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The Newman-Janis algorithm, which involves complex-coordinate transformations, establishes con-
nections between static and spherically symmetric black holes and rotating and/or axially symmetric ones,
such as between Schwarzschild black holes and Kerr black holes, and between Schwarzschild black holes
and Taub-NUT black holes. However, the transformations in the two samples are based on different
physical mechanisms. The former connection arises from the exponentiation of spin operators, while the
latter from a duality operation. In this paper, we mainly investigate how the connections manifest in the
dynamics of black holes. Specifically, we focus on studying the correlations of quasinormal frequencies
among Schwarzschild, Kerr, and Taub-NUT black holes. This analysis allows us to explore the physics of
complex-coordinate transformations in the spectrum of quasinormal frequencies.

DOI: 10.1103/PhysRevD.110.044045

I. INTRODUCTION

Gravitational waves (GWs) were first predicted by Albert
Einstein in his general theory of relativity in 1916. However,
theywere not observed until 2015by theLaser Interferometer
Gravitational-Wave Observatory (LIGO) [1,2]. Since then,
the detection of GWs has opened up [3,4] a new era of
multimessenger astronomy, where GW signals are combined
with electromagnetic observations.
The observation from the LIGO was the result of the

merging of two black holes (BHs) in a binary system.
Binary BHs are pairs of BHs [5] that orbit around each
other. As they move closer together, they release energy in
the form of GWs. This energy loss causes the BHs to spiral
inward, eventually resulting in a cataclysmic merger. When
the BHs merge, they create intense GWs that propagate
outward through the universe. These waves carry crucial
information about the astrophysical processes involved in
the merger, as well as the properties of the BHs themselves.
Quasinormal modes (QNMs) or quasinormal frequencies

(QNFs) are a fundamental concept [6] in the study of GWs.
This physical quantity describes a set of damping modes,
where its real part determines the oscillation of GWs, while
its imaginary part the damping rate that describes how
quickly the oscillations decay over time. When two BHs
merge, the emitted GWs change gradually from oscillation
to exponential decay. These modes provide important
information about the properties of the BHs. The analysis

of QNFs in GW signals opens up new avenues for
exploring the mysteries of the Universe and the funda-
mental nature of gravity.
The Newman-Janis algorithm (NJA) is a mathematical

method [7] that exploits complex-coordinate transforma-
tions to convert a static and spherically symmetric BH
solution to a rotating and/or axially symmetric one. In the
study of regular black holes (RBHs) [8–12], this algorithm
is notable for two reasons. At first, it can generate
rotating RBHs from a static seed, see the current review
articles [13,14] and the references therein. Secondly, it has
the capability to modify or remove the curvature singular-
ities of singular black holes (SBHs).
As an example, the NJA can transform [7] Schwarzschild

BHs into Kerr BHs through the following transformations,

u → u − ia cos θ; r → rþ ia cos θ; ð1aÞ

together with such complexifications,

1

r
→

Re½r�
jrj2 ; r2 → jrj2: ð1bÞ

Here, a denotes rotation parameter and u “time” in the
Eddington-Finkelstein coordinate. The underlying physical
mechanism of the connection between Schwarzschild and
Kerr BHs was established [15] through the exponentiation
of spin operators, where a three-point amplitude was
considered in the minimal coupling of spinning particles
and gravitons.
Now let us turn to the change in singularity. The

Kretschmann scalar of Schwarzschild BHs, which is a
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measure of curvatures, is proportional to r−6 around r ¼ 0.
After the complexification, r2 becomes jrj2 and the radial
coordinate takes a shift, r → rþ ia cos θ, and then the
singular point r ¼ 0 changes into a singular ring described
by r2 þ a2 cos2 θ ¼ 0. In other words, the NJA alters the
type of singular curvatures, from a point singularity to a
ring singularity, when it is applied to Schwarzschild BHs.
As another example, by using the alternative

transformations [16],

u→ u−2iN lnsinθ; r→ r− iN; M→M− iN; ð2aÞ

where N denotes a NUT charge, together with the corre-
sponding complexifications,

1

r
→

Re½Mr̄�
jrj2 ; r2 → jrj2; ð2bÞ

where r̄ denotes the complex conjugate of r, one can
convert Schwarzschild BHs into Taub-NUT BHs. The
relationship between Schwarzschild BHs and Taub-NUT
BHs can be understood [17] as a duality operation. In other
words, it can be seen as a gravitational analog of electric-
magnetic duality. Moreover, the “singularities” are deter-
mined by the zeros of the algebraic equation, r2 þ N2 ¼ 0,
indicating that there is no curvature singularity along the
real axis of r. This implies that the curvature singularity of
Schwarzschild BHs has been removed. This phenomenon
can also be seen in the Stokes portrait [18], where the
singularity is actually pushed onto the imaginary axis
(nonphysical domain).
As demonstrated above, one can deduce rotating or

axially symmetric BHs, Kerr or Taub-NUT, from the same
static and spherically symmetric seed, Schwarzschild BHs,
by using different transformations of the NJA. We are
interested in dynamical differences hidden behind the
different mathematical transformations because Kerr and
Taub-NUT BHs are obviously distinct in some crucial
properties, such as the singularity as mentioned above. In
other words, we want to reveal the physics that is hidden
behind mathematics (NJA transformations). Specifically,
we mainly investigate how the different connections,
between Schwarzschild and Kerr BHs and between
Schwarzschild and Taub-NUT BHs, manifest in the
QNFs, one of the significant features in dynamics of BHs.
The paper is arranged as follows. In Sec. II, we analyze

how the singularities of Kerr-Taub-NUT BHs change in the
parameter space of ða;NÞ. We then present in Sec. III the
analytical QNFs of Schwarzschild, Kerr, and Taub-NUT
BHs through the light ring/QNMs correspondence. In order
to acquire more accurate QNFs than the analytical ones, we
need to perform numerical calculations as proceeded in the
following three sections. In Sec. IV, we discuss two types of
test-field perturbations, scalar fields and spinor fields, with
and without mass, where we focus on the separation of

variables. Further, we explore the spectrum of angular
equations in Sec. V. We investigate the connections in the
spectra of QNFs for Schwarzschild, Kerr, and Taub-NUT
BHs in Sec. VI. Finally, we present our conclusions in
Sec. VII. The Appendix gives the coefficients of recursion
formulas when we calculate the spectra of QNFs numeri-
cally by using Leaver’s method.

II. KERR-TAUB-NUT BLACK HOLES
AND CURVATURE INVARIANTS

To facilitate subsequent discussions, we combine the
Kerr and Taub-NUT BHs into a single entity, referred to in
literature as theKerr-Taub-NUT spacetime [19]. In theBoyer-
Lindquist coordinates ðt; r; θ;ϕÞ, the metric of Kerr-Taub-
NUT BHs can be expressed [20] in the following form,

ds2 ¼ −
Δ
Σ
½dtþ ð2N cos θ − asin2θÞdϕ�2 þ Σ

Δ
dr2

þ sin2θ
Σ

½−adtþ ðr2 þ a2 þ N2Þdϕ�2 þ Σdθ2; ð3Þ

where Σ and Δ are defined by

Σ ¼ Σ1Σ2; Σ1 ¼ rþ iða cos θ þ NÞ;
Σ2 ¼ r − iða cos θ þ NÞ; ð4aÞ

Δ ¼ r2 − 2Mrþ a2 − N2: ð4bÞ

Equation (3) describes Schwarzschild, Kerr, and Taub-
NUT BHs, respectively, depending on the different regions
of the parameter space ða; NÞ:

(i) If both a and N vanish, Eq. (3) reduces to the metric
of Schwarzschild BHs.

(ii) If a does not vanish but N does, Eq. (3) reduces to
the metric of Kerr BHs.

(iii) If a vanishes but N does not, Eq. (3) reduces to the
metric of Taub-NUT BHs.

Next, we turn to the curvature invariants ofKerr-Taub-NUT
BHs, where they are composed of a complete set and referred
to as Zakhary-Mcintosh invariants [21]. This set contains
seventeen elements and can be classified [14] into three
groups; the Ricci type, solely constructed by Ricci tensors,
the Weyl type, solely constructed by Weyl tensors, and the
mixed type, constructed by both Ricci and Weyl tensors.
Because the Ricci tensor of Eq. (3) equals zero, Rμν ¼ 0,

the curvature invariants derived by the contraction of Ricci
tensors also equal zero. As a result, both the Ricci and
mixed types are vanishing, and our calculations depend [14]
only on the four elements in the Weyl type. The denom-
inators of these four invariants are all proportional to the
factor, ðN þ a cos θÞ2 þ r2, which gives the singularities as
follows:

r ¼ 0; N þ a cos θ ¼ 0; ð5Þ
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or in the Cartesian coordinates ðt; x; y; zÞ as follows [22]:

x2 þ y2 ¼ a2 − N2; z ¼ 0: ð6Þ

Thus, we divide the singularities into three classes accord-
ing to the parameter space ða;NÞ:

(i) If a2 > N2, singular rings appear in the x − y plane.
(ii) If a2 ¼ N2, a singular point appears at the center.
(iii) If a2 < N2, no singularities appear.
We note that the singularities mentioned above are

unrelated to the mass parameter. Furthermore, Kerr-
Taub-NUT BHs manifest in two distinct phases in terms
of the parameter space ða;NÞ if the rotation parameter a
decreases from a2 > N2 to a2 < N2 for a fixed N and
simultaneously if the Kerr-Taub-NUT spacetime still exists.
In one phase Kerr-Taub-NUT BHs contain singular rings in
the case of a2 > N2, while in the other phase Kerr-Taub-
NUT BHs do not have curvature singularities in the case of
a2 < N2, where the two phases are separated by the
configuration of Kerr-Taub-NUT BHs that possesses one
singular point in the case of a2 ¼ N2.

III. ANALYTICAL QNMS BY THE LIGHT
RING/QNMS CORRESPONDENCE

We provide the analytical QNMs of Schwarzschild,
Kerr, and Taub-NUT BHs using the light ring/QNMs
correspondence [23], which connects the QNFs to circular
null geodesics, known as photon spheres, in the eikonal limit,

ω ¼ Ωcl − i

�
nþ 1

2

�
λc; ð7Þ

where Ωc denotes the angular velocity when a particle stays
at an unstable null geodesic, λc the Lyapunov exponent, l the
multipole number, and n the overtone number.
In order to determine the circular null geodesics of

test particles in the Kerr-Taub-NUT spacetime, one
calculates [24,25] the effective potential of the radial
equation of particles,

Vr ¼ E2 þ 2Mrþ 2N2

ðr2 þ N2Þ2 ðaE − LÞ2 þ a2E2 − L2

r2 þ N2
; ð8aÞ

the time-component equationwith respect to the proper time,

ṫ ¼ 1

Δ

��
r2 þ N2 þ a2 þ a2

2Mrþ 2N2

r2 þ N2

�
E

−
að2Mrþ 2N2Þ

r2 þ N2
L

�
; ð8bÞ

and the ϕ equation with respect to the proper time,

ϕ̇ ¼ 1

Δ

�
r2 − 2Mr − N2

r2 þ N2
Lþ 2aðMrþ N2Þ

r2 þ N2
E

�
; ð8cÞ

whereE andL are the energy and angular momentum of test
particles, respectively. Further, one gives the radius of photon
spheres by Vr ¼ 0 ¼ V 0

r,

r3c − 3Mr2c − 3N2rc � 2a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rcðMr2c þ 2N2rc −MN2Þ

q
þMN2 ¼ 0: ð9Þ

Thus, the angular frequency and Lyapunov exponent on the
surface of photon spheres take the forms [26],

Ωc ¼ jϕ̇=ṫjjr¼rc ; λc ¼
ffiffiffiffiffiffi
V 00
r

2ṫ2

r ����
r¼rc

; ð10Þ

from which one obtains that the angular frequency is exactly
equal to the inverse of impact parameter Dc,

Ωc ¼
1

jDcj
;

D2
c ¼ a2 þ ðr2c þ N2Þ 3Mr2c þ 4N2rc −MN2

Mr2c þ 2N2rc −MN2
: ð11Þ

Next, we shall compute the QNFs for the three BHs and
compare their results. However, prior to that, we would like
to address a specific aspect of QNFs from the viewpoint of
the NJA, i.e., we shall demonstrate that the QNFs of two
BHs will exhibit a connection through the NJA if the two
BHs are related by the NJA.
It is usually considered that the NJA, as a mathematical

method, converts the Schwarzschild metric to either the
Kerr or Taub-NUT metric through distinct complex trans-
formations. As a result, it is naturally anticipated that the
physics will be interconnected through those complex
transformations between Schwarzschild and Kerr BHs’
QNFs or between Schwarzschild and Taub-NUT BHs’
QNFs. To this end, we investigate the relationships of the
four models (see Fig. 1) connected by the NJA, where the
Kerr-Taub-NUT BHs, as a single entity of Kerr and Taub-
NUT BHs, are also contained in order to show a symmetric
correlation.

FIG. 1. Relationships of four models via the NJA. The blue
arrows correspond to a simple relationship without mixing
between coordinates and parameters, whereas the red arrows
correspond to a complicated relationship with mixing between
coordinates and parameters.
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To confirm the aforementioned assertion in Fig. 1
between the Schwarzschild and Taub-NUT metrics, or
between the Kerr and Kerr-Taub-NUT metrics, see the
blue arrows in Fig. 1, a direct verification is possible owing
to the fact that the complex transformations solely involve
the radial coordinate and the parameterM, see Eq. (2), with
no mixture of two coordinates, such as the radial and
angular coordinates. In order to observe this, it is necessary
to demonstrate that the three variables, Vr, ṫ, and ϕ̇, are
interconnected between the Schwarzschild and Taub-NUT
metrics or between the Kerr and Kerr-Taub-NUT metrics
through the consistent transformations Eq. (2). The reason
to make such a discussion is that the QNFs are associated
solely with the three variables in the eikonal limit. Let us
give the proof directly for the case from Schwarzschild to
Taub-NUT BHs.1 At first, we reformulate the effective
potential, see Eq. (8a) with a ¼ 0 and N ¼ 0 for
Schwarzschild BHs, in the manner [23],

VSch ¼ E2 þ 2Mr
ðr2Þ2 L

2 −
L2

r2
: ð12Þ

Then following the complex transformations, Eq. (2), we
transform VSch into the form,

Ṽ ¼ E2 þ 2Re½Mr̄�
ðjrj2Þ2 L2 −

L2

jrj2 ; ð13Þ

which is just the effective potential of the Taub-NUT space-
time. Similarly, starting from ṫ and ϕ̇ for Schwarzschild BHs,
see Eqs. (8b) and (8c) together with a ¼ 0 and N ¼ 0,

ṫSch ¼
1

ΔSch
r2E; ð14Þ

and

ϕ̇Sch ¼
L
r2
; ð15Þ

we derive their Taub-NUT forms by using Eq. (2),

˙̃t ¼ 1

Δ̃
jrj2E; ð16Þ

and

˙̃ϕ ¼ L
jrj2 ; ð17Þ

whereΔSch, see Eq. (4b) together with a ¼ 0 andN ¼ 0, and
its transformed form read

ΔSch ¼ r2 − 2Mr; ð18Þ

and

Δ̃ ¼ jrj2 − 2Re½Mr̄�: ð19Þ

The QNFs of Taub-NUT BHs can be understood as a
distortion of the QNFs of Schwarzschild BHs under the
complex transformations depicted by Eq. (2).
However, the relationships between Schwarzschild and

Kerr BHs, or between Taub-NUT and Kerr-Taub-NUT BHs
inVr, ṫ, and ϕ̇, see the red arrows in Fig. 1, are more intricate
owing to the combination of radial and angular coordinates in
the complex transformations, even for geodesics in the
equatorial plane. Nonetheless, the indications of their rel-
evance to QNFs can be observed. In the complex trans-
formations fromSchwarzschild toKerrBHs, seeEq. (1a), the
additional introduction of nondiagonal metric components is
needed, which results in the mixtures between energy E and
angular momentum L, and between ṫ and ϕ̇, as shown in
Eqs. (67) and (68) of Ref. [23]. These mixtures lead to
complexity in the structure of QNFs, which is commonly
referred to as Zeeman splittings in literature, e.g., Ref. [27],
and will be elaborated upon below.
In contrast with the case between Schwarzschild and

Kerr BHs, a self-dual Taub-NUT BH with massM equal to
�N can be transformed [28–30] into a self-dual Kerr-Taub-
NUT BH through complex rotations of variables and
parameters when the Kleinian signature ð−−þþÞ or even
the Euclidean signature ðþþþþÞ is considered. This may
suggest that the splittings of the spectrum of QNFs caused
by the presence of rotation parameter a are likely attributed
to the complex transformations’ multiple values.

A. Schwarzschild black holes

For Schwarzschild BHs, a ¼ N ¼ 0, the equation of
photon spheres has only one root outside the horizon, i.e.,
we derive the radius of horizons and the radius of photon
spheres from Eq. (9),

rSchH ¼ 2M; rSchc ¼ 3M; ð20Þ

respectively, and then the impact parameter using Eq. (11),

DSch
c ¼ 3

ffiffiffi
3

p
M: ð21Þ

As a result, we conclude that the angular frequency
equals the Lyapunov exponent by considering Eqs. (8),
(10), and (20),

ΩSch
c ¼ λSchc ¼ 1

3
ffiffiffi
3

p
M

; ð22Þ

which contains all the information of QNFs in the eikonal
limit based on the light ring/QNMs correspondence Eq. (7).

1As to the case from Kerr to Kerr-Taub-NUT BHs, we can
prove similarly but begin from Eqs. (8a)–(8c) with N ¼ 0.
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B. Kerr black holes

In the case of Kerr BHs, the existence of a horizon
depends on the condition that jaj is less than M. This
condition gives the horizon radius of Kerr BHs,

rKerH ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
: ð23Þ

Furthermore, the radii of photon spheres for Kerr BHs
take [26,31,32] three values depending on the types of
orbits: corotating, counterrotating, and polar,

rKer� ¼ 2M

�
1þ cos

�
2

3
cos−1

�
∓ a

M

���
; ð24aÞ

rKero ¼ M þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
cos

�
1

3
cos−1

�
MðM2 − a2Þ

ðM2 − a2=3Þ3=2
��

;

ð24bÞ

where the subscripts � and o represent corotating, counter-
rotating, and polar orbits, respectively. It is important to
highlight that the radii of photon spheres for corotating and
polar orbits are smaller than 3M (Schwarzschild BHs),

0 < rKerþ < 3M; 0 < rKero < 3M; ð25Þ

while the radius for a counterrotating orbit is larger
than 3M,

rKer− > 3M: ð26Þ

Additionally, a mirror symmetry can be observed between
corotating and counterrotating orbits with respect to the
rotation parameter a,

rKerþ ðaÞ ¼ rKer− ð−aÞ: ð27Þ

This symmetry is also applicable to the angular velocity
and Lyapunov exponent, as shown below.
Substituting Vr, ṫ, and ϕ̇ of Kerr black holes into

Eq. (10), we obtain the angular velocities for the three obits,

ΩKer
� ¼ 1

jD�j
¼ M1=2

ðrKer� Þ3=2 � aM1=2 ;

ΩKer
o ¼ π

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

0 − a2
p

E
�

iaffiffiffiffiffiffiffiffiffiffi
D2

0
−a2

p
	 ; ð28Þ

where D� ¼ �3
ffiffiffiffiffiffiffiffiffiffiffiffi
MrKer�

p
− a are impact parameters for

corotating and counterrotating orbits, respectively,Do is the
impact parameter for the polar orbit,

D2
o ¼

ð3r2o − a2Þðr2o þ a2Þ
r2o − a2

; ð29Þ

and EðkÞ ¼ R π=2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2 sin2 θ

p
dθ is the complete elliptic

integral of the second kind. Moreover, we derive the
Lyapunov exponents for the three orbits,

λKer� ¼ ΩKer
�

1 − 2a=D�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2=D2

�
p ; ð30aÞ

λKero ¼ rKero

D2
0 − a2

K


xo=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2o

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2o

p
EðixoÞ

�
3 −

a2ðD2
o − a2Þ

ðrKero Þ4
�
1=2

;

ð30bÞ

where xo ¼ a=ðD2
o − a2Þ and KðkÞ ¼ R π=2

0
dθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−k2 sin2 θ
p is the

complete elliptic integral of the first kind.
Since Dþð−aÞ ¼ −D−ðaÞ, the angular velocities and

Lyapunov exponents possess the mirror symmetry under
the transformation of a → −a,

ΩKerþ ðaÞ ¼ ΩKer
− ð−aÞ; λKerþ ðaÞ ¼ λKer− ð−aÞ: ð31Þ

This symmetry implies [33–35] that the QNFs for corotat-
ing and counterrotating orbits are not independent.

C. Taub-NUT black holes

The horizon of Taub-NUT BHs is not less than that of
Schwarzschild BHs,

rNUTH ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ N2

p
: ð32Þ

The radius of photon spheres can be cast in the form similar
to that of Kerr BHs, but with a different parameter z owing
to the substitution of a ¼ 0 into Eq. (9),

rNUTc ¼Mþ z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2þN2

p
; z¼ 2cos

�
1

3
tan−1

N
M

�
; ð33Þ

where z is a monotonic decreasing function of N=M and
has the following limits,

lim
N=M→0

z ¼ 2; lim
N=M→∞

z ¼
ffiffiffi
3

p
> 1; ð34Þ

which, like the case of Kerr BHs, shows that the photon
sphere is outside the horizon. Substituting a ¼ 0 into
Eq. (11), we obtain the angular velocity and the impact
parameter,

ΩNUT
c ¼ 1

DNUT
c

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Mðr2c − N2Þ þ 2N2rc
ðN2 þ r2cÞð−MN2 þ 3Mr2c þ 4N2rcÞ

s
;

ð35Þ
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and using Eqs. (8), (10), and (33), we can derive the
Lyapunov exponent from the following ratio,

λNUTc

ΩNUT
c

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3½2N2rcð3rc−2MÞþ r3cð4M− rcÞ−N4�

p
N2þ r2c

: ð36Þ

D. Analysis of quasinormal frequencies

We give two comments about QNFs depicted by Eq. (7).
The first is that Eq. (7) is applicable only under the eikonal
limit, where the multipole number (angular momentum) l is
much larger than one and then its contribution is much
larger than that of spins. Consequently, the QNFs do not
encompass any spin characteristics. The second comment is
that the real part of QNFs is affected by the multipole
number l but not by the overtone number n, and the
imaginary part is affected by the overtone number n but not
by the multipole number l. This implies that the real part
displays a positive correlation with the multipole number l,
and the imaginary part does with the overtone number n.
Now let us analyze the asymptotic behaviors of Ωc and

λc. When the rotation parameter a → 0 for Kerr BHs
and the NUT charge N → 0 for Taub-NUT BHs, the
leading terms of Ωc and λc for the two BHs must be
consistent with the angular velocity and Lyapunov expo-
nent of Schwarzschild BHs,

ΩKer
� ∼

1

3
ffiffiffi
3

p
M

� 2a
27M2

þOða2Þ; ð37aÞ

λKer� ∼
1

3
ffiffiffi
3

p
M

−
2a2

81
ffiffiffi
3

p
M3

þOða3Þ; ð37bÞ

ΩKer
o ∼

1

3
ffiffiffi
3

p
M

þ 7a2

324
ffiffiffi
3

p
M3

þOða3Þ; ð38aÞ

λKero ∼
1

3
ffiffiffi
3

p
M

−
a2

54
ffiffiffi
3

p
M3

þOða3Þ; ð38bÞ

and

ΩNUT
c ∼

1

3
ffiffiffi
3

p
M

−
5N2

54
ffiffiffi
3

p
M3

þOðN3Þ; ð39aÞ

λNUTc ∼
1

3
ffiffiffi
3

p
M

−
11N2

162
ffiffiffi
3

p
M3

þOðN3Þ: ð39bÞ

This is not difficult for us to understand from physics since
both Kerr and Taub-NUT BHs reduce to Schwarzschild
BHs when a → 0 and N → 0, respectively.
In accordance with Eqs. (22), (37), and (39), we compare

angular velocities and Lyapunov exponents between
Schwarzschild and Kerr BHs, between Schwarzschild

and Taub-NUT BHs, and between Kerr and Taub-NUT
BHs, respectively,

ΩKerþ;o=ΩSch
c > 1; λKerþ;o=λ

Sch
c < 1; ð40Þ

ΩKer
− =ΩSch

c < 1; λKer− =λSchc < 1; ð41Þ

ΩNUT
c =ΩSch

c < 1; λNUTc =λSchc < 1; ð42Þ

ΩNUT
c =ΩKerþ;o < 1; λNUTc =λKerþ;o < 1; ð43Þ

ΩNUT
c =ΩKer

− > 1; λNUTc =λKer− < 1; ð44Þ

where we have applied the limit of a ¼ N → 0 in the
comparison of asymptotic behaviors between Kerr and
Taub-NUT BHs. Based on the above inequalities, we
observe that the rotation parameter a is associated with
an increase in the oscillation frequency for corotating
and polar orbits (ΩKerþ;o=ΩSch

c > 1), whereas the NUT
charge N is linked to a decrease in the oscillation frequency
(ΩNUT

c =ΩSch
c < 1 and ΩNUT

c =ΩKerþ;o < 1). Moreover, we
notice that both the rotation parameter a and the NUT
charge N result in a weakening decay (λKer�;o=λ

Sch
c < 1,

λNUTc =λSchc < 1, and λNUTc =λKer�;o < 1). Therefore, we may
refer Kerr BHs as a counterpart of Schwarzschild BHs with
an increasing frequency owing to ΩKerþ;o −ΩSch

c > 0, while
Taub-NUT BHs as a counterpart of Schwarzschild BHs
with a decreasing frequency owing to ΩNUT

c − ΩSch
c < 0.

Opposite to the limit of a → 0 for Kerr BHs, we now
consider the limit2 of a → M, under which ΩKerþ goes to a
constant 1=ð2MÞ, and λKerþ vanishing,

ΩKerþ ∼
1

2M
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðM − aÞp
2

ffiffiffi
2

p
M3=2

þOðða −MÞ1Þ; ð45aÞ

λKerþ ∼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M − a

pffiffiffi
2

p
M3=2

þOðða −MÞ1Þ; ð45bÞ

which implies that ΩKerþ =ΩSch > 1 and λKerþ vanishes as a
approaches the limit value M. In other words, when a
approaches M, the corotating orbit of Kerr BHs reaches a
stable state without any decay. For the counterrotating orbit,
we obtain

ΩKer
− ∼

1

7M
þ 5ðM − aÞ

147M2
þOðða −MÞ2Þ; ð46aÞ

λKer− ∼
3

ffiffiffi
3

p

28M
þ 5ðM − aÞ
294

ffiffiffi
3

p
M2

þOðða −MÞ2Þ; ð46bÞ

2The rotation parameter a cannot be greater than the mass of
Kerr BHs, otherwise there are no horizons.
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which implies that the counterrotating orbit is an unstable
state because of a finite value of λKer− and that the rotation
parameter makes a decreasing effect to the angular velocity
(ΩKer

− =ΩSch < 1) as a approaches M. For the polar orbit,
we derive

ΩKer
o ∼

0.20937
M

−
0.0489321ðM − aÞ

M2

þOðða −MÞ2Þ; ð47aÞ

λKero ∼
0.165616

M
þ 0.130548ðM − aÞ

M2

þOðða −MÞ2Þ: ð47bÞ

which implies that the polar orbit is an unstable state
because of a finite value of λKero and that the rotation
parameter makes an increasing effect to the angular
velocity (ΩKer

o =ΩSch > 1) as a approaches M. For Taub-
NUT BHs, both ΩNUT

c and λNUTc vanish when the NUT
charge goes to infinity instead of zero,

ΩNUT
c ∼

1

2
ffiffiffi
2

p
N
þOðN−2Þ; ð48aÞ

λNUTc ∼
ffiffiffi
3

p

4N
þOðN−2Þ: ð48bÞ

Combining the above properties of the QNFs for
Schwarzschild, Kerr, and Taub-NUT BHs, we depict the
QNFs in Fig. 2, where the QNFs of Reissner-Nordström
(RN) BHs are attached as a comparison. This diagram
illustrates how the QNFs vary with the parameters, such as

the mass M for Schwarzschild BHs, the rotation parameter
a and mass M for Kerr BHs, and the NUT charge N and
mass M for Taub-NUT BHs, and with the parameters—
electric charge Q and mass M for RN BHs.
The QNFs of Schwarzschild BHs, see Eq. (22), which

change only with the mass M, divide the entire QNF plane
into two distinct regions, where the QNFs of Kerr BHs for
corotating and polar cases are located in the right region
while those of Kerr BHs for counterrotating case and Taub-
NUT BHs in the left one. We may refer to the two regions
as two phases, i.e., the Kerr-I phase and Taub-NUT (or
Kerr-II) phase. In other words, we think that Kerr and
Taub-NUT BHs are two different states of Schwarzschild
BHs in the complex plane of QNFs, and regard Fig. 2 as a
dynamical phase diagram in which the QNFs of
Schwarzschild BHs represent a coexistence line. The
QNFs of Kerr BHs for corotating and polar cases are
located in the right side of the coexistence line, while the
QNFs of Kerr BHs for counterrotating case and Taub-NUT
BHs in the left side. We may conclude that the above
correlations of QNFs (QNMs) are closely connected to the
NJA among Schwarzschild, Kerr, and Taub-NUT BHs. In
other words, we may speculate that the connections to the
NJA give rise to the correlation of QNFs, which may be
referred to as the Schwarzschild/Kerr/Taub-NUT (SKT)
correspondence, as shown in Fig. 2.
The light green curve depicts the variation of QNFs with

respect to electric charge Q for RN BHs. It is evident that
the geometric characteristic of the QNFs of RN BHs is
distinct from that of the other three BHs because RN BHs
are not a member of the BHs connected by the NJA as
depicted by Fig. 1.
The structure illustrated in Fig. 2, consisting of the red,

blue, and purple curves, is referred to as the Zeeman
splitting of Kerr BHs [27,33,34]. This term is used because
it bears some resemblance to the Zeeman effect observed in
atomic physics. Apart from the splitting of Kerr BHs with
different orbits, Fig. 2 provides additional information from
the perspective of the NJA:
(1) Schwarzschild BHs can be regarded as the seed of

both Kerr and Taub-NUT BHs with respect to the
NJA, and can be seen as the original state prior to the
splitting. The NJA can be regarded as an “external
field”, similar to a magnetic field in atomic physics,
while the Kerr and Taub-NUT BHs represent an
even-number splitting of Schwarzschild BHs that is
similar to an even-number energy level’s splitting in
atomic physics.

(2) The QNFs of Taub-NUT BHs exhibit a well-defined
splitting pattern, whereas the QNFs of RN BHs
intersect with the QNFs of Kerr BHs’ corotating
orbit. This behavior may be connected to the NJA.
Furthermore, the NJA produces distinct effects
to different transformations: The transformatiom
from Schwarzschild to Taub-NUT BHs results in

FIG. 2. TheZeeman splitting ofQNFs,where the horizontal axis
denotes ReðωÞ=l, i.e., the angular velocityΩc, and the vertical axis
stands for−ImðωÞ=ðnþ 1=2Þ, i.e., the Lyapunovexponent λc. The
dashed gray line represents the case of Schwarzschild BHs, where
the QNFs change with respect to the mass M. The red, blue, and
purple curves give the QNFs of Kerr BHs for corotating, counter-
rotating, and polar obits, respectively, where M takes 1=2, which
yields the same results as those of the dimensionless treatment if
2M is chosen to be a normalization factor. The dark green curve
denotes the QNFs of Taub-NUT BHs that change with respect to
the NUT chargeN, whereM also takes 1=2. The light green curve
shows the case ofRNBHs, i.e., theQNFs varywith the charge for a
fixed M ¼ 1=2.
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a redshift3 of QNFs of Taub-NUT BHs compared to
those of Schwarzschild BHs, whereas that from
Schwarzschild to Kerr BHs leads to both redshifts
(in the case of counterrotating orbits) and blueshifts
(in the case of corotating and polar orbits) when
the even-number splitting of Schwarzschild BHs is
caused by the NJA.

(3) The Kerr BHs with different orbits and Taub-NUT
BHs can be categorized into two groups owing to the
splittingofSchwarzschildBHsby theNJA.Onegroup
includes theKerrBHswith corotatingorbits andTaub-
NUT BHs because they correspond to long-lived
states where their Lyapunov exponents go to zero
as a → M andN → ∞, respectively. The other group
consists of the Kerr BHs with counterrotating and
polar orbits, where the Lyapunov exponents approach
finite values as the parameter a approaches M.

(4) The Kerr and Taub-NUTBHs can be regarded as two
special cases of Kerr-Taub-NUT BHs with the
rotation parameter and NUT charge, while the RN
and Kerr BHs can be seen as two special cases of
Kerr-Newman BHs with the electric charge and
rotation parameter. Thus, Fig. 2 also shows the QNFs
of two families of BHs each of which has two
parameters except mass. To be specific, the QNF
spectrum of Kerr-Taub-NUT BHs emerges well-
splitting, where the Kerr and Schwarzschild BHs,
as well as the Taub-NUTand Schwarzschild BHs, are
related to each other through the NJA. On the other
hand, forKerr-NewmanBHs, theQNF spectrumdoes
not present the same splitting as that in Kerr-Taub-
NUT BHs, but the crossing of spectral curves of RN
and Kerr BHs (corotating case), where the RN and
Schwarzschild black holes are not related through
the NJA. This indicates that the QNF spectrum of a
two-parameter family of BHs related to the NJA is
different from that of a two-parameter family of BHs
unrelated to the NJA. However, it is important to note
that RN BHs are classified under the Kerr-Newman-
Taub-NUT family [36–38] by the NJA. In this
context, RN BHs serve as the seed, from which the
RN-Taub-NUT and Kerr-Newman BHs are corre-
lated through the NJA. Consequently, the Kerr-
Newman-Taub-NUT class exhibits a clear splitting,
as illustrated in Fig. 3.

Figure 4 depicts the Zeeman splitting of QNFs with
different seeds of the NJA. Figure 4(a), an extension of
Fig. 2 with M ¼ 0.5, 1, 2, illustrates the splitting of Kerr
and Taub-NUT BHs, starting with Schwarzschild BHs as
the seed. On the other hand, Fig. 4(b) depicts the splitting of
Kerr-Taub-NUT BHs with respect to Taub-NUT BHs as the
seed of the NJA.

The splittings of QNFs shown in Fig. 4(a) [Fig. 4(b)] also
exhibit a scaling relationship with respect to the parameter
M (N). Specifically, Fig. 4(a) suggests that we can normal-
ize the QNFs, i.e., we can make the QNFs dimensionless
using the parameter 2M as a normalization factor, while
Fig. 4(b) indicates that the parameter N can also serve as a
normalization factor. In other words, setting M as 1=2 in
Fig. 4(a) or N as 1 in Fig. 4(b) yields the same results as the
dimensionless treatment, while the comparison with the
cases ofM ¼ 1, 2 in Fig. 4(a) or N ¼ 0, 2 in Fig. 4(b) gives
the “conformal” structure of the phase diagram. Moreover,
Fig. 4(b), in which the Lorentzian signature ð−þþþÞ is
adopted, exhibits more information than that in the
Kleinian signature ð−−þþÞ or Euclidean signature
ðþþþþÞ. Since the self-dual Taub-NUT BHs can be
transformed into the self-dual Kerr-Taub-NUT BHs by
the coordinate transformations in the Kleinian and
Euclidean signatures [28–30], one may expect that the
spectra of Taub-NUT BHs and Kerr-Taub-NUT BHs have a
one-to-one correspondence.

E. General photon spheres

We now turn our attention to the eikonal QNMs
emanating from a general photon sphere, i.e., the photon
sphere that is neither fully equatorial nor fully polar. Our
objective is to investigate whether the QNM curves of a
Kerr BH with a nonzero Carter’s constant will intersect
with those of a Taub-NUT BH. The radius of a general
photon sphere is given by [39,40]

rKerc ¼ M þ 2MΔζ cos

�
1

3
cos−1

�
1 − a2=M2

Δ3
ζ

��
; ð49Þ

and the newly appeared parameters are defined by

Δζ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

aðaþ ζÞ
3M2

r
; ζ ¼ Lz

E
: ð50Þ

0.40 0.42 0.44 0.46

0.386

0.388

0.390

0.392

Re[ω]/l

–I
m
[ω
]/(
n+
1/
2)

FIG. 3. QNMs of the Kerr-Newman-Taub-NUT class. The light
green curve indicates the QNFs of RN BHs, the dark green curve
represents the QNFs of RN-Taub-NUT BHs, and the red and blue
curves correspond to the QNFs of the corotating and counter-
rotating Kerr-Newman BHs, respectively.

3It means a decreasing of real parts, while the blueshift means
an increasing of real parts.
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The unstable and nonequatorial null geodesics necessitate
the Carter’s constant Q being greater than zero. This
implies that the radius of general photon spheres is bounded
by the corotating and counterrotating radii of equatorial
photon spheres, see Eq. (24a),

rKerþ < rKerc < rKer− : ð51Þ

This condition further constrains ζ as follows:

ζ− < ζ < ζþ; ð52Þ

where ζ� are defined as

ζ� ¼ a2M þ a2rKer� − 3MðrKer� Þ2 þ ðrKer� Þ3
aðM − rKer� Þ : ð53Þ

On the other hand, Q > 0 indicates that the geodesics
oscillate between two turning points θ� [40],

θ� ¼ cos−1 ð∓ ffiffiffiffiffiffi
uþ

p Þ; ð54Þ

where θ− ∈ ð0; π=2Þ and θþ ∈ ðπ=2; πÞ, and

u� ¼ Δθ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

θ þ
η

a2

r
; Δθ ¼

1

2

�
1 −

ηþ ζ2

a2

�
: ð55Þ

Here we use η ¼ Q=E2 to represent the reduced Carter’s
constant.
The eikonal QNMs can be calculated in terms of

Eqs. (1.1)–(1.2) in Ref. [31], where the orbital and
Lense-Thiring-precession frequencies are given by

ΩθðrKerc Þ ¼ 2π=TθðrKerc Þ;

ΩprecðrKerc Þ ¼ ΩθðrKerc Þ δφðr
Ker
c Þ

2π
− ðsgnLzÞΩθðrKerc Þ; ð56Þ

and TθðrKerc Þ and δφðrKerc Þ can be represented by the elliptic
functions [39,40],

TθðrKerc Þ¼−
4a2uþffiffiffiffiffiffiffiffiffiffiffiffiffi
−a2u−

p E0
�
uþ
u−

�

þ r½a2ð2Mþ rÞ−2aζMþ r3�
Δ

2ffiffiffiffiffiffiffiffiffiffiffiffiffi
−a2u−

p K

�
uþ
u−

�
;

ð57Þ

δφðrKerc Þ ¼ að2Mr − aζÞ
Δ

2ffiffiffiffiffiffiffiffiffiffiffiffiffi
−a2u−

p K

�
uþ
u−

�

þ ζ
2ffiffiffiffiffiffiffiffiffiffiffiffiffi

−a2u−
p Π

�
uþ;

uþ
u−

�
: ð58Þ

Note that rKerc takes the values in the range given by
Eq. (51). Here Kðuþu−Þ, Eð

uþ
u−
Þ, and Πðuþ; uþu−Þ stand for the

first, second, and third classes of elliptic functions, and
E0ðuþu−Þ denotes the first-order derivative of the second class
of elliptic functions with respect to uþ=u−. The Lyapunov
exponent takes the form,

γL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2R00ðrÞp

Δh
∂R
∂E þ ∂R

∂Q

�
dQ
dE

	
BS

i
������
rKerc

; ð59Þ

where RðrÞ is the radial potential,

RðrÞ ¼ ½Eðr2 þ a2Þ − Lza�2 − Δ½ðLz − aEÞ2 þQ�; ð60Þ
R00ðrÞ stands for the second-order derivative of RðrÞ with
respect to r, and the subscript “BS” implies that the
derivative, dQ=dE, is determined by the angular Bohr-
Sommerfeld condition [31],I

dθ
ffiffiffiffi
Θ

p
¼ 2πðL − jmjÞ ð61Þ

FIG. 4. The Zeeman splitting of QNFs for two different seeds of the NJA. (a) Schwarzschild BHs as the seed of the NJA.
(b) Taub-NUT BHs as the seed of the NJA.

PHASE DIAGRAMS OF QUASINORMAL FREQUENCIES FOR … PHYS. REV. D 110, 044045 (2024)

044045-9



where Θ ¼ Q − cos2 θðL2
z= sin2 θ − a2E2Þ is the angular

potential and L the angular momentum of test particles.
For a slow rotation, we plot the QNMs with respect to a

negative azimuthal number4 m for the Kerr’s nonequatorial
null geodesics (in blue) alongside the QNMs of Taub-NUT
BHs (in dark green), as shown in Fig. 5. We observe that the
Kerr QNM curve with m ¼ −1 intersects with the Taub-
NUT QNM curve. In other words, a clear splitting occurs
for jmj=ðlþ 1=2Þ ∼ 1, particularly for m ¼ �l and l ≫ 1.
We end Sec. III by discussing the possibility of a phase

transition that occurs in the SKT phases. When we plot the
QNFs of Schwarzschild, Kerr, and Taub-NUT BHs in one
diagram, it is natural to ask whether a transition between any
two of the three phases occurs or not. The answer is negative,
owing to the singularity or topological nature of the three
BHs. In Sec. II, we have categorized the singularities of
Kerr-Taub-NUTBHs in terms of the parameter space ða;NÞ.
The curvature singularities of Schwarzschild, Kerr, and
Taub-NUT BHs differ significantly, and the change of
curvature singularities from one type to another implies [41]
a change in topology. In other words, the difference in
topology acts as a safeguard against phase transitions,
preventing the occurrence of phase transitions.
Our next task is to acquire more accurate QNFs than the

analytical ones from the light ring/QNMs correspondence.
To this end, we need to perform numerical calculations
which will be proceeded in the following three sections.

IV. TEST-FIELD PERTURBATIONS
AND SEPARATIONS OF VARIABLES

In this section, we analyze the perturbations of two test
fields with and without mass, i.e., a scalar field and a spinor
field. Additionally, we demonstrate the process of variable
separation in the Kerr-Taub-NUT spacetime.

A. Scalar field perturbation

The dynamics of a scalar field Ψ that has a nonvanishing
massm0 and is minimally coupled with gravity is governed
by the Klein-Gordon equation in the Kerr-Taub-NUT
spacetime,

ð∇μ∇μ −m2
0ÞΨ ¼ 0; ð62Þ

where the Greek superscripts and subscripts mean the
temporal and spatial indices in the four-dimensional space-
time, and ∇μ stands for covariant derivative. To perform
the separation of variables in the above equation, we
decompose [42,43] the scalar field as

Ψðt; r; θ;ϕÞ ¼ e−iωtþimϕRlmðrÞSlmðθÞ; ð63Þ

where ω denotes the frequency of modes, RlmðrÞ the
radial function, SlmðθÞ the spheroidal angular function,
l the multipole number, and m the azimuthal number. By
substituting this decomposition into the Klein-Gordon
equation Eq. (62), we obtain [20,38] the radial equation,

Δ
d
dr

�
Δ
dRlm

dr

�
þ ½G2 þ ð2maω−m2

0r
2 − λlmÞΔ�Rlm ¼ 0;

ð64Þ
and the angular equation,

1

sin θ
d
dθ

�
sin θ

dSlm
dθ

�
−
�ð2Nω cos θ − aωsin2θ þmÞ2

sin2θ

þm2
0ðN þ a cos θÞ2 − λlm

�
Slm ¼ 0; ð65Þ

where λlm serves as the separation constant, Δ is given by
Eq. (4b), and G is defined by

G ¼ ωðr2 þ a2 þ N2Þ −ma: ð66Þ

B. Spinor field perturbation

In order to achieve the separation of spinor fields, we
utilize [44] the Newman-Penrose formalism and express
the Dirac equation in the following manner:

ðDþ ϵ − ρÞF1 þ ðδ̄þ π − αÞF2 ¼
1ffiffiffi
2

p imeG1;

ð△þ μ − γÞF2 þ ðδþ β − τÞF1 ¼
1ffiffiffi
2

p imeG2;

ðDþ ϵ̄ − ρ̄ÞG2 − ðδþ π̄ − ᾱÞG1 ¼
1ffiffiffi
2

p imeF2;

ð△þ μ̄ − γ̄ÞG1 − ðδ̄þ β̄ − τ̄ÞG2 ¼
1ffiffiffi
2

p imeF1; ð67Þ

FIG. 5. QNMs correspond to Kerr’s general photon spheres,
where l ¼ 5 and m ¼ −1;…;−5 are set.

4For a positive azimuthal number, the QNM curves of Kerr
BHs go to the right-down direction, leading to no intersections
with the QNM curves of Taub-NUT BHs.
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where the four-component spinor is written as ðF1; F2;
G1; G2Þ,me is the mass of spinor fields, and a bar means the
complex conjugate. Moreover, the three independent differ-
ential operators can be represented5 with the help of a null
tetrad as follows:

D ≔ lμ∂μ; △ ≔ nμ∂μ; δ ≔ mμ
∂μ; ð68Þ

and these Greek letters, ðα; β; γ; ϵ; μ; π; ρ; τÞ, denote the
coefficients of spinor components. For the details of spinor
fields in a curved spacetime, see Ref. [45].
If the following null tetrad is applied,6

lμ ¼ 1

Δ
fr2 þ a2 þ N2;Δ; 0; ag;

nμ ¼ 1

2Σ
fr2 þ a2 þ N2;−Δ; 0; ag;

mμ ¼ 1ffiffiffi
2

p
Σ1

fiða sin θ − 2N cot θÞ; 0; 1; i csc θg; ð69Þ

we compute the nonvanishing coefficients of spinor
components,

α¼ π− β̄; β¼ cotθ

2
ffiffiffi
2

p
Σ1

; γ¼ μþ1

4

dΔ
dr

; μ¼−
Δ

2ΣΣ2

;

π¼ iasinθffiffiffi
2

p
Σ2
2

; ρ¼−
1

Σ2

; τ¼−
iasinθffiffiffi

2
p

Σ
: ð70Þ

Further, substituting the following ansatz [47] into Eq. (67),

F1¼
R−1

2
ðrÞS−1

2
ðθÞ

Σ2

e−iωtþimϕ; F2¼Rþ1
2
ðrÞSþ1

2
ðθÞe−iωtþimϕ;

G1¼Rþ1
2
ðrÞS−1

2
ðθÞe−iωtþimϕ; G2¼

R−1
2
ðrÞSþ1

2
ðθÞ

Σ1

e−iωtþimϕ;

ð71Þ

we simplify the Dirac equation Eq. (67) to be

D0R−1
2
¼ ðλþ imerÞRþ1

2
;ffiffiffiffi

Δ
p

D†
0ð

ffiffiffiffi
Δ

p
Rþ1

2
Þ ¼ ðλ − imerÞR−1

2
; ð72aÞ

L1
2
Sþ1

2
¼ ½−λþmeða cos θ þ NÞ�S−1

2
;

L†
1
2

S−1
2
¼ ½λþmeða cos θ þ NÞ�Sþ1

2
; ð72bÞ

where λ is the separation constant and the differential
operators take [46] the forms,

Dk ¼
∂

∂r
−
iK
Δ

þ k
Δ
dΔ
dr

; D†
k ¼

∂

∂r
þ iK

Δ
þ k
Δ
dΔ
dr

;

Lk ¼
∂

∂θ
−Qþ k cot θ; L†

k ¼
∂

∂θ
þQþ k cot θ; ð73Þ

where k denotes the spin of fields, for instance, k ¼ 0 for
scalar fields, k ¼ 1=2 for spinor fields, etc, and the factors
K and Q are defined by

K ¼ ωðr2 þ a2 þ N2Þ −ma;

Q ¼ ωða sin θ − 2N cot θÞ − m
sin θ

: ð74Þ

We note that Eq. (72a) describes the radial equations and
Eq. (72b) the angular ones, where such a formulation is
known [47,48] as the Chandrasekhar-Page-like equations.
At last, by decouplingRþ1

2
ðrÞ fromR−1

2
ðrÞ in Eq. (72a) and

Sþ1
2
ðθÞ from S−1

2
ðθÞ in Eq. (72b), respectively, we obtain the

completely separated radial and angular equations,

d
dr

�
Δ
dPs

dr

�
þ
�

2ismeΔ
λ−2ismer

−
1

2

dΔ
dr

�
dPs

dr

þ
�
K2−2isðr−MÞK

Δ
þ2is

dK
dr

−
meK

λ−2ismer
−λ2−m2

er2
�
Ps

¼0; ð75Þ

and

1

sin θ
d
dθ

�
sin θ

dSs
dθ

�
þ ame sin θ
meða cos θ þ NÞ − 2s

dSs
dθ

þ
�
m2

eða cos θ þ NÞ − λ2

þ 1

2
ðcot θ − 2QÞ ame sin θ

meða cos θ þ NÞ − 2s

þ 1

4

�
cot2θ −

2

sin2θ
− 4Q2 − 8s

dQ
dθ

��
Ss ¼ 0; ð76Þ

where s denotes the spin of spinor fields, s ¼ � 1
2
, and the

radial functions are rewritten to be

Pþ1
2
ðrÞ ¼

ffiffiffiffiffiffiffiffiffiffi
ΔðrÞ

p
Rþ1

2
ðrÞ; P−1

2
ðrÞ ¼ R−1

2
ðrÞ: ð77Þ

V. EIGENVALUES OF ANGULAR EQUATIONS

In this section,we address the eigenvalues associatedwith
the Chandrasekhar-Page-like equations, i.e., the separated
angular equations described by Eq. (76). However, as the
solutions for Kerr BHs have already been discussed [49,50],
we focus primarily on the case of Taub-NUTBHs by setting
a ¼ 0 in Eq. (76). Additionally, for the sake of simplicity in
notations, we omit the subscript 1=2 in the spheroidal

5Note the difference between △ and Δ, where the former is a
triangle while the latter a capital Greek letter.

6This tetrad reduces to the one for Schwarzschild BHs [46] or
Kerr BHs [47] when the corresponding parameter, a or N, goes
to zero.
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angular functions, and just useS� instead. Thus,we simplify
Eq. (76) to be

1

sinθ
d
dθ

�
sinθ

dS�
dθ

�
þ
�
λ2−

1

2
−
�
m
sinθ

þ
�
2Nω∓1

2

�
cotθ

�
2

−Nðm2
eN∓2ωÞ



S�¼0; ð78Þ

where the angular parameter θ is bounded by θ∈ ½0; πÞ.
Alternatively, we recast Eq. (78) by the replacement x ¼
sinðθ=2Þ with x∈ ½0; 1�, and then obtain

xð1 − x2Þ d
dx

�
xð1 − x2Þ d

dx
S�

�

−
1

4
S�½4m2 − 4mð2x2 − 1Þð4Nω ∓ 1Þ

þ 4x2ðx2 − 1Þð4λ2 − 4m2
eN2 − 1Þ þ 16N2ð1 − 2x2Þ2ω2

∓ 8Nωþ 1� ¼ 0: ð79Þ

The two second-order differential equations depicted by
Eq. (79) have two regular singular points located at x ¼ 0
and x ¼ 1, respectively, indicating that the naive solutions
without any boundary conditions will have the same
singularities at x ¼ 0 and x ¼ 1.
Furthermore, we note the symmetry of spheroidal

angular functions between Sþ and S−, i.e., Sþ can be
converted to S− by the following transformation,

N → −N; m → −m: ð80Þ

This symmetry can help us to simplify the process of
solving Eq. (79).
We solve Eq. (79) and give the solutions via the hyper-

geometric functions,

S� ¼ C1x−
1
2
�m�2Nωð1 − x2Þ−1

4
∓m

2
�Nω

2F1ða�1 ; b�1 ; c�1 ; x2Þ
þ C2x

1
2
∓m∓2Nωð1 − x2Þ−1

4
∓m

2
�Nω

2F1ða�2 ; b�2 ; c�2 ; x2Þ;
ð81Þ

where C1 and C2 are two arbitrary constants and the
parameters of hypergeometric functions in two branches
of solutions take the following forms:

a�1 ¼ �2Nω −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − N2ðm2

e − 4ω2Þ
q

; ð82aÞ

b�1 ¼ �2Nωþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − N2ðm2

e − 4ω2Þ
q

; ð82bÞ

c�1 ¼ 1

2
�m� 2Nω; ð82cÞ

and

a�2 ¼ 1

2
∓ m −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − N2ðm2

e − 4ω2Þ
q

; ð83aÞ

b�2 ¼ 1

2
∓ mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − N2ðm2

e − 4ω2Þ
q

; ð83bÞ

c�2 ¼ 3

2
∓ m − 2Nω: ð83cÞ

The naive solutions Eq. (81) have two possible singularities
at x ¼ 0 and x ¼ 1. Therefore, we have to restrict the
parameter λ in order to construct normalizable eigenstates.
This procedure provides us with eigenvalues of the sphe-
roidal angular functions.
To this end, we at first consider the asymptotic behavior

of Sþ in the limit of x → 0,

Sþ ∼ C1xmþ2Nω−1
2 þ C2x−m−2Nωþ1

2; ð84Þ

where we have used [51] the asymptotic formulas of
hypergeometric functions around x ¼ 0:

(i) If m > 1=2 − 2NReðωÞ, the first branch of solutions
is finite, whereas the second one is divergent,
indicating that we have to eliminate the second
one by setting C2 ¼ 0 in Eq. (81).

(ii) If m < 1=2 − 2NReðωÞ, we have to remove the first
branch by setting C1 ¼ 0 but retain the second one
in Eq. (81).

Next, we turn to the study of asymptotic behaviors in the
limit of x → 1. Considering the asymptotic formulas of
hypergeometric functions around x ¼ 1 [51], we obtain

Sþ ∼ C1
ð1 − xÞ−m

2
þNω−1

4

Γð1 − aþ2 ÞΓð1 − bþ2 Þ

þ C2
ð1 − xÞ−m

2
þNω−1

4

Γð1 − aþ1 ÞΓð1 − bþ1 Þ
: ð85Þ

(i) For the first case, i.e., m > 1=2 − 2NReðωÞ, which
gives rise to C2 ¼ 0, it is possible that the power of
(1 − x) in the first branch of solutions is negative
because of m∈Z, leading to the divergence of this
branch. Thus, in order to overcome such a diver-
gence, we demand

1

Γð1 − aþ2 ÞΓð1 − bþ2 Þ
¼ 0; ð86Þ

which implies that either 1−aþ2 ¼−l or 1 − bþ2 ¼ −l
according to the property of the Gamma functions,
where l∈Zþ. Using Eq. (83a) or Eq. (83b), we
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obtain that these two conditions (1 − aþ2 ¼ −l and
1 − bþ2 ¼ −l) result in a unique λþ,

λ2þ¼N2ðm2
e−4ω2Þþ lðlþ2mþ1Þþmðmþ1Þþ1

4
;

ð87Þ

(ii) For the second case, i.e., m < 1=2 − 2NReðωÞ,
which gives rise to C1 ¼ 0, it is possible that the
power of (1 − x) in the second branch of solutions is
negative owing to m∈Z, leading to the divergence
of this branch. Thus, in order to overcome such a
divergence, see Eq. (85), we require

1

Γð1 − aþ1 ÞΓð1 − bþ1 Þ
¼ 0; ð88Þ

which implies 1 − aþ1 ¼ −l or 1 − bþ1 ¼ −l, where
l∈Zþ. Using Eq. (82a) or Eq. (82b), we deduce a
unique λþ,

λ2þ ¼ N2m2
e þ lðl − 4Nωþ 2Þ − 4Nωþ 1: ð89Þ

Moreover, considering the symmetry given by Eq. (80),
we establish the relationship between λþ and λ− as follows:

λ2þ ⟶
N→−N
m→−m

λ2−: ð90Þ

Consequently, λ− takes the forms in the following
two cases:

(i) If m < −1=2 − 2NReðωÞ, we have

λ2− ¼N2ðm2
e−4ω2Þþ lðl−2mþ1Þþmðm−1Þþ1

4
.

ð91Þ

(ii) If m > −1=2 − 2NReðωÞ, we have

λ2− ¼ N2m2
e þ lðlþ 4Nωþ 2Þ þ 4Nωþ 1: ð92Þ

As the separation constant of angular and radial func-
tions, λ� will be determined after we solve the radial
equations and give the values of ω, the QNFs of spinor field
perturbations. It is possible that λ� are complex if ω is
complex, see Eqs. (87), (89), (91), and (92). In addition, we
notice that λþ is irrelevant to m when m is small, i.e.,
m < 1=2 − 2NReðωÞ, see Eq. (89), and that λ− is irrelevant
to m when m is large, i.e., m > −1=2 − 2NReðωÞ, see
Eq. (92).

VI. RELATIONS IN SPECTRA
OF QUASINORMAL FREQUENCIES

In this section, we employ the continued fraction method
to calculate the QNFs by solving the radial equations,

Eqs. (64) and (75), which correspond to scalar and spinor
field perturbations, respectively, in the Kerr-Taub-NUT
spacetime. Subsequently, we analyze the relationships
among the QNFs of Schwarzschild, Kerr, and Taub-
NUT BHs.

A. Continued fraction method

The continued fraction method, also known as Leaver’s
method, is considered to be a more accurate approximation
compared to others. It was initially introduced [52] by
Leaver for massless field perturbations, and was later
improved [53] by Nollert. When we utilize the Leaver
method to calculate QNFs for certain models, such as
Schwarzschild and Kerr BHs, we usually encounter a three-
term recurrence relation:

αnan−1 þ βnan þ γnanþ1 ¼ 0; n ¼ 1; 2;…; ð93Þ

whose initial one is special and just contains two terms,

α0a1 þ β0a0 ¼ 0; ð94Þ

where an’s are coefficients of series solutions, and αn’s,
βn’s, and γn’s are coefficients of the above recurrence
relations. The three-term recurrence relation gives the most
fundamental scenario, but in certain models, we may
encounter more-term recurrence relations, such as a four-
term recurrence relation or even over four-term ones. When
dealing with recurrence relations involving more than three
terms, we can utilize the Gaussian elimination to simplify
them and convert them back to a three-term recurrence
relation. For more specific treatments, see Ref. [54].
The three-term recurrence relation, as shown in Eq. (93),

can be reformulated as a continued fraction,

anþ1

an
¼ −

γnþ1

βnþ1 −
αnþ1γnþ2

βnþ2−
αnþ2γnþ3
βnþ3−���

: ð95Þ

For the case of n ¼ 0, we have

a1
a0

¼ −
γ1

β1 −
α1γ2

β2−
α2γ3
β3−���

; ð96Þ

and then replacing a1=a0 by Eq. (94), we derive an infinite
continued fraction,

0 ¼ β0 −
α0γ1

β1 −
α1γ2

β2−
α2γ3
β3−���

: ð97Þ

Since the coefficients αn, βn and γn are functions of ω, the
most stable roots of Eq. (97) represent frequencies, which
are just the QNFs. In other words, the QNFs, representing
the stability of black holes, correspond to minimum
negative imaginary parts solved from Eq. (97), for the
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details, see Refs. [52,53]. In the subsequent calculations,
we use finite steps of continued fractions and perform 15
times of iterations [equivalent to 15 steps in Eq. (97)].
In Schwarzschild and Kerr BHs, the recurrence relations

have been successfully derived for massless and massive
scalar field perturbations, see Refs. [52,55,56], and they
have also been computed for massless spinor field pertur-
bation, see Refs. [46,57]. For massive spinor field pertur-
bation, the recurrence relations have been calculated [35]
specifically for Kerr BHs. Therefore, we focus on the
recurrence relations for (massless and massive) scalar and
spinor field perturbations in Taub-NUT BHs.
In the case of Taub-NUT BHs, the boundary conditions

for the radial function RlmðrÞ (PsðrÞ) in Eq. (64) [Eq. (75)]
with the rotation parameter a ¼ 0 can be represented as

RlmðrÞ ðor PsðrÞÞ∼
�ðr−rþÞ−iωrþ−ϵ; r→rþ;

eiχrriðχ2þω2Þ=ð2χÞ; r→þ∞;
ð98Þ

where χ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −m2

0

p
for a scalar field perturbation and

χ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −m2

e

p
for a spinor field perturbation, respectively.

The parameter ϵ can take three values: 0 and �1=2,
representing a scalar field and a spinor field with the spin
1=2 or −1=2, respectively. Therefore, the solution of the
radial equation for a scalar (spinor) field perturbation in
Taub-NUT BHs can be expressed as follows:

RlmðrÞ ðor PsðrÞÞ
¼ eiχrðr − r−Þiðχ2þω2Þ=ð2χÞþiωrþ−ϵðr − rþÞ−iωrþþϵ

×
X∞
k¼0

ak

�
r − rþ
r − r−

�
k
; ð99Þ

where r− and rþ stand for the inner and outer horizons of
Taub-NUT BHs, respectively. By substituting Eq. (99) into

Eq. (64) [Eq. (75)] for a scalar (spinor) perturbation in
Taub-NUT BHs, we obtain a four-term recurrence relation
of ak,

αϵkak−1 þ βϵkak þ γϵkakþ1 þ δϵkakþ2 ¼ 0; ð100Þ

The coefficients of recurrence relations, αϵk, β
ϵ
k, γ

ϵ
k, and δϵk,

which can be determined analytically, are moved to the
Appendix owing to their tedious expressions.

B. Numerical results

As stated in Sec. VI A, the calculations have primarily
been made in the Taub-NUT spacetime. Specifically, we
have considered the perturbations under a scalar and spinor
fields with and without mass. Now we want to demonstrate
the SKT correspondence in terms of QNFs, for the
definition of such a correspondence, see Sec. III D.
The primary findings of the SKT correspondence are

illustrated in Figs. 6 and 7 for massless and massive field
perturbations, respectively.
In Figs. 6 and 7, we assign l ¼ 3 for the scalar case with

and without mass, and we set λ ¼ 12 for the spinor case
with and without mass. The gray lines illustrate the changes
in the QNFs of Schwarzschild BHs as the mass parameter
M varies from 0.498 to 0.533, where the step size is 0.005
and then eight equally spaced points are selected. The dark
green curves represent the QNFs of Taub-NUT BHs, where
we choose eight equally spaced points between N ¼ 0 and
N ¼ 0.266 with a step size of 0.038 and fix the mass at
M ¼ 1=2. The blue curves depict the changes in QNFs of
Kerr BHs associated with counterrotating orbits with
respect to the rotation parameter a, where we take eight
equally spaced points from a ¼ 0 to a ¼ 0.14 with a step
size of 0.02 and fix the mass fixed M ¼ 1=2 and the
azimuthal number m ¼ −3. The red (purple) curves re-
present the variations in the QNFs of Kerr BHs associated

FIG. 6. Phase diagram of QNFs under a massless field perturbation, where M ¼ 1=2, N ¼ 0; 0.038; 0.076;…; 0.266 for Taub-NUT
BHs, a ¼ 0; 0.02; 0.04;…; 0.14 for Kerr BHs with counterrotating orbits of m ¼ −3, and a ¼ 0; 0.05; 0.10;…; 0.35 for Kerr BHs with
corotating orbits of m ¼ þ3 and polar orbits of m ¼ 0 are set. (a) Scalar field without mass. (b) Spinor field without mass.
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with corotating (polar) orbits with respect to the rotation
parameter a, we take eight equidistant points from a ¼ 0 to
a ¼ 0.35with a step size of 0.05 and fix the massM ¼ 1=2
and azimuthal number m¼3 (m¼0). To sum up, Figs. 6(a)
and 7(b) display the results for a massless and massive
scalar field perturbations, respectively, and Figs. 6(b) and
7(b) show the results for a massless and massive spinor
field perturbations, respectively. It is evident that both the
massless case depicted in Fig. 6 and the massive case
shown in Fig. 7 are in agreement with the earlier findings
presented in Fig. 2 obtained through the light ring/QNMs
correspondence.
In the relationships among the QNFs of the three BHs in

different multipole number l and overtone number n, we
also find the linear relations of real parts between any two

of the three BHs, and the linear relations of imaginary parts
between any two of the three BHs,7 where Figs. 8 and 9
correspond to massless and massive scalar field perturba-
tions, respectively, and Figs. 10 and 11 correspond to
massless and massive spinor field perturbations, respec-
tively. The notation “Sch vs Taub” means that the hori-
zontal axis denotes the real (imaginary) parts of QNFs of
Schwarzschild BHs, and the vertical axis stands for that of
QNFs of Taub-NUT BHs. The similar meanings are taken
for the others, i.e., “Sch vs Kerr” and “Kerr vs Taub”.

FIG. 7. Phase diagram of QNFs under a massive field perturbation, where m0 ¼ me ¼ 0.2, M ¼ 1=2, N ¼ 0; 0.038; 0.076;…; 0.266
for Taub-NUT BHs, a ¼ 0; 0.02; 0.04;…; 0.14 for Kerr BHs with counterrotating orbits of m ¼ −3, and a ¼ 0; 0.05; 0.10;…; 0.35 for
Kerr BHs with corotating orbits of m ¼ þ3 and polar orbits of m ¼ 0 are set. (a) Scalar field with mass. (b) Spinor field with mass.

�
��

�

FIG. 8. QNFs of Schwarzschild, Kerr, and Taub-NUT BHs under a massless scalar field perturbation. The rotation parameter a ¼ 0.25
for Kerr BHs and the NUT charge N ¼ 1 for Taub-NUT BHs are set. Moreover, m ¼ 0 is set for Kerr BHs. (a) Real parts, n ¼ 1 and
λ ¼ 1; 2;…; 12. (b) Imaginary parts, l ¼ 10 and n ¼ 0; 1; …; 7.

7This shows that our numerical calculations are consistent with
the analytical analyses based on the light ring/QNMs correspon-
dence in Sec. III.
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Figure 8(a) shows the variation of QNFs’ real parts with
respect to the separation constant8λ that runs from 1 to 12,
and Fig. 8(b) shows the variation of QNFs’ imaginary parts
with respect to the overtone number n that runs from 0 to 7.
Moreover, Fig. 9 depicts the situation under a massive scalar
field perturbation, Fig. 10 illustrates the situation under
a massless spinor field perturbation, and Fig. 11 gives
the situation under a massive spinor field perturbation.
The points in these figures represent the numerical results

and are dealt with by linear fitting, where the corresponding
linear functions are indicated in the figures. In addition, we
note that the two components of spinor fields, P�1

2
, have the

same spectra because of the symmetry.9 Hence, we only
focus on P−1

2
in Figs. 10 and 11.

From Figs. 8–11, we observe that the real parts, ReðωÞ,
increasewhen the separation constant λ or λ− grows, and the
minus imaginaryparts,−ImðωÞ, also increasewhen theover-
tone number n becomes large, as we predict in Sec. III D in

� �

� �

FIG. 9. QNFs of Schwarzschild, Kerr, and Taub-NUT BHs under a massive scalar field perturbation. The mass m0 ¼ 0.2, the rotation
parameter a ¼ 0.25 for Kerr BHs, and the NUT charge N ¼ 1 for Taub-NUT BHs are set. Moreover,m ¼ 0 is set for Kerr BHs. (a) Real
parts, n ¼ 1 and λ ¼ 1; 2;…; 12. (b) Imaginary parts, l ¼ 10 and n ¼ 0; 1; …; 7.

�
� �

�

FIG. 10. QNFs of Schwarzschild, Kerr, and Taub-NUT BHs under the massless spinor field-P−1
2
perturbation. The rotation parameter

a ¼ 0.25 for Kerr BHs and the NUT charge N ¼ 1 for Taub-NUT BHs are set. Moreover, m ¼ 0 is set for Kerr BHs. (a) Real parts,
n ¼ 1 and λ− ¼ 1; 2;…; 12. (b) Imaginary parts, l ¼ 10 and n ¼ 0; 1; …; 6.

8It is usual to fix the multipole number l for numerical
calculations. However, it is more effective if we set the separation
constant λ instead for the calculation and construction of
normalizable eigenstates as mentioned in Sec. V. Moreover,
λ− ¼ 1; 2;…; 12 for a spinor field perturbation, see also the next
footnote for the explanation.

9The behaviors of P�1
2
are akin to that of super-partners, where

the spectra of superpartners are same when a superpotential
function is provided in supersymmetric quantum mechanics. For
more details, refer to Ref. [58].
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terms of the light ring/QNMs correspondence. Specifically,
when we compare Kerr BHs with Schwarzschild BHs, we
find that the former’s rotation parametera as a variable of the
NJA produces the effects of increasing oscillation frequen-
cies (the real parts of QNFs) but decreasing damping rates
(the imaginary parts of QNFs); when we compare Taub-
NUT BHs with Schwarzschild BHs, we find that the
former’s NUT charge N as a variable of the NJA produces
the effects of weakening both the oscillation frequencies and
damping rates. In addition, the fitting results, i.e., the slopes
of fitting lines are consistent with the analytical estimations,
Eqs. (40), (42), and (43).

VII. CONCLUSIONS

It is an interesting topic to examine the physical reasons
behind the mathematical connections established by the
NJA, as mentioned in Refs. [15,59]. In this paper, we
explore the connections through a dynamical behavior of
BHs, i.e., the QNFs of BHs under field perturbations. We
find that these relationships are more than just mathemati-
cal operations and believe that the physical manifestations
will be verified by future observations of GWs.
Our key finding is that the BHs linked by the NJA also

exhibit a connection in their QNFs. In addition, we notice
that the rotation parameter a increases the oscillation
frequencies, while the NUT charge N decreases them in
Kerr-Taub-NUT BHs. However, both a and N decrease the
damping rates, suggesting that the NJA has a dampening
effect on wave oscillations. Furthermore, we obtain the
linear relations in real parts of QNFs between any two of
Schwarzschild, Kerr, and Taub-NUT BHs, and also in the
imaginary parts of QNFs between any two of the three BHs,
which holds even beyond the eikonal limit. This implies
that the NJA has the ability to categorize BHs. In other

words, all BHs generated with the same seed using various
transformations of the NJA can be seen as belonging to a
single NJA class.
The QNFs of Schwarzschild BHs divide the NJA oper-

ation into two phases in the complex frequency plane, which
is referred to as the Kerr-I and Taub-NUT (Kerr-II) phases.
The insertion of Taub-NUT BH’s QNFs into the QNF plane
turns the odd-number splitting of Kerr BH’s QNFs into an
even-number one. Interestingly, the QNFs exhibit several
similar characteristics in these two phases, where the Kerr-I
phase includes the Kerr BHs with corotating and polar
orbits, and the Taub-NUT (Kerr-II) phase, contains Taub-
NUTBHs and Kerr BHs with counterrotating orbits. Firstly,
they vary monotonically with respect to the parameter a or
N, which is distinct from the vortex shape observed [60,61]
in RN or Einstein-Maxwell dilaton-axion BHs. Secondly,
the damping rates vanish in the limits of a → M andN → ∞
in the Taub-NUT (Kerr-II) phase. Lastly, the QNFs of Kerr
and Taub-NUT BHs never cross the barrier established by
the QNFs of Schwarzschild BHs owing to the topological
protection [41].
Our results support the viewpoint that the NJA goes

beyond a mere mathematical procedure for generating
additional solutions to Einstein’s equations. In our current
study, we have focused exclusively on the QNMs of a
specific pair of BHs linked by the NJA. To extend our
findings on the QNMs’ characteristics to a broader context,
we must delve deeper into how the NJA influences QNMs.
To this end, we plan to investigate whether the QNMs’
distinctive properties are also exhibited in the other
BHs [62] related through the NJA. We think that the
NJA carries profound physical implications that would be
observed empirically, such as the gravitational wave
detectors like LIGO, Virgo, and KAGRA [63], as well
as from the ongoing projects such as Taiji and TianQin [64].

��

� �

FIG. 11. QNFs of Schwarzschild, Kerr, and Taub-NUT BHs under the massive spinor field-P−1
2
perturbation. The mass me ¼ 0.1, the

rotation parameter a ¼ 0.25 for Kerr BHs, and the NUT charge N ¼ 1 for Taub-NUT BHs are set. Moreover,m ¼ 0 is set for Kerr BHs.
(a) Real parts, n ¼ 1 and λ− ¼ 1; 2;…; 12. (b) Imaginary parts, l ¼ 10 and n ¼ 0; 1; …; 6.
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Because the features of the NJA are embedded in the BHs
constructed by the algorithm, we compare the QNM spectra
of these BHs with the corresponding properties from
gravitational waves. If our theoretical predictions coincide
with the experimental data, we may conclude that the NJA
provides a possible way for us to construct an acceptable
BH in astrophysics from an unphysical (static) seed BH.
This serves as the primary motivation of our present work,
aiming to reveal the relationships that hide behind the
QNFs of BHs connected by the NJA.
This NJA dynamical phase of Schwarzschild, Kerr and

Taub-NUT BHs that we study in the present paper can in
fact be extended to other cases. For example, the RN, Kerr-
Newman, RN-NUT BHs. The QNM curve of RN BHs
intersects with that of Kerr BHs in the SKT class since RN
BHs do not belong to the SKT class, but to another NJA
class consisting of RN/Kerr-Newman/RN-NUT BHs. Thus,
all the QNM curves are expected to have a well-splitting in
the RN/Kerr-Newman/RN-NUT phase diagram, where the
evidence that the QNM curves of RN and Kerr-Newman
BHs do not intersect has clearly been shown in Ref. [65].
Finally, it is worth mentioning that such relationships may
also be investigated through alternative means, such as the
study of perturbation waveforms and the Zeeman splittings
in the Kleinian signature [28–30], which is one of our
proceeding works.
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APPENDIX: RECURRENCE RELATIONS
AND COEFFICIENTS

In this appendix, we provide a compilation of the
coefficients used in the recurrence relations for scalar
and spinor field perturbations, where both the massless
and massive cases are considered. These coefficients have
been utilized in the calculation of the QNFs in Sec. VI. For
the details of derivations, see Ref. [6].

1. Coefficients in recurrence relations for a massless
scalar field perturbation

The horizon is

rH ¼ 1

2
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4N2 þ 1

p
þ 1Þ; ðA1Þ

where we have utilized the value of M as 1=2 in this and
subsequent formulas,

αn ¼ −ðnþ 1Þðn − 2irHωþ 1Þ; ðA2Þ

βn ¼ λþ 3n2 − 10inrHω − 8r2Hω
2 − 2irHω; ðA3Þ

γn ¼ −λ − 3n2 þ 2inð5rH þ 1Þωþ 6nþ 8r2Hω
2 þ 4rHω2

− 12irHω − 3; ðA4Þ
δn ¼ ðn − 2iω − 2Þðn − 2irHω − 2Þ: ðA5Þ

2. Coefficients in recurrence relations
for a massive scalar field perturbation

In order to write the following formulas more concise, we
use m instead of m0 to denote the mass of massive scalar
fields.

αn ¼ −i4ðnþ 1Þχ3ðn − 2irHωþ 1Þ; ðA6Þ

βn ¼ −2χ2f−2iχðλþ 3n2Þ − 2ω2ð2n − 4ir2Hχ þ 1Þ þm2½2n − 2irHðrHχ þ ωÞ þ 1�
− 2ð2nþ 1Þð2rH − 1Þχ2 þ 4irHχω½ð2rH − 1Þχ þ 3in� þ 4irHω3g; ðA7Þ

γn ¼ m4½−8nþ ið4r2Hχ þ 8rHωþ χ − 6iÞ� þ 2m2f2χ½iðλþ 3ðn − 1Þ2Þ þ 6ðn − 1ÞrHω
− irHð5rH þ 2Þω2� þ 2ð2rH − 1Þχ2ð2n − 2irHω − 3Þ þ 3ω2ð4n − 4irHω − 3Þg
þ 4ω2fχ½−iðλþ 3ðn − 1Þ2Þ − 6ðn − 1ÞrHωþ 2irHð2rH þ 1Þω2�
þ ð2rH − 1Þχ2ð−2nþ 2irHωþ 3Þ þ ω2ð−4nþ 4irHωþ 3Þg; ðA8Þ

δn ¼ m4½4n − ið4rHωþ χ − 8iÞ� þ 4m2½ω2ð−3nþ 2irHχ þ 6Þ − 2ðn − 2ÞrHχω − iðn − 2Þ2χ
þ 3irHω3� þ 4χω2ð2ðn − 2ÞrHωþ iðn − 2Þ2 − 2irHω2Þ þ 8ω4ðn − irHω − 2Þ: ðA9Þ

Here we have

χ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −m2

p
: ðA10Þ
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3. Coefficients in recurrence relations for a massless spinor field perturbation

αn ¼ ð1þ nÞð3þ 2n − 4irHωÞ; ðA11Þ

βn ¼ −4n2 − 2λ2 þ nð−4þ 16irHωÞ þ ðiþ 4rHωÞ2; ðA12Þ

γn ¼ ðn − 2iωÞð−1þ 2n − 4irHωÞ: ðA13Þ

4. Coefficients in recurrence relations for a massive spinor field perturbation

In order to write the following formulas more concise, we usem instead ofme to denote the mass of massive spinor fields,

αn ¼ −2ðnþ 1ÞðmrH − iλÞχ2ð2n − 4irHωþ 3Þ ðA14Þ

βn ¼ −4r3Hm5 þ 4ir2Hλm
4 þ ½20ω2r3H þ 20iωr2H − 2ð2λ2 þ 2inχ þ 4iωþ 3ÞrH þ 2�m3

þ 2λð2iλ2 − 10ir2Hω
2 þ iþ 2nð4rH − 1Þχ þ 2rHωÞm2

þ f−16ωðχ3 þ ω3Þr3H þ 4½ð−3iþ ωÞχ3 − ω3χ − 5iω3�r2H þ ½3iχ3 − 3iω2χ

þ 2ω2ð2λ2 þ 4iωþ 3Þ�rH þ 4n2ðrH þ 1Þχ2 − 2ω2 þ 2nχ2½−4ið2χ þ ωÞr2H
þ ð7 − 4iωÞrH − 1�gm − iλf−½ð4rH − 1Þð3iþ 4rHωÞχ3� þ 12n2χ2 − ω2ð3iþ 4rHωÞχ
þ 2n½χð5 − 12irHωÞ − 8irHω2�χ þ 2ω2ð2λ2 − 8r2Hω

2 − 2irHωþ 1Þg; ðA15Þ

γn ¼ ð−4r3H þ 4r2H þ rHÞm5 − ið4λr2H þ λÞm4 þ 2f10ω2r3H − 2ωð3iþ 7ωÞr2H
þ ½−2λ2 − 12iðn − 1Þχ þ iωþ 2�rH þ 2λ2 þ 2iðn − 1Þχgm3 þ 2λ½−2iλ2
þ 10ir2Hω

2 − 2i − 8ðn − 1ÞrHχ þ 3ωþ 2rHωð2iω − 5Þ�m2 þ f½−16ωr3H
þ 4ð3i − 4inþ 6ωÞr2H þ ð10i − 4ωÞrH − i�χ3 þ 2ðn − 1Þ½−4iωr2H þ ð8iω − 5ÞrH
þ 2nðrH − 2Þ þ 2�χ2 þ ω2½iþ 4rHð−5iþ 6inþ ωÞ�χ − 2ω2½8ω2r3H − 6ωðiþ 2ωÞr2H
þ ð−2λ2 þ iωþ 2ÞrH þ 2λ2�gmþ 2λf2ð−4iωr2H þ rH þ 1Þχ3
þ ðn − 1Þðiþ 6inþ 12rHωÞχ2 þ ω2ðnð8rH þ 4Þ þ rHð−4iω − 8Þ − 1Þχ
þ ω2ð2iλ2 − 4irHð2rH þ 1Þω2 þ 2iþ ð10rH − 3ÞωÞg; ðA16Þ

δn ¼ ½mðrH − 1Þ þ iλ�fm4 þ ½−8rHω2 þ 2iω − 8irHω − 4iðn − 2Þχ þ 2�m2

þ χ3ð3iþ 4rHωÞ þ χω2ð−13iþ 8inþ 4rHωÞ − 2ðn − 2Þχ2ð2n − 4irHω − 1Þ
þ 2ω2ð4rHω2 þ ið4rH − 1Þω − 1Þg: ðA17Þ
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