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The U(1) gauge-invariant scalar-vector-tensor theories, which catches 5 degrees of freedom, are
valuable for its implications to inflation problems, generation of primordial magnetic fields, new black hole
(BH), and neutron star solutions, etc. In this paper, we derive conditions for the absence of ghosts and
Laplacian instabilities of nontrivial BH solutions dressed with scalar hair against both odd- and even-parity
perturbations on top of the static and spherically symmetric background in the most general U(1) gauge-
invariant scalar-vector-tensor theories with second-order equations of motion. In addition to some general
discussions, several typical concrete models are investigated. Specially, we show that the stability against
even-parity perturbations is ensured outside the event horizon under certain constraints to these models.
This is a crucial step to check the self-consistency of the theories and to shed light on the physically

accessible models of such theories for future studies.
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I. INTRODUCTION

Over the past decades, general relativity (GR) has passed
all the experimental tests with flying colors (see, e.g.,
Ref. [1]). From the theoretical point of view, it is quite an
elegant, robust, and systematic theory to describe the
gravity. Nonetheless, there are still many crucial open
questions left by the framework of GR. For instance, the
accelerated expansion of the Universe, the origin and
inherence of dark matter/energy, the possibility to construct
a quantum theory of gravity, etc., are some outstanding
ones [2]. To solve these problems and approach to the
nature of gravity, many modified gravitational theories
were constructed by introducing additional interactions and
fields. For the purposes of justifying and confining those
modified gravitational theories, they have to be subjected to
experimental tests, including those from the solar system
[3] as well as strong-field regimes, e.g., the gravitational
waves (GWs) led by compact celestial bodies [4—6].

The detection of the first GW from the coalescence of
two massive black holes (BHs) by advanced LIGO/Virgo
marked the beginning of a new era—the GW astronomy [7].
Following this observation, more than 90 GW events have
been identified by the LIGO/Virgo/KAGRA (LVK) scien-
tific collaborations (see, e.g., Refs. [8—11]). In the future,
more ground- and space-based GW detectors will be
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constructed [12], which will enable us to probe signals with
a much wider frequency band and larger distances. As a
result, more types of GW sources will be realized, including
those from a final remnant BH [13]. BH is one of the most
mysterious phenomena in the Universe. The existence of
BHs provides us a perfect way to test gravitational effects
under extremely strong gravity as we pursued and men-
tioned above. On the other hand, from the theoretical point of
view, BHs are also unique laboratories to test the deviation of
modified theories of gravity from GR. The outbreak of
interest on BHs has further gained momenta after the
detection of the shadow of the supermassive compact objects
in the center of galaxy M87 and Sagittarius A* (Sgr A*) in
the center of the Milky Way galaxy, which are the most likely
black hole candidates, with the Event Horizon Telescope
(EHT) [14-17].

The development of the GW astronomy as well as the
interest on BHs have triggered the interest in the quasi-
normal mode (QNM) of BHs, as GWs emitted in the
ringdown phase can be considered as the linear combination
of these individual modes [18]. From the classical point
of view, QNMs are eigenmodes of dissipative systems.
The information contained in QNMs provides the keys to
revealing whether BHs are ubiquitous in our Universe, and
more importantly, whether GR is the correct theory to
describe gravity even in the strong field regime [19].
In addition to the observational purposes, QNM is also
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an important indicator of the stability of a specific space-
time [20,21]. Under certain circumstance, the results from
QNMs will exhibit a manifest consistency with those from
the Lagrangian-based stability analysis [22,23].

In GR, according to the no-hair theorem, an isolated and
stationary BH is completely characterized by only three
quantities, mass, angular momentum, and electric charge.
Astrophysically, we expect BHs to be electrically neutral,
so they are uniquely described by the Kerr solution.
Nonetheless, in theories that beyond GR, the existence
of additional degrees of freedom (d.o.f.) can give rise to
new hairs to the field configuration and spacetime metric
[24]. The theories containing a scalar field ¢ coupled to
gravity besides two tensor polarizations arising from the
gravity sector are dubbed scalar-tensor theories. In par-
ticular, Horndeski constructed most general scalar-tensor
theories with second-order equations of motion [25-27].
On the other hand, for a vector field coupled to gravity,
it is known that generalized Proca theories are the most
general vector-tensor theories with second-order equations
of motion [28-30] (see also Refs. [31,32]). These two
important classes of field theories, Horndeski and gener-
alized Proca theories, can be unified in the framework of
scalar-vector-tensor (SVT) theories with second-order
equations of motion [33]. The SVT theories can be
classified into two cases depending on whether they respect
the U(1) gauge symmetry or not. In the presence of U(1)
gauge symmetry, the longitudinal component of a vector
field vanishes, so that the propagating d.o.f. are five in total
(one scalar, two transverse vectors, two tensor polariza-
tions). The breaking of U(1) gauge symmetry leads to
the propagation of the longitudinal scalar besides the
5 d.o.f. Although a canonical scalar field in the Einstein-
Maxwell theories cannot have nontrivial profile under the
assumption of static and spherically symmetric configura-
tion, i.e., the no-hair theorem [34—36] holds in the theories,
this is not the case in SVT theories due to the existence of
the coupling between scalar and vector d.o.f. Indeed, one
can construct a hairy, static and spherically symmetric BH
solutions in U(1) gauge-invariant SVT theories in which
the scalar field can possess nontrivial profile [37,38].

In this paper, we study the stability of static and
spherically symmetric BHs in the U(1) gauge-invariant
(GID) SVT theory. The one against the odd-parity perturba-
tions has been studied in Ref. [24]. This paper is a successor
that turns to the even-parity sector [39—42], which com-
pletes this kind of Lagrangian-based stability analysis. By
demanding the self-consistency of the theory, Ref. [24] has
already brought some constraints to the phase space of the
theory-dependent coupling parameters for certain models
of the U(1) GI SVT theory. As will be seen later, in
combining with the even-parity analysis, the corresponding
phase space will be further confined.

The rest of the paper is organized as following: Sec. II
provides the necessary fundamental information of the
U(1) GI SVT theory. The corresponding background field
equations are discussed there. After that, we quickly review

the stability analysis against the odd-parity perturbations
in Sec. III. Taking advantages of the results led by the odd-
parity sector, we further run the stability analysis for the
even-parity case in Sec. IV. Notice that, the analysis is
divided into three parts according to [ >2, [ =0, and
[ = 1. We apply our general stability conditions to the three
typical models in Sec. V for the background solutions
studied in Ref. [37]. Finally, some of the concluding
remarks will be given in Sec. VI.

As a usual treatment, in the following we shall set the
speed of light as well as the reduced Planck constant to
one, viz., c =h = 1.1 All the Greek letters in indices
run from O to 3. Other usages of indices will be explained
when it is necessary. The whole paper is working under the
signature (— + ++).

II. BACKGROUND EQUATIONS IN U(1)
GAUGE-INVARIANT SVT THEORIES

We consider the U(1) gauge-invariant (GI) scalar-vector-
tensor (SVT) theories described by the action,

M2 i
S:/d4x,/_—g<2"1R+Z£gVT), (2.1)
i=2

where g is a determinant of the metric tensor g,,,, MglR /21s

the Einstein-Hilbert term composed of the reduced Planck
mass M, associated with Newton’s gravitational constant

GasMy, =1 /V/8xG, and R denotes the Ricci scalar. The
Lagrangians L, with i = 2, 3, 4 representing the U(1) GI
SVT interactions [33] between a scalar field ¢ and a vector
field A, are given by

L%VT :f2(¢,X, FaF7 Y),

[’gVT = [ 3(¢’X)gpa +.f3(¢7X)vp¢va¢]F~MpF~bgvﬂvb¢9
(2.3)

(2.2)

1 N
Ly = fald, X)LFPF, F 5 + §f4,x(¢v X) + fa(h)
x P EOY VoV, V. (2.4)

where V, is the covariant derivative operator. The function
f> depends on ¢ and the following quantities:

1 1

XE_E WPVH P, FE_ZFWF”’

N 1 -

F = —ZFMDF”U, Y = vﬂ¢vy¢FﬂaFDa’ (25)

'Notice that, after this unit selection, there is still one d.o.f. left
for the unit system of [L, M, T]. As an example, one can further
set the radii of metric horizon to the Planck mass (r;, = M) to fix
the unit system.
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where

.
F,=V,A,-V,A,  Fv=

= EgﬂyaﬁFaﬂ.

(2.6)
Here, the antisymmetric Levi-Civita tensor /% satisfies
the normalization £ & wap = —4!. We denote the deriva-
tive of f as f, ; = df,/0Z where Z is any of ¢, X, F, F,
and Y. Meanwhile, f, f5, f4 are functions of ¢, X with
the same notation such as f3 4 = df3/0¢, f3x = df3/0X,
etc., and f, depends on ¢ alone as seen from Eq. (2.4). The
double dual Riemann tensor L% is defined by

1
[ — : EnroEPIR s, (2.7)

where R ;s is the Riemann tensor.

In this paper, we study the stability of the hairy BH
solutions in the U(1) GI theories studied in Ref. [37] on top
of the static and spherically symmetric background given
by the line element [under the Boyer-Lindquist coordinate

(t.r.0.9)],
ds? = —f(r)d> + A= (r)dr? + r?(d6* +sin’0dg?), (2.8)

where f and & depend on the radial coordinate r. According
to the underlying symmetry of the spacetime, we consider
the scalar field ¢ depending on r alone at the level of
background, such that

¢ = ¢(r).

Similarly, the background components of A, are given as

(2.9)

A, = (A(r).0,0,0), (2.10)
where the radial component is absent due to the U(1)
gauge invariance [24]. We note that one can introduce
the magnetic charge P by setting A, = —Pcos@ as in
Refs. [43—-45]. However, we do not include such a term in
this paper since we focus on the stability analysis of the
solutions given in Ref. [37] in which the magnetic charge is
absent. Denoting the quantities X, F, F, and Y evaluated on
the background with the overbar, they reduce to

P PR

, Y =4XF.
2 2f

F=0,

(2.11)

Here, a prime in the superscript denotes the derivative with
respect to r. Since the dependence on F and Y in f, under a
static and spherically symmetric background either van-
ishes or can be expressed in terms of X and F, it can be
omitted at the background level [46,47]. However, since
the above relations hold only at the background level, the
dependence on F and Y in f, may give rise to specific

effect on the dynamics of the odd- and even-parity
perturbations. Thus, we keep the full dependence in f,,
ie., fo=f.(¢, X, F, F, Y), in this paper.2 We omit the
overbar in the following discussion before stimulating any
confusions.

By the variation of the action (2.1) with respect to
f,h,¢,Ay, we obtain background equations of motion,
respectively, as

Eoo = Myrfh — M3 f(1 = h)
+ 1 {ff2— hAG(for — 20" foy)} — 2r* P AG 15

+ hAG{A(h = 1) f4 = K¢ (fax +2f4)}] =0,
(2.12)

Ev1 = MArhf — M2 f(1 - h)
+ 2 {ff2+ [hg?fox — hAG (for — 4hd" fry)}

—2rh2 /AR (3f3 — hg%f5x)
+ hAZ{4(3h = 1)f4 — h(9h — &) f4x

+ W3¢ faxx — 1022 F4}] =0, (2.13)
Ey=JT)—Py=0, (2.14)
Ea=J, =0, (2.15)
where
— h 2 2 !
Jp=-— ?[r (ffaox +2hAG f2y)d

- 2hA62(2hJ;4 +3hfsx —2fax) +2rh*AG 5 x P

+ h3A62f4.XX¢/3 - 2rhA62f3], (216)
1
Py= J7h [P ffap+ hAG{4S 4y +2h(rd f345 — 2f44)
+ h*(faxp + 2f4,¢)¢/2}]’ (2.17)

’In fact, as seen from Sec. III, the quantity F' will hold the
linear-order contributions in the odd-party sector. In contrast, F" is
a quantity with a magnitude at most the third order of the
gravitational perturbation in the even-parity sector and hardly
affects the linear perturbation calculations as we will see in
Sec. IV.

*We notice that the explicit dependence of f, on ¥ was not
considered in the counterparts of Eqgs. (2.12)—(2.18) in Ref. [37]
by assuming that ¥ has been spelled out as ¥ = 4X F at the
background as we can see in Eq. (2.11). In this paper, we
explicitly include such a dependence in f, to be consistent with
the fact that the relation ¥ =4XF does not hold at the
perturbation level. Thus, Egs. (2.12)—(2.18) look slightly different
in comparing to the equations in Ref. [37].
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h
Ja= \/fAB[rz(fz.F —2h¢”fry) +4rhg'f5+8(1 = h)f4

+ 212" (fax +2f4))- (2.18)

From Eq. (2.15), the current J, of vector field is conserved
by virtue of the U(1) gauge symmetry. In addition, if we
demand the shift symmetry of the scalar field, the current
Jy will also be conserved. In such a case, this current
vanishes at the horizon, and hence, it should be zero
everywhere as we will see in Sec. II. Interested readers can
check these field equations out in [48]. We note that the
coupling f5 never appears in Eqgs. (2.12)—(2.15) due to the
underlying symmetry of background spacetime.

III. STABILITY CONDITIONS AGAINST
ODD-PARITY PERTURBATIONS

In this section, we revisit the stability conditions against
odd-parity perturbations in the U(1) GI SVT theories
which is studied in Ref. [24]. We consider the perturbed
metric g, = g, + hy,, where g, is the background
metric defined by Eq. (2.8) and h,, is the perturbation
satisfying |h,,| < |g,,|. The perturbations %, can be
expanded in terms of the spherical harmonics Y;,,(6, @)
due to the underlying symmetry of the background
spacetime. In doing so, the perturbations are classified
into odd- and even-parity modes where the former changes
the sign as (—1)"*! under the parity transformation
(0,9) = (x— 0, + ) and the latter as (—1) [49]. The
components of h,, in the odd-parity perturbations are
expressed as follows:

hy =hy = h,, =0,
hta = Zle(t’ r)EabvbYlm<9’ (p)’
1

hra = ZWlm(t’ r)EtlbvbYlm(g’ (p)’

I,m

1
hap = Ezulm(t’ r)
I.m

X [Efzvcvbylm (67 (ﬂ> + Ezvcva Ylm (97 (,0>], (31)
where a, b represent either 0 or ¢, Q,,, W;,, and U,,
are functions of ¢ and r. The tensor E,, is associated
with the antisymmetric symbol ¢, satisfying &y, =1 as
E., = \/7€., Where y=sin?@ is the determinant of
the metric y,, defined on the surface of two-dimension
unit sphere. The scalar filed ¢ does not contribute to the

odd-parity perturbations; i.e., it has contributions only at
the background level as long as we consider odd-parity
perturbations. The odd-parity vector field perturbations 6A,,

on top of the background value A, satisfying |64, < |A,,|
are given by [41,50,51]
8A, =04, =0,  8A, =Y Ay, (t.1)E;0"Y,,(0.9),

lm

(3.2)

where 6A;,, depends on ¢ and r.

Under a infinitesimal gauge transformation x, —
Xu + éﬂ’ where ft =0= ‘gr’ and ga = Zl.m Alm(t’ r) X
E.,V?Y,,(0,9), the metric perturbations transform as
le - le + Alm’ Wlm - Wlm + Aém - 2Alm/r’ and
U,, - Uy, +2A,,, where a dot on top represents the
derivative with respect to r. We choose the Regge-Wheeler
gauge [52] satisfying A, = -U,;,/2 in which h,, in
the odd-parity sector merely vanishes. In the following,
we omit the labels / and m of the quantities Qy,,,, W;,,,, and
0A,,, for simplicity.

We expand the action (2.1) up to quadratic order in
odd-parity perturbations and perform the integration with
respect to € and ¢. In doing so, we can focus on the
perturbations of m = 0 mode without loss of generality by
virtue of the underlying background symmetry [53]. After
repetitively using the integration by parts and the integral
formulas for spherical harmonics (see, e.g., Ref. [21] and
references therein), the second-order action reduces to

Sa=>L / drdrL), (3.3)
I.m
where
L=I(l+1), (3.4)
and
. 2 \2
= (W-0'+30)
. 2
+ 2(a,8A" + a35A) (W -Q' += Q)
p
+ a46A% + as6A”? + (L —2)(agW? + a; 0?
+ agQSA) + LagdA>. (3.5)

The coefficients ; (i = 1,...,9) are given by
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M2 \/E W32A!
a="2r w=y } [/ £ — Af s + h? (fax + 275,
_ \/EAZJ 2 2 / 2 412 7
@ = — 5= [P (for — 20 foy) + 4h(rd' f5 — 2f4) + 2124 (fax + 274)].
2r \/_
oy = 2y \/— [rfar + 20 (f5 + h¢'2f3) 4n'fy+ 2he" + @'W){rfs + he'(fax + 2]?4)}],
h ht' -
as = éf— {’sz = 202 foy) + 204yt = ' fs = Af s+ WP (o + 2f4>}] ,
hA/Z
o = f {M2 S{4fs = hgP(fax +274)}

1 4hA’2f
= MZ _ 0J4 ,
“7 4r2m‘z< I )

i)

1 , n\
a5 == lffz,F = hAG 2 p i + 23/ TR PR ) f5 + 12 ¢°Fs = 43/ Fh ((;f) fa

+ h3/2f/¢/(\/;l¢/)/(f4,x + 2f4) .

Notice that, in the absence of the dependence of FandY in
f», the above coefficients a; (i = 1, ...,9) reduce to those
defined in Ref. [50] up to an overall factor, which are

(pre) (i=1,...,9), such that

- ﬁagprex

The second-order action (3.3) identically vanishes for the
monopole mode / =0, i.e., L = 0. For the dipole mode
characterized by [ = 1 (L = 2), the vector field perturba-
tion SA is the only propagating d.o.f., and it is shown that
the stability conditions for A are the same as those for
[ >?2 in Ref. [24]. Thus, we focus only on the modes
characterized by / > 2 and revisit their stability conditions
in this paper.

The dynamical variables in the Lagrangian (3.5) are W
and SA. In order to integrate out the remaining non-
dynamical variable Q, we introduce an auxiliary field y
to the Lagrangian as

denoted as a;

(3.7)

. 2
‘C(()%i)d =aq |:2)(<W— o +;Q +
_ (azéA' + (13514)2
aj
+ (L = 2)(agW? + a;0% + agQ5A) + LagdA>.
(3.8)

(lz(sA/ + (13514) 2:|
71 —x

+ a,6A% + as6A"”

Varying the above Lagrangian with respect to y, we find
that the auxiliary field y satisfies

(12514/ + a35A

ay

;(:W—Q’+%Q+ (3.9)

which guarantees the equivalence between Egs. (3.5) and
(3.8). Meanwhile, the variation of the Lagrangian (3.8) with
respect to W and Q leads

ay — (L =2)agW =0, (3.10)

1
ay +— (P )y + (L -2) <a7Q +%5A> =0, (3.11)

respectively. The above algebraic equations can be solved
for W and Q, respectively. We substitute these solutions
into the Lagrangian (3.8) and eliminate the perturbations Q
and W from the second-order action. In doing so, the role of
gravitational d.o.f. carried by Q and W in the original
Lagrangian (3.5) is transferred to the auxiliary field y in the
resultant Lagrangian of the form,

(L-2)L% = YKX + X'G¥ + ¥'S¥ + YMX,
(3.12)

where K, G, S, M are 2 x 2 matrices with the nonvanishing
components given by

044047-5



CHAO ZHANG and RYOTARO KASE

PHYS. REV. D 110, 044047 (2024)

2

a
Ky =--1, Ky = (L =2)ay,
(203
2 L—-2 2
G4 g, -V@a-ad)
a7 a
oy
Spr==-8;=—(L-2 —,
12 21 ( )<a2+2a7>
o )12 a (PPa)’
MH:—(L—Z)al—[( 41)] _’_|:l(2 1):|’
rot7 ra7

L—-2 2 2 /
My =—(L-2) [( 4 )% _ Lag +3 - <a2a3) }
az a a

" a1a8>’}
2 - 9,
2“7

(3.13)

ag(r*a;) 1
My =My = (L-2)|ag— "1~
12 21 = ( ) {0‘3 22a, )

and X is the vector defined by

X' = (y.54). (3.14)
The no-ghost conditions, K;; > 0 and K,, > 0, are guar-
anteed for

g < 0, ay > 0. (315)
By assuming the solution of the form X' ell@=kr) in
the small-scale limit characterized by k — 0O, the pro-
pagation speed of perturbations along the radial direc-
tion is expressed as ¢, = w/(v/fhk) in proper time.
Substitution of this expression into the dispersion relation,
det (0’K + k*G) = 0, leads

Gy o Qg

2 = - = - 3.16

Crl,odd fhKll f”la7 ’ ( )
G a3 — oy

2 _ _ 22 _* 145 3.17

Cr2$0dd fhK22 fha1a4 > ( )

where ¢, oqq and c¢,; oqq are the propagation speeds of the
odd-parity perturbations arising from the gravity sector and
the vector field perturbation, respectively. On the other
|

hy, = f(r)ZHO,lm<t7 "Y1, (0. 9),
lm
hrr = h(r)_IZH2,1m<t’ r)Ylm(g’ (,0),
ILm

hi = hy = ZhO,IVn(t’ r)va Yo (9’ (P>7

Im

hab = Z[KlmU’ r)gabYlm(€1 (,0) + Glm(t’ r)vavbYlm(e’ g”)]’

I.m

hand, by assuming the solution of the form X" o /(1) in
the limit that L = /(I + 1) > 1, the squared propagation
speed along the angular direction is expressed as c3 =
r?w*/(I>f) in proper time. We substitute this expression
into the dispersion relation of the form det(w?K + M) = 0.
Picking up the dominant contributions for / > 1, we obtain

2 2

A I 3.18

€Q1.0dd 21Ky, fay (3.18)
My 1 (ad — daqay)

C?ZZ,odd =~ fKy = . (3.19)

4fa4 a7

Here, ¢y 04q 1 the propagation speed along the angular
direction for the perturbation arising from gravity sector,
while cg 449 1s that arising from the vector perturbation.
We note that the expressions of Egs. (3.15)—(3.19) are all
the same as those derived in Ref. [24] while the dependence
of F and Y in f, alters the coefficients a3, a4, as, and aq.
For the absence of Laplacian instabilities, we require
the conditions 2, 44 >0, €% 44 20, €& o9q =0, and
Cépoaa = 0. Among these conditions, Eq. (3.18) shows
that the condition 3 44 >0 is automatically satisfied
under the no-ghost condition (3.15) since «@; is non-
negative by definition [cf., (3.6)]. From Egs. (3.16),
(3.17), (3.19), the other three conditions for the absence
of Laplacian instabilities are translated to give
a; >0, a3 —ajas >0, ak —da;a9 > 0. (3.20)
The above stability conditions will assist us below in
understanding those for the even-parity sector.

IV. STABILITY CONDITIONS AGAINST
EVEN-PARITY PERTURBATIONS

We proceed to derive the stability conditions against
even-parity perturbations. On top of the background space-
time characterized by Eq. (2.8), the components of metric
perturbation 4, in the even-parity sector are given by

htr = hrt = ZHl,lm(t’ r>Ylm(97 w)’
Im

hra = har = Zhl,lm(t7 r)vaYIm(Q’ 90)7

Lm

(4.1)
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where HO,Zm? Hl,lm’ H2,Im’ hO,lrm hle’ Klm’ and Glm are
scalar quantities depending on ¢ and r [one should avoid
confusing the K and G in here with those appearing in, e.g.,
(3.13)]. Similarly, we consider the perturbations of scalar
and vector fields on top of their background values as’

b =F+D 5pu(t,r)Y1(6,0), (4.2)
lm
A, =A, + A, (4.3)
with
SA, = IZ(SAW(;, )Y (0.9),
BA, = IZ(SAI,zm(r, )Y im(0, ),
0A, = 25A2,lm(tv "V i (6, ), (4.4)

I.m

where ¢ and Aﬂ are background values given by Egs. (2.9)
and (2.10), respectively. The scalar quantities 6¢;,,,, 0Aq 1>
OA| i, and 6A, ;,, are functions of r and r, which are, as
usual, assumed to be much smaller than the background
quantities.

Let us consider the infinitesimal gauge transformation
x, = x, + &, with

& :Zsz(fv 1Y 1,(0.9),

Im

fa = ZG)lm(t’ r)vaYlm<9v (ﬂ),
Im

ér = Zle<t’ r)Ylm(gv QO),
I.m

(4.5)

where 7 ,,, R, and ©,,, are the scalar quantities depend-
ing on t and r. In the following, we omit the subscripts / and
m of the scalar quantities in Egs. (4.1) and (4.5) for
simplicity. Under the above transformation, the scalar
quantities in Eq. (4.1) transform as

H H+2T /hR H - H +R+7T f/T
_) _ - T b _) - b
0 0 f f 1 1 f

H2 e d H2 +2hR/ +h/R,

. 2
h0—>l’l0+T+®, hl—)h1+R+®/__®,
r

2 2
K—-K+-hR, G-G+56,
r r

5p — 5 — PR, (4.6)

*We note that we shall in_general omit the overbar in writing
background quantities like ¢» and A, in the following, since the
order of a quantity can be easily identified by the context and
counting the perturbation terms, just like what we have done in,
e.g., BEq. (2.12).

where we have dropped the [m in subscripts for the cor-
responding quantities for simplicity. For [ > 2, we choose
the gauge given by 7 = —hy + r>G/2, R = —rK/(2h),
and ® = —r>G/2 so that the perturbations hg, K, G’
identically vanish. This gauge fixing is equivalent to
setting

K=0, G=0, (4.7)
in Eq. (4.1) from the beginning (This is sometimes
referred as the EZ gauge [39]). We also consider the
U(1) gauge transformation,

BA, = A, + 0,0y with &y = #(t.r)Y,,,(0.9),

ILm

(4.8)

under which the scalar quantities in Eq. (4.4) transform
as
SAy — 6Ag + 7.

SA; = 8A, +7. 6A, > 6A, + 7.

(4.9)

For the gauge choice y = —0A,, the quantity 6A,
identically vanishes. This corresponds to setting

0A, =0, (4.10)
in Eq. (4.4) from the beginning. Thus, with all the gauge
choices mentioned above, we are now left with seven
variables, i.e., {6¢),5Aq,5A, hy,Hy, H|, H,} (and at this
point, they themselves, as well as their combinations,
represent gauge invariants).

A. Second-order action and perturbation equations
of motion

We expand the action (2.1) up to second order in terms
of the even-parity perturbations given in Egs. (4.1), (4.2),
and (4.3) under the gauge choices (4.7) and (4.10). In
doing so, we can focus on the m = 0 mode without loss
of generality for the same reason as in the case of odd-
parity perturbations. After lengthy but straightforward
calculation, the second-order action in the even-parity
sector reduces to

Seven = Z/dtdr(ﬁu + L), (4.11)
I

where

>One should avoid confusing the G in here with the gravita-
tional constant mentioned previously.
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L, = Hola)6¢" + a,0¢ + asH’, + Layhy + (as + Lag)o¢ + (a7 + Lag)H, + Lagh,]
+ LbH} + Hy(by6¢' + b35p + byHy + Lbshy) + ¢16¢H, + Hy[c26¢) + (c3 4 Ley)5¢p + Leshy]

+ cgH3 + Ld, 12 + Lhy(dy8¢' + d36p) + Ld,h3 + e,6¢ + €28 + (e5 + Ley)5¢?, (4.12)
. . 1 .
’CA = U1(5A6 - 5A1)2 + (5A6 - (SAl)(UzHO + U3H2 + U45¢/ + U55¢ + LUGhl) + 5LU6h1(3A1 + U7H%
+ L(Ugh]5A0 + U95A(2) + UloéA% + UHH](SA] + U]2H25A0 + 1)]35¢5A0). (413)

The coefficients ay, a,, ..., vy are given in Appendix A. In Refs. [54] as well as [48], the even-parity perturbations in
Horndeski theories with the interaction between scalar and Maxwell fields characterized by the Lagrangian G, (¢, X, F)
are studied. Compared to that, the presence of the U(1) GI SVT interactions characterized by f3, f3, f4, and f, in
Eq. (2.1) gives rise to the new terms with the coefficients vg, vy, v15, and vy3, in Eq. (4.13). For f, = G,(¢, X, F),
f3=0, f3=0, f, =0, and f, = 0, these coefficients identically vanish and the Lagrangian £, coincides with that
derived in Refs. [54,55]. Since the Lagrangian £, possesses the similar structure to that in Ref. [54], we can resort to
the analogous method in order to identify the dynamical vector d.o.f. in the even-parity sector. Let us introduce an
auxiliary field V(¢,r) and rewrite Eq. (4.13) as follows:

. 1
EA = v1{2V |:5A6 — 5A1 + ZT(UzHO + U3H2 + 1)45¢/ + U55¢ + Lv6hl):| — V2}
1

1 1 .
- 4— (’U2H0 + 1)3H2 + ’U45¢/ + 1155(]5 —|— L116h1>2 + 5L’U6h15A1 + ’U7H(2)

Uy
+ L(Ug/’l]éAO + 7)95A(2) + 1]105A% + 011H15A1 + U12H25A0 + U135¢5A0). (414)
By varying this action with respect to V, we find that
. 1
V = 5A6 - 5A1 + 2—1)1 (UQH() + 1)3H2 + U45¢/ + U55¢ + L’l)(,l’ll), (415)
|

which shows the equivalence between Eqs. (4.13) and v3
(4.14). Nevertheless, the auxiliary field V plays a key role b7 = 49, (4.16)

to find out the dynamical vector d.o.f. on the point that
the quadratic derivative terms SA? and 5A? in Eq. (4.13)
do not appear in Eq. (4.14). The disappearance of these
derivative terms in Eq. (4.14) allows us to solve the
perturbation equations of A, and J6A; for themselves
explicitly in analogy with what we did in Egs. (3.10)—
(3.11). On using these solutions, the dynamical property
of vector field perturbations can be aggregated into the
auxiliary field V as we will see later. Moreover, the
quadratic term H3 in Eq. (4.14) identically vanishes by
virtue of the relation among the coefficients v;, v,, and
vy, of the form,

|

O = Cl3H/2 + La4h/1 + (a2 —2—”1

0 = 2Lb1H1 + b35¢ + b4H2 + Lbsl’il + L12115A1,

) Vo
2 4)5(]5’—!— <La6—|—a5—22715

This shows that the perturbation H appears only linearly
in the total action (4.11) with Egs. (4.12) and (4.14). In
other words, the perturbation H, corresponds to a
Lagrange multiplier. The variation of the action with
respect to H, gives constraint on other perturbation
variables, and H( simply disappears once the constraint
is applied to the action.

We vary the total action (4.11) represented by Eqs. (4.12)
and (4.14) with respect to H,, H,, H,, h, 0A,, 0A;,
and ¢, so as to obtain the following linear perturbation
equations:

>5¢ + (Lag +Cl7 —%)Hz +L<Cl9 _%)hl + UzV,
(%1 27]1

(4.17)

(4.18)
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0= —b,H, + ( ”3”4> 5+ <c3 Y Loy -

U1

U305

2

v3 )H2
Uy

20 — —>
Ceo >

>5¢ 1L <c5 - —”23:16>h1 i (

—a3H6—|— <a7—a3 +L 8—%>H0+U3V+L’U125A0, (419)
Uy
.. L
0= —2d,h, + <d2 - %) 5 + <d3 - %) 5 + <2d4 - —”> hy — ayH) + (a9 —d, - Wé) H,
(4] 21}1 2711
. U3U6 1
— bSHl —|— C5 21} HZ + 1)6V + 2 1)65A —|— ’UséAo, (420)
= —2(1)1 V)/ + L(Ughl + 21}95A0 + 7]12H2 + ’1)13547), (421)
. 1 .
0:201V+L<—§1}6h1 +211105A1 +U11H1), (422)
. 2 41)5 vy VU4
0=—2¢,60 - 2e2—— 5" + |2e5 +2Ley + ~ 55— (ay - 22 m,
2’[}1 2’1}1 2’01
VrVy Uy V5 . V3Vy4
+ |:Cl5 +La6 +<21}l> - 2U1:|H —b3Hl—<C2——2U]>H/2
V304 V305 V4V VaVg\' V506
Lcy — ¢ H,—L(dy,——=—|h, +L|dy—d — | ———1h
+[CS+ “ c2+(21j1> 27)1] ? <2 27)1) o [3 2+<27}1> 27]1] 1
2
- {24 (2”; > }&/ﬂ — 0V + (v — 0,V + Lu 384, (4.23)
1

where we used the relation (4.16) and substituted in the
coefficients being 0 in Appendix A. In the following, we
study the linear stability conditions for the three cases
(1)1>2,(2)1=0,and (3) [ =1, in turn.

B. Linear stability conditions for [ > 2

We introduce the following quantity:

w=H, _éhl’ (4.24)
which corresponds to the propagating d.o.f. of gravitational
sector as in the case of GR. Now, we have all the
representations for the 3 d.o.f., i.e., gravitational (), vector
(V), and scalar (5¢), in hand. We replace the H,, H,, and
H/, in (4.17)—(4.22) with y and its derivatives. In doing so,
the quantity /| disappears from Eq. (4.17) on account of the
relation a3 = —ray, and the resultant equation can be
explicitly solved for h; as a combination of y, ¢, S¢p,
and V. Substituting this solution into Egs. (4.18), (4.21),
(4.22) and combining them, we can also express H,

|

0Ay, and SA; in terms of y, 6¢, V, and their derivatives.
Finally, by substituting these solutions back into the total
action (4.11) with Egs. (4.12) and (4.14), the perturbations
Hi, H,, hy, 6A, 6A, are removed. The quantity H, is also
removed from the action as we discussed below Eq. (4.16).
As a consequence, the resultant action is composed of the
only three dynamical perturbations y, 6¢b, and V. Denoting

the reduced Lagrangian as ﬁé%in by mimicking (3.12), it can
be written as

L =YRY+Y'GY +Y'SY+YMY, (4.25)
where 37 is the vector defined by

Here, the matrices K, G and M are symmetric while S is
antisymmetric. Putting together the 2 d.o.f. from the odd-
parity sector [cf., (3.14)] and the 3 d.o.f. from the even-
parity sector [cf., (4.26)], we obtain 5 d.o.f. in total, as once
promised.
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1. No-ghost conditions

The components of kinetic matrix K are given as

_ 1 ool L 1
Ri=1 K+ (G455 ) -5k
as, r 2rh

_ fbs 1(a, 1 L 2 A fbs3
K> = 2L [ra4 {’Cl + 2 <a4 + r + 2rh K ra4 ds + Lag 2 05 | K 2 ray /C2
b A) b

K22—€]+4L |:f 3 {fb3/C1—2<a5+La6—7U5)/C2} 2{({61;) Kz}:|,

> v (fvs /b3 - foi
K Ky — 24K Ry = 22K, Kyy =——K,, 4.27
13= ALra, ( 0 1 2> 3 =5 ra, 13 33 2L aun 1 ( )

where we used the relations among the coefficients given in Appendix A and introduced

2r%a, fvz \! 4rfa, (f L 2 Abvg\~!
K, =- —— , I, = 4 — 240 . 4.28
=TTy ( 8a4v10> =77 <f+rh r+2a4> (428)

The ghost instabilities are absent if the kinetic matrix K is positive definite, which is translated to requiring the following
three no-ghost conditions:

Ky >0, (4.29)
K, K33 — Ki3K5, > 0, (4.30)
detK > 0. (4.31)

On using the relations among the coefficients shown in Appendix A, the expression of the first no-ghost condition (4.29)
reduces to
2

ap vy

L(a3 — ajas)
Remembering that ; is positive by definition, this shows that the first no-ghost condition automatically gets satisfied

provided the odd-parity stability conditions given in Eq. (3.20). Although the remaining two no-ghost conditions are
slightly complicated, they can be simplified by the use of the following relation:

Ky =

K2, (4.33)

(P . 1 Hﬁ)' L2 =20 AP e + Afv)

2fh 7 8rfla, h r ray

where we used Eq. (A2) in Appendix A for the derivation of this relation. Eliminating ) in Eq. (4.27) by using the above
relation and substituting the definition of IC; and K,, the second and third no-ghost conditions (4.30)—(4.31) reduce to

8r*hviai[L(2/FhP + rAyvs) — 872 fhay]

Ry - K5R - >0, 4.34
11733 13831 = L2f2(4Lra4 —|— 2r2hA’ U6 + Pz) (a2 - alas) ( )
6 _ 42
det K — 33r2h1)2 2ajor (L — 2)2(2\/ hPy + rAvs — 4r° fhay) -0, (435)
L2 (4Lray + 2r*hA)ve + /fhP,)* (a5 — aas)
respectively, where
1 8r°vVh '
Pl = ? (%) ay, 7)2 = f <§) ay. (436)
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Under the stability conditions in the odd-parity sector
given in Eq. (3.20), the no-ghost conditions (4.34) and
(4.35) are satisfied if L(2v/fhP, + rAyve) — 8r*fhay > 0
and 2\/fhP| + rAjvs — 4r’fha; > 0 hold, respectively.
Since L > 2 and a; > 0, we notice that the former is always
ensured as long as the latter holds. Hence, the second and
third no-ghost conditions converge to

2. Radial and angular Laplacian stability conditions

By assuming the solution of the form V' eil@—kn)
in the small-scale limit characterized by k — 0, the
propagation speed of perturbations along the radial
direction is expressed as ¢, = w/(\/fhk) in proper
time. Substitution of this expression into the dispersion
relation reads

Aj
K= 2<7>1 Y r) —4\/Fha;r* > 0. (4.37)
det (fheK 4+ G) = 0. (4.38)
In conclusion, the no-ghost conditions in the even-parity
sector give rise to only one additional constraint (4.37) to 5
the stability conditions in the odd-parity sector. The components of matrix G are given as
|
~ eSB! ¢ \? 4r? (2rhvg + Lvg)?
G =- — [ A¢ — -4 ——dy 22
T P R R (res +ce) =7 -da+ 4L1 v,
~ Al Vg4 — 2612 ~ f’CZ Vy gb/
G =-"2 G — dy + [ Apvy + =04 ) |
12 2ray 4rta, Cotrazt 20, ovt+ 2
2 Ay -2 Apvy —2a; Gs Gy G 238
Gy = ¢ _ by 0V4 — 24y b - oV4 — 20y G ). i3 _ T3 Y _f% 041110' (4.39)
Uy ray 47"614 K13 Kz'; K33 8614’[)9

By virtue of the relation between G;; and K5 (i = 1, 2, 3),
the propagation speed of the vector d.o.f. decouples from
the other two in the dispersion relation (4.38). On using the
relations among the coefficients given in Appendix A, it
reduces to

2
5 o a; — a1as

= . 4.40
Cr3,even fhal a, ( )

Although the remaining two propagation speeds look being
coupled with each other in the dispersion relation (4.38),
they decouples on the use of the relations among coef-
ficients given in Appendix A such that

2 %
rleven — fha7 ’

2 P [a2Ahv + @'vy) + 40, (e +4rd,)]
rreven 401 (2/fRP; + rAjve —4r* fhay)

¢ (4.41)

Cc

(4.42)

They correspond to the radial propagation speeds of the
tenor and scalar mode, respectively. For the absence
of Laplacian instabilities along the radial direction, we
require

rl even 2 0 r2 even 2 0 r3 even 2 0. (443)

[
By observation, we notice that the squared radial propa-
gation speeds of vector (4.40) and tensor d.o.f. (4.41) are
equivalent to those in the odd-parity sector given by (3.17)
and (3.16), respectively. Thus, the first and third radial
Laplacian stability conditions are automatically satisfied as
long as the odd-parity sector is stable.

On the other hand, by assuming the solution of the
form )" « /@19 in the limit that L = [(I+ 1) > 1,
the squared propagation speed along the angular direction
(which is dimensionless) is expressed as ¢ = r?w?*/(I*f)
in proper time. We substitute this expression into the
dispersion relation of the form,

12 2
det( QK+M> =0.
r

We expand this equation for L >> 1 and pick up the dominant
contribution so as to derive the propagation speeds along the
angular direction. As we will see later, the leading order
contribution possesses the linear dependence in L, but this
contribution identically vanishes after the substitution of
relations among coefficients. This shows that we need to
extract the subleading order contribution from Eq. (4.44). In
order to do so, we expand each component of matrices K and
M for L > 1 up to the subleading order and find that the
components possess the following L-dependence:

(4.44)
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© & =0 () =00 ()
g Ko Ky g, Ko Kp g.-Ks Ky
11 L Lz ’ 12 L L2 b 13 L L2 s
(1) =0 () =(0)
o K I ¢ ‘¢ _ K
Kn=Ky+—=  Kn=—"p+73. Kn=—
r7(1) (1) ~(1)
3 o M N _ o M N _o M
Mll = M<11) +¢’ ]‘412 :M§2) + 12 , 1‘413 — M§3) + 13 ,
L L L
y S(0) | (1) oo, MY N i
M22:LM22 +M22, M23:M23 + L N M33:M33 +—l; 5 (445)

where the quantities with superscripts (0) and (1) correspond to the coefficients of leading and subleading contributions for
L > 1, respectively, which do not contain L themselves. We note that K53 cannot be expanded further as seen from
Eq. (4.27). Substituting these expressions into the dispersion relation (4.44) and expanding it, the leading order contribution
is in proportion to L. As mentioned above, this contribution identically vanishes since the quantities M l(-;)) (i,j =1,2,3)
satisfy

~r(0) ~(0) ~r(0) 2

M M M 8a4vo—f11 ~(0) +~ (0 ~ (0)+2

07 = 0 = 0 = 8; " o, MM - ) =o, (4.46)
Ky, K K3 471

under the use of relations among the coefficients given in Appendix A. We then pick up the next-to leading order
contribution proportional to L° in Eq. (4.44). Although the resultant equation is complicated, we can simplify it by using the
following relations among coefficients appearing in Eq. (4.45):

RY &Y g

~(0 - ~(1 - ’
K§3) K§3) 2ray

5(0) 75(0) _ 5(0) (0 5(0) (0
K§2>Mg3> - K(z )M§3) = ’”h‘f’/ng)Kg;’

RIVNLS = 2R\ W = PN (7R3 + drar), (4.47)

together with Eq. (4.46). We also introduce the following two quantities:

~7(0) (1 ~(0) (1 ~ (0 1
_ AR 2R+ S

1= = , (4.48)
42 f 2o, M)
~(0) y7(0 ~(0) x4 (0 ~(0) (0
M, = ¢/(Vh¢/Mg2)Mg3> + 2M(13)Mé3) _ 2M§2>Mg )) 4.49
2= ~(0) . ( . )
4rfh1)1a7M33
Then, the next-to leading order contribution proportional to L in Eq. (4.44) can be expressed as
2570 2570 24 fan My + 2510
<cé—|——r ~<f§> (ch+ M, +My) [+ 22 —r(f“72 . )|, (4.50)
JK33 K 4f <P K5,

where the matrix components appearing in the above expression and M;, M, are given by

2,2

0 0 rv 0 Ve 0
Kéz) =e, M(”) - _ 41}16’ M(13) =-=" Mg3> E—
M(111) = 2d, - ”;% rh(m, — raqvg)m, 1 (”’6’"1 _M)"
4azvg asv vg 4\ auvg vy
My = - Tg _ hdovamy <U1m3)/,
aylg ay ay, g
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myms  rhAjm,  h(m; —raqvg)my 1 (vym| + rvgm !
M(113):_ 123_ ™2 (m, 40g) 4+_<1 I 63—rhm4>
2a3vy 2ay 2a4v¢ 4 asvg
MO _, n 2hcyag 3 m%
2 a,  4alvy’
M(g) _ _%413 B hey(my — ragvg) _ rhagmy | rvsvg m12n15 +1 rhes + r(2d,vy — v4v6) _ rvgims’
ay, Vg 2a4U] 4’[)1 46141]9 4 21)] 26141)9
hA| h 1 !
M) = Moty s | MMy MdeMs 2 (1, ) (4.51)
) ay 2 2&41}9 2a4 4 a, g

with the shortcut notations,

rA61)6
my =ragvg + | a4 + rag —
/
., Ajvyg
msz = ayvy — ) 5

In a manner analogous to the radial propagation speeds,
the angular propagation speed of the vector d.o.f. decouples
from the other two propagation speeds in Eq. (4.50).
Denoting the vector propagating speed as cqjeyens it 1S
given by

23570 202 — 8
By even = =~ = r(fvs —8asn) 5 (4.53)
K33 8fasv

whose positivity is required for the Laplacian stability of
the perturbation V. This forms our third angular Laplacian
stability condition, as indicated in the subscript.6 The
remaining two propagation speeds associated with the
gravitational and scalar d.o.f. generally couple with each
other and can be expressed as

2

CQi—,even
1 rzM(O)
=5 —<M1 + M, + ~<f§>
K5,
+ (M L+ M, — ﬂM&?) A LR
~(0 ~(0
éz) f 24”/20‘7 K gz)
(4.54)

®This is referred as the third angular Laplacian stability
condition since it belongs to the vector d.o.f., which appears
as the third one in (4.26). For a more convenient way of narration,
this one is discussed before the first and second angular Laplacian
stability conditions.

my = 2A6’1}1 + ¢/1}4,

@'y

)7_)6, m2 = 2C51}1 + <A67_)1 +—) U6,

2

ms = dglg + as 3. (452)

For the absence of Laplacian instabilities associated with
the perturbation y and 6¢, we require that the squared
propagation speeds given in Eq. (4.54) are real and non-
negative. These conditions [with the assistance of the
Vieta’s formula and Eq. (4.50)], with the nearest two below
referred as the first and second angular Laplacian stability
condition, respectively, are translated to give

M)
M, = —(M1 + M, + ~((2)§) >0, (4.55)
fK22

~(0 ~(0)\2
r*(M, +M2)M52) _r*(4fa My + ¢/2Mgz))

MZ = ~ ~ Z 09
f Kgg) 4 f2 ¢/2 a; Kgg)
(4.56)
and
2570 2
M%—4M2 - <M1 +M2 _%)
FKy;
2 12 77(0)42
Lr (4f oMy + ¢ M) >0, (4.57)

f2 ¢/2 a Iggoz)

with (4.57) guaranteeing that ¢3, ..., are real. Imposing
the Laplacian stability condition (3.20) in the odd-parity
sector, the quantity a; in the third condition can not be
negative. Moreover, on using the relations of coefficients in
Appendix A and the definition of P given in Eq. (4.36),

the quantity K ég) in the third condition can be written as

. K
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which must be positive since K corresponds to the no-ghost
condition derived in Eq. (4.37). These facts show that the
last condition (4.57) is automatically guaranteed as long as
the Laplacian stability in the odd-parity sector and the no-
ghost condition in the even-parity sector are satisfied.

In spite of the complexity of stability conditions (4.37),
(4.43), (4.53), (4.55), and (4.56), some of the stability
conditions against even-parity perturbations can be omitted
since they are redundant with those against odd-parity
perturbations as we have already seen. Let us summarize
that before closing this subsection. For the absence of
ghosts, we found that only one additional condition, }C > 0,
to the odd mode stability is required, where K is given in
Eq. (4.37). The tensor, scalar, and vector propagation

squared speeds along the radial direction, i.e., cfl,even,
cfz’even, and C%3,even’ are given in Egs. (4.41), (4.42), and

(4.40), respectively. Among them, we find that the tensor
and vector propagation speeds are equivalent to the radial
propagation speeds of corresponding d.o.f. against odd-
parity perturbations given in Egs. (3.16) and (3.17),
respectively. Hence, the radial Laplacian stability condition
against even-parity perturbations gives rise to only one
additional condition ¢2, ., > 0 to the odd mode stability.
On the other hand, the angular propagation speeds against
even-parity perturbations are independent of the odd mode

|

stability. Hence, the angular Laplacian stabilities require
three conditions. The positivity of 3 ..., is satisfied under
the condition (4.53). The tensor and scalar propagation
squared speeds, g ... are guaranteed to be positive
under the two conditions (4.55) and (4.56).

In summary, we need to consider five additional con-
ditions (4.37), (4.42), (4.53), (4.55), and (4.56), to the
stability of odd-parity sector. Nevertheless, it would be still
very hard to carry out the stability analysis for the most
general case. Instead, we shall process to next section and
consider several concrete models.

C. Linear stability conditions for /=0

We consider the monopole perturbation characterized
by [ =0, i.e., L =0, in which case the quantities h, h;,
and G identically vanish away from the second-order
action of the even-parity sector [54]. This means that one
can use the gauge d.o.f. on 7" and O for our purpose other
than to eliminate /4, and G as in Eq. (4.7). However, the
gauge d.o.f. will not be completely fixed in such a case.
Thus, we adopt the same gauge characterized by Eq. (4.7)
as in the case for [ > 2. Substituting L =0 into the
second-order action (4.11) with Egs. (4.12) and (4.14),
it reduces to

. Hy + 0,88 + vs6 Hy + 0,88 + v569)?
nggn:/dtdr[ul{2v<5Ag—5Al+”3 2 V0§ + vs ¢>—v2}—(”3 2+ vabf + v559)

2. .
+ (@' + AjvV)H, — ?®H1 + (20" + c369)H, + ccH3 + €,8¢* + €209 + e35¢? |,

where we introduced
1
(I) = a15¢/ —|— ((12 - (l’l - 5A6U4) 5¢ + Cl3H2, (460)

and used the relations among coefficients in Appendix A.
Compared to Eqgs. (4.12) and (4.14) for [ # 0, the pertur-
bations H,, 6A(, A, do not possess the quadratic terms in
Eq. (4.59). This fact shows that, in addition to H,, these
variables also reduce to Lagrange multipliers giving rise to
constraints on the other variables for [ = 0. Indeed, the
variation of the action (4.59) with respect to A, 0A, H,
and H, lead to the following constraints:

(0,V) =0, (4.61)
V=0, (4.62)
O+ Ayv,V =0, (4.63)
b =0, (4.64)

4'[)1

(4.59)

[
respectively. Integrating Egs. (4.61) and (4.62), we obtain

_G

Uy

14 (4.65)

where C; denoting an integration constant. Substituting this
solution into Eq. (4.63) and integrating it together with
Eq. (4.64), we obtain

(D - Cz - CIA(), (466)
where C, is an integration constant. From the definition of

@ in Eq. (4.60), the above solution leads a constraint on the
perturbation H, as

1 1
H2 = — Cz - CIAO - 015¢/ - <(12 - (1’1 —§A604> 5¢:| .

(4.67)

"The relative algebraic expressions of all the nine stability
conditions mentioned in this section can be found in [48].
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We substitute Egs. (4.65), (4.66), and (4.67) into the
second-order action (4.59) for [ =0. This operation
removes all the metric perturbations, i.e., Hy, H;, and
H,, and the vector perturbation V from the action. In
other words, we find that the monopole perturbation is
governed by the scalar perturbation 6¢ as a single d.o.f.
Omitting the integration constants C; and C, irrelevant to
the dynamics of perturbations, the resultant action is
expressed as

2
Si=0 — / dedr [e15'¢2 4 (e2 - ﬂ) 5% + M05¢2] ,

47J1
(4.68)
where M, is given by
b3(bsc — bycz)  (bzvs — b4”5)2
M, = - - — -
o=es b2 b2,
1 (bycy  (b3v3 — byvs)vg '
= - . 4.69
+ 2 < b4 2174’[)1 ( )

The above action shows that the no-ghost condition for
the monopole perturbation is given by e; > 0. As we
have seen in Eq. (4.58), this is equivalent to the no-
ghost condition for the perturbations with [ > 2. The
propagation speed square along the radial direction,
€2 even = —(e3 —v3/v;) /e, also coincides with that for
[ > 2 derived in Eq. (4.42). Thus, we have shown that the
stability conditions derived for [ > 2 also ensure the
absence of instabilities in the monopole perturbation.

D. Linear stability conditions for /=1

We proceed to study the dipole perturbations charac-
terized by /=1 (L =2), in which case, the metric
perturbations K and G appear in the second-order action
only through the combination of the form G — K [54].
This means that, instead of using the gauge d.o.f. of R
and ® to eliminate both G and K as we adopted in
Eq. (4.7), it is possible to keep one of them by
eliminating the combination G — K and fixing either R
or ©. Since Eq. (4.6) shows that the complete gauge
choice of ® can be obtained only via the transformation
of the perturbation G, we use this gauge d.o.f. to
eliminate G. The residual gauge d.o.f. R can also be
completely fixed via the transformation of d¢. Thus, we
choose the following gauge for the dipole perturbation:

hy =0, o =0, G =K. (4.70)
The elimination of nondynamical variables in the second-
order action for / =1 can be operated in the same way
for [ > 2, which we discussed below Eq. (4.24). After
this process, the resultant action is composed of two
dynamical variables, y and V, showing that the dipole

perturbation possesses one less propagating d.o.f. than
the case with / > 2. In an analogous way to Sec. IVB 1,
we find that the no-ghost conditions for these two d.o.f.
coincide with Egs. (4.32) and (4.34) substituted L = 2.
The squared propagation speeds along the radial direction
for [ =1 coincide with Eqgs. (4.40) and (4.42), i.e., the
propagation speeds of vector and scalar field perturba-
tions for [ > 2, respectively. These facts show that the
dipole perturbation is governed by vector and scalar field
perturbations. Consequently, we find that the stability of
the dipole perturbation does not give rise to additional
conditions to those derived for / > 2.

V. APPLICATION TO THE
CONCRETE MODELS

In Ref. [37], three different concrete models possessing
hairy BH solutions on the spherically symmetric spacetime
were proposed based on the U(1) GI SVT theories. The
stability of such models against odd-parity perturbations
are studied in Ref. [24]. These models are characterized by
the following choices of functions:

Model 1: f3 = 3, fa=0, (5.1)
Model2: f3 = ps, Sfa =P, (5.2)
Model 3: f3 = ps, fa=PuX, (5.3)

respectively, where f3; and f, are arbitrary constants under
the constraints led by the odd-parity stability analysis
(and later will be further confined by the even-parity ones).
The other functions are common to all three models and
are chosen as f, = X + F plus f3 = f, = 0. In the fol-
lowing, we shall discuss the stability conditions against
odd-parity perturbations, Eqs. (3.15) and (3.20), and those
against even-parity perturbations, Eqgs. (4.37), (4.43),
(4.53), (4.55), and (4.56), for each model. Notice that,
for the convenience of readers, some of the main results are
summarized at the end of this section in Table I. One can
move to there directly when the concluding remarks are
demanded. On the other hand, due to the horrible length
of some of the mathematical expressions in this section,
some of the selected ones are solely\also shown in [48]
and\or Appendix B.

A. Stability analysis for the model 1

In this model, the quantities a;, ag, and @; associated
with stability conditions against odd-parity perturbations
reduce to

_ My _VIhMG _ M
Mmoo YT
(5.4)
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TABLE 1.

Summarize the stability analysis and corresponding conclusions for different categories of stability conditions as well as

different models. Type I: This stability condition will automatically get satisfied, provided the other stability conditions (including those
from the odd-parity sector); type II: This stability condition can be determined immediately by observing the corresponding
mathematical structure; type III: The analytic investigation will be quite complicated so that semianalytic or numerical techniques have
to be applied in confirming this stability condition. Notice that, the constraints on coupling parameters, i.e., f; € (—0.441,0.441) and
Bs € (—0.125,0.251) will be considered; type IV: A complete numerical analysis is running out of the computational resources. Thus,
the analysis will be carried out by doing expansions around the event horizon (r = r;,) and also by plotting out those key quantities for
certain chosen coupling parameters (under the constraints mentioned above).

Model 1 Model 2 Model 3
Category No. Described by Type See Type See Type See
No-ghost First (4.32) Type I N/A Type 1 N/A Type I N/A
Second (4.34) Type 1 N/A Type 1 N/A Type 1 N/A
Third 4.37) Type 11 (5.6) Type 11 (5.11) Type I (5.17)
Radial First (4.41) Type 1 N/A Type 1 N/A Type 1 N/A
Laplacian  Second 4.42) Type I (5.8) Type 1T (5.13) Type I (5.19)
Third (4.40) Type 1 N/A Type 1 N/A Type 1 N/A
Angular Third (4.53) Type II 5.9 Type 11 (5.14) Type 111 (5.20)
Laplacian First (4.55) Type 1II (B1) Type IV~ (5.15) and Fig. 3 Type IV (5.21) and Fig. 4
Second (4.56) Type I (5.10) and Fig. 1 Type IV (B3) and Fig. 3  Type IV (B4) and Fig. 4

This shows that one of the no-ghost conditions, ag < 0,
is trivially satisfied in Eq. (3.15). Moreover, the pro-
pagation speed of gravitational d.o.f. along the radial
and angular direction reduce to that of light; i.e.,
% oaa = 1 = €& oqq- This fact shows that the Laplacian
stability conditions for the gravitational d.o.f. in the
odd-parity sector are also automatically satisfied. The
stability conditions associated with the vector field
perturbation remain nontrivial. Thus, in Egs. (3.15)
and (3.20), the nontrivial stability conditions for this
model are
ay >0, a% —aas >0, aé — 49 > 0, (5.5)
which are consistent with the Egs. (3.23), (3.25), and
(3.28) in Ref. [24]. The above constraints can be
numerically translated to the phase space of {fs,f;}
in the models (5.2) and (5.3). An overall constraint on
{Ps, P4} from the odd-parity sector can be found in
Ref. [24] by comprehensively considering all the three
models discussed in here. We shall go back to this point
in the following subsections.

In the eve-parity sector, the no-ghost condition repre-
sented by Eq. (4.37) reduces to

4712 41472
Ko = 2 Aol (5.6)
M plf
where we have defined the dimensionless factor f; =
My B3/ r,zl and r;, stands for the radii of the event horizon
so that we have f(r,) = h(r,) = 0. Since Eq. (5.6) shows
that the quantity K is positive for any nonzero value of f;,

the third no-ghost condition will always get satisfied.®
We note that the background equations (2.12)—(2.15) have
been used during simplifications, and we shall apply the
same operation without additional alerts in the following.
Regarding Eqs. (2.14)—(2.15), we especially notice that the
conditions J,(r) = 0 and J,(r) = constant = r;x hold as
discussed in the end of Sec. II. Thus, we have

45/ _ 2hﬂ~3A£)2r%z A6 — K fr%szl '

rfMpy rVh(4hpsrid + rMy)

(5.7)

Here, « is temporarily borrowed to denote a dimensionless
constant. With the polynomial solutions given by
Egs. (3.14)—(3.16) in Ref. [37] and evaluation of (2.18)

at r,, we notice that for model 1, we have k = /2uM, /1y,
where y € (0. 1) so that (r;,/M,)x € (0,v/2) [24].

On the other hand, for model 1, the squared second
propagation speed given by Eq. (4.42) reduces to

2 _
cr2,even =1 ’

(5.8)
which shows that the second Laplacian stability condition
along the radial direction is automatically satisfied.

Regarding the third Laplacian stability condition along
the angular direction, we plug the full expressions of v,
V19, etc., into Eq. (4.53), we find that

8According to the (3.14) and (3.15) of [37], we will have
f/h = 1asr — r,. Thus, K will not be zero at the event horizon
so that it has to stay positive. In addition, notice that, here we are
assuming Aj # 0.
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2 —

o 2hLR2f*h(h+ V)FBAGrMy, — fRP P BAG M2 — 120 AP + 32 M2

CQS,even - K33

From its mathematical structure, we notice that, c3; ..., iS

definitely a non-negative quantity provided that K43 > 0
holds under the stability of odd-parity sector. Thus, this
angular Laplacian stability condition gets satisfied.

We proceed to the first angular Laplacian stability
condition in which the story becomes a little sophisticated.
To deal with this problem, we first convert M, given in
Eq. (4.55) into a dimensionless form by (i) solving
Egs. (5.7) for Agg and substituting it into M; (ii) replacing
the model parameter f5 in M with the dimensionless B
(iii) changing the variable r to the dimensionless one
& = ry,/r; (iv) taking advantage of the freedom for choosing
unit system, setting M, = ry, (cf., footnote 1). As aresult, a
dimensionless form of M, is obtained as a function of
{f, h,éx, ,33} We postpone its lengthy explicit expression
to Appendix B. Knowing the fact that f,h€|0,1],
£€(0,1] since we have r€[r,, +o0), k€ (0,4/2) and
B3] < O(1) [24], we can attempt to determine the range
of M, in the 5-dimension phase space spanned by
{f. h,& k. B3}. In practice, all of these could be fulfilled
numerically on Mathematica. It turns out that the minimum
of M, in this phase space is indeed positive, which
is about'’ 2.001. This result guarantees this angular
Laplacian stability condition.

The second angular Laplacian stability condition (4.56)
is even more complicated. To analyze M,, new strategies
have to be selected. After some attempts, we know
a posteriori that new constraints on f; have to be
performed for this stability condition to hold. Now the
mission is to determine the new constraint. For this goal
and by referring the analysis to the first angular Laplacian
stability condition in which the minimum of M, is
achieved near the r = ry,, as well as the stability conditions
in odd-parity sector studied in Ref. [24] in which the
previously mentioned constraint on f; is obtained near
the r = r;,, we shall focus on the behavior of M, near the
horizon r — r,. As usual, a dimensionless form of M,
could be obtained by following the same procedure
mentioned earlier. However, since we are focusing on
the r — r, limit, the phase space now reduces to 2
dimension, spanned by {u,f;}. Now the M, could be
written as

°Notice that, this set of algebraic equations have three roots
originally. However, only one of them is real so we keep it as our
solution for Aj,.
Strictly speaking, the true minimum should be bigger than
this, since f and h are correlated so that certain regions of this
phase space will not be reached.

PR PMSSIPRAGr + M)’

(5.9)

My, = (61440 — 1)25 (3u — 4)
—3200(u — 1)2u* B3 + 162 (9* — 10+ 1) 33
— 81920 (2% = 5p+ 3)2 510 — 8(u — V)% + 1]
X [1 =4 — D)2, (5.10)

We plot it out in Fig. 1 of Appendix C. By looking at the
contour of the allowed region for M,, we can read off the
new upper bound for legal |f;|, which is approximately
given by |f;] < 0.441. In addition, it is worth mentioning
here that, by adopting this new upper bound and the
numerical method for analyzing M, with Mathematica,
the minimum of M, in the allowed region of phase space
{f.h,&,x,5} is indeed found to be positive. Thus, we
conclude that, under the new constraint |f;| < 0.441, the
second angular Laplacian stability condition is guaranteed.

B. Stability analysis for the model 2

As before, we first consider the third no-ghost condition
(4.37). For model 2 characterized by Eq. (5.2), K becomes

232 414 4
=2, (5.11)
f M pl
which happens to be identical to Eq. (5.6). Thus, for any
nonzero f3;, the third no-ghost condition will always get
satisfied. As mentioned in last subsection, the background
equations (2.12)—(2.15) have been used during simplifica-

tions. By the same procedure to obtain Eq. (5.7),
Egs. (2.14)—(2.15) lead to

¢/ _ 2hﬂ~3A627’% ,
f rMp]
Al = _ KVIriMp
Vh(=8hByraMy + 8Bsri My + 4hrpsrid + r*My)
(5.12)
where we have defined the dimensionless factor

B4 =r;?B4. With the polynomial solutions given in
Eqs. (4.5)—(4.7) of Ref. [37] and evaluate Eq. (2.18)
at r,, we notice that for model 2 we have x =

2u(1 + )My /1y, ne0,1).
odd-mode stability conditions give the constraint

f1€(=0.125,0.251) [see also Egs. (4.12)-(4.14),
(420) and (4.21) in Ref. [24]], we obtain that
(ra/Mpy)k€(0,1.59). To manifest the constraints

where Since the
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on f,, we plot out the allowed region given by the
stability conditions against odd-parity perturbations, i.e.,
Egs. (4.12)-(4.14), (4.20), and (4.21) in Ref. [24] in the
3-dimension phase space {f};,f,.u} in the panel (a) of
Fig. 2 in Appendix C, where the constraints x € (0, 1) and
|f5| < 0.441 are assumed. From this figure, we learn that,
to meet these constrains for any legal arbitrary u, there must
be upper and lower bounds on j,. We further observe that,
the most stringent constraints are from the y ~ 0 case. Thus,
we plot out the allowed region in {,33, ﬁ4} phase space in
the panel (b) of Fig. 2 in Appendix C by setting 4 = 0.

|

ESS

Finally, from this panel, we read off the constraints of f,,
which is about f, € (=0.125,0.251)."

On the other hand, for model 2, the squared second radial
propagation speed given in Eq. (4.42) reduces to

2 _
Cr2,evcn - 1’

(5.13)
which shows that the second radial Laplacian stability
condition is automatically satisfied.

Next, let us substitute the full expressions of vg, v, etc.,
into Eq. (4.53) to obtain

2
¢ vn: o) 0
B2 (fh) P MY B FAT T+ My (884 (1= h) + 1))
— [R2BBAG iM% (=32hByrh + 8By rh + 1) = 12W4 BIAL S + MG (4(h = 1)Bary + )},
3400 Tht pl h h 3220 Th pl h

Similar to Eq. (5.9), this result shows that 3 .., 1
definitely non-negative as long as K33 > 0 holds, so that
this angular Laplacian stability is guaranteed.

Moving to the first angular Laplacian stability condition,
the story is even more sophisticated than that of model 1
due to the presence of f3,. Because of this, the analysis of
M, will be divided into two parts. The first attempt is about

|

S2RLA2f2hAG My (B3 + 8B3) i, + h(B3 — 81, + 1B

(5.14)

|

the behavior around r;,. As usual, a dimensionless form of
M, is needed. The basic steps for obtaining that is the same
as what we did in last subsection. The only difference is that
the resultant M, is now a function of six variables, i.e.,
{f.hé, K,ﬁ3, ,54}. On top of that, it became more acces-
sible to expand M around the metric horizon. To the
lowest order of (r — ry,), that leads to

M|, = 2{4c"Bif, + BF (12855 + 8B4 + 3)
— 2k8(8f4 + 1)*[(3 = 8B4)/3 + 284(64P37 + 48f4 + 5)B3 + 81 (84 + 1)°]
— 2% (8f4 + 1)°[(8f4 + 15 + 24 (8055 + 145, — 1)]
+4B4[2(16f4 + T)B5 + 4(256p7 + 8864 + )| (8kBs + k) + (48, — 1) (884 + 1)°}
X (8f4 + 1) (=4(> = 4)fy + 645 + 1)

X (K05 — 262 (8P4 + 1) (F5 + 883 + fa) + (4 — 1)(8s + 1)°] 7.

On using this expression, we can determine the minimum
of M, in the phase space of {u,f;,,} with the built-in
functions of Mathematica. Keeping in mind that u € (0, 1),
B3 € (—=0.441,0.441) and f, € (—0.125,0.251), it turns out
that the minimum of M, is a positive number, which
supports this angular Laplacian stability condition for
model 2. A similar treatment to M, brings us a result in
the form of Eq. (5.15). Because of its tedious expression,
we put that in Appendix B. The result shows that the
minimum of M, in the phase space of {u,f}5,/,} is also
determined to be a positive number. Therefore, it seems like
the currently known constraints are sufficient to support
this angular Laplacian stability condition.

We note that the above discussion is based on just an
analysis at the r — r;, limit. That brings us to the second
part of analysis. To determine the ranges of M, in the

(5.15)

|

whole exterior space r € [r),, +00), we shall mimic [24] and
plot them out for chosen parameters. To do so, one has to
first solve for the background quantities f and 4 on the
exterior space with the algebraic expressions (5.12) of ¢’
and Aj in terms of f, i as well as their derivatives. They are
achieved by numerically integrating Eqgs. (2.12) and (2.13)
from £ =1-¢€; to £ =¢,, where factors ¢; and ¢, are
chosen to be small enough to cover the desired region
(see, e.g., Ref. [56] for more details about the relative
techniques used in doing the numerical integration and

“Interestingly, an upper bound to f,, which is quite similar to
the one found in here, could also be obtained by solely doing the
even-parity stability analysis. Ignoring the tolerable numerical
errors, we conclude that the results from odd- and even-parity
sectors are consistent.
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searching for background solutions). Of course, in practice
we were using the dimensionless forms of Eqs. (2.12) and
(2.13), and a new quantity similar to the 3(¢) defined in
Eq. (B2) in Appendix B is introduced to simplify the
expressions. Since this kind of treatment is straightforward
and we have already briefly described the steps for similar
scenarios in last subsection, we omit the details here. We
note that the Taylor expansion,

14
11de|,_,

1 d°f

id_gz (‘61)2,

e=1
(5.16)

f&=1-e)=Fle= + (=€) +

where { stands for f and &, was applied in generating the
boundary conditions at £ = 1 —¢; keeping in mind that
f(£ =1) = 0. The derivatives appearing in Eq. (5.16) are
obtained by using Egs. (2.12), (2.13) as well as their
derivatives. It is worth mentioning here that, the polynomial
solutions given in Ref. [37] were not utilized directly in
generating the boundary conditions since there is a remain-
ing parameter corresponding to an overall factor of f,
which is unknown before obtaining the numerical solu-
tions. This factor will be fixed by normalizing f according
to the requirement f — 1 at the spatial infinity.

The solution for f and & are shown in the panel (a) of
Fig. 3 in Appendix C. Since the upper limit of f is updated
to ~0.441 compared to Ref. [24], we adopted it with

|

f1=0.1 and u=0.5. We can find deviation between
model 2 and that of GR. With the solutions of f and &
in hand, together with the previously mentioned algebraic
expressions for Aj, and ¢’, all the background quantities are
known. Inserting them into M and M,, we further obtain
their numerical values. This part of results are exhibited in
the panel (b) of Fig. 3 in which M and M, are plotted as
functions of r;,/r instead of r/r, to show a larger scope.
Figure 3 shows that, both these two quantities stay positive
in the whole space outside the horizon. This result further
supports that the first and second angular Laplacian
stability conditions for model 2.12

C. Stability analysis for the model 3

We first consider the third no-ghost condition (4.37). For
model 3, K reduces to

o 2P BRAS A — WBAGN T + £
(FR) My (61 BLAG T, = AhPyAG T, = )
(5.17)

Thus, by looking at both the numerator and denominator of
the above expression, for any nonzero 3, the third no-ghost
condition will always get satisfied. As mentioned in
previous subsections, the background equations (2.14)—
(2.15) lead to

& = _ 2pAgT
Mpl(—6h2[7’4A62r,21 + 4hﬁ4A62r% + fr2)
A/ _ K fr/%lMpl
0=

(5.18)

\/E(6h2ﬁ~4riMpl¢/2 - 4hﬂ~4r]%Mpl¢/2 + 4hrByrig’ + M) '

With the polynomial solutions given by Egs. (4.15)—(4.17) in Ref. [37] and evaluation of (2.18) at rj,, we notice that for
model 3 we have k = \/2_/¢Mp1/ ry, where p€ (0, 1). It is quite necessary for one to notice that, the system given by
Eq. (5.18) forms a fifth-order algebraic equation of Af,. As a result, there is no analytic expression of ¢’ or Aj in terms of f,
h, etc. according to the well-known Abel-Ruffini theorem. This is one of the key factors which makes the model 3 much
intricate than that of model 2.

On the other hand, for model 3, the squared second radial propagation speed given by Eq. (4.42) becomes

3R P AG i + MY
2R PLAG Y + MY

2 _
ch,even -

(5.19)

which shows that the second radial Laplacian stability condition holds.
Next, the angular propagation speed given in Eq. (4.53) for the model 3 is

"2An ideal treatment is to test the positiveness of M, and M, using the Monte Carlo method and try to cover the whole allowed

region in {u, 3. 4. &} phase space. Nevertheless, as seen from, e.g., Egs. (B1)—(B3), the complexity of our problem has already made
the calculations quite time-consuming and it is preventing us from running a more complete analysis. In principle, much more
computational resources are needed for executing such an analysis.
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’ K33

cQ?a.even = = V) 2L{16h5<3h - 2)}"2

M/ FR(21(2 = 3R)B4AG T + f17)
+ AR B[ 108R F3(3M Y By —
+ 4B, (8MA By (2B M + 13 3)
+ 3n%((2r3 5%

4f2h3’” ”h[ h2ﬂ4(13’"hﬂ3
+ B4(3r* B3 — 8M2 By (8B4 M2, + 313 f33))

+ 2f4hr6Mglrh
+ 254Mf,1]

(8BaMiy + 13 + h(rifp5 —

The terms in the first line of Eq. (5.20) is non-negative as
long as K33 > 0. The positiveness of ¢ e, is solely
determined by the part to the —3 power, i.e., the last two
lines in Eq. (5.20). By treating f, h, f3, 4, and A} as
free parameters, and considering the known constraints
on them, one can determine its minimum by using
numerical methods. Taking advantage of its dimen-
sionless form, this calculation could be fulfilled by
using the built-in functions of Mathematica. This
manipulation shows that the condition ¢y, > 0 is
always guaranteed.

Ml |r—>r,,

—-3M 2154.5%) r+8M ﬁlﬁi (36M 1231/’)4

— 4h*(3h = 2)B,AG v (h(2B3r3 — 3puM

rO BB (2BaMy, + h(2r B3 — 3MGB,)) A

2RFIMY - T2 F(12M2F, - SRF)MY,
=3P B3) MY — 8h((2r B3 — 3MA B B3) r* + 8M BA (65, M2, + rif33))
= 5r2B3)AY

T2M2 B )M}, + 181 fR(12M2% 5, —
M2+ 3h((r
+ PIPPME =Pt — 288hMY B + 24V, (44003 + 12 R) + 242 M3 By (OM3 By

5rip3)M;,
(rifpy— M2 1ﬁ4ﬂz r +8M41ﬁ4(12/)74M + 13B3))|AP
- 2%3%)]1464

12M}2>134))A62 +f5r8M§1}2{4fhr2A62 [h (2ﬁ3”h 354M§1)
2) +26M

2) 4 f2r4M2 ), (5.20)

We proceed to the first and second angular Laplacian sta-
bility conditions in which the story becomes astonishingly
sophisticated, in comparing to that of model 1. To conquer this
problem, we shall first run the analysis around the r = r,
where the algebraic equations in Eq. (5.18) can be solved for
A as Ay(r = r,) = \/2u = k by choosing the unit system so
that M\, = r;,. On using this solution at the horizon, we start to
expand M, and M, step by step around the horizon. After a
sequence of time-consuming but straightforward manipulations,
their expressions at the horizon converted into the dimensionless
form were obtained. The one for M, is given below

1 o o ~ s ~ ~ ~
= 5 {10KB3f4 + 4x0B3p4(2B5 + TBa) + 1°[(12 = 563) 3 + a(T = T25,) B3 — 16)]

— 268[12% + 3P4 (16f4 + 3) 3 + 435244 + 1)] — k*B4(56/33 + 1608, + 1)

— 47 (253 + 115,)

while the one for M, is shown in Appendix B due to its
intricate structure. With the known constraints on f, £,
and u (so does k), we can determine the minimum of
M,l,-,, and M,|,_,, on the use of the built-in functions of
Mathematica, which shows that both of them are positive
so that the first as well as second angular Laplacian stability
conditions are satisfied for the given parameter regions.
To further confirm these stability conditions, M and
M, will also be plotted out on r € [r),, +o0) with chosen
coupling constants. This could be fulfilled by choosing
=05, =0.441, and f, = 0.1 as well as being given
the corresponding numerical background solutions shown
in the panel (a) of Fig. 4 in Appendix C. The fundamental
steps and techniques of obtaining these numerical solutions
are the same as what we used to draw the panel (a) of Fig. 3.
The only difference is that, for model 3 there is no analytic
expression for A{,. Thus, f, h, and Aj need to be numerically

— 4}y + 1)k

~ 22+ 2B) - 1] (5.21)

|
solved simultaneously. For this reason, all of these three
variables are plotted in the panel (a) of Fig. 4. Again, to show
a larger scope, all the quantities are plotted as functions of &.
We note that Af is plotted in its dimensionless form
ri dAy/déE, which, as shown in the plot, equals —5‘2A6.
It is worth mentioning here that, A} behaves as O(r~2) at the
spatial infinity (¢ — 0). Thatis why the quantity —£~2A{, will
not blow up as & — 0. The results of M, and M, are
exhibited in the panel (b) of Fig. 4. It is clear that, both these
two quantities stay positive at any distances outside the
horizon. As a result, we conclude that this figure further
supports the first and second angular Laplacian stability
conditions in model 3 inside the given parameter space.
To summary, here we have dealt with 27 cases in total
(combining Secs. IV and V), i.e., nine stability conditions
(3 no-ghost conditions +3 radial Laplacian stability con-
ditions +3 angular Laplacian stability conditions) times
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three distinct models. Basically, no instability was recog-
nized up to now, given the known\updated constraints
fy€(—0.441,0.441) and f,€(-0.125,0.251). For the
convenience of readers, we summarize those main equa-
tions, results, analysis, etc. for these 27 cases in Table I.
Notice that, the main results for each case are categorized
in four different types, denoted by type I, II, III, and 1V,
respectively, mainly according to the explicitness of the
stability in each case. Type I means the corresponding
stability condition automatically get satisfied, at least by
considering the known constraints to the theory; type II
means the corresponding stability condition deserves a little
analysis. Nonetheless, the stability is quite explicit so that
we can tell that just by looking at the mathematical
structure of the corresponding expression; type III is a
little sophisticated, so that pure analytic investigation will
not work. Even in such case, we could still confirm these
stability conditions by semi-analytic or numerical methods
and with the assistance of computers; type IV is a little
vague from certain point of view. The problems are really
complicated so we have to expediently check the corre-
sponding stability conditions mainly by plotting out the
results for chosen coupling parameters. A more complete
analysis may be executed in the future for this type of
problems.

VI. CONCLUSIONS

In this paper, the stability of static and spherically
symmetric BHs with nontrivial scalar hair in the U(1)
GI SVT theory (2.1) is studied. For the background ansatz
(2.8), (2.9), and (2.10), we considered the even-parity
perturbations given by Egs. (4.1), (4.2), and (4.3). As a
successor of the previous work [24], we investigated three
types of stability conditions, i.e., the no-ghost, radial
Laplacian and angular Laplacian ones. In addition to the
general analysis, some of the stability conditions are
discussed by considering three distinct concrete models
and by applying suitable analytic, semianalytic as well as
numerical techniques.

To make it more complete, the background field equa-
tions (2.12)—(2.15) and the stability conditions against the
odd-parity perturbations are revisited in the presence of the
quantities ¥ and F which are omitted in the previous work.

On top of that, we first run the general analysis. The
original Lagrangian is expanded to second order for the
even-parity perturbations as Eq. (4.11), which contains 7
apparent d.o.f.. After that, with the help of integration by
parts, the integral properties of spherical harmonics, and
by introducing suitable new variables [given in Egs. (4.15)
and (4.24)], all the nondynamical terms disappear, and we
are left with a dramatically simplified Lagrangian (4.25),
adopting 3 d.o.f. as expected [24]. On using the resultant
Lagrangian, we derived nine stability conditions, i.e., 3
no-ghost conditions (4.29)—(4.31) +3 radial Laplacian

stability conditions (4.43) +3 angular Laplacian stability
conditions (4.53), (4.55)-(4.56).

It is then found that the first [cf., (4.32)] and second [cf.,
(4.34)] no-ghost conditions as well as the first [cf., (4.41)]
and third [cf., (4.40)] radial Laplacian stability conditions
get satisfied automatically, provided the other stability
conditions, including those from the odd-parity sector.
We then move to three specific concrete models charac-
terized by Egs. (5.1)—(5.3)] to run the analysis in Sec. V. By
inserting the corresponding functions of each model into
the mathematical expression of the third no-ghost con-
dition, it is found that this condition hold in all the three
models [cf., (5.6), (5.11), and (5.17)]. Similarly, the second
radial Laplacian condition also hold for all these three
models [cf., (5.8), (5.13), and (5.19)].

The situation becomes a little complicated when moving
to the angular Laplacian conditions. First of all, we can
easily confirm the third angular Laplacian condition in an
analytic way for model 1 and model 2 as in Egs. (5.9) and
(5.14), respectively. However, for the first and second
angular Laplacian conditions of model 1, semianalytic as
well as numerical techniques become necessary. It is found
that these stability conditions are guaranteed by applying
the constraints to the coupling parameters obtained from
the odd-parity sector in Ref. [24] together with the addi-
tional constraints indicated in Fig. 1 (see Appendix C),
namely, f; € (—0.441,0.441) and f,€(-0.125,0.251).
With these constraints, the third angular Laplacian con-
dition for model 3 can also be confirmed [cf., (5.20)].
Finally, we notice that the first and second angular
Laplacian conditions for model 2 and model 3 are quite
difficult to investigate (especially for the model 3). To
conquer this difficulty, by mimicking Ref. [24], specific
values for the coupling parameters are chosen for these two
models. As a result, we are able to plot out the discrim-
inants [cf., (4.55) and (4.56)] for each case. These two
stability conditions are then confirmed in Figs. 3 and 4 (cf.,
Appendix C). The main formulas and analysis about these
stability conditions are summarized for the three models
in Table 1.

Our current work can be enlarged to several other
directions. For instance, we can dig further into the angular
Laplacian conditions in order to put more stringent con-
straints on the phase space of the coupling parameters as
well as consider more types of models for analysis. It is also
of interest to put constraints on the model parameters
through the observational data of BH shadow given by the
EHT and the other observations. The constraints on the
charges of the supermassive compact objects being black
hole candidates are studied in Refs. [14,15] assuming that
the observed rings correspond to the photon sphere, as well
as in Ref. [57] assuming that they correspond to the lensing
ring. These procedures enable one to put constraints on the
model parameter at the background level. On the other
hand, the second-order Lagrangian analysis is closely rela-
ted to the quasinormal mode problems (see, e.g., Ref. [18]).
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We can also try to do some relative calculations based on
Eq. (4.25) and put the further constraint on the model
parameters at the perturbation level.
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APPENDIX A: COEFFICIENTS IN THE
SECOND-ORDER ACTION OF EVEN-PARITY
PERTURBATIONS

University of Petroleum, Beijing under Grant The coefficients in Egs. (4.12) and (4.13) are given by
|
r(f'h— fi A rA{ Vf M[
a; =0, az—%ﬂhﬁ'—o 4+2¢(/) az = —ray, ag = E=2fa,
A A) r(f'h+ fh') = 2fh 1 Al 2rf
as = a, _7U4+ ) ( Uﬁl)’ ag = 2rfh2¢' a4_wa£‘ 4]’[;/ 6+ ¢/ T
! rA! a rf' =2f A)
a; = —(ray) — ZO (2Apv, + P'vy) — 70126, ag = 22 ag = daly — Tm + 706,
a 2 ! 2ra a
blzﬁ, by =0, b3:—?a2+7°v4, b4=—f4, b5=—74’ ¢ =0,
, = PV (fax = hd”frxx) _ PR YAV (4hd” fryy = fary) _ WRAG
2 2 2Vf
X B3G5 faxxx + 202" f3.xx + h* {617 frxy + (4 = 13h) f4 xx} — 12rh f3x
— ¢ {r*(6f2y + faxr) + 6(2 = 5h)fsx —20hfs} + 6rfs],
1 o0& VhA? .
= Tap =y W ax trhdfax =30 (Fax +2F0) = 1.
f/ ¢/ A/ rf/ ¢/ r¢/ A/2 ¢/A/ rA/
Cs 2f d2 ?0’1)64—21’“6, c6:§a4 ZC2+—d2+T + 8 U4+TU6—7'206,
a4 h3/2A/2 2413 ” /
dl:ﬁ’ dy = - r\/f O (W@ faxx + rhe f3x—2h¢(3f4x+2f4)—”f3}
2(f'h—fH) A Al ovg 4 4f
dazw ag +—3 rd 6+70£+7 307 dy = —2a,
1 Al 1 Al 10&
el—W(az—Zrha(,—?Om), 62——$<C2+rd2+701)4>, e3 = 20;
1 3rf i h¢" + W'’ c,  fAL—2f'A) Aj
o= g (15 55 o+ g e g T il
Af Ap A6 2rh' +2(1 = 3h) 2r , 2(rf'h—=f)
¢/2 Vg — fh¢/2 V1o — ¢/ V13 — h2¢/2 h¢/2 g + h¢/2 az,
2h3/2A/2
v = 23 532 [ 2,FF — 4h (fory — hg* f 2,YY>]
\/7 n2f.2 7 ! r2
2\/—[2h¢ {r’foy = h(fsx +2f4)} —4rhg'f3 = 8(1 = h)f4—r’farl,
/
= Ajvy, vy = —Ayv; — 5 U4 =I5,
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— 2V2h5/2¢/A63(2h¢/2f2,Yy - fZ,FY) + h3/2A6

V4 12E NG 2hep" (r*f 2xy — hfaxx) —4r h'* f 3.X
— 2/ (4f 2y + foxr) +40'{(3h = 2) fax + 2hfs} + 4rf),
hA! .
Vs = \/\;70 R {h(fagx + 2fag) = P fagr} +4rhg' f34 +8(1 = h) fay + 1 f20r]s
n” 1
U6 :402, 1)7 :%Ul, Ug :Ff[(rf/—Zf)U()—le-rAévlo},
Ve Ve
Vg = Oy, V1o = QAs, V11 :—?’ Ulzz—ﬂ,
po = 2P (R fax + 1 f3x = fax =2fs) | 2VAGhG (fax +2fs) + 3]
o f nf
B Vhf'Ay[hd' (fax +2F4) + rf3) WA faxx + g f3x =30 (fax + 2f4) = rf3]
ik L
_ 2VhAY [ (F3 = 2Fay = Fagx) + 1/ (o = fa4) = 13] (A1)
f ’

where £ and £, are the background equations given in Egs. (2.12) and (2.14), respectively, and a; (i = 1,2, 4,5, 6, 7) are
the coefficients in the second-order action for the odd-parity perturbations defined in Eq. (3.6). Interested readers may check
them out in [48].

On the other hand, it is worth mentioning here that, the coefficient vg adopts a useful feature that
, _ @2f*(rh' +2h) + h(f')? = fr(rf'h + 2h(rf" + f'))] = fhr?[AG(4010AG + v6f") + fU6AT + 8asf?]

vy = PhrA, . (A2)

Notice that, for the economy of notations, here we are writing ¢ and A, appearing in Eqgs. (4.2) and (4.3) simply as ¢ and A,
respectively. It should stimulate no confusions since all the above coefficients are for the perturbation terms, and they
themselves are, definitely, of the zeroth order.

APPENDIX B: EXPRESSIONS FOR CERTAIN QUANTITIES APPEARING IN SEC. V

The dimensionless form of M/ for model 1 (cf. Sec. VA) is given below,

M, = {2 32 32E0(F(T8h 4 4) — hFPE2)BEI? + 56623104 f15/2 3244 (R F2E2 4 8 (4h — 1)) pOn/?
+ 679477248 f13/2 JBE B2 p45/2 1 1179648 £17/2 320856 [16 <5 \/}; — 404/ fh> +53 W) 1372
— 4347234 + 32h3252\/?<11 fhS =2 fh3>] PR +393216f19/2 310548 [43252 (1 1 \/ﬁ — 1004/ fh’
+ 233\/ﬁ>f3/2 +16(19h% = 30h2 4+ 12h — 1)V hf3 — 25h7/230£6 + h34§4\/?<29 fh3—41 fh5>}8§6h‘3
+2048f21/231442 [163252 <—31 fH3 204/ fR5 + 1865 W) F32 4-256(155h% — 123k 4 24h — 2)V i f?
—5Th7/2 3088 + 16h3454\/?<79 fh3 =376 th)] PR 32£25/2 31030 [—16 f2(577h? — 64h +17) 32E2h3/?

— 128£(32h +5)3*¢*h%/ + 351365072 4 512/ (\/Th /B =8\ f1 + 295@)] B
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+ 160382 [—8 F172(797h? + 120 = 5) QX2 h3/2 = 2 f17/2(279h + 41) 3*EhS/2 + 27 f15/2 300 h7/2
Jr32(f21/2(]]97hz+ém+30)h3/2Jr fZIh)}ﬁghS+2f536§18[3f19/236§6h5/2_4(46f21/2h3/2+3 f21h>34§4h
+ 641 (F21/2(489h+ 83)H/2 + 61/ 1210 ) + 47326 (21220~ 98 1A + 3\ 2'h) | Bt

+512312£% [64 £29/2(802h% —369h% —3h +2)h'9/% 219 £23/2 30£0p25/2

=323 (10\/ £ =90\ £% =298/ 7 ) 2207 + 8(4f25/223/2 = 381(fh) /%) 3e* | B2
+(4f35/2(2_57h>86é:14h7/2_6f33/238§16h9/2+8f8<f21/2<552h+71)h3/2+ f21h>34§12h2)ﬁ‘3‘+2 f‘“h}
X{339738624]”7/2}141/2564324530+2f37/2h3/2§°825§(f(38h—|—2)—h§282)

+28311552f19/2p35/2£36 ORI (4 £ (h— 1) + 3h&2 F?) + 1024£6 312512 [16 2%/2(319h2 — 158h — 17)h*!/?

16 PR32 (1391 £ +35/[h) - 1498**(£1)5/2 | + 58982412 2225 BB (162 (h— 1)
+32fh(4h—1)E2 3> = 5h?E*3*) 4+ 196608 13/ 2h>5/2 2 B (f2(52h — 56h+4) + fh(107Th+13)E2 32

—12h2§434)+f7h2§1234ﬁ§‘(f19/2h5/2§434—4h§232(37f21/2h3/2+ f21h)+4f(f21/2(561h+62)h3/2+ f21h))
+8f6h4§188633<9f19/2h5/2§484+8f23/2(527h+78>h3/2 24/ P h—6hE2F2 (83f21/2h3/2+5 leh))

165 KO ZIB [ 100f19/2h5/264 34 + 48122 (381h -+ 3832 + 1121/ (P =320 8 (8772212 18/ 211 |
2564 HEOGIOPY 4571920 ¢ g~ 321 (~191 VP 20,/ + 3V/7h)

+an2 32 (3y/ =01 2202 | ) (B1)

where

dA
3@ =r'"25

\/§6[\/5\/f3h9(54h;<2§6/§§ +1) - 18f3/2h5,<§3/}3r/3 TR

~ = ~11/3
1215285 [ VBV f1 (54 E R + 1) = 1872k
The dimensionless form of M, at the r — r;, limit for model 2 (cf. Sec. V B) is given below,

Mooy, = {(1=4B3)* (884 + 1)' — 4By (4P, — 1) (12857 + 324 — 1)(884 + 1)"° — 64x 53 (84 + 1)
+ 1264 G5 (12855 4 1684 — 5)(8f4 + 1) + 6455 (8B4 + )¥ (884 + 1)* — 26345 (> — 168, — 2)*(8f4 + 1)*
x [155648FF — 1024(8x% — 11)33 + 16(7x* + 12k — 180)33 + 8(19x% — 4)f34 + 25] + 8x'045 (k2 — 16/, — 2)?
X [2054k* + (—10885% — 645, + 9)i* +24(8f4 + 1)>(108, — 1)] (884 + 1)?
+ 25262 (44 — 1)(8F4 4+ 1) + k* (307235 + 384053 — 400532 — 40f3, — 1) (83, + 1)'°
— 6410533 (84 + 1) — 203, (409633 4 1536053 + 121657 — 1208, —5)(864 + 1)8
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+ 64255 (884 + 1)° + 45 (8fax + x)3(256/3% + 2724 — 1)](8f4 + 1)* = 3225 (k* — 5(8f3, + 1)k

+6(8f4+ 1)) + BA[4c* (8B4 + 1) + 4x0(4608/33 — 179232 + 963, — 5) (8, +1)'°

— 16k"252(7284 —23) (84 +1)7 + 512« (1216535 — 384f, + 15) (84 + 1)°

+ 1281043 (12165% — 384/, + 15)(8f4 + 1)° + 8k'0B, (121657 — 3843, + 15) (8, + 1)°

+ (84K + k)3 (= 19660853 + 39936/ + 441657 — 3845, + )|} {(8f4 + 1)'*(—4(k* — 4)f4 + 6457 + 1)

X [2(% 4 2)Bs = 3282 + 112 + k4 (8Fy + 1)10(=16f, + k2 — 2)2[—4(k> — 4)B4 + 6452 + 1]

—2B3(8B4 + 1)'0(8kPs + )2 [—4(k = 4)By + 6455 + 1](2* By — 642 B3 + 51253 — 24P4 + 7 = 2)} 7. (B3)

Notice that, (B3) will reduce to (5.10) by taking ﬁ4 =0.
The dimensionless form of M, at the r — r;, limit for model 3 (cf. Sec. V C) is given below,

Mo, = 5 (16PF07% ~ 313)6% ~ 8BR((T60, — 1T + (31 ~ 1407,)73 — 3687
— B3[64(1 — 45,)2 B3 — 454 (1216f35 — 752, + 29) /35 + Bi(—262453 + 19044, + 31)j33
+ 321(24803, — 69)3 + 486455k + 2/33(64(3255 — 2803, + 5)B3 — 44 (645 — 3045, + 3)/53
— TBA(576/% — 7205, + 83) % — 453 (832/%3 + 1923, — 69)5% — 12805 (145, + 19)]«'®
—2[32(64f3% — 1286, + 37)B0 + 8(256/3 — 56053 + 22154 — 9)f5 + 4(—2304/3; + 476855 — 14745,
+ T3S — BA(9728533 — 9408537 + 91253, + 23)f3 + 1654(=5765% + 3045, + 57)33 — 2048/3;]x'°
— 4[192(8f, — 5)p1° + 8(384/33 — 335f, + 30)55 + B4 (512535 — 786/, + 63)/%
— 852(1283; + 72057 — 32754 + 22) 3% + 43 (—102453; — 153637 + 46803, + 19)33 — 51235(84 + 3)]x'*
+ [=2304p1° — 64(14053, — 33)/5 — 4(2072/3% — T14p, + 25)5 + B4 (6144533 + 742457 — 183253, + 69)/3
+ (28672533 + 12032533 — 252803, — 19)% 4 256/33(128, + 15)|x'? + [—1536/35 4 (400 — 3472/,) /5
+ 325211253, — 1)B4 + 2/%(102405% + 1216§3, — 199)/3 + 256/31(1083, + 5)]'°
+ [—40085 + 2(51253% — 1745, + 9)3% + 2454(32057 + 35, — 1)% + 80531605, + 3)]«x®
+ 8[(18f4 — 5)/3 + 5B4(40B4 — 1)B3 + P51 (4405, + 3)Ik° + [8/3 + 4(44PB,4 — 1)f33 + fa(576f, + 1)]*
+ (8% + 52B,)i% + 23 (42fy + 1) [ (=3) + 262 (55 + 2B4) +1]72. (B4)

Notice that, (B4) will reduce to (5.10) by taking 54 =0.
Interested readers can check out the mathematical expressions appearing in here with [48].
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APPENDIX C: SUPPLEMENTAL MATERIALS FOR THE NUMERICAL ANALYSIS IN SEC. V

Model 1: M,>0 region

1.0f°

0.8¢

0.61

0.4

0.2¢

-1.0 -0.5 0.0 0.5 1.0
B3

FIG. 1. The behavior of M, in phase space {u, 3} at the r — r, limit for model 1 [cf., (5.10)]. Here, the cyan
shadowed region is where the second angular Laplacian stability condition gets satisfied, viz., M, > 0. According to the

contour of this shadowed region, we have marked the upper bound of allowed | 35| by red dashed vertical lines (which are
tangent to the boundary of the shadowed region and are located at |f;| ~ 0.441) and the red solid pentagrams.

o

204  -02 00 02 0.4
Bs
(b)

FIG. 2. Panel (a): The parameter phase space spanned by {fs. B, u}. The red solid part represents the allowed region defined by
Eqs. (4.12)—(4.14), (4.20) as well as (4.21) of [24] and by considering the constraints u € (0, 1) plus f; € (—0.441,0.441). The cyan
semitransparent part indicates the bounds of f4, within which the {ﬁ~3 54} phase space is covered by the allowed region for arbitrary
legal u, as required by the theory. Panel (b): The parameter phase space {f./4} by setting 4 = 0. Here, the cyan shadowed area
represents the allowed region. According to the contour of the shadowed region, we have marked the upper and lower bounds of allowed
B4 by red dashed horizontal lines (which are tangent to the boundary of the shadowed region and are located at §, ~ 0.251 and
f4 ~ —0.125) and the red solid pentagrams.
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FIG. 3. Panel (a): The numerical solutions for f (red solid line) and / (blue dot-dashed line) in model 2, together with their GR limit
(orange dotted line) as comparison (in GR, we have f = h). Panel (b): The behavior of M and M, in model 2. Notice that, the results
for M are marked by blue triangles while those for M, are marked by red dots. These results are plotted as functions of r,/r (so that
we have a larger scope) by choosing ¢ = 0.5, ﬁ3 = 0.441 and ﬁ4 =0.1.
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