2

4b24v1

þ 1

2

�
b3c2
b4

−
ðb3v3 − b4v5Þv4

2b4v1

�0
: ð4:69Þ

The above action shows that the no-ghost condition for
the monopole perturbation is given by e1 > 0. As we
have seen in Eq. (4.58), this is equivalent to the no-
ghost condition for the perturbations with l ≥ 2. The
propagation speed square along the radial direction,
c2r;even ¼ −ðe2 − v24=v1Þ=e1, also coincides with that for
l ≥ 2 derived in Eq. (4.42). Thus, we have shown that the
stability conditions derived for l ≥ 2 also ensure the
absence of instabilities in the monopole perturbation.

D. Linear stability conditions for l = 1

We proceed to study the dipole perturbations charac-
terized by l ¼ 1 (L ¼ 2), in which case, the metric
perturbations K and G appear in the second-order action
only through the combination of the form G − K [54].
This means that, instead of using the gauge d.o.f. of R
and Θ to eliminate both G and K as we adopted in
Eq. (4.7), it is possible to keep one of them by
eliminating the combination G − K and fixing either R
or Θ. Since Eq. (4.6) shows that the complete gauge
choice of Θ can be obtained only via the transformation
of the perturbation G, we use this gauge d.o.f. to
eliminate G. The residual gauge d.o.f. R can also be
completely fixed via the transformation of δϕ. Thus, we
choose the following gauge for the dipole perturbation:

h0 ¼ 0; δϕ ¼ 0; G ¼ K: ð4:70Þ

The elimination of nondynamical variables in the second-
order action for l ¼ 1 can be operated in the same way
for l ≥ 2, which we discussed below Eq. (4.24). After
this process, the resultant action is composed of two
dynamical variables, ψ and V, showing that the dipole

perturbation possesses one less propagating d.o.f. than
the case with l ≥ 2. In an analogous way to Sec. IV B 1,
we find that the no-ghost conditions for these two d.o.f.
coincide with Eqs. (4.32) and (4.34) substituted L ¼ 2.
The squared propagation speeds along the radial direction
for l ¼ 1 coincide with Eqs. (4.40) and (4.42), i.e., the
propagation speeds of vector and scalar field perturba-
tions for l ≥ 2, respectively. These facts show that the
dipole perturbation is governed by vector and scalar field
perturbations. Consequently, we find that the stability of
the dipole perturbation does not give rise to additional
conditions to those derived for l ≥ 2.

V. APPLICATION TO THE
CONCRETE MODELS

In Ref. [37], three different concrete models possessing
hairy BH solutions on the spherically symmetric spacetime
were proposed based on the Uð1Þ GI SVT theories. The
stability of such models against odd-parity perturbations
are studied in Ref. [24]. These models are characterized by
the following choices of functions:

Model 1∶ f3 ¼ β3; f4 ¼ 0; ð5:1Þ

Model 2∶ f3 ¼ β3; f4 ¼ β4; ð5:2Þ

Model 3∶ f3 ¼ β3; f4 ¼ β4X; ð5:3Þ

respectively, where β3 and β4 are arbitrary constants under
the constraints led by the odd-parity stability analysis
(and later will be further confined by the even-parity ones).
The other functions are common to all three models and
are chosen as f2 ¼ X þ F plus f̃3 ¼ f̃4 ¼ 0. In the fol-
lowing, we shall discuss the stability conditions against
odd-parity perturbations, Eqs. (3.15) and (3.20), and those
against even-parity perturbations, Eqs. (4.37), (4.43),
(4.53), (4.55), and (4.56), for each model. Notice that,
for the convenience of readers, some of the main results are
summarized at the end of this section in Table I. One can
move to there directly when the concluding remarks are
demanded. On the other hand, due to the horrible length
of some of the mathematical expressions in this section,
some of the selected ones are solely\also shown in [48]
and\or Appendix B.

A. Stability analysis for the model 1

In this model, the quantities α1, α6, and α7 associated
with stability conditions against odd-parity perturbations
reduce to

α1 ¼
M2

pl

ffiffiffi
h

p

4
ffiffiffi
f

p ; α6 ¼ −
ffiffiffiffiffiffi
fh

p
M2

pl

4r2
; α7 ¼

M2
pl

4r2
ffiffiffiffiffiffi
fh

p :

ð5:4Þ
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This shows that one of the no-ghost conditions, α6 < 0,
is trivially satisfied in Eq. (3.15). Moreover, the pro-
pagation speed of gravitational d.o.f. along the radial
and angular direction reduce to that of light; i.e.,
c2r1;odd ¼ 1¼ c2Ω1;odd. This fact shows that the Laplacian
stability conditions for the gravitational d.o.f. in the
odd-parity sector are also automatically satisfied. The
stability conditions associated with the vector field
perturbation remain nontrivial. Thus, in Eqs. (3.15)
and (3.20), the nontrivial stability conditions for this
model are

α4 > 0; α22 − α1α5 ≥ 0; α28 − 4α7α9 ≥ 0; ð5:5Þ

which are consistent with the Eqs. (3.23), (3.25), and
(3.28) in Ref. [24]. The above constraints can be
numerically translated to the phase space of fβ3; β4g
in the models (5.2) and (5.3). An overall constraint on
fβ3; β4g from the odd-parity sector can be found in
Ref. [24] by comprehensively considering all the three
models discussed in here. We shall go back to this point
in the following subsections.
In the eve-parity sector, the no-ghost condition repre-

sented by Eq. (4.37) reduces to

K ¼ 2r4hh
2A04

0 β̃
2
3

M2
plf

2
; ð5:6Þ

where we have defined the dimensionless factor β̃3 ≡
Mplβ3=r2h and rh stands for the radii of the event horizon
so that we have fðrhÞ ¼ hðrhÞ ¼ 0. Since Eq. (5.6) shows
that the quantity K is positive for any nonzero value of β̃3,

the third no-ghost condition will always get satisfied.8

We note that the background equations (2.12)–(2.15) have
been used during simplifications, and we shall apply the
same operation without additional alerts in the following.
Regarding Eqs. (2.14)–(2.15), we especially notice that the
conditions JϕðrÞ ¼ 0 and JAðrÞ ¼ constant≡ r2hκ hold as
discussed in the end of Sec. II. Thus, we have

ϕ0 ¼ 2hβ̃3A02
0 r

2
h

rfMpl
; A0

0 ¼
κ
ffiffiffi
f

p
r2hMpl

r
ffiffiffi
h

p ð4hβ̃3r2hϕ0 þ rMplÞ
: ð5:7Þ

Here, κ is temporarily borrowed to denote a dimensionless
constant. With the polynomial solutions given by
Eqs. (3.14)–(3.16) in Ref. [37] and evaluation of (2.18)
at rh, we notice that for model 1, we have κ ¼ ffiffiffiffiffi

2μ
p

Mpl=rh,

where μ∈ ð0; 1Þ so that ðrh=MplÞκ∈ ð0; ffiffiffi
2

p Þ [24].
On the other hand, for model 1, the squared second

propagation speed given by Eq. (4.42) reduces to

c2r2;even ¼ 1; ð5:8Þ

which shows that the second Laplacian stability condition
along the radial direction is automatically satisfied.
Regarding the third Laplacian stability condition along

the angular direction, we plug the full expressions of v6,
v10, etc., into Eq. (4.53), we find that

TABLE I. Summarize the stability analysis and corresponding conclusions for different categories of stability conditions as well as
different models. Type I: This stability condition will automatically get satisfied, provided the other stability conditions (including those
from the odd-parity sector); type II: This stability condition can be determined immediately by observing the corresponding
mathematical structure; type III: The analytic investigation will be quite complicated so that semianalytic or numerical techniques have
to be applied in confirming this stability condition. Notice that, the constraints on coupling parameters, i.e., β̃3 ∈ ð−0.441; 0.441Þ and
β̃4 ∈ ð−0.125; 0.251Þ will be considered; type IV: A complete numerical analysis is running out of the computational resources. Thus,
the analysis will be carried out by doing expansions around the event horizon (r ¼ rh) and also by plotting out those key quantities for
certain chosen coupling parameters (under the constraints mentioned above).

Model 1 Model 2 Model 3

Category No. Described by Type See Type See Type See

No-ghost First (4.32) Type I N=A Type I N=A Type I N=A
Second (4.34) Type I N=A Type I N=A Type I N=A
Third (4.37) Type II (5.6) Type II (5.11) Type II (5.17)

Radial First (4.41) Type I N=A Type I N=A Type I N=A
Laplacian Second (4.42) Type II (5.8) Type II (5.13) Type II (5.19)

Third (4.40) Type I N=A Type I N=A Type I N=A

Angular Third (4.53) Type II (5.9) Type II (5.14) Type III (5.20)
Laplacian First (4.55) Type III (B1) Type IV (5.15) and Fig. 3 Type IV (5.21) and Fig. 4

Second (4.56) Type III (5.10) and Fig. 1 Type IV (B3) and Fig. 3 Type IV (B4) and Fig. 4

8According to the (3.14) and (3.15) of [37], we will have
f=h → 1 as r → rh. Thus, K will not be zero at the event horizon
so that it has to stay positive. In addition, notice that, here we are
assuming A0

0 ≠ 0.
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c2Ω3;even ¼ K̃33

2hL½2f2hðhþ 1Þβ̃23A02
0 r

4
hM

4
pl − fh2r2β̃23A

04
0 r

4
hM

2
pl − 12h4β̃43A

06
0 r

8
h þ f3r2M6

pl�2
r2ðfhÞ3=2M6

plð8h2β̃23A02
0 r

4
h þ fr2M2

plÞ3
: ð5:9Þ

From its mathematical structure, we notice that, c2Ω3;even is
definitely a non-negative quantity provided that K̃33 > 0
holds under the stability of odd-parity sector. Thus, this
angular Laplacian stability condition gets satisfied.
We proceed to the first angular Laplacian stability

condition in which the story becomes a little sophisticated.
To deal with this problem, we first convert M1 given in
Eq. (4.55) into a dimensionless form by (i) solving
Eqs. (5.7) for A0

0
9 and substituting it intoM1; (ii) replacing

the model parameter β3 in M1 with the dimensionless β̃3;
(iii) changing the variable r to the dimensionless one
ξ≡ rh=r; (iv) taking advantage of the freedom for choosing
unit system, settingMpl ¼ rh (cf., footnote 1). As a result, a
dimensionless form of M1 is obtained as a function of
ff; h; ξ; κ; β̃3g. We postpone its lengthy explicit expression
to Appendix B. Knowing the fact that f; h∈ ½0; 1�,
ξ∈ ð0; 1� since we have r∈ ½rh;þ∞Þ, κ∈ ð0; ffiffiffi

2
p Þ and

jβ̃3j≲Oð1Þ [24], we can attempt to determine the range
of M1 in the 5-dimension phase space spanned by
ff; h; ξ; κ; β̃3g. In practice, all of these could be fulfilled
numerically onMathematica. It turns out that the minimum
of M1 in this phase space is indeed positive, which
is about10 2.001. This result guarantees this angular
Laplacian stability condition.
The second angular Laplacian stability condition (4.56)

is even more complicated. To analyze M2, new strategies
have to be selected. After some attempts, we know
a posteriori that new constraints on β̃3 have to be
performed for this stability condition to hold. Now the
mission is to determine the new constraint. For this goal
and by referring the analysis to the first angular Laplacian
stability condition in which the minimum of M1 is
achieved near the r ¼ rh, as well as the stability conditions
in odd-parity sector studied in Ref. [24] in which the
previously mentioned constraint on β̃3 is obtained near
the r ¼ rh, we shall focus on the behavior of M2 near the
horizon r → rh. As usual, a dimensionless form of M2

could be obtained by following the same procedure
mentioned earlier. However, since we are focusing on
the r → rh limit, the phase space now reduces to 2
dimension, spanned by fμ; β̃3g. Now the M2 could be
written as

M2jr→rh ¼ ½6144ðμ− 1Þ2μ5ð3μ− 4Þβ̃83
− 3200ðμ− 1Þ2μ4β̃63 þ 16μ2ð9μ2 − 10μþ 1Þβ̃43
− 8192μ6ð2μ2 − 5μþ 3Þ2β̃103 − 8ðμ− 1Þμβ̃23 þ 1�
× ½1− 4ðμ− 1Þμβ̃23�−2: ð5:10Þ

We plot it out in Fig. 1 of Appendix C. By looking at the
contour of the allowed region for M2, we can read off the
new upper bound for legal jβ̃3j, which is approximately
given by jβ̃3j≲ 0.441. In addition, it is worth mentioning
here that, by adopting this new upper bound and the
numerical method for analyzing M1 with Mathematica,
the minimum of M2 in the allowed region of phase space
ff; h; ξ; κ; β̃3g is indeed found to be positive. Thus, we
conclude that, under the new constraint jβ̃3j ≲ 0.441, the
second angular Laplacian stability condition is guaranteed.

B. Stability analysis for the model 2

As before, we first consider the third no-ghost condition
(4.37). For model 2 characterized by Eq. (5.2), K becomes

K ¼ 2h2β̃23A
04
0 r

4
h

f2M2
pl

; ð5:11Þ

which happens to be identical to Eq. (5.6). Thus, for any
nonzero β̃3, the third no-ghost condition will always get
satisfied. As mentioned in last subsection, the background
equations (2.12)–(2.15) have been used during simplifica-
tions. By the same procedure to obtain Eq. (5.7),
Eqs. (2.14)–(2.15) lead to

ϕ0 ¼ 2hβ̃3A02
0 r

2
h

frMpl
;

A0
0 ¼

κ
ffiffiffi
f

p
r2hMplffiffiffi

h
p ð−8hβ̃4r2hMpl þ 8β̃4r2hMpl þ 4hrβ̃3r2hϕ

0 þ r2MplÞ
;

ð5:12Þ

where we have defined the dimensionless factor
β̃4 ≡ r−2h β4. With the polynomial solutions given in
Eqs. (4.5)–(4.7) of Ref. [37] and evaluate Eq. (2.18)
at rh, we notice that for model 2 we have κ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μð1þ β̃4Þ

q
Mpl=rh, where μ∈ ð0; 1Þ. Since the

odd-mode stability conditions give the constraint
β̃4 ∈ ð−0.125; 0.251Þ [see also Eqs. (4.12)–(4.14),
(4.20) and (4.21) in Ref. [24]], we obtain that
ðrh=MplÞκ∈ ð0; 1.59Þ. To manifest the constraints

9Notice that, this set of algebraic equations have three roots
originally. However, only one of them is real so we keep it as our
solution for A0

0.10Strictly speaking, the true minimum should be bigger than
this, since f and h are correlated so that certain regions of this
phase space will not be reached.
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on β̃4, we plot out the allowed region given by the
stability conditions against odd-parity perturbations, i.e.,
Eqs. (4.12)–(4.14), (4.20), and (4.21) in Ref. [24] in the
3-dimension phase space fβ̃3; β̃4; μg in the panel (a) of
Fig. 2 in Appendix C, where the constraints μ∈ ð0; 1Þ and
jβ̃3j≲ 0.441 are assumed. From this figure, we learn that,
to meet these constrains for any legal arbitrary μ, there must
be upper and lower bounds on β̃4. We further observe that,
the most stringent constraints are from the μ ≈ 0 case. Thus,
we plot out the allowed region in fβ̃3; β̃4g phase space in
the panel (b) of Fig. 2 in Appendix C by setting μ ¼ 0.

Finally, from this panel, we read off the constraints of β̃4,
which is about β̃4 ∈ ð−0.125; 0.251Þ.11
On the other hand, for model 2, the squared second radial

propagation speed given in Eq. (4.42) reduces to

c2r2;even ¼ 1; ð5:13Þ

which shows that the second radial Laplacian stability
condition is automatically satisfied.
Next, let us substitute the full expressions of v6, v10, etc.,

into Eq. (4.53) to obtain

c2Ω3;even ¼
K̃33

r2ðfhÞ3=2M6
pl½8h2β̃23A02

0 r
4
hþ fM2

plð8β̃4r2hð1−hÞþ r2Þ�3 2hLf2f
2hA02

0 r
2
hM

4
pl½ðβ̃23þ 8β̃24Þr2hþhðβ̃23− 8β̃24Þr2hþ r2β̃4�

−fh2β̃23A
04
0 r

4
hM

2
plð−32hβ̃4r2hþ 8β̃4r2hþ r2Þ− 12h4β̃43A

06
0 r

8
hþf3M6

plð4ðh− 1Þβ̃4r2hþ r2Þg2: ð5:14Þ

Similar to Eq. (5.9), this result shows that c2Ω3;even is
definitely non-negative as long as K̃33 > 0 holds, so that
this angular Laplacian stability is guaranteed.
Moving to the first angular Laplacian stability condition,

the story is even more sophisticated than that of model 1
due to the presence of β̃4. Because of this, the analysis of
M1 will be divided into two parts. The first attempt is about

the behavior around rh. As usual, a dimensionless form of
M1 is needed. The basic steps for obtaining that is the same
as what we did in last subsection. The only difference is that
the resultant M1 is now a function of six variables, i.e.,
ff; h; ξ; κ; β̃3; β̃4g. On top of that, it became more acces-
sible to expand M1 around the metric horizon. To the
lowest order of ðr − rhÞ, that leads to

M1jr→rh ¼ 2f4κ10β̃43β̃4 þ κ8β̃43ð−128β̃24 þ 8β̃4 þ 3Þ
− 2κ6ð8β̃4 þ 1Þ2½ð3 − 8β̃4Þβ̃43 þ 2β̃4ð64β̃24 þ 48β̃4 þ 5Þβ̃23 þ 8β̃34ð8β̃4 þ 1Þ2�
− 2κ2ð8β̃4 þ 1Þ6½ð8β̃4 þ 1Þβ̃23 þ 2β̃4ð80β̃24 þ 14β̃4 − 1Þ�
þ 4β̃4½2ð16β̃4 þ 7Þβ̃23 þ β̃4ð256β̃24 þ 88β̃4 þ 7Þ�ð8κβ̃4 þ κÞ4 þ ð4β̃4 − 1Þð8β̃4 þ 1Þ9g
× ð8β̃4 þ 1Þ−4ð−4ðκ2 − 4Þβ̃4 þ 64β̃24 þ 1Þ−1
× ½κ4β̃23 − 2κ2ð8β̃4 þ 1Þðβ̃23 þ 8β̃24 þ β̃4Þ þ ð4β̃4 − 1Þð8β̃4 þ 1Þ3�−1: ð5:15Þ

On using this expression, we can determine the minimum
of M1 in the phase space of fμ; β̃3; β̃4g with the built-in
functions of Mathematica. Keeping in mind that μ∈ ð0; 1Þ,
β̃3 ∈ ð−0.441; 0.441Þ and β̃4 ∈ ð−0.125; 0.251Þ, it turns out
that the minimum of M1 is a positive number, which
supports this angular Laplacian stability condition for
model 2. A similar treatment to M2 brings us a result in
the form of Eq. (5.15). Because of its tedious expression,
we put that in Appendix B. The result shows that the
minimum of M2 in the phase space of fμ; β̃3; β̃4g is also
determined to be a positive number. Therefore, it seems like
the currently known constraints are sufficient to support
this angular Laplacian stability condition.
We note that the above discussion is based on just an

analysis at the r → rh limit. That brings us to the second
part of analysis. To determine the ranges of M1;2 in the

whole exterior space r∈ ½rh;þ∞Þ, we shall mimic [24] and
plot them out for chosen parameters. To do so, one has to
first solve for the background quantities f and h on the
exterior space with the algebraic expressions (5.12) of ϕ0
and A0

0 in terms of f, h as well as their derivatives. They are
achieved by numerically integrating Eqs. (2.12) and (2.13)
from ξ ¼ 1 − ϵ1 to ξ ¼ ϵ2, where factors ϵ1 and ϵ2 are
chosen to be small enough to cover the desired region
(see, e.g., Ref. [56] for more details about the relative
techniques used in doing the numerical integration and

11Interestingly, an upper bound to β̃4, which is quite similar to
the one found in here, could also be obtained by solely doing the
even-parity stability analysis. Ignoring the tolerable numerical
errors, we conclude that the results from odd- and even-parity
sectors are consistent.
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searching for background solutions). Of course, in practice
we were using the dimensionless forms of Eqs. (2.12) and
(2.13), and a new quantity similar to the ZðξÞ defined in
Eq. (B2) in Appendix B is introduced to simplify the
expressions. Since this kind of treatment is straightforward
and we have already briefly described the steps for similar
scenarios in last subsection, we omit the details here. We
note that the Taylor expansion,

fðξ¼ 1− ϵ1Þ ¼ fjξ¼1 þ
1

1!

df
dξ

				
ξ¼1

ð−ϵ1Þ þ
1

2!

d2f
dξ2

				
ξ¼1

ð−ϵ1Þ2;

ð5:16Þ

where f stands for f and h, was applied in generating the
boundary conditions at ξ ¼ 1 − ϵ1 keeping in mind that
fðξ ¼ 1Þ ¼ 0. The derivatives appearing in Eq. (5.16) are
obtained by using Eqs. (2.12), (2.13) as well as their
derivatives. It is worth mentioning here that, the polynomial
solutions given in Ref. [37] were not utilized directly in
generating the boundary conditions since there is a remain-
ing parameter corresponding to an overall factor of f,
which is unknown before obtaining the numerical solu-
tions. This factor will be fixed by normalizing f according
to the requirement f → 1 at the spatial infinity.
The solution for f and h are shown in the panel (a) of

Fig. 3 in Appendix C. Since the upper limit of β̃3 is updated
to ≈0.441 compared to Ref. [24], we adopted it with

β̃4 ¼ 0.1 and μ ¼ 0.5. We can find deviation between
model 2 and that of GR. With the solutions of f and h
in hand, together with the previously mentioned algebraic
expressions for A0

0 and ϕ
0, all the background quantities are

known. Inserting them intoM1 andM2, we further obtain
their numerical values. This part of results are exhibited in
the panel (b) of Fig. 3 in which M1 and M2 are plotted as
functions of rh=r instead of r=rh to show a larger scope.
Figure 3 shows that, both these two quantities stay positive
in the whole space outside the horizon. This result further
supports that the first and second angular Laplacian
stability conditions for model 2.12

C. Stability analysis for the model 3

We first consider the third no-ghost condition (4.37). For
model 3, K reduces to

K ¼ 2hr2β̃23A
04
0 r

4
h½4ð1 − hÞβ̃4A02

0

ffiffiffiffiffiffiffiffi
fh7

p
r2h þ f3=2h5=2r2�

ðfhÞ3=2M2
plð6h2β̃4A02

0 r
2
h − 4hβ̃4A02

0 r
2
h − fr2Þ2 :

ð5:17Þ

Thus, by looking at both the numerator and denominator of
the above expression, for any nonzero β̃3, the third no-ghost
condition will always get satisfied. As mentioned in
previous subsections, the background equations (2.14)–
(2.15) lead to

ϕ0 ¼ 2hrβ̃3A02
0 r

2
h

Mplð−6h2β̃4A02
0 r

2
h þ 4hβ̃4A02

0 r
2
h þ fr2Þ ;

A0
0 ¼

κ
ffiffiffi
f

p
r2hMplffiffiffi

h
p ð6h2β̃4r2hMplϕ

02 − 4hβ̃4r2hMplϕ
02 þ 4hrβ̃3r2hϕ

0 þ r2MplÞ
: ð5:18Þ

With the polynomial solutions given by Eqs. (4.15)–(4.17) in Ref. [37] and evaluation of (2.18) at rh, we notice that for
model 3 we have κ ¼ ffiffiffiffiffi

2μ
p

Mpl=rh, where μ∈ ð0; 1Þ. It is quite necessary for one to notice that, the system given by
Eq. (5.18) forms a fifth-order algebraic equation of A0

0. As a result, there is no analytic expression of ϕ
0 or A0

0 in terms of f,
h, etc. according to the well-known Abel-Ruffini theorem. This is one of the key factors which makes the model 3 much
intricate than that of model 2.
On the other hand, for model 3, the squared second radial propagation speed given by Eq. (4.42) becomes

c2r2;even ¼
3h2β̃4A02

0 r
2
hϕ

02 þ fM2
pl

2h2β̃4A02
0 r

2
hϕ

02 þ fM2
pl

; ð5:19Þ

which shows that the second radial Laplacian stability condition holds.
Next, the angular propagation speed given in Eq. (4.53) for the model 3 is

12An ideal treatment is to test the positiveness of M1 and M2 using the Monte Carlo method and try to cover the whole allowed
region in fμ; β̃3; β̃4; ξg phase space. Nevertheless, as seen from, e.g., Eqs. (B1)–(B3), the complexity of our problem has already made
the calculations quite time-consuming and it is preventing us from running a more complete analysis. In principle, much more
computational resources are needed for executing such an analysis.
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c2Ω3;even ¼
K̃33

M6
plr

4
ffiffiffiffiffiffi
fh

p ð2hð2 − 3hÞβ̃4A02
0 r

2
h þ fr2Þ2 2Lf16h

5ð3h − 2Þr2r10h β̃24β̃
2
3ð2β̃4M2

pl þ hð2r2hβ̃23 − 3M2
plβ̃4ÞÞA010

0

þ 4fh4r8hβ̃4½108h4β̃24ð3M2
plβ̃4 − 2r2hβ̃

2
3ÞM4

pl − 72h3β̃24ð12M2
plβ̃4 − 5r2hβ̃

2
3ÞM4

pl

þ 4β̃4ð8M2
plβ̃4ð2β̃4M2

pl þ r2hβ̃
2
3Þ − 3r4β̃23ÞM2

pl − 8hðð2r2hβ̃43 − 3M2
plβ̃4β̃

2
3Þr4 þ 8M4

plβ̃
2
4ð6β̃4M2

pl þ r2hβ̃
2
3ÞÞ

þ 3h2ðð2r2hβ̃43 − 3M2
plβ̃4β̃

2
3Þr4 þ 8M4

plβ̃
2
4ð36M2

plβ̃4 − 5r2hβ̃
2
3ÞÞ�A08

0

− 4f2h3r2r6h½6h2β̃24ð13r2hβ̃23 − 72M2
plβ̃4ÞM4

pl þ 18h3β̃24ð12M2
plβ̃4 − 5r2hβ̃

2
3ÞM4

pl

þ β̃4ð3r4β̃23 − 8M2
plβ̃4ð8β̃4M2

pl þ 3r2hβ̃
2
3ÞÞM2

pl þ 3hððr2hβ̃43 −M2
plβ̃4β̃

2
3Þr4 þ 8M4

plβ̃
2
4ð12β̃4M2

pl þ r2hβ̃
2
3ÞÞ�A06

0

þ f3h2r4M2
plr

4
h½−β̃23r4 − 288hM4

plβ̃
2
4 þ 24M2

plβ̃4ð4β̃4M2
pl þ r2hβ̃

2
3Þ þ 24h2M2

plβ̃4ð9M2
plβ̃4 − 2r2hβ̃

2
3Þ�A04

0

þ 2f4hr6M4
plr

2
hð8β̃4M2

pl þ r2hβ̃
2
3 þ hðr2hβ̃23 − 12M2

plβ̃4ÞÞA02
0 þ f5r8M6

plg2f4fhr2A02
0 r

2
h½hð2β̃23r2h − 3β̃4M2

plÞ
þ 2β̃4M2

pl� − 4h2ð3h − 2Þβ̃4A04
0 r

4
hðhð2β̃23r2h − 3β̃4M2

plÞ þ 2β̃4M2
plÞ þ f2r4M2

plg−3: ð5:20Þ

The terms in the first line of Eq. (5.20) is non-negative as
long as K̃33 > 0. The positiveness of c2Ω3;even is solely
determined by the part to the −3 power, i.e., the last two
lines in Eq. (5.20). By treating f, h, β̃3, β̃4, and A0

0 as
free parameters, and considering the known constraints
on them, one can determine its minimum by using
numerical methods. Taking advantage of its dimen-
sionless form, this calculation could be fulfilled by
using the built-in functions of Mathematica. This
manipulation shows that the condition c2Ω3;even > 0 is
always guaranteed.

We proceed to the first and second angular Laplacian sta-
bility conditions in which the story becomes astonishingly
sophisticated, in comparing to that ofmodel 1. To conquer this
problem, we shall first run the analysis around the r ¼ rh
where the algebraic equations in Eq. (5.18) can be solved for
A0
0 asA

0
0ðr ¼ rhÞ ¼

ffiffiffiffiffi
2μ

p ¼ κ by choosing the unit system so
thatMpl ¼ rh. On using this solution at the horizon,we start to
expandM1 andM2 step by step around the horizon. After a
sequence of time-consuming but straightforwardmanipulations,
their expressions at the horizon converted into the dimensionless
form were obtained. The one for M1 is given below

M1jr→rh ¼
1

2
f10κ12β̃43β̃4 þ 4κ10β̃23β̃4ð2β̃23 þ 7β̃4Þ þ κ8½ð12 − 56β̃4Þβ̃43 þ β̃4ð7 − 72β̃4Þβ̃23 − 16β̃34�

− 2κ6½12β̃43 þ 3β̃4ð16β̃4 þ 3Þβ̃23 þ 4β̃24ð24β̃4 þ 1Þ� − κ4β̃4ð56β̃23 þ 160β̃4 þ 1Þ
− 4κ2ð2β̃23 þ 11β̃4Þ − 4gð4κ2β̃4 þ 1Þ−2½κ4β̃23 − 2κ2ðβ̃23 þ 2β̃4Þ − 1�−1; ð5:21Þ

while the one for M2 is shown in Appendix B due to its
intricate structure. With the known constraints on β̃3, β̃4,
and μ (so does κ), we can determine the minimum of
M1jr→rh andM2jr→rh on the use of the built-in functions of
Mathematica, which shows that both of them are positive
so that the first as well as second angular Laplacian stability
conditions are satisfied for the given parameter regions.
To further confirm these stability conditions, M1 and

M2 will also be plotted out on r∈ ½rh;þ∞Þ with chosen
coupling constants. This could be fulfilled by choosing
μ ¼ 0.5, β̃3 ¼ 0.441, and β̃4 ¼ 0.1 as well as being given
the corresponding numerical background solutions shown
in the panel (a) of Fig. 4 in Appendix C. The fundamental
steps and techniques of obtaining these numerical solutions
are the same as what we used to draw the panel (a) of Fig. 3.
The only difference is that, for model 3 there is no analytic
expression for A0

0. Thus, f, h, and A
0
0 need to be numerically

solved simultaneously. For this reason, all of these three
variables are plotted in the panel (a) of Fig. 4. Again, to show
a larger scope, all the quantities are plotted as functions of ξ.
We note that A0

0 is plotted in its dimensionless form
r−1h dA0=dξ, which, as shown in the plot, equals −ξ−2A0

0.
It is worth mentioning here that, A0

0 behaves asOðr−2Þ at the
spatial infinity (ξ → 0). That is why the quantity−ξ−2A0

0 will
not blow up as ξ → 0. The results of M1 and M2 are
exhibited in the panel (b) of Fig. 4. It is clear that, both these
two quantities stay positive at any distances outside the
horizon. As a result, we conclude that this figure further
supports the first and second angular Laplacian stability
conditions in model 3 inside the given parameter space.
To summary, here we have dealt with 27 cases in total

(combining Secs. IV and V), i.e., nine stability conditions
(3 no-ghost conditions þ3 radial Laplacian stability con-
ditions þ3 angular Laplacian stability conditions) times
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three distinct models. Basically, no instability was recog-
nized up to now, given the known\updated constraints
β̃3 ∈ ð−0.441; 0.441Þ and β̃4 ∈ ð−0.125; 0.251Þ. For the
convenience of readers, we summarize those main equa-
tions, results, analysis, etc. for these 27 cases in Table I.
Notice that, the main results for each case are categorized
in four different types, denoted by type I, II, III, and IV,
respectively, mainly according to the explicitness of the
stability in each case. Type I means the corresponding
stability condition automatically get satisfied, at least by
considering the known constraints to the theory; type II
means the corresponding stability condition deserves a little
analysis. Nonetheless, the stability is quite explicit so that
we can tell that just by looking at the mathematical
structure of the corresponding expression; type III is a
little sophisticated, so that pure analytic investigation will
not work. Even in such case, we could still confirm these
stability conditions by semi-analytic or numerical methods
and with the assistance of computers; type IV is a little
vague from certain point of view. The problems are really
complicated so we have to expediently check the corre-
sponding stability conditions mainly by plotting out the
results for chosen coupling parameters. A more complete
analysis may be executed in the future for this type of
problems.

VI. CONCLUSIONS

In this paper, the stability of static and spherically
symmetric BHs with nontrivial scalar hair in the Uð1Þ
GI SVT theory (2.1) is studied. For the background ansatz
(2.8), (2.9), and (2.10), we considered the even-parity
perturbations given by Eqs. (4.1), (4.2), and (4.3). As a
successor of the previous work [24], we investigated three
types of stability conditions, i.e., the no-ghost, radial
Laplacian and angular Laplacian ones. In addition to the
general analysis, some of the stability conditions are
discussed by considering three distinct concrete models
and by applying suitable analytic, semianalytic as well as
numerical techniques.
To make it more complete, the background field equa-

tions (2.12)–(2.15) and the stability conditions against the
odd-parity perturbations are revisited in the presence of the
quantities Y and F̃ which are omitted in the previous work.
On top of that, we first run the general analysis. The

original Lagrangian is expanded to second order for the
even-parity perturbations as Eq. (4.11), which contains 7
apparent d.o.f.. After that, with the help of integration by
parts, the integral properties of spherical harmonics, and
by introducing suitable new variables [given in Eqs. (4.15)
and (4.24)], all the nondynamical terms disappear, and we
are left with a dramatically simplified Lagrangian (4.25),
adopting 3 d.o.f. as expected [24]. On using the resultant
Lagrangian, we derived nine stability conditions, i.e., 3
no-ghost conditions (4.29)–(4.31) þ3 radial Laplacian

stability conditions (4.43) þ3 angular Laplacian stability
conditions (4.53), (4.55)–(4.56).
It is then found that the first [cf., (4.32)] and second [cf.,

(4.34)] no-ghost conditions as well as the first [cf., (4.41)]
and third [cf., (4.40)] radial Laplacian stability conditions
get satisfied automatically, provided the other stability
conditions, including those from the odd-parity sector.
We then move to three specific concrete models charac-
terized by Eqs. (5.1)–(5.3)] to run the analysis in Sec. V. By
inserting the corresponding functions of each model into
the mathematical expression of the third no-ghost con-
dition, it is found that this condition hold in all the three
models [cf., (5.6), (5.11), and (5.17)]. Similarly, the second
radial Laplacian condition also hold for all these three
models [cf., (5.8), (5.13), and (5.19)].
The situation becomes a little complicated when moving

to the angular Laplacian conditions. First of all, we can
easily confirm the third angular Laplacian condition in an
analytic way for model 1 and model 2 as in Eqs. (5.9) and
(5.14), respectively. However, for the first and second
angular Laplacian conditions of model 1, semianalytic as
well as numerical techniques become necessary. It is found
that these stability conditions are guaranteed by applying
the constraints to the coupling parameters obtained from
the odd-parity sector in Ref. [24] together with the addi-
tional constraints indicated in Fig. 1 (see Appendix C),
namely, β̃3 ∈ ð−0.441; 0.441Þ and β̃4 ∈ ð−0.125; 0.251Þ.
With these constraints, the third angular Laplacian con-
dition for model 3 can also be confirmed [cf., (5.20)].
Finally, we notice that the first and second angular
Laplacian conditions for model 2 and model 3 are quite
difficult to investigate (especially for the model 3). To
conquer this difficulty, by mimicking Ref. [24], specific
values for the coupling parameters are chosen for these two
models. As a result, we are able to plot out the discrim-
inants [cf., (4.55) and (4.56)] for each case. These two
stability conditions are then confirmed in Figs. 3 and 4 (cf.,
Appendix C). The main formulas and analysis about these
stability conditions are summarized for the three models
in Table I.
Our current work can be enlarged to several other

directions. For instance, we can dig further into the angular
Laplacian conditions in order to put more stringent con-
straints on the phase space of the coupling parameters as
well as consider more types of models for analysis. It is also
of interest to put constraints on the model parameters
through the observational data of BH shadow given by the
EHT and the other observations. The constraints on the
charges of the supermassive compact objects being black
hole candidates are studied in Refs. [14,15] assuming that
the observed rings correspond to the photon sphere, as well
as in Ref. [57] assuming that they correspond to the lensing
ring. These procedures enable one to put constraints on the
model parameter at the background level. On the other
hand, the second-order Lagrangian analysis is closely rela-
ted to the quasinormal mode problems (see, e.g., Ref. [18]).
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We can also try to do some relative calculations based on
Eq. (4.25) and put the further constraint on the model
parameters at the perturbation level.
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APPENDIX A: COEFFICIENTS IN THE
SECOND-ORDER ACTION OF EVEN-PARITY

PERTURBATIONS

The coefficients in Eqs. (4.12) and (4.13) are given by

a1 ≡ 0; a2 ¼
rðf0h − fh0Þ

fhϕ0 a4 þ
A0
0

2
v4 þ

rA0
0

2ϕ0 v6; a3 ¼ −ra4; a4 ¼
ffiffiffiffiffiffi
fh

p
M2

pl

2
¼ 2fα1;

a5 ¼ a02 −
A00
0

2
v4 þ

A0
0

2
ðv5 − v04Þ; a6 ¼

rðf0hþ fh0Þ − 2fh
2rfh2ϕ0 a4 −

1

hϕ0 a
0
4 −

A0
0

4hϕ0 v6 þ
2rf
ϕ0 α7;

a7 ¼ −ðra4Þ0 −
A0
0

4
ð2A0

0v1 þ ϕ0v4Þ −
rA0

0

2
v6; a8 ¼ −

a4
2h

; a9 ¼ a04 −
rf0 − 2f
2rf

a4 þ
A0
0

4
v6;

b1 ¼
a4
2f

; b2 ¼ 0; b3 ¼ −
2

f
a2 þ

A0
0

f
v4; b4 ¼

2ra4
f

; b5 ¼ −
a4
f
; c1 ≡ 0;

c2 ≡ r2
ffiffiffiffiffiffi
fh

p
ϕ0ðf2;X − hϕ02f2;XXÞ

2
−
r2h5=2ϕ0A04

0 ð4hϕ02f2;YY − f2;FYÞ
f3=2

−
h3=2A02

0

2
ffiffiffi
f

p

× ½h3ϕ05f4;XXX þ 2rh2ϕ04f3;XX þ hϕ03f6r2f2;XY þ ð4 − 13hÞf4;XXg − 12rhϕ02f3;X

− ϕ0fr2ð6f2;Y þ f2;XFÞ þ 6ð2 − 5hÞf4;X − 20hf̃4g þ 6rf3�;

c3 ¼ −
1

2
ffiffiffiffiffiffi
fh

p ∂E11

∂ϕ
; c4 ≡ −

ffiffiffi
h

p
A02
0

2r
ffiffiffi
f

p ½h2ϕ03f4;XX þ rhϕ02f3;X − 3hϕ0ðf4;X þ 2f̃4Þ − rf3�;

c5 ¼ −
f0

2f
a4 −

ϕ0

2
d2 −

A0
0

2
v6 þ 2rα6; c6 ¼

rf0

2f
a4 −

ϕ0

4
c2 þ

rϕ0

4
d2 þ

A02
0

4
v1 þ

ϕ0A0
0

8
v4 þ

rA0
0

2
v6 − r2α6;

d1 ¼
a4
2f

; d2 ≡ −
h3=2A02

0

r
ffiffiffi
f

p ½h2ϕ03f4;XX þ rhϕ02f3;X − 2hϕ0ð3f4;X þ 2f̃4Þ − rf3�;

d3 ¼
2ðf0h − fh0Þ

rfhϕ0 a4 þ
A0
0

rϕ0 v6 þ
A0
0

2

∂v6
∂ϕ

þ 4

hϕ0 α6 þ
4f
ϕ0 α7; d4 ¼ −2α6;

e1 ¼
1

fhϕ0

�
a2 − 2rha6 −

A0
0

2
v4

�
; e2 ¼ −

1

ϕ0

�
c2 þ rd2 þ

A0
0

2
v4

�
; e3 ¼

1

2

∂Eϕ

∂ϕ
;

e4 ¼
1

r2hϕ02

�
1 −

3rf0

2f
þ rh0

2h

�
a4 þ

hϕ00 þ h0ϕ0

hϕ02 c4 þ
c04
ϕ0 þ

fA00
0 − 2f0A0

0

4fhϕ02 v6 þ
A0
0

4hϕ02 v
0
6

−
A02
0

ϕ02 v9 −
A02
0

fhϕ02 v10 −
A0
0

ϕ0 v13 −
2rh0 þ 2ð1 − 3hÞ

h2ϕ02 α6 þ
2r
hϕ02 α

0
6 þ

2ðrf0h − fÞ
hϕ02 α7;

v1 ≡ r2h3=2A02
0

2f3=2
½f2;FF − 4hϕ02ðf2;FY − hϕ02f2;YYÞ�

−
ffiffiffi
h

p

2
ffiffiffi
f

p ½2hϕ02fr2f2;Y − hðf4;X þ 2f̃4Þg − 4rhϕ0f3 − 8ð1 − hÞf4 − r2f2;F�;

v2 ¼ A0
0v1; v3 ¼ −A0

0v1 −
ϕ0

2
v4 − rv6;
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v4 ≡ 2r2h5=2ϕ0A03
0 ð2hϕ02f2;YY − f2;FYÞ

f3=2
þ h3=2A0

0ffiffiffi
f

p ½2hϕ03ðr2f2;XY − hf4;XXÞ − 4rhϕ02f3;X

− r2ϕ0ð4f2;Y þ f2;XFÞ þ 4ϕ0fð3h − 2Þf4;X þ 2hf̃4g þ 4rf3�;

v5 ≡
ffiffiffi
h

p
A0
0ffiffiffi

f
p ½2hϕ02fhðf4;ϕX þ 2f̃4;ϕÞ − r2f2;ϕYg þ 4rhϕ0f3;ϕ þ 8ð1 − hÞf4;ϕ þ r2f2;ϕF�;

v6 ¼ 4α2; v7 ¼
A02
0

4
v1; v8 ¼

1

2rf
½ðrf0 − 2fÞv6 þ 4rA0

0v10�;

v9 ¼ α4; v10 ¼ α5; v11 ¼ −
v6
2
; v12 ¼ −

v6
2h

;

v13 ≡ −
2h3=2ϕ00ðhϕ02f4;XX þ rϕ0f3;X − f4;X − 2f̃4Þ

r
ffiffiffi
f

p þ 2
ffiffiffi
h

p
A00
0½hϕ0ðf4;X þ 2f̃4Þ þ rf3�

r
ffiffiffi
f

p

−
ffiffiffi
h

p
f0A0

0½hϕ0ðf4;X þ 2f̃4Þ þ rf3�
rf3=2

−
h0A0

0½h2ϕ03f4;XX þ rhϕ02f3;X − 3hϕ0ðf4;X þ 2f̃4Þ − rf3�
r
ffiffiffiffiffiffi
fh

p

−
2
ffiffiffi
h

p
A0
0½hϕ02ðf̃3 − 2f̃4;ϕ − f4;ϕXÞ þ rϕ0ðf2;Y − f3;ϕÞ − f3�

r
ffiffiffi
f

p ; ðA1Þ

where E11 and Eϕ are the background equations given in Eqs. (2.12) and (2.14), respectively, and αi (i ¼ 1, 2, 4, 5, 6, 7) are
the coefficients in the second-order action for the odd-parity perturbations defined in Eq. (3.6). Interested readers may check
them out in [48].
On the other hand, it is worth mentioning here that, the coefficient v6 adopts a useful feature that

v06 ¼
a4½2f2ðrh0 þ 2hÞ þ hr2ðf0Þ2 − frðrf0h0 þ 2hðrf00 þ f0ÞÞ� − fhr2½A0

0ð4v10A0
0 þ v6f0Þ þ fv6A00

0 þ 8α7f2�
f2hr2A0

0

: ðA2Þ

Notice that, for the economy of notations, here we are writing ϕ and Ā0 appearing in Eqs. (4.2) and (4.3) simply as ϕ and A0,
respectively. It should stimulate no confusions since all the above coefficients are for the perturbation terms, and they
themselves are, definitely, of the zeroth order.

APPENDIX B: EXPRESSIONS FOR CERTAIN QUANTITIES APPEARING IN SEC. V

The dimensionless form of M1 for model 1 (cf. Sec. VA) is given below,

M1 ¼
�
2f37=2Z2ξ6ðfð78hþ 4Þ− hZ2ξ2Þβ̃23h3=2 þ 56623104f15=2Z24ξ64ðhZ2ξ2 þ 8fð4h− 1ÞÞβ̃203 h39=2

þ 679477248f13=2Z28ξ72β̃223 h45=2 þ 1179648f17=2Z20ξ56
�
16

�
5

ffiffiffiffiffiffiffiffi
fh3

q
− 40

ffiffiffiffiffiffiffiffi
fh5

q
þ 53

ffiffiffiffiffiffiffiffi
fh7

p �
f3=2

− 43h7=2Z4ξ4 þ 32hZ2ξ2
ffiffiffi
f

p �
11

ffiffiffiffiffiffiffiffi
fh5

q
− 2

ffiffiffiffiffiffiffiffi
fh3

q ��
β̃183 h15 þ 393216f19=2Z16ξ48

�
4Z2ξ2

�
11

ffiffiffiffiffiffiffiffi
fh3

q
− 100

ffiffiffiffiffiffiffiffi
fh5

q

þ 233
ffiffiffiffiffiffiffiffi
fh7

p �
f3=2 þ 16ð19h3 − 30h2 þ 12h− 1Þ

ffiffiffi
h

p
f3 − 25h7=2Z6ξ6 þ hZ4ξ4

ffiffiffi
f

p �
29

ffiffiffiffiffiffiffiffi
fh3

q
− 41

ffiffiffiffiffiffiffiffi
fh5

q ��
β̃163 h13

þ 2048f21=2Z14ξ42
�
16Z2ξ2

�
−31

ffiffiffiffiffiffiffiffi
fh3

q
þ 20

ffiffiffiffiffiffiffiffi
fh5

q
þ 1865

ffiffiffiffiffiffiffiffi
fh7

p �
f3=2 þ 256ð155h3 − 123h2 þ 24h− 2Þ

ffiffiffi
h

p
f3

− 57h7=2Z6ξ6 þ 16hZ4ξ4
ffiffiffi
f

p �
79

ffiffiffiffiffiffiffiffi
fh3

q
− 376

ffiffiffiffiffiffiffiffi
fh5

q ��
β̃143 h11 þ 32f25=2Z10ξ30

�
−16f2ð577h2 − 64hþ 17ÞZ2ξ2h3=2

− 128fð32hþ 5ÞZ4ξ4h5=2 þ 351Z6ξ6h7=2 þ 512f5=2
� ffiffiffiffiffiffi

fh
p

þ
ffiffiffiffiffiffiffiffi
fh3

q
− 78

ffiffiffiffiffiffiffiffi
fh5

q
þ 295

ffiffiffiffiffiffiffiffi
fh7

p ��
β̃103 h7
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þ16f6Z8ξ24
h
−8f19=2ð797h2þ12h−5ÞZ2ξ2h3=2−2f17=2ð279hþ41ÞZ4ξ4h5=2þ27f15=2Z6ξ6h7=2

þ32


f21=2ð1197h2þ4hþ30Þh3=2þ

ffiffiffiffiffiffiffiffiffi
f21h

q �i
β̃83h

5þ2f5Z6ξ18½3f19=2Z6ξ6h5=2−4


46f21=2h3=2þ3

ffiffiffiffiffiffiffiffiffi
f21h

q �
Z4ξ4h

þ64f2


f21=2ð489hþ83Þh3=2þ6

ffiffiffiffiffiffiffiffiffi
f21h

q �
þ4fZ2ξ2



f21=2ð20−981hÞh3=2þ3

ffiffiffiffiffiffiffiffiffi
f21h

q �i
β̃63h

4

þ512Z12ξ36
h
64f29=2ð802h3−369h2−3hþ2Þh19=2þ219f23=2Z6ξ6h25=2

−32f13


19

ffiffiffiffiffiffiffiffi
fh3

q
−90

ffiffiffiffiffiffiffiffi
fh5

q
−298

ffiffiffiffiffiffiffiffi
fh7

p �
Z2ξ2h9þ8ð4f25=2h23=2−381ðfhÞ25=2ÞZ4ξ4

i
β̃123

þð4f35=2ð2−57hÞZ6ξ14h7=2−6f33=2Z8ξ16h9=2þ8f8


f21=2ð552hþ71Þh3=2þ

ffiffiffiffiffiffiffiffiffi
f21h

q �
Z4ξ12h2

�
β̃43þ2

ffiffiffiffiffiffiffiffiffi
f41h

q �

×
n
339738624f17=2h41=2ξ64Z24β̃203 þ2f37=2h3=2ξ6Z2β̃23ðfð38hþ2Þ−hξ2Z2Þ

þ28311552f19=2h35=2ξ56Z20β̃183 ð4fðh−1Þþ3hξ2Z2Þþ1024ξ36Z12β̃123

h
16f29=2ð319h2−158h−17Þh21=2

þ16f13h11ξ2Z2


139

ffiffiffiffiffiffiffiffi
fh3

q
þ35

ffiffiffiffiffiffi
fh

p �
−149ξ4Z4ðfhÞ25=2

i
þ589824f21=2h29=2ξ48Z16β̃163 ð16f2ðh−1Þ2

þ32fhð4h−1Þξ2Z2−5h2ξ4Z4Þþ196608f23=2h25=2ξ42Z14β̃143 ðf2ð52h2−56hþ4Þþfhð107hþ13Þξ2Z2

−12h2ξ4Z4Þþf7h2ξ12Z4β̃43



f19=2h5=2ξ4Z4−4hξ2Z2ð37f21=2h3=2þ

ffiffiffiffiffiffiffiffiffi
f21h

q �
þ4f



f21=2ð561hþ62Þh3=2þ

ffiffiffiffiffiffiffiffiffi
f21h

q
Þ
�

þ8f6h4ξ18Z6β̃63



9f19=2h5=2ξ4Z4þ8f23=2ð527hþ78Þh3=2þ24

ffiffiffiffiffiffiffiffiffi
f23h

q
−6hξ2Z2



83f21=2h3=2þ5

ffiffiffiffiffiffiffiffiffi
f21h

q ��
þ16f5h6ξ24Z8β̃83

h
109f19=2h5=2ξ4Z4þ48f23=2ð381hþ38Þh3=2þ112

ffiffiffiffiffiffiffiffiffi
f23h

q
−32hξ2Z2



87f21=2h3=2þ8

ffiffiffiffiffiffiffiffiffi
f21h

q �i
þ256f4h8ξ30Z10β̃103

h
45f19=2h5=2ξ4Z4−32f11



−191

ffiffiffiffiffiffiffiffi
fh5

q
þ20

ffiffiffiffiffiffiffiffi
fh3

q
þ3

ffiffiffiffiffiffi
fh

p �
þ4hξ2Z2



3

ffiffiffiffiffiffiffiffiffi
f21h

q
−91f21=2h3=2

�i
þ

ffiffiffiffiffiffiffiffiffi
f41h

q o
−1
; ðB1Þ

where

ZðξÞ≡ r−1h
dA0

dξ

¼
ffiffiffi
3

p
6
h ffiffiffi

6
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f3h9ð54hκ2ξ6β̃23 þ 1Þ
q

− 18f3=2h5κξ3β̃3
i2=3

− 62=3fh3

12h5=2ξ3β̃3
h ffiffiffi

6
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f3h9ð54hκ2ξ6β̃23 þ 1Þ
q

− 18f3=2h5κξ3β̃3
i1=3 : ðB2Þ

The dimensionless form of M2 at the r → rh limit for model 2 (cf. Sec. V B) is given below,

M2jr→rh ¼ fð1− 4β̃4Þ2ð8β̃4 þ 1Þ18 − 4κ2β̃4ð4β̃4 − 1Þð128β̃24 þ 32β̃4 − 1Þð8β̃4 þ 1Þ15 − 64κ6β̃34ð8β̃4 þ 1Þ14
þ 12κ4β̃24ð128β̃24 þ 16β̃4 − 5Þð8β̃4 þ 1Þ14 þ 64β̃44ð8β̃4κþ κÞ8ð8β̃4 þ 1Þ4 − 2κ8β̃63ðκ2 − 16β̃4 − 2Þ2ð8β̃4 þ 1Þ4
× ½155648β̃44 − 1024ð8κ2 − 11Þβ̃34 þ 16ð7κ4 þ 12κ2 − 180Þβ̃24 þ 8ð19κ2 − 4Þβ̃4 þ 25� þ 8κ10β̃83ðκ2 − 16β̃4 − 2Þ2
× ½20β̃4κ4 þ ð−1088β̃24 − 64β̃4 þ 9Þκ2 þ 24ð8β̃4 þ 1Þ2ð10β̃4 − 1Þ�ð8β̃4 þ 1Þ2
þ 2β̃23½−2κ2ð4β̃4 − 1Þð8β̃4 þ 1Þ14 þ κ4ð3072β̃44 þ 3840β̃34 − 400β̃24 − 40β̃4 − 1Þð8β̃4 þ 1Þ10
− 64κ10β̃34ð8β̃4 þ 1Þ8 − 2κ6β̃4ð4096β̃44 þ 15360β̃34 þ 1216β̃24 − 120β̃4 − 5Þð8β̃4 þ 1Þ8
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þ 64κ12β̃44ð8β̃4 þ 1Þ6 þ 4β̃24ð8β̃4κþ κÞ8ð256β̃24 þ 272β̃4 − 1Þ�ð8β̃4 þ 1Þ2 − 32κ12β̃103 ðκ4 − 5ð8β̃4 þ 1Þκ2
þ 6ð8β̃4 þ 1Þ2Þ2 þ β̃43½4κ4ð8β̃4 þ 1Þ14 þ 4κ6ð4608β̃34 − 1792β̃24 þ 96β̃4 − 5Þð8β̃4 þ 1Þ10
− 16κ12β̃24ð72β̃4 − 23Þð8β̃4 þ 1Þ7 þ 512κ10β̃34ð1216β̃24 − 384β̃4 þ 15Þð8β̃4 þ 1Þ6
þ 128κ10β̃24ð1216β̃24 − 384β̃4 þ 15Þð8β̃4 þ 1Þ6 þ 8κ10β̃4ð1216β̃24 − 384β̃4 þ 15Þð8β̃4 þ 1Þ6
þ ð8β̃4κþ κÞ8ð−196608β̃44 þ 39936β̃34 þ 4416β̃24 − 384β̃4 þ 9Þ�gfð8β̃4 þ 1Þ14ð−4ðκ2 − 4Þβ̃4 þ 64β̃24 þ 1Þ
× ½2ðκ2 þ 2Þβ̃4 − 32β̃24 þ 1�2 þ κ4β̃43ð8β̃4 þ 1Þ10ð−16β̃4 þ κ2 − 2Þ2½−4ðκ2 − 4Þβ̃4 þ 64β̃24 þ 1�
− 2β̃23ð8β̃4 þ 1Þ10ð8κβ̃4 þ κÞ2½−4ðκ2 − 4Þβ̃4 þ 64β̃24 þ 1�ð2κ4β̃4 − 64κ2β̃24 þ 512β̃34 − 24β̃4 þ κ2 − 2Þg−1: ðB3Þ

Notice that, (B3) will reduce to (5.10) by taking β̃4 ¼ 0.
The dimensionless form of M2 at the r → rh limit for model 3 (cf. Sec. V C) is given below,

M2jr→rh ¼
1

2
f16β̃63β̃34ð20β̃23 − 31β̃4Þκ24 − 8β̃43β̃

2
4ð4ð76β̃4 − 17Þβ̃43 þ β̃4ð31 − 140β̃4Þβ̃23 − 368β̃34Þκ22

− β̃23½64ð1 − 4β̃4Þ2β̃83 − 4β̃4ð1216β̃24 − 752β̃4 þ 29Þβ̃63 þ β̃24ð−2624β̃24 þ 1904β̃4 þ 31Þβ̃43
þ 32β̃44ð248β̃4 − 69Þβ̃23 þ 4864β̃64�κ20 þ 2β̃23½64ð32β̃24 − 28β̃4 þ 5Þβ̃83 − 4β̃4ð64β̃24 − 304β̃4 þ 3Þβ̃63
− 7β̃24ð576β̃24 − 720β̃4 þ 83Þβ̃43 − 4β̃34ð832β̃24 þ 192β̃4 − 69Þβ̃23 − 128β̃54ð14β̃4 þ 19Þ�κ18
− 2½32ð64β̃24 − 128β̃4 þ 37Þβ̃103 þ 8ð256β̃34 − 560β̃24 þ 221β̃4 − 9Þβ̃83 þ β̃4ð−2304β̃34 þ 4768β̃24 − 1474β̃4

þ 77Þβ̃63 − β̃24ð9728β̃34 − 9408β̃24 þ 912β̃4 þ 23Þβ̃43 þ 16β̃44ð−576β̃24 þ 304β̃4 þ 57Þβ̃23 − 2048β̃74�κ16
− 4½192ð8β̃4 − 5Þβ̃103 þ 8ð384β̃24 − 335β̃4 þ 30Þβ̃83 þ β̃4ð512β̃24 − 786β̃4 þ 63Þβ̃63
− 8β̃24ð128β̃34 þ 720β̃24 − 327β̃4 þ 22Þβ̃43 þ 4β̃34ð−1024β̃34 − 1536β̃24 þ 468β̃4 þ 19Þβ̃23 − 512β̃64ð8β̃4 þ 3Þ�κ14
þ ½−2304β̃103 − 64ð140β̃4 − 33Þβ̃83 − 4ð2072β̃24 − 714β̃4 þ 25Þβ̃63 þ β̃4ð6144β̃34 þ 7424β̃24 − 1832β̃4 þ 69Þβ̃43
þ β̃24ð28672β̃34 þ 12032β̃24 − 2528β̃4 − 19Þβ̃23 þ 256β̃54ð128β̃4 þ 15Þ�κ12 þ ½−1536β̃83 þ ð400 − 3472β̃4Þβ̃63
þ 32β̃24ð112β̃4 − 1Þβ̃43 þ 2β̃24ð10240β̃24 þ 1216β̃4 − 199Þβ̃23 þ 256β̃44ð108β̃4 þ 5Þ�κ10
þ ½−400β̃63 þ 2ð512β̃24 − 174β̃4 þ 9Þβ̃43 þ 24β̃4ð320β̃24 þ 3β̃4 − 1Þβ̃23 þ 80β̃34ð160β̃4 þ 3Þ�κ8
þ 8½ð18β̃4 − 5Þβ̃43 þ 5β̃4ð40β̃4 − 1Þβ̃23 þ β̃24ð440β̃4 þ 3Þ�κ6 þ ½8β̃43 þ 4ð44β̃4 − 1Þβ̃23 þ β̃4ð576β̃4 þ 1Þ�κ4
þ ð8β̃23 þ 52β̃4Þκ2 þ 2gð4κ2β̃4 þ 1Þ−5½κ4ð−β̃23Þ þ 2κ2ðβ̃23 þ 2β̃4Þ þ 1�−2: ðB4Þ

Notice that, (B4) will reduce to (5.10) by taking β̃4 ¼ 0.
Interested readers can check out the mathematical expressions appearing in here with [48].
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APPENDIX C: SUPPLEMENTAL MATERIALS FOR THE NUMERICAL ANALYSIS IN SEC. V

FIG. 1. The behavior of M2 in phase space fμ; β̃3g at the r → rh limit for model 1 [cf., (5.10)]. Here, the cyan
shadowed region is where the second angular Laplacian stability condition gets satisfied, viz.,M2 ≥ 0. According to the
contour of this shadowed region, we havemarked the upper bound of allowed jβ̃3j by red dashed vertical lines (which are
tangent to the boundary of the shadowed region and are located at jβ̃3j ≈ 0.441) and the red solid pentagrams.

FIG. 2. Panel (a): The parameter phase space spanned by fβ̃3; β̃4; μg. The red solid part represents the allowed region defined by
Eqs. (4.12)–(4.14), (4.20) as well as (4.21) of [24] and by considering the constraints μ∈ ð0; 1Þ plus β̃3 ∈ ð−0.441; 0.441Þ. The cyan
semitransparent part indicates the bounds of β̃4, within which the fβ̃3; β̃4g phase space is covered by the allowed region for arbitrary
legal μ, as required by the theory. Panel (b): The parameter phase space fβ̃3; β̃4g by setting μ ¼ 0. Here, the cyan shadowed area
represents the allowed region. According to the contour of the shadowed region, we have marked the upper and lower bounds of allowed
β̃4 by red dashed horizontal lines (which are tangent to the boundary of the shadowed region and are located at β̃4 ≈ 0.251 and
β̃4 ≈ −0.125) and the red solid pentagrams.
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