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Future gravitational-wave detectors, especially the Laser Interferometer Space Antenna (LISA), will be
sensitive to black hole binaries formed in astrophysical environments that promote large eccentricities and
spin-induced orbital precession. Approximate models of gravitational waves that include both effects have
only recently begun to be developed. The efficient fully precessing eccentric (EFPE) family is one such
model, covering the inspiral stage with small-eccentricity-expanded gravitational-wave amplitudes
accurate for initial time eccentricities e < 0.3 at 4 years before reaching an orbital frequency of 1 Hz.
In this work, we extend this model to cover a larger range of initial eccentricities. The new EFPE for
moderate eccentricities (EFPE_ME) model is able to accurately represent the leading-order gravitational-
wave amplitudes to e ≤ 0.8. Comparing the EFPE and the EFPE_ME models in the LISA band, however,
reveals that there is no significant difference when the eccentricity at four years before merger, e0, is less
than or equal to 0.5, as radiation reaction circularizes supermassive black hole binaries too quickly. This
suggests that the EFPE model may have a larger regime of validity in eccentricity space than previously
thought, making it suitable for some inspiral parameter estimation with LISA data. On the other hand, for
systems with e0 > 0.5, the deviations between the models are significant, particularly for binaries with total
masses below 105M⊙. This suggests that the EFPE_ME model will be crucial to avoid systematic bias in
parameter estimation with LISA in the future, once this model has been hybridized to include the merger
and ringdown and the computation of the amplitudes is optimized.

DOI: 10.1103/PhysRevD.110.044044

I. INTRODUCTION

Gravitational waves (GWs) carry a wealth of information
about their source to the detectors prepared to observe
them. The latest GW catalog from the ground-based LIGO-
Virgo-KAGRA (LVK) detector network lists 90 candidate
signals of compact binary coalescences (CBCs), the
majority of which have been identified as black hole
(BH) binaries, with some likely to contain a neutron
star [1]. Of the current observations, their spin-angular
momenta are poorly constrained [1], and while they have
been found to be consistent with quasicircular (noneccen-
tric) binaries (see, e.g., [2,3]), some events contain evidence
for eccentricity (see, e.g., [4,5]). It is expected that the
current LIGO design sensitivity can measure BH binary
eccentricities above 0.05 at its low frequency end of
10 Hz [6], allowing for constraints to be placed on binaries
formed through dynamical interactions characterized by
large eccentricities [7,8].
For future space-based detectors, systems with eccen-

tricity and spin precession are not only possible, but they
are actually unavoidable. Space-based missions, such as the
Laser Interferometer Space Antenna (LISA) observatory [9]

and TianQin detector [10], will cover the millihertz
frequencies when launched within the next couple of
decades. One class of system these detectors will observe
are binaries far from the merger phase, which the LVK
collaboration will later also observe at merger. Binaries that
may be circular in the frequency band of ground-based
detectors may be eccentric enough earlier in their inspiral
phase to be detected with measurable eccentricity by space-
based detectors [11]. As LISA will cover roughly four
decades of frequency space, binaries whose components’
spins are misaligned from their orbital angular momentum
can undergo numerous spin-precession cycles within that
window, also displaying precession-induced modulation in
their radiated GWs [12].
Once launched, future space-based detectors will also be

sensitive to systems not yet probed by current GW
observations, some of which may contain the signs of
both eccentricity and spin-precession [13]. Processes such
as GW captures, three-body interactions, and hierarchical
mergers of compact objects can form significantly eccentric
binaries in dense stellar environments, according to sim-
ulations of globular clusters [7,14–18]. Combined with an
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isotropic distribution of spins, these dynamical formation
channels yield eccentric, spin-precessing GW sources [19].
The ability to detect such systems by accurately measuring
their GWs will be key to discriminating between dynamical
formation and isolated binary evolution channels [20].
In order to accurately infer the properties of GW-

generating systems, signals extracted from the detector
noise are compared against GW models through Bayesian
parameter estimation. Until recently, no state-of-the-art
inspiral model, however, could accurately represent bina-
ries with both high eccentricity and spin precession. This is
because, up until recently, modeling eccentricity had been a
low priority, as most binaries are expected to have circu-
larized by the time they reach the LIGO band [21].
Therefore, the development of models with eccentricity
has largely proceeded separate from the development of
models with misaligned spins.
Such siloed development of models applies to many GW

template families for CBCs, including the time- and
frequency-domain phenomenological (Phenom) models
[22–26] and the effective-one-body (EOB) models [27–31].
The former hybridize the waveform across the inspiral,
merger, and ringdown (IMR) through phenomenological
fitting coefficients. The latter connect the inspiral and the
merger-ringdown in the time domain by sewing together a
calibrated EOB description of the inspiral with a quasi-
normal mode description of the ringdown. In the inspiral
stage of CBCs, both of these template families rely on post-
Newtonian (PN) methods, i.e., perturbative expansions in
weak fields and slow velocities.1

Since the development of eccentric PN methods has
proceeded, historically, and for the most part, separately
from the development of spin-precessing PN methods, so
has the development of Phenom and EOB GW models, as
can be seen in Table I, which we discuss later in this
section. When spin has been included with eccentricity, the
models usually assume either that the eccentricity is small
or that the spins are aligned or antialigned with the orbital

angular momentum, avoiding precession of the orbital
plane. Only recently was a spin-precessing, eccentric
EOB model announced, matching numerical relativity
simulations with an initial e ≈ 0.2775 [32]. To capture
the structure of the complicated merger-ringdown phase of
eccentric orbits, relationships between the GW amplitude
peaks at merger and the properties of the final compact
objects are currently being analyzed [33,34]. Thus, we see
that the development of models that include both eccen-
tricity and spin precession is still in its infancy.
In this paper, we will focus on the inspiral stage of

Phenom models, so let us summarize their historical
development in the spin-precessing and eccentric space.
The leading PN-order spin effects of a binary were
introduced to state-of-the-art quasi-circular waveforms in
the IMRPhenomP series [36], in particular with IMRPhenomPv3,
which models binaries with double simple precession [22].
In order to avoid expensive computations, eccentricity has
been included in Phenom models only approximately. The
GW Fourier phase and amplitudes are expanded in powers
of small eccentricity in an approach known as the post-
circular approximation [37]. However, models based on
this approximation are accurate in a limited range of
eccentricity, leaving them vulnerable to biases in parameter
estimation if the signal is sufficiently eccentric [38,39].
Only recently have methods been developed to 3PN order
for modeling arbitrary eccentricities in the inspiral of
nonspinning bodies, achieving faithful waveforms for
LIGO up to e ≈ 0.8 [35,40].
Neither the spin-precessing IMRPhenomP family, nor

moderately eccentric inspiral models, however, are capable
of describing both spin precession and eccentricity simul-
taneously. This is a problem because, even if we detect
GWs from spin-precessing binaries with relatively small
eccentricity, the noncircularity of the signal can still lead to
systematic biases in the estimation of parameters and can
make it difficult to distinguish one effect from the
other [41]. Therefore, combining these two effects to create
a spin-precessing and eccentric GW model is essential to
cover the parameter space of generic binaries and enable
accurate parameter estimation.
A way to model the inspiral with both eccentricity and

spin-precession is by combining the approaches mentioned

TABLE I. A sample of recent IMR BH binary models within the Phenom and EOB (of both TEOBNR and SEOBNR flavor) families,
which include spins (aligned or misaligned) and/or eccentricity (Ecc.), and inspiral-only models at moderate eccentricities. Our new
model is the first inspiral-only model to include both spin precession and moderate eccentricities.

IMR Inspiral-only w/moderate ecc.

Aligned spins Aligned spinsþ Ecc Spin precession Spin precessionþ ecc Ecc. Spin precþ ecc

IMRPhenomXHM [23] SEOBNRv4EHM [27] IMRPhenomXPHM [24] SEOBNRPE [32] Moore and
Yunes [35]

EFPE_ME

SEOBNRv5HM [28] TEOBResumS-Dalí [30] SEOBNRv5PHM [29]
TEOBResumS-Giotto [31]

1When referring to a term of nPN order, we imply that it is of
order ðv=cÞ2n relative to the controlling factor in a PN expansion,
where v is the orbital velocity of the binary and c is the speed of
light.
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above. A first step in this direction was taken through the
efficient fully precessing eccentric (EFPE) model, which
constructs frequency-domain waveforms with excellent
agreement relative to numerical inspiral waveforms and
at computational speeds comparable to that of the circular
TaylorF2 model [42]. Like all postcircular models, however,
its accuracy is limited to low eccentricities. Following the
EFPE model, we henceforth refer specifically to the time
eccentricity, which the EFPE was shown to be accurate for
initial e < 0.3 at 4 years before the orbits considered by
that study reached a frequency of 1 Hz [43]. The range of
valid eccentricities of the EFPE model is controlled by the
power of e to which its GW amplitudes are expanded;
the highest order it currently implements is Oðe6Þ. The
expansion order of the EFPE model can be systematically
increased, but as the expansion must be truncated, it
cannot represent binaries with arbitrarily large eccentricity
accurately.
In this paper, we develop and analyze an extended EFPE

model aimed at describing spin-precessing CBCs with
arbitrary eccentricities. Building upon the EFPE frame-
work, we consider the accuracy of the GW amplitudes,
which are represented by sums of infinite series in orbital
harmonics. Instead of Taylor expanding the GWamplitudes
in small eccentricity as the postcircular approach does, we
study how many harmonics are needed to meet a specified
threshold for accuracy within a range of eccentricity. At
leading order in the PN approximation, these amplitudes
are independent of spin, and thus, they allow for a
systematic determination of the number of necessary
harmonics as a function of eccentricity. We find that this
can be done for e ≤ 0.8; past this point, the harmonic series
converge poorly and require a more careful analysis.
Tabulating the number of harmonics needed for

e∈ ð0; 0.8�, we then implement these series in the EFPE
model, creating a new EFPE_ME model that accurately
represents the GW amplitudes for moderate e (hence the
name).2 We then explore the parameter space where the
EFPE and EFPE_ME waveforms differ within the sensi-
tivity of LISA for binaries that merge within four years,
finding that the overlaps between these models decrease
for equal-mass binaries with high initial eccentricities
(e0 > 0.5) and total masses below 105M⊙. Thus, for lower
eccentricities and higher masses that coalesce in the same
amount of time, binaries circularize quickly, making
the EFPE sufficient for analyzing such LISA sources.
On the other hand, the EFPE_ME is needed to more fully
cover the parameter space of BH binaries. Although the
EFPE_ME model takes longer to evaluate compared to the
EFPE at large eccentricities, future work can be done to
optimize the numerical implementation of this effect and

reduce its computational cost, a task we have not endeav-
ored to undertake in this work.
Table I presents a summary of the models we have

discussed, including our new model, indicating the effects
that each model implements. Although the IMR models are
based on similar PN methods as the inspiral-only models,
they are validated and calibrated against numerical rela-
tivity results in the very late inspiral and merger. The EOB
models use more numerical integration steps than the
Phenom family and inspiral-only models, along with the
discrete transformation of their waveform into the fre-
quency domain, requiring methods to reduce their compu-
tational costs (see, i.e., [44–46]). The EFPE_ME model
described in this paper is the first model to combine spin
precession with moderate eccentricities directly within the
frequency domain, and can thus be adapted for the Phenom
family to efficiently generate waveforms for data analysis.
In the remainder of this paper, we detail the derivation of

the EFPE_ME model and the results summarized above.
Starting with Sec. II, we review the binary dynamics and
waveform of the EFPE model that we extend in this work.
We then introduce the leading-order amplitudes that enter
the waveform in Sec. III, expressing them in a form valid
for general eccentricities, as Fourier series in orbital
harmonics. Setting a threshold for accuracy, we then
establish a procedure for truncating these series to meet
our requirements and tabulate the truncation order for a set
of maximum eccentricities we wish to model. This com-
pletes our new waveform for moderate eccentricities, the
EFPE_ME. We compare our new amplitudes against the
previous EFPE amplitudes in Sec. IV, demonstrating their
accuracy in the time domain at fixed eccentricities and
comparing them to the previous amplitudes, and then
comparing the two models in the frequency domain for
inspiraling binaries. We conclude in Sec. V, reemphasizing
the need for models with arbitrary eccentricities.
Henceforth, we use the following conventions. The units

are geometric, with G ¼ 1 ¼ c. Spatial vectors are denoted
by bold letters A, their magnitudes with A ¼ ffiffiffiffiffiffiffiffiffiffi

A · A
p

, and
their unit vectors with a hat Â ¼ A=A. The complex
conjugate of a number z will carry an asterisk as z�, and
derivatives with respect to time will be denoted with dots,
i.e., ȧ≡ da=dt. All angular momenta are scaled by the total
mass squaredM2, such that, for instance, L≡ Lphysical=M2.
We distinguish the eccentricity symbol e from the expo-
nential function symbol ex by typesetting the latter differ-
ently and as shown.

II. WAVEFORM FOR A SPIN-PRECESSING
ECCENTRIC BINARY

We consider a binary BH orbit of total mass M ¼
m1 þm2, where each BH has a mass mi and a spin angular
momentum Si vector with i ¼ 1, 2. To leading order in the
PN approximation and spin-spin couplings, the Newtonian

2We follow Ref. [35] in the choice of calling e ¼ 0.8 a
moderate eccentricity, as truly high eccentricities (e≳ 0.9) are
not included in this work.
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orbital angular momentum vector L and the total spin
angular momentum vector S ¼ S1 þ S2 precess around the
conserved total angular momentum vector J ¼ Lþ S [12].
Ignoring the special case where J undergoes transitional
precession due to precisely antialigned L and S, we take the
direction of the total angular momentum Ĵ to be fixed, as it
does not vary significantly to leading order in radiation
reaction [47]. Defining our fixed inertial frame with Ĵ along
its z axis, we can construct the waveform for this orbit
by tracking the three angles that represent the orbit’s
precession:
(1) θL, the angle between L̂ and Ĵ.
(2) ϕz, the angle of L’s projection onto the plane

perpendicular to Ĵ.
(3) ζ, the phase difference between the orbital frequency

measured in the inertial frame and the noniner-
tial frame.

We illustrate these angles in Fig. 1. The angle ζ is not drawn
as it is not a geometric quantity, but it nonetheless informs
the observed precession [48]. The evolution of these Euler
angles is described in Sec. II A, where we review the
dynamics of our binary, and use them to construct our
gravitational waveform in Sec. II B. We follow the same
derivations as in Ref. [42], but make clear any distinctions
between conventions.

A. Spin precession and radiation reaction
of the orbital plane

The dynamics for our BH binary are split into two sectors:
the conservative dynamics and the dissipative dynamics. The
conservative dynamics are integrable, while the dissipative

dynamics radiate energy and angular momentum away from
the orbit, causing it to inspiral. These two sectors have a
distinct separation of timescales, since the dissipation occurs
on the radiation-reaction timescale

Trr ¼ O
�
M
v8

�
; ð1Þ

where v is the orbital velocity, while the conservative
dynamics involves three timescales: that of the orbit,

Torb ¼ O
�
M
v3

�
; ð2Þ

that of spin precession,

Tpr ¼ O
�
M
v5

�
; ð3Þ

and that of periastron precession,

Tpp ¼ O
�
M
v5

�
: ð4Þ

In the early inspiral, where the orbit is widely separated and
the orbital velocity is small, we see that the timescales
follow a hierarchy Torb ≪ Tpr ∼ Tpp ≪ Trr. This allows
one to perform the following approximations. First, we can
average the equations of motion over the orbital period,
neglecting the fast oscillations that occur on that timescale.
Second, we can average the radiation-reaction over the
precession timescales. This constitutes a multiple-scale
analysis of the equations of motion to leading order,
leaving only the dominant timescale, Trr, to be integrated.
Such approximations are common and have been shown to
be accurate, at least when the hierarchy from above is
obeyed [47]. The advantage of this analysis is that it allows
one to write the solution for the conservative dynamics in
closed form, and then evolve the constants of motion of that
sector on the radiation-reaction timescale, which is com-
putationally more efficient than tracking all the dynamics
on the shorter timescales.
We first review the conservative dynamics. The spinning

orbit itself can be expressed to 2PN order using the quasi-
Keplerian (QK) parametrization [49], which defines the
orbital elements in the absence of radiation. The elements
of interest to us are the eccentricity e (specifically, the time
eccentricity), the orbital phase ϕ, and the PN parameter

y ¼ ðMωÞ1=3ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p ¼ OðvÞ; ð5Þ

where ω is the mean orbital frequency. The phase itself can
be decomposed as ϕ ¼ λþW, where λ grows linearly in
time as λ̇ ¼ ω, while W is a more complicated periodic

FIG. 1. A spin-precessing black hole binary (black circles) with
its angular momenta vectors (thick arrows). The x-y-z coordinate
axes are fixed in the inertial frame, while the orbital angular
momentum L, being normal to the orbital frame (gray ellipse), is
inclined from the total angular momentum J at an angle θL and
precesses around it by an angle ϕz. The spin angular momentum
S is the sum of each of the black hole’s spins.
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function of the orbit. Their full expressions can be found in
Appendix B of Ref. [43].
The 2PN spin dynamics allow L and S to precess

around the total angular momentum vector J, which is
conserved along with its magnitude J and the magnitudes
of the individual angular momenta Si and L. Using the
orbit-averaged precession equations for L and Si [see
Eqs. (1)–(3) of [42] ], the system can then be closed by
defining the total reduced spin s ¼ s1 þ s2, where we
introduce the reduced individual spin vectors

si ¼
M
mi

Si ð6Þ

to write down a conserved quantity, known as the mass-
weighted effective spin3

χeff ¼ L̂ · s: ð7Þ

The dynamical variable that determines the evolution of the
angular momenta is then commonly chosen to be the total
spin magnitude S (see Ref. [47] and references therein).
However, the evolution of this quantity becomes singular
for equal mass (m1 ¼ m2) systems. Instead, we use the
reduced effective spin difference,

δχ ¼ L̂ · ðs1 − s2Þ; ð8Þ

as the dynamical variable, which does not exhibit this
singularity. The geometry of the system then allows one to
write the evolution of the Euler angles as

cos θL ¼ L̂ · Ĵ ¼ 1

2J
ð2Lþ χeff þ δμδχÞ; ð9Þ

dϕz

dt
¼ 1

sin2 θL

�
dL̂
dt

�
· ðĴ × L̂Þ; ð10Þ

dζ
dt

¼ − cos θL
dϕz

dt
; ð11Þ

where δμ ¼ ðm1 −m2Þ=M. All of the variables above can
be written in terms of δχ, of which we’ve shown it explicitly
for the simplest expression [Eq. (9)] as the rest are more
complex (see Sec. II of [42]). Thus, δχ contains the time
dependence of the conserved angular momenta. This
dependence is determined through the differential equation

�
M

dδχ
dt

�
2

¼ −
1

y

�
3

2
κy6

�
2

× ðδχ − δχþÞðδχ − δχ−Þðδχ3 − δμδχÞ; ð12Þ

where κ ≡ ð1 − e2Þ3=2ð1 − yχeffÞ and the roots δχþ, δχ−,
and δχ3 are derived in Ref. [42]. Equation (12) is closed for
δχ, so it can be solved independently of any other; its
solution can be written in terms of the Jacobi elliptic
function snðψp; mÞ as

δχ ¼ δχ− þ ðδχþ − δχ−Þsn2ðψp; mÞ; ð13Þ

where ψp is a new angle that satisfies the differential
equation

M
dψp

dt
¼ 3

2
κy6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

y
ðδχ3 − δμδχ−Þ

s
ð14Þ

that determines the function’s phase, while

m ¼ δχþ − δχ−
δχ3=δμ − δχ−

ð15Þ

is its modulus (see Ref. [51] for a brief overview of the
function and its appearance in physics). In the absence of
gravitational radiation, the right-hand side of Eq. (14) is
constant and thus the phase is linear in time. A particular
property of the Jacobi sine function is that snðψp; 0Þ ¼
sinðψpÞ, so when m ¼ 0 in the equal-mass case, δχ reduces
to a trigonometric function. As Eqs. (10) and (11) can be
written in terms of δχ, integrating them yields our Euler
angles in terms of elliptic functions [42]. Thus, we have the
conservative dynamics of our binary in closed analytic form
and can proceed to add radiation-reaction to them.
The emission of gravitational radiation from a binary

dissipates the system’s energy and angular momentum,
driving the orbiting bodies to merger. This occurs on the
longest timescale discussed, Trr, and is determined by
the following orbit-averaged differential equations for the
orbital elements up to 3PN,

M
dy
dt

¼ ð1 − e2Þ3=2ηy9
X6
n¼0

anyn; ð16aÞ

M
de2

dt
¼ −ð1 − e2Þ3=2ηy8

X6
n¼0

bnyn; ð16bÞ

M
dλ
dt

¼ ð1 − e2Þ3=2y3; ð16cÞ

where η≡m1m2=M2 is the symmetric mass ratio and the
an and bn can be found in Appendix C of [43]. These
equations depend on the so-called enhancement factors
[see, e.g., Eq. (C3) of [43] ], which we have expanded to
Oðe20Þ. The an, bn coefficients contain spin couplings at
2PN order that are averaged over the precession timescale.
Note that the evolution of λ is of the same form as in the
conservative sector, but now with y growing secularly in

3We note that this is only conserved by the orbit-averaged
equations of motion [50].
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time. The dissipation of the Newtonian orbital angular
momentum can be seen from the definition of its magni-
tude, L ¼ η=y. We also see that the orbit tends to circularize
as e is driven to small values, although contributions from
the spins can keep it from reaching arbitrarily small
values [49].
With the evolution of yðtÞ and eðtÞ determined by

Eq. (16), the evolution of δχ [Eq. (13)] with radiation
reaction is also determined, and thus our Euler angles
[Eqs. (9)–(11)]. One can then proceed to build the gravi-
tational waveform for a spin-precessing, eccentric binary.

B. Waveform for a spin-precessing binary

The methods reviewed in this section follow the same
works referenced in the previous section. These are
procedures that have been performed in the past, but as
done by Ref. [35] for nonspinning binaries, we now extend
them to higher eccentricities. This extension requires
calculating the waveform amplitudes necessary to represent
the waveform at a given eccentricity. We present these new
amplitudes in Sec. III, but first describe the construction of
the waveform in this section.
We proceed in two steps. In Sec. II B 1, we first compute

the waveform in the time domain by decomposing it into
orbital harmonics, which gives us a form amenable for
Fourier transformation. This transformation is desirable as
GW detection and data analysis is most efficiently per-
formed in the frequency domain. However, the waveform is
a complicated function of time and cannot be explicitly
Fourier transformed. Instead, we use an approximation
scheme in Sec. II B 2 that makes use of the harmonic
decomposition to produce an accurate representation of the
waveform in the frequency domain.

1. Harmonic decomposition in time

Our starting point for the waveform is the spherical
harmonic decomposition of the plus, hþ, and cross, h×,
polarizations [52],

hþ − ih× ¼
X∞
l¼2

Xl

m¼−l
hlm−2Y

lmðΘ;ΦÞ; ð17Þ

where ðΘ;ΦÞ are the spherical angles from the binary to the
detector as measured in the inertial frame, and −2Y

lm are
the spin-weighted spherical harmonics of spin weight −2.
The conventions for these functions can be found in
Appendix A of [42].
The decomposition of the waveform in hlm modes is

useful for comparisons with numerical simulations of the
radiation emitted by binaries [52,53] but suffer from the
drawback that they cannot be readily compared between
binary configurations whose orbital planes are precessing,
as precession mixes modes together [48]. A twisting-up
procedure has thus been developed to compare precessing

numerical simulations and to compute analytic waveforms
by dynamically rotating the modes from the frame aligned
with the orbital plane (where precession effects are mini-
mized, but not completely absent) to the inertial frame that
measures the precession in hlm [54–56]. This method
“twists-up” the modes via

hlm ¼
Xl

m0¼−l

Dl
m0mðϕz; θL; ζÞHlm0

; ð18Þ

where theHlm modes can be found up to 3PN in Ref. [57],4

and the Wigner D matrices follow the conventions of
Ref. [42].
Now, what are the modes Hlm? These are functions of

the orbit as measured in the spherical harmonic basis.
Specifically, they can be expressed as functions of the
eccentric anomaly u, because they are of the form

HlmðtÞ ¼ h0e−imϕðtÞKlm½uðtÞ�;
≡ h0Ĥ

lmðtÞ; ð19Þ

where

h0 ≡ 4

ffiffiffi
π

5

r
Mηx
R

; ð20Þ

x ¼ ðMωÞ2=3, and R is the luminosity distance to the
binary. We have defined a reduced mode Ĥlm in the last
line of Eq. (19). However, in order to be Fourier trans-
formed, these modes require explicit knowledge of the time
dependence of the orbit. In the QK parametrization, the
time dependence can be determined by the mean anomaly
l, whose relation to u is

l ¼ u − e sin uþ ftðu; ϑÞ; ð21Þ

where ϑ is the true anomaly and the function ft is defined in
Appendix B of Ref. [43]. The mean anomaly is useful as it
is an explicit function of time through its definition,
l̇ ¼ ω=ð1þ kÞ (where k is the periastron advance), which
can be integrated linearly in time in the absence of radiation
reaction, or can be solved with Eq. (16) in the presence of
radiation. As the anomalies are periodic, the relationships
between them [such as Eq. (21)] can give one the reduced
modes Ĥlm in terms of a harmonic Fourier series in l and λ,

ĤlmðtÞ ¼
X∞
j¼−∞

Nlm
j e−iðjlþmλÞ: ð22Þ

4Here we designate the nontwisted modes as capitalized Hlm,
which are not to be confused with theHlm of [57]; that is, ourHlm

are what they call hlm.
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Here, we have expanded the phase ϕðtÞ and absorbed its
oscillatory piece WðtÞ into Nlm

j e−ijl. We detail the steps
between Eqs. (19) and (22) in Sec. III. We have also chosen
a particular phase for the exponential, which will ease the
Fourier transformation in Sec. II B 2. In the conservative
sector, all the time dependence is held by the complex
exponential. When taking radiation reaction into account,
the amplitudes Nlm

j also become time dependent, as they
are functions of the orbital elements. Note, however, that
the amplitudes then vary on the radiation-reaction time-
scale, while the oscillating exponential varies on the orbital
and precession timescales, a fact that will be useful when
Fourier transforming the modes.
Before taking our waveform into the frequency domain,

we separate it into its two polarizations. Defining

Al;m;m0 ðtÞ≡ h0−2Y
lmðΘ;ΦÞDl

m0mðϕz; θL; ζÞ; ð23Þ

we can write Eq. (17) as

hþ − ih× ¼
X∞
l¼2

Xl

m¼−l

Xl

m0¼−l

Al;m;m0Ĥlm0
: ð24Þ

Using this equation and its complex conjugate, along with
the property Hl−m ¼ ð−1ÞlðHlmÞ� and the symmetry of the
m0 sum, we find the polarizations

hþ;×ðtÞ ¼
X
l

Aþ;×
l Ĥlm0

; ð25Þ

where l is the hyperindex fl; m;m0g such that

X
l

≡X∞
l¼2

Xl

m¼−l

Xl

m0¼−l

ð26Þ

and

Aþ
l ¼ 1

2

h
Al;m;m0 þ ð−1ÞlA�

l;m;−m0

i
; ð27aÞ

A×
l ¼ i

2

h
Al;m;m0 − ð−1ÞlA�

l;m;−m0

i
: ð27bÞ

Equation (25) thus gives the time domain polarizations
for our binary, decomposed in harmonics of the orbit that
are then twisted-up to account for spin precession, and that
can now be Fourier transformed for analysis.

2. Frequency-domain waveform

Having obtained our time-domain waveform in the
previous section, we now find the frequency-domain wave-
form for the GW polarizations through their Fourier
transformation,

h̃þ;×ðfÞ≡ Ffhþ;×ðtÞgðfÞ ¼
Z

∞

−∞
hþ;×ðtÞe2πift dt: ð28Þ

As we have seen in previous sections, hþ;×ðtÞ are com-
plicated functions of time and do not lend themselves to a
fully analytic Fourier transform. Numerical (discrete) trans-
forms are possible but can incur a heavy computational cost
considering the disparate orbital, precession, and radiation-
reaction timescales involved; the waveforms have to be
sampled at the shortest timescales, while still covering the
longest timescales, if they are to model the inspiral of a
binary. Fortunately, it is this separation of scales that allows
one to accurately approximate Eq. (28) through other
mathematical methods.
First, we separate the terms in the polarizations by

timescales. Equation (25) is already a step towards that;
its amplitudes vary on the radiation-reaction timescale,
while l and λ vary on both orbital and precession time-
scales. We separate these last two by defining δλ ¼ λ − l,
where

δλ̇ ¼ k
1þ k

λ̇: ð29Þ

This defines the precession timescale as δλ̇=λ̇ ¼ Oðy2Þ.
Writing the modes in their harmonic decomposition
[Eq. (22)] and substituting l with λ − δλ, we rewrite the
polarizations as

hþ;×ðtÞ ¼
X∞
n¼−∞

X
l

Aþ;×
l;n e−iðnλþðm0−nÞδλÞ; ð30Þ

where

Aþ;×
l;n ðtÞ ¼ Aþ;×

l Nlm0
n−m0 : ð31Þ

We now have separated the amplitudes Aþ;×
l;n , which

vary on the spin-precession timescale, from the phase
nλþ ðm0 − nÞδλ, which is dominated by the orbital time-
scale. Thus, n denotes the nth harmonic of the orbit.
At this point, it is common to employ the stationary

phase approximation to evaluate the Fourier transform of
Eq. (30), since its amplitudes vary on a slower timescale
than its phase. However, the effects of precession cause
“catastrophes” that lead to divergences with this method.
We therefore instead use the method of shifted uniform
asymptotics (SUA) that was introduced in [58], which
alleviates these issues by expanding the stationary phase
approximation and resumming it [42,58]. Applying the
SUA to the polarizations yields
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h̃þ;×ðfÞ ¼SUA
X∞
n¼1

X
l

ffiffiffiffiffiffi
2π

p
Tn;qeiΨn;q

×
Xkmax

k¼−kmax

ak;kmax
Aþ;×

l;n ðtn;q þ kTn;qÞ; ð32aÞ

Ψn;q ¼ 2πftn;q − nλðtn;qÞ − qδλðtn;qÞ − π=4; ð32bÞ

Tn;q ¼
h
n̈λðtn;qÞ þ qδ ̈λðtn;qÞ

i
−1=2

; ð32cÞ

where q≡m0 − n, the stationary points tn;q are deter-
mined by5

2πf ¼ nλ̇ðtn;qÞ þ qδλ̇ðtn;qÞ; ð33Þ

and the constants ak;kmax
satisfy the system of equations

1

2
a0;kmax

þ
Xkmax

k¼1

ak;kmax
¼ 1; ð34aÞ

Xkmax

k¼1

ak;kmax

k2p

ð2pÞ!¼
ð−iÞp
2pp!

; p∈f1;…;kmaxg; ð34bÞ

a−k;kmax
¼ ak;kmax

; ð34cÞ

for an arbitrary kmax.
The waveform in Eq. (32a) contains sums over two

indices, n and q, which determine the stationary points
defined by Eq. (33). Solving this equation requires numeri-
cal inversion and can become computationally expensive if
n is truncated at large values, as it is for large eccentricities.
To make this more efficient, we take advantage of the fact
that δλ is due to precession of the binary. We therefore
expand tn;q as a correction to tn ≡ tn;0 with

Δtn;q ≡ tn;q − tn ¼
XP
p¼1

ϵpΔtðpÞn;q; ð35Þ

where ϵ ¼ Oðδλ̇=λ̇Þ is an order-keeping parameter and P is
the order at which this expansion is truncated. In this
manner, we can avoid solving for ðn; qÞ pairs of stationary
points and instead only calculate tn. To determine theΔtðpÞn;q,
we Taylor expand Eq. (33),

2πf ¼
XP
p¼0

1

p!
dp

dtp

h
nλ̇ðtÞ þ ϵqδλ̇ðtÞ

i
t¼tn

ðΔtn;qÞp: ð36Þ

Inserting Eq. (35) and keeping terms only up to OðϵPÞ in
the expansion above, we can solve order by order for the

ΔtðpÞn;q . For the first three orders, we find

ϵ0∶ 2πf ¼ nλ̇; ð37aÞ

ϵ1∶Δtð1Þn;q ¼ −
qδλ̇

n̈λ
; ð37bÞ

ϵ2∶Δtð2Þn;q ¼ −
q2δλ̇

2n2 ̈λ3
�
λ
:::
δλ̇ − 2λ̈δ ̈λ

�
; ð37cÞ

where all functions of time are evaluated at t ¼ tn, and so
Eq. (37a) defines tn. Reference [43] found that Eq. (35) can
be written as

Δtn;q ¼
XP
p¼1

1

p!

�
−
q
n

�
p
Dp−1

�
δλ̇p

̈λ

�
t¼tn

; ð38Þ

where we have the differential operator

Dð·Þ≡ 1

̈λ
d
dt

ð·Þ: ð39Þ

Taylor expanding Eq. (32b) and collecting terms, one can
then, in the same manner, write

Ψn;q ¼ 2πftn − nλðtnÞ − π=4þ ΔΨn;q; ð40aÞ

ΔΨn;q¼−qδλðtnÞþn
XPþ1

p¼2

1

p!

�
−
q
n

�
p
Dp−2

�
δλ̇

λ̈

�
t¼tn

: ð40bÞ

We have now expanded our waveform into two pieces,

h̃þ;×ðfÞ ≈
X∞
n¼1

h̃ð0Þn h̃PPþ;×;n; ð41Þ

where first we have the leading terms

h̃ð0Þn ðfÞ ¼
ffiffiffiffiffiffi
2π

p
Tneið2πftn−nλðtnÞ−π=4Þ; ð42aÞ

Tn ¼ ½n̈λðtnÞ�−1=2; ð42bÞ
and, lastly, upon replacing m0 with qþ n, the precession
corrections

h̃PPþ;×;nðfÞ ¼
X
l

eiΔΨn;q

×
Xkmax

k¼−kmax

ak;kmax
Aþ;×

n;q ðtn þ Δtn;q þ kTnÞ; ð43Þ

where we have the amplitudes

Aþ;×
n;q ¼ Aþ;×

l Nl;qþn
−q : ð44Þ

5As we are interested in positive frequencies f, the stationary
points also restrict nλ̇þ qδλ̇ > 0. We have confirmed that this
inequality is satisfied until close to merger for the relevant values
of n and q.
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The derivation of the frequency-domain waveform in
Eq. (41) mirrors that of Ref. [42], but here we have been
careful to make our definitions explicit to make any
differences clear. In particular, we denote our harmonic
amplitudes as Nl;qþn

−q while (in our notation) theirs are
Gl;−q−n

q to highlight (i) our choice of phase for the Fourier
decomposition, and (ii) that our amplitudes are not
expanded in small eccentricity. We calculate these ampli-
tudes in the next section, pushing the waveform presented
here to model higher eccentricities.

III. AMPLITUDES FOR ECCENTRIC BINARIES

In the previous section, we introduced the twisted-up
waveform for spin-precessing eccentric binaries, following
Ref. [42]. In that work, however, the Fourier amplitudes of
the modes Hlm were expanded around small eccentricity
and were validated only up to e ≈ 0.3. In this paper, we
demonstrate how to derive the Fourier amplitudes Nlm

j that
lead to the mode amplitudesHlm through Eqs. (19) and (22)
for arbitrary eccentricities, where one chooses the accuracy
of the Fourier series and truncates it once that accuracy is
met. We validate the accuracy of these amplitudes
in Sec. IV.
We decompose the (reduced) mode amplitudes by first

factorizing them as follows:

Ĥlm ¼ e−imλe−imWKlm; ð45Þ

where Klm is identified as the piece left over after
removing e−imϕ from Ĥlm. Each of the terms in the above
equation are functions of time, and we, therefore, decom-
pose them into Fourier series in the mean anomaly l.
However, we do not do this with e−imλ because it has to be
treated separately when calculating the Fourier transform,
as done in Sec. II B 2. For the other terms, we must find
their harmonic series representation,

e−imW ¼
X∞
s¼−∞

PmW
s e−isl; ð46aÞ

Klm ¼
X∞
s¼−∞

Klm
s eþisl: ð46bÞ

Once the Fourier coefficients PmW
s and Klm

s are deter-
mined, we can identify the amplitudes in Eq. (22) as the
product series

Nlm
j ¼

X∞
s¼−∞

PmW
s Klm

s−j: ð47Þ

Formally, the Fourier series presented above contain an
infinite number of terms, but in practice only a finite
number of terms are needed to obtain a representation of the

mode to a chosen accuracy. In general, the Nlm
j scale as

some positive power of e that increases with j, so the series
is expected to converge for small enough values of e < 1.
Numerically, then, only amplitudes ranging from j ¼ jmin
to jmax need to be found to accurately represent a given
mode. As j ¼ n −m0 [see Eq. (31)], the bounds on j also
determine the bound on the number of harmonics n in the
waveform.
In Sec. III A, we show the explicit construction of the

Newtonian-order amplitudes as an example. We take the
components of the series in Eq. (46) and describe how to
truncate them in Sec. III B, which we then use to obtain the
Fourier amplitudes Nlm

j and truncate the harmonic series
expansions ofHlm in Sec. III C. These sections demonstrate
how to properly truncate the infinite series to accurately
represent the modes to a chosen numerical precision. With
these series in hand, one can then generate the waveforms
of Sec. II for an eccentric and spin-precessing binary.

A. The Newtonian amplitudes
for an eccentric binary

The ingredients for calculating the amplitudes Nlm
j are

laid out in Ref. [59]. In that study, the coefficients are found
using PN-accurate representations of the relations between
the QK parameters. While our definition of the PmW

s

coefficients matches theirs, our Klm
s are defined as the

Fourier coefficients of everything else that remains, which
can include products of other series as well. Because of this,
in order to explain how to construct these Nlm

j amplitudes,
we will first illustrate the procedure by carrying out the
calculation explicitly at Newtonian (0PN) order below.
In the QK parametrization, the Newtonianmodes are [57]

Ĥ20
ð0Þ ¼

ffiffiffi
2

3

r
e cos u

1 − e cos u
; ð48aÞ

Ĥ22
ð0Þ ¼

e−2iϕ

ð1 − e cos uÞ2
�
2 − 2e2 − e cos uð1 − e cos uÞ

þ2ie
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
sin u

�
; ð48bÞ

where the (0) subscript denotes that they are of 0PN order.
The m ¼ 1 mode vanishes at this order, and the m < 0
modes can be found by conjugation (see Sec. II).
Let us now Fourier decompose these two Newtonian

modes. In general, the base series expansions we will use
here can be found in Ref. [59]. As a first example, consider
the Fourier decomposition of Eq. (48a), namely

Ĥ20
ð0Þ ¼ 2

ffiffiffi
2

3

r X∞
j¼1

JjðjeÞ cosðjlÞ; ð49Þ

where JnðxÞ is the nth-order Bessel function of the first
kind. As there is no W function for the m ¼ 0 modes, we
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only need to find the decomposition of Kl0 in general. To
rewrite the decomposition into complex exponentials, we
use Euler’s equation and extend the sum to j ¼ −∞ to find

Ĥ20
ð0Þ ¼ K20

ð0Þ ¼
ffiffiffi
2

3

r X∞
j¼−∞

JjðjeÞe−ijl; ðj ≠ 0Þ: ð50Þ

We thus identify the Fourier amplitudes N20
ð0Þj ¼ K20

ð0Þj ¼ffiffiffiffiffiffiffiffi
2=3

p
JjðjeÞ.

Let us now turn to the Fourier decomposition of
Eq. (48b), which we begin by writing as

Ĥ22
ð0Þ ¼ K22

ð0Þ
X∞
j¼−∞

P2W
ð0Þje

−iðjlþ2λÞ: ð51Þ

The first step is to determine the PmW
j coefficients that enter

the W decomposition through Eq. (46a) and the Klm
s

coefficients that enter the Klm decomposition through
Eq. (46b). We first focus on the PmW

j coefficients. At
0PN order, W ¼ ϑ − l, which in Eq. (34) of Ref. [59] is
shown to yield the P2W

ð0Þj coefficients,

PmW
ð0Þj ¼

X∞
k¼0

PmW
j;k ¼

X∞
k¼0

Em
k ϵ

ku
jþm; ð52Þ

where

Em
k ¼

8<
:

ð−βÞm; k ¼ 0�
k−1
k−m

�
2F1ð−m; k; k −mþ 1; β2Þβk−m; k > 0

;

ð53Þ

ϵkun ¼
	− 1

2
eδk1; n ¼ 0

k
n Jn−kðneÞ; n > 0

; ð54Þ

β ¼ ð1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
Þ=e, ðkmÞ is the binomial coefficient, and

2F1ða; b; c; zÞ is the generalized hypergeometric function.
The hypergeometric function in Eq. (53) can diverge when
m > k for any β, but we find that its product with the
binomial coefficient simplifies to a polynomial,

�
k − 1

k −m

�
2F1ð−m; k; k −mþ 1; β2Þ

¼ m
Xm
n¼0

ð−1Þnðkþ n − 1Þ!
ðk −mþ nÞ!ðm − nÞ!n! β

2n; ð55Þ

which is regular for allm and k, as we show in Appendix A.
Let us now focus on the K22

s coefficients by specifically
defining

K22
ð0Þ ¼

2ð1 − e2Þ
ð1 − e cos uÞ2 −

e cos u
1 − e cos u

þ 2ie

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
sin u

ð1 − e cos uÞ2 : ð56Þ

The first term can be decomposed as 2ð1 − e2ÞP∞
m A2

m,
where we identify Ap

m as the coefficients of the following
Fourier decomposition,

1

ð1 − e cos uÞp ¼
X∞
m¼0

Ap
m cosðmlÞ: ð57Þ

Expressions for these coefficients can be found up to 3PN
order in Ref. [59]; to 0PN order, we take the known
decomposition for p ¼ 1,

1

1 − e cos u
¼ 1þ 2

X∞
m¼1

JmðmeÞ cosðmlÞ; ð58Þ

and square it to get the p ¼ 2 coefficients. The resulting
products of series can be simplified using Eq. (B16) of [60]
to yield the coefficients

A2
0 ¼ ð1 − e2Þ−1=2; ð59aÞ

A2
m ¼ 4Jm þ 2

�
Θ̂ðm − 1Þ

Xm−1

k¼1

JkJm−k

þ
X∞

k¼mþ1

JkJk−m þ
X∞
k¼1

JkJkþm

�
; ð59bÞ

where Θ̂ð·Þ is the Heaviside step function, and, for
convenience, we have suppressed the argument of the
Bessel functions that match their index (e.g., Jmþn ≡
Jmþn½ðmþ nÞe�). While the decomposition of the middle
term in Eq. (56) is similar to that of Eq. (48a), the last term
is found as another product of Fourier series,

sin u
ð1 − e cos uÞ2 ¼

�
1

1 − e cos u

��
sin u

1 − e cos u

�

¼
�
1þ 2

X∞
m¼1

JmðmeÞ cosðmlÞ
�

×
�
2
X∞
n¼1

J0nðneÞ sinðnlÞ
�
; ð60Þ

where J0nðxÞ≡ d
dxJnðxÞ¼ðJn−1ðxÞ−Jnþ1ðxÞÞ=2. Following

Appendix D of Ref. [61], we can combine these series as

sin u
ð1 − e cos uÞ2 ¼ 2

X∞
n¼1

ðJ0nðneÞ þ InÞ sinðnlÞ; ð61Þ
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where we have introduced the coefficients

In ¼ Θ̂ðn − 1Þ
Xn−1
m¼1

JmJ0n−m

−
X∞

m¼nþ1

JmJ0m−n þ
X∞
m¼1

JmJ0mþn: ð62Þ

Combining all the series representations of Eq. (56), we can
rewrite K22

ð0Þ as a series of both cosines and sines, namely

K22
ð0Þ ¼

X∞
m¼0

KC
m cosðmlÞ þ i

X∞
n¼1

KS
n sinðnlÞ; ð63Þ

where

KC
m ¼

	
2ð1 − e2ÞA2

0; m ¼ 0

2ð1 − e2ÞA2
m − 2JmðmeÞ; m > 0

; ð64aÞ

KS
n ¼ 4e

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
ðJ0nðneÞ þ InÞ: ð64bÞ

Note that the coefficients A2
m and In are series

themselves.
Ultimately, we wish to express K22

ð0Þ as a series in

complex exponentials. Expanding the trigonometric func-
tions in Eq. (63) à la Euler, we then write

K22
ð0Þ ¼

X∞
j¼−∞

K22
ð0Þje

ijl; ð65Þ

where

K22
ð0Þj ¼

(
KC

0 ; j ¼ 0

1
2

�
KC

jjj þ signðjÞKS
jjj
�
; j ≠ 0

: ð66Þ

With this in hand, and using our results for the Fourier
expansion of PmW

j in Eq. (52), we can rewrite Eq. (51) to

finally have the Fourier expansion of Ĥ22
ð0Þ:

Ĥ22
ð0Þ ¼

X∞
j¼−∞

N22
ð0Þje

−iðjlþ2λÞ; ð67Þ

where

N22
ð0Þj ¼

X∞
s¼−∞

P2W
ð0ÞsK

22
ð0Þs−j: ð68Þ

The P2W
ð0Þs and K22

ð0Þs−j coefficients are found in Eqs. (52)

and (66), respectively. A similar analysis applies for higher
PN orders: using the PN-accurate expressions in [59], one
finds the coefficients of the series in Eq. (46) and combines

them into the amplitudes Nlm
j as in Eq. (47) for each mode.

We will not carry out this higher PN-order extension here,
and instead, leave this for future work.

B. Truncating the coefficients inside
the Fourier amplitudes

How then does one determine the number of terms to
keep in the sum over s when calculating each Nlm

j ? The
answer may depend on the exact details of the mode under
consideration, but the general structure can be seen from
our 0PN example above. Within Nlm

j , we must determine
the series expansions of PmW

s and Klm
s−j. Where we truncate

these series depends on the size of their coefficients relative
to each other’s, a size that we expect to decrease as more
terms are added to the series if the total sums are to be
finite. To describe our procedure for truncating all of these
series, we use the Newtonian modes defined in the
section above.
To organize all these levels of series of series, we will

define their coefficients generically with the variable
Qlm

j1;j2;…;jd
, where d is the depth of the series. For example,

at the top level we have only one variable,Qlm
j ¼ Nlm

j , which
depends onPmW

s andKlm
s−j throughEq. (68). Therefore, at the

next level, we have Qlm
j;s ¼ fPmW

s ;Klm
s−jg, but these coef-

ficients themselves are also defined in terms of their own
series expansions. The coefficient PmW

s is a series with
coefficientsPmW

s;k throughEq. (52),while the coefficientKlm
s−j

is a series

Klm
s−j ¼

X∞
k¼0

Klm
s−j;k; ð69Þ

where the coefficients Klm
s;k are determined from Eqs. (59),

(64), and (66); wewill explicitly define them in Eqs. (71) and
(72) once we have identified the relative magnitudes of the
coefficients. Thus, at the third level we have Qlm

j;s;k ¼
fPmW

s;k ;Klm
s−j;kg.

The number of terms that need to be kept in these series
of series is difficult to determine analytically in general, so
to gain some insight, we will consider a leading-order
expansion in small eccentricity. For the m ¼ 0 case at
Newtonian order, this expansion is not actually needed
because the N20

j amplitudes are a single series that only
depends on Bessel functions. Moreover, since JjðeÞ ¼
OðejÞ for x ≪ 1, each jth term decreases in size with
respect to the previous term for small eccentricities. On the
other hand, whenm ¼ 2, the situation is more complicated.
To evaluate the magnitude of the K22

s−j;k coefficients, we
first consider its components, which are also composed of
Bessel functions. Again using the asymptotic behavior of
JnðxÞ, we can identify the leading-order terms in small

EFFICIENT GRAVITATIONAL-WAVE MODEL FOR FULLY- … PHYS. REV. D 110, 044044 (2024)

044044-11



eccentricity of A2
m and In. We then define the kth coefficient

of the decomposition of K22
s ¼ P

k K
22
s;k as

K22
s;k ¼

1

2
ðKC

s;k þ signðjÞKS
s;kÞ: ð70Þ

To identify the k ¼ 0 terms, we combine the leading-order
terms with the terms that are not expanded in series; for
example, in Eq. (64b), besides the series In we also have the
single term J0n, which is independent of k. Thus, the k ¼ 0
terms are

KC
s≠0;0 ¼ 2ð1 − e2Þ

�
4Js þ 2Θ̂ðs − 1Þ

Xs−1
n¼1

JnJs−n

�
− 2Js;

ð71aÞ

KS
s;0 ¼ 4e

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p �
J0s þ Θ̂ðs − 1Þ

Xs−1
n¼1

JnJ0s−n

�
; ð71bÞ

and the k > 0 terms are

KC
s;k ¼ 8ð1 − e2ÞJsþkJk; ð72aÞ

KS
s;k ¼ 4e

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p h
−JsþkJ0k þ JkJ0sþk

i
: ð72bÞ

For s ¼ 0, there is no need to identify the coefficients
K22

0;k as we can see from Eq. (64a) that K22
0 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
.

This can be thought of as an instance of a series Qlm
j;s ¼P

k Q
lm
j;s;k where only one of its terms is nonzero. This also

occurs for PmW
j when jþm ¼ 0, as can be seen from the

Kronecker delta involved in Eq. (54). Such expressions can

then be immediately evaluated and do not require
truncation.
Ultimately, we seek to accurately represent a mode Hlm

as needed by our waveform. To simplify matters, we only
need to consider H̄lm ≡ Ĥlm=e−imλ as e−imλ is only a
prefactor in the series expansion of Ĥlm. The first question
we might ask in truncating the relevant series is this: how
many Nlm

j are required to accurately represent H̄lm?
However, in answering that question, we find that for each
j being explored we must first answer how many PmW

s;k and
Klm

s−j;k are required to calculate Nlm
j precisely. That is, for a

specific l, m, j, and s, we must first truncate the series
Qlm

j;s ¼
P

k Q
lm
j;s;k. We use the fact that, for small eccen-

tricities, the magnitudes of Qlm
j;s;k decrease as k increases.

Starting with k ¼ kf ¼ 0, we compare the effect of adding
the k ¼ kf þ 1 coefficient to its series by computing the
ratio

Rlm
j;sðkfÞ ¼





 Qlm
j;s;kfþ1Pkf

k¼0Q
lm
j;s;k





: ð73Þ

Specifying a tolerance R̄lm
j;s, we increase kf until the

precision criterion Rlm
j;s < R̄lm

j;s is satisfied, therefore truncat-
ing the series at kmax ¼ kf þ 1. For R̄lm

j;s ¼ 10−4 and a
sample eccentricity e ¼ 0.1, we illustrate this procedure in
Fig. 2 for j ¼ 0, s ¼ −2 and 1. The series expansion of
P2W

−2 has only two nonzero terms, so it is immediately
determined, while the expansion of P2W

1 requires kmax ¼ 5

to meet our chosen tolerance R̄lm
j;s ¼ 10−4. Similarly for

K22
s , we find kmax ¼ 3 for s ¼ −2 and kmax ¼ 2 for s ¼ 1.

This analysis is done for all s of interest; we now proceed to

FIG. 2. The ratios R22
0;s for the P

2W
s (left) and K22

s (right) coefficients at s ¼ −2 (blue circles) and 1 (orange circles) as kf is increased.
The eccentricity for these coefficients is e ¼ 0.1. Once the ratio reaches the tolerance R̄lm

j;s ¼ 10−4 (green dashed line) we truncate the
series at that kmax ¼ kf þ 1 term. For P2W

−2 , only the first two terms in its series expansion are nonzero (R22
0;−2ð1Þ ¼ 0Þ, and so its

truncation is immediately determined without needing to reach R̄lm
j;s. For P

2W
1 , there is no ratio calculated at kf ¼ 0 as the k ¼ 0 term is

zero, so R22
0;1 is not calculated until kf ¼ 1.
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find which s terms need to be included in the series
expansion of a specific Nlm

j .
Above, we described the procedure for finding the

necessary terms in the expansion of the Qlm
j;s coefficients

for l ¼ 2 ¼ m, j ¼ 0, and s ¼ −2 and 1. The reason we
calculate the coefficients for these specific values of s is
that they arise when analyzing the expansion of N22

ð0Þ0,
which is the first value of j for which we start analyzing the
expansion of H̄22

ð0Þ. How we determine the expansion of the

Fourier amplitudes, for any j, follows the same reasoning as
for the Qlm

j;s from above. We begin at s ¼ j, where the
product PmW

s Klm
s−j generally peaks in magnitude, and

analyze how adding terms towards s → ∞ and s → −∞
adds to the series expansion of Nlm

j . Thus, the ratio test we
performed above must now be done in two directions. In
expanding the range of s we generate a sequence of lower
and upper bounds, fðsi; sfÞg. Beginning at si ¼ j ¼ sf , we
first step once in the positive direction and calculate the
ratio

Rlm
j;þðsi; sfÞ ¼





 Qlm
j;sfþ1Psf

s¼si Q
lm
j;s





: ð74Þ

We then compare this to a chosen tolerance R̄lm
j . If the

criterion Rlm
j;þ < R̄lm

j is satisfied, we stop adding terms in the
positive s direction, truncating the series at smax ¼ sf þ 1.
Whether or not the criterion is satisfied at this step, we set the
new upper bound sf → sf þ 1 for the next step and then step
in the negative direction to calculate

Rlm
j;−ðsi; sfÞ ¼





 Qlm
j;si−1Psf

s¼si Q
lm
j;s





: ð75Þ

If the criterion Rlm
j;− < R̄lm

j is satisfied, then we stop adding
terms in the negative s direction, truncating the series at
smin ¼ si − 1. Whether or not the criterion is satisfied, we
then set the new lower bound si → si − 1. Alternating
between expanding in positive and negative directions, we
will eventually satisfy the criteria for both, converging upon a
value for Nlm

j ¼ Psmax
s¼smin P

mW
s Klm

s−j.
For the same sample eccentricity as above, Fig. 3 shows

this procedure for N22
ð0Þ0, where we determine the bounds

ðsmin; smaxÞ ¼ ð−2; 3Þ. At each new value of s, we must
perform the truncation of the expansion of the Qlm

j;s

coefficients as described previously. In fact, we showed
how the series expansion of the s ¼ −2 coefficients was
truncated in Fig. 2. The analysis performed here is to be
done for every j explored in the series expansion of H̄lm,
whose truncation we determine in the following section.

C. Truncating the Fourier amplitudes

Now, we must determine the range jmin ≤ j ≤ jmax for
each mode. This differs from the previous analyses as the
H̄lm are Fourier series in time; while we truncated Qlm

j;s and
Qlm

j based on their convergence, the expansion of H̄lm is to
be truncated based on its accuracy, as one can directly
compare the mode to its Fourier expansion. Parametrizing
time through the mean anomaly u, we perform this
comparison over an entire orbit u∈ ½0; 2πÞ. We define
the following L2 norm to carry out this comparison,

kfk≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2π

Z
2π

0

½fðuÞ�2du
s

; ð76Þ

for some function fðuÞ, and thus define the error between
the mode and its series expansion as

Δlmðjmin; jmaxÞ ¼
����H̄lm −

Xjmax

j¼jmin

Nlm
j e−ijl

����; ð77Þ

where the series is bounded by ðjmin; jmaxÞ, and l is related
to u through Eq. (21) (which to Newtonian order is simply
l ¼ u − e sin u). The relative error is then

Rlmðjmin; jmaxÞ ¼
Δlmðjmin; jmaxÞ

kH̄lmk : ð78Þ

Unlike the previous analysis where the ratio test was
performed in both directions, however, we must be efficient

FIG. 3. The ratio R22
0 for the series expansion of N22

ð0Þ0 as its
bounds ðsi; sfÞ are expanded. The bounds are identified for each
point in the sequence along the horizontal axis. The eccentricity is
e ¼ 0.1, as in Fig. 2. The direction in which the bounds are being
expanded at each step is denoted by the color and direction of the
triangular markers in the plot; blue and towards the right for
sf þ 1, orange and towards the left for si − 1. Once the ratio in a
certain direction falls below R̄lm

j ¼ 10−4 (green dashed line) the
bound is fixed. The vertical dot-dashed lines mark where this
truncation occurs in the direction denoted by its color. The
expansion of N22

ð0Þ0 is thus truncated at ðsmin; smaxÞ ¼ ð−2; 3Þ.
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in calculating Eq. (77) as the series becomes increasingly
oscillatory as more terms are added to it—a situation that
arises for high eccentricities. The integral in the L2 norm is
performed numerically and thus can become computation-
ally expensive. Fortunately, we have confirmed by inspect-
ing the behavior of the Fourier amplitudes at small
eccentricities that the magnitude of N22

j for j > 2 is usually
larger by at least an order of magnitude than that of N22

−j.
Therefore, as we expand jmin towards negative integers
and jmax towards positive integers, if at some point
OðNlm

jmin
Þ < OðNlm

jmax
Þ − 1, we can ignore amplitudes from

the negative direction until they become comparable to
those from the positive direction.
Thus, we perform the following procedure to efficiently

truncate the series:
(1) We start by setting jmin ¼ 0 ¼ jmax and setting a

tolerance R̄lm.
(2) If Rlmðjmin; jmaxÞ is not less than R̄lm, then we

expand the bounds in both directions by adding
the jmax þ 1 and jmin − 1 terms to the series and then
computing the new Rlm.

(3) Step 2 is repeated until either the error falls below
the tolerance or j > 3.

(4) In case of the latter, the upper bound is set to jmax →
jmax þ 1 and the new term is added to the series.

(5) We compare the order of magnitude of this new
Nlm

jmax
to that of the previous Nlm

jmin
. If OðNlm

jmin
Þ <

OðNlm
jmax

Þ − 1, then we do not compute Nlm
jmin−1,

leaving the lower bound as is. Otherwise, the lower
bound is set jmin → jmin − 1 and its term is added to
the series.

(6) The new Rlm is computed.
(7) Steps 4–6 are repeated until the error falls below

the tolerance. During this time, it may be that the
order of magnitude of the amplitude from the
positive direction decreases to almost that of
the last amplitude from the negative direction. In
that case, step 5 would resume adding terms in that
latter direction.

Figure 4 shows the error found at each of these steps for the
Newtonian ðl; mÞ ¼ ð2; 2Þ mode for e ¼ 0.1, yielding the
truncation ðjmin; jmaxÞ ¼ ð−3; 3Þ for R̄lm ¼ 10−3. Thus, a
total of seven harmonics are sufficient to represent this
mode to 0.1% accuracy at this eccentricity.

D. Summary of the truncation procedure

We summarize the procedure we have detailed above:
starting with bounds jmin ¼ 0 ¼ jmax, we calculate the
relative error Rlmðjmin; jmaxÞ for a mode ðl; mÞ and expand
the bounds until the error falls below a tolerance
R̄lmðjmin; jmaxÞ. For each j explored, the series expansion
of Nlm

j has to be truncated, which means expanding the

bounds ðsi; sfÞj until the expansion’s precision Rlm
j;�ðsi; sfÞ

falls below a tolerance R̄lm
j . This, in turn, requires the

calculation of its components PmW
s Klm

s−j, which are also
defined as series with terms PmW

s;k and Klm
s−j;k, whose

respective truncations kmax are then found using the
precision criterion Rlm

j;s < R̄lm
j;s. For each j∈ ½jmin; jmax�,

then, there is a list of ranges fðsmin; smaxÞjg, and for each
s∈ ½smin; smax�, there are two sets of fðkmaxÞj;sg each for the
truncations of PmW

s and Klm
s−j.

The construction described above is illustrated sche-
matically in Fig. 5, where we also sketch at which point the
amplitudes enter the waveform. As one can discern from
the multiple steps taken in building these amplitudes, i.e., in
finding the ranges of the multiple series involved for each
mode for a specific eccentricity, the process is computa-
tionally intense. We thus perform this construction before
generating waveforms, tabulating the ranges needed for
sample values of eccentricity ei inMathematica.6 When the
waveform calls the amplitudes for an arbitrary e, we use the
set of ranges found for the tabulated value of ei right above
it to return the accurate amplitude. For example, if one calls
for the amplitudes for an eccentricity that falls between two
neighboring tabulated eccentricities ei−1 < ei, then the
ranges for ei are returned, as the ei−1 ranges are guaranteed
to be accurate only for e ≤ ei−1. We set our accuracy goal
Rlm ¼ 10−3 such that the series expansions are thus 0.1%
accurate, with a precision goal Rlm

j ¼ Rlm
j;s ¼ 10−4.

FIG. 4. The relative error R22 for H̄22
ð0Þ as the bounds ðjmin; jmaxÞ

of its series are expanded, again for e ¼ 0.1. The bounds ð−3; 3Þ
are determined once the error falls below the tolerance
R̄lm ¼ 10−3 (green dashed line), as indicated by the vertical
dot-dashed line.

6The numbers Qlm
j;s;k and Qlm

j;s were evaluated with a numerical
precision of 16 digits in our procedure. The L2 norms were
evaluated with the function NIntegrate. For the m ¼ 2 mode L2
norm, we used an AccuracyGoal and PrecisionGoal of 4 digits with a
WorkingPrecision of 8 digits for e ≤ 1=2, while for e > 1=2, the
PrecisionGoal was set to 10. For the m ¼ 0 mode, we set the
AccuracyGoal ¼ ∞ with a PrecisionGoal of 7 digits and a Work-
ingPrecision of 16 across all sampled eccentricities. These choices
were made to make the integration efficient without losing the
precision needed to meet our tolerances.
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In Table II, we list the limits of j found for the Newtonian
modes for our sampled eccentricities. This includes m ¼ 0,
which from our previous discussion has a simple series
expansion that from Eq. (48a) can be seen to have
symmetric bounds jmax ¼ −jmin. We observe for m ¼ 2
that while at low eccentricities the bounds are symmetric
around j ¼ 0, this is not the case for higher eccen-
tricities, where more positive j terms are kept than
negative j. The j, s, and k bounds for the Newtonian
modes can be found in Ref. [62], where we provide a
Mathematica notebook to retrieve them for any eccentric-
ity up to our maximum tabulated eccentricity, e ¼ 0.8, as
beyond this the convergence behaves poorly for m ¼ 2.
With the amplitudes thus determined, the GW modes are

accurately represented for moderate eccentricities in the
time domain. We now describe briefly the implementation
of the eccentric amplitudes into the framework of the EFPE
model for their use in the frequency domain.

E. Implementation of the model

With the number of Fourier amplitudes tabulated above,
we can now correctly truncate the sum over n in the
frequency-domain waveform, Eq. (41). Considering the
indices in Eq. (44), we see that the limits on j found in
the previous section depend on the limits of q and the mode
numberm0. To match the phase convention of Ref. [42], we
first must make the substitutions q → −q and n → −n in
the indices of the Fourier amplitudes such that

Nl;qþn
−q → Nl;−q−n

q : ð79Þ

The relation between the mode number and these indices is
now n ¼ −q −m0. As q ¼ j in this notation, we can then
identify the limit on n in the waveform:

nmax ¼ maxð−q −m0Þ ¼ lmax − jmin; ð80Þ

[ ]

[ ]

[ ] [ ]

Eqs. (74) and (75)

FIG. 5. Schematic diagram of the construction of the waveform (left) and Fourier amplitudes (right). Each arrow points from one step
to the one it informs; for example, the amplitudes Nlm

j are part of the waveform amplitudes Aþ;×
n;q [see Eq. (44)]. The limits of the series

representation of the amplitudes can be tabulated beforehand following the procedure on the right (see Sec. III) and then used to generate
the waveform described in Sec. II.
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as jmin ≤ 0 and lmax is the highest mode included in the
model. Incorporating these changes into Eq. (41), the form
of the waveform is thus

h̃þ;×ðfÞ ¼
Xnmax

n¼1

h̃ð0Þn h̃PPþ;×;n; ð81Þ

where

h̃PPþ;×;nðfÞ ¼
Xkmax

k¼−kmax

Xqmax

q¼qmin

ak;kmax
eiΔΨn;q

× Āþ;×
n;q ðtn þ Δtn;q þ kTnÞ; ð82Þ

Āþ;×
n;q ¼ Ŵ

Xlmax

l¼2

Xl

m¼−l
Aþ;×
l Nl;−q−n

q ; ð83Þ

and qmin ¼ −ðnþ lmaxÞ, qmax ¼ −ðn − lmaxÞ. Here we
have used a one-sided Tukey window

ŴðtÞ ¼

8>>>>><
>>>>>:

0; t < t1
1; t1 ≤ t < t2

sin2
�
π
2
t3−t
t3−t2

�
; t2 ≤ t < t3

0; t3 ≤ t

; ð84Þ

which was also used in Ref. [42] to reduce spectral leakage
from the abrupt ending of the waveform. The points in time

are chosen such that t3 is the end of the integration time for
the binary or the point in its evolution where it reaches the
innermost stable circular orbit (y ¼ 1=

ffiffiffi
6

p
), whichever

occurs first, and t2 is 10 orbital cycles before t3. We thus
obtain our GW polarizations with our new amplitudes.
The question remains of when nmax, as defined in

Eq. (80), should be determined, as it depends on
jmin ¼ jminðeÞ. One may suggest that at each frequency
f being sampled, a relation between frequency and eccen-
tricity be used such that jminðeÞ ¼ jmin½fðeÞ�. However, this
relation is multivalued by the stationary point condition,
which even to leading order [Eq. (37a)] is harmonic
dependent. Within the EFPE framework, we opt to use
the largest eccentricity for a system of interest: the binary’s
initial eccentricity e0, so nmax ¼ nmaxðe0Þ is set from the
beginning and guarantees the amount of harmonics needed
even as the binary circularizes. Unfortunately, this increases
the evaluation time of a waveform considerably for large
e0. We leave finding a more efficient choice for future
work, as this implementation suffices for the purpose of
validating the eccentric amplitudes. We emphasize that the
work here only changes the Fourier amplitudes of the EFPE
model, leaving the binary dynamics and Fourier transform
itself intact. To distinguish this implementation from the
EFPE model, we denote the model with our amplitudes as
the EFPE_ME model, as it covers moderate eccentricities
e ≤ 0.8. In the next section, we test the accuracy of these
amplitudes throughout an orbit and compare the frequency-
domain EFPE and EFPE_ME models.

IV. COMPARISONS BETWEEN AMPLITUDES

We will now explore the improvement of our eccentric
amplitudes over the small-eccentricity-expanded ampli-
tudes Glm

j of Ref. [43]. In that study, the series expansions
are available up to Oðe6Þ, yielding an expansion with
bounds jmax ¼ 6 ¼ −jmin for all eccentricities. In the
sections that follow, we will compare our eccentric ampli-
tudes against these, first for fixed eccentricities using the
relative error defined in Sec. III C, and second for inspirals
of sample binaries in the frequency band of LISA. The
former will demonstrate the accuracy of our amplitudes
across the space of eccentricity, while the latter will
highlight the regions of the parameter space that benefit
from including these eccentric amplitudes.

A. Time-domain comparisons

As a first test of our amplitudes, we can compare the
accuracy of the eccentricity-expanded modes of Ref. [43] to
our modes for the eccentricities listed in Table II. We
calculate the relative error of the Oðe6Þ series by replacing
Nlm

j in Eq. (77) with the Glm
j and calculate their Rlm as in

Eq. (78). We compare those errors to those of our
amplitudes in Fig. 6, where the former are plotted in
circles while the latter are in crosses. One can see that the

TABLE II. The top-level series truncations found for the ex-
pansions of the ðl ¼ 2; m ¼ 0; 2Þ Newtonian modes at our tabu-
lated eccentricities ei. Form ¼ 0, we list the bounds jmax ¼ −jmin,
while form ¼ 2, we list ðjmin; jmaxÞ. Our relative error tolerance is
R̄lm ¼ 10−3 while the precision tolerances for the underlying series
are R̄lm

j;s ¼ R̄lm
j ¼ 10−4. The limits for the lower-level series can be

found in the Ref. [62].

ei m ¼ 0 m ¼ 2

0.01 2 ð−1; 1Þ
0.10 4 ð−3; 3Þ
0.15 4 ð−4; 5Þ
0.20 5 ð−5; 6Þ
0.25 6 ð−6; 7Þ
0.30 7 ð−6; 9Þ
0.35 8 ð−7; 10Þ
0.40 10 ð−8; 12Þ
0.45 11 ð−10; 15Þ
0.50 13 ð−11; 18Þ
0.55 16 ð−13; 22Þ
0.60 20 ð−16; 27Þ
0.65 24 ð−20; 35Þ
0.70 31 ð−25; 44Þ
0.75 42 ð−32; 59Þ
0.80 59 ð−45; 90Þ
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Oðe6Þ amplitudes accurately represent the modes at low
eccentricities before exceeding the threshold of 0.1% for
e≳ 0.2, while our amplitudes maintain this accuracy across
our space of eccentricity. At the highest tabulated eccen-
tricity, our modes are two orders of magnitude more
accurate than the eccentricity-expanded modes. For high
eccentricities then, our amplitudes allow for a more
accurate representation of the modes than an expansion
in small eccentricity does. To maintain the low-eccentricity
accuracy of the Oðe6Þ amplitudes, we set the Nlm

j ampli-
tudes to return the ematch ¼ 0.25 (ematch ¼ 0.2) limits for the
m ¼ 0 (m ¼ 2) modes for e ≤ ematch. The colored triangles
outlined in black in Fig. 6 demonstrate how the accuracy of
this truncation matches well with theOðe6Þ amplitudes. We
adopt this truncation for the remainder of our analysis
beginning in the next section, but we first make one more
comparison between the amplitudes within the time
domain.
We can analyze the behavior of these different repre-

sentations of the modes throughout a Newtonian orbit.
Figure 7 shows the reduced m ¼ 2 mode, H̄22

ð0Þ, for a low
eccentricity (e ¼ 0.01), a moderate eccentricity (e ¼ 0.25),
and a higher eccentricity (e ¼ 0.5) Newtonian orbit. Plotted
with it are its series expansions using the Oðe6Þ amplitudes
and our amplitudes, along with the difference of these two
against the mode. Being a complex number, we show both
its magnitude and its phase. As expected from their relative
errors, at low eccentricities the Oðe6Þ amplitudes represent
the mode more accurately than ours, but that accuracy is
quickly lost at the moderate eccentricity, where there are

not enough harmonics in the series to approximate the
mode accurately. Instead, our expansion contains the
necessary amount of harmonics needed to accurately
capture not only the magnitude of the mode but also its
phase, especially at high eccentricities. Although we do not
plot it here, similar behavior is found for m ¼ 0.
In this section, we have validated our eccentric ampli-

tudes for fixed eccentricities in the time domain, demon-
strating their superior accuracy to the small eccentricity
expansion adopted in Ref. [42]. As we have not modified
the dynamics of the binary introduced in Sec. II A, the
addition of radiation and spin precession will not affect this
accuracy as the binary inspirals and its eccentricity evolves.
The remaining question then is how well the effects of our
eccentric amplitudes may be captured by a GW detector, an
analysis that is performed in the frequency domain. We
now turn to answering this question in the following
section.

B. Overlap comparisons

In the previous section, we validated our eccentric
amplitudes in the time domain against both the non-
decomposed modes [Eq. (48)] and the decomposed modes
of Ref. [43] expanded in powers of eccentricity. While this
comparison demonstrates the controlled accuracy of our
eccentric amplitudes with the modes, we must now go to
the frequency domain to quantify their effect on the
detection of eccentric and spin-precessing binaries. In this
section, we characterize this effect through the overlap
between the small-eccentricity-expanded amplitudes and

FIG. 6. The relative error of the small-eccentricity-expanded amplitudes of Ref. [43] (circles) and the amplitudes presented in Sec. III
(crosses). In blue and orange are the errors form ¼ 0 and 2, respectively. Our amplitudes maintain an accuracy of 0.1% as marked by the
green dashed line while the Oðe6Þ amplitudes do so only for e ≤ 0.25 ð0.2Þ≡ ematch for m ¼ 0 (2). To match the high accuracy at low
eccentricities, we truncate our amplitudes for e ≤ ematch at jmax ¼ 6 ¼ −jmin (see Sec. IVA). The colored triangles outlined in black
show how this truncation matches the accuracy of the Oðe6Þ amplitudes.
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our eccentric amplitudes, which will tell us how well these
two representations can be distinguished. The smaller the
overlap, the more significant the effect of eccentricity on
the amplitudes may be for characterizing these binaries.
Let us now define the two frequency-domain models to

be used in this comparison. The EFPE model of Ref. [42] is
the basis of both models, which solves the evolution of a
binary in the time-domain to approximate the frequency-
domain waveform with the SUA method as described in
Sec. II. The EFPE_ME model, however, contains enough
terms in the harmonic decomposition of the modes to
accurately represent them across a range of eccentricities,
pushing the boundary of the inspiral model to higher
eccentricities than before without expanding in small
eccentricity. The inclusion of a different amount of har-
monics than the EFPE’s maximum of nmax ¼ 8 at 0PN [at
least two harmonics as there are jm0j ¼ 0, 2 modes, six
harmonics added as the amplitudes were expanded as far as
Oðe6Þ] also changes the truncation of the n harmonics. In
Sec. IVA, we described how we set the limits on j in order
to match the EFPE’s accuracy at eccentricities below ematch;
at larger eccentricities, we use the limits listed in Table II,
which then inform our nmax as defined in Eq. (80).

To compare waveforms, we compute their overlap in the
LISA frequency band, which we take to have a lower limit
of fmin ¼ 2 × 10−5 Hz and an upper limit fmax ¼ 1 Hz.We
compute LISA’s response through time-delay interferom-
etry, which projects the polarizations presented in Sec. II
onto the responses of the observatory’s three arms and takes
combinations of them to mitigate fluctuations in the laser
frequency [63]. In particular, we compute the A, E, and T
modes in the rigid-arm approximation, yielding three
responses in the frequency domain, h̃i;N (N ¼ A, E, T),
from the ith gravitational-wave signal. The overlap
between two signals h1 and h2 is then

O ¼ ðh1jh2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðh1jh1Þðh2jh2Þ
p ; ð85Þ

where we use the inner product

ðh1jh2Þ ¼ 4ℜ

�Z
fmax

fmin

df
X
N

h̃1;NðfÞh̃�2;NðfÞ
SNðfÞ

�
; ð86Þ

FIG. 7. The reduced mode H̄22
ð0Þ (blue line) and its series expansions with Fourier amplitudes G22

j (orange dashes) and N22
j (green

dashes). The left column plots the mode’s magnitude while the right plots its phase. We show this mode for three different eccentricities
in each row, with e ¼ 0.01 at the top, e ¼ 0.25 in the middle, and e ¼ 0.5 at the bottom. Underneath each magnitude and phase plot we
show the difference between the series expansions and H̄22

ð0Þ.
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with the noise spectral density in each channel SN . The
overlap is equal to 1 when the waveforms are completely
the same and are less than 1 when they are different; how
much the overlap differs from 1 tells us how well the
signals are distinguished by the detector. We calculate the
inner products using a Clenshaw-Curtis quadrature scheme
after changing the integration variable to log f. Having
defined our overlap, we now use it to quantify the differ-
ence between the EFPE and EFPE_ME waveforms.
We generate waveforms for equal-mass binaries with

component masses m1 ¼ m2 ¼ 100; 103; 104, and 105M⊙.
For each of these binaries, we sample across the range of
eccentricities covered by the EFPE_ME, e ≤ 0.8, and set
them as the initial eccentricity e0, i.e., the eccentricity at the
beginning of our simulations, defined at four years before
merger. Across all of these systems, we set the remaining
initial conditions as follows:
(1) In a fixed x̂-ŷ-ẑ frame, the orbital angular momen-

tum is inclined from the vertical ẑ axis by π=3
radians and rotated from the x̂ axis by π=6.

(2) In the same frame, both BH spins point vertically
upwards. With spin magnitudes χ1 ¼ 0.5 and
χ2 ¼ 0.3, we obtain systems with χeff ≈ 0.28. This
also yields an initial effective precession spin
parameter χp ≈ 0.35, which approximately measures
the largest BH spin component lying within the
orbital plane [64].

(3) The initial mean orbital phase λ0 and the argument of
periastron δλ0 are both set to 0.

(4) The polar angles of the fixed frame to the detector θN
and ϕN are both set to 0.

(5) Setting the time to the end of the inspiral tf at four
years (the duration of the LISA mission) determines
the remaining parameter, the initial PN parameter y0,
which thus also determines the initial orbital fre-
quency and the initial frequency point for evaluation.
Its value will depend from system to system as it is a
function of the masses and e0. We describe how we
determine y0 from tf in Appendix B.

The evolution of our systems is stopped when t ¼ tf , y ¼
yISCO ¼ 1=

ffiffiffi
6

p
(the innermost stable circular orbit), or when

the orbital frequency reaches fmax, whichever occurs first.
We have also set a luminosity distance of 100 Mpc for our
binaries, but as this only appears in h0, it is an overall factor
that cancels out in O. In summary, our model is charac-
terized by 17 parameters: the two component masses, the
initial orbital phase, the initial argument of periastron, the
initial eccentricity, the two sky angles, the luminosity
distance, the initial PN parameter y0, the direction of the
orbital angular momentum (two angles), and the two spin
vectors (six degrees of freedom).
With these fiducial initial conditions, we aim to character-

ize howour eccentric amplitudeswill be distinguishedwithin
the LISA band. As we are only modifying the effects of
eccentricity in the amplitudes, we expect our conclusions to

be qualitatively similar across values of spin. The correla-
tions between spins and eccentricity can instead be found
through parameter estimation studies (e.g., [38,65]). For
simplicity and speed, we use the EFPE-(0, 0) base model,
which uses the m ¼ 0 approximation in the solution of the
spin precession [Eq. (13)], accurate in the early inspiral, and
uses the adiabatic solutions for ϕz and ζ; see Sec. V of
Ref. [42] for details.
With the parameters of our model determined, we proceed

to generate the EFPE and EFPE_ME waveforms for our
systems and compute their overlap. In Fig. 8, we show our
results, focusing on the range of eccentricities where the
overlap goes from being close to 1 at lower eccentricities to
dropping as eccentricity increases. Clearly, this behavior is
more pronounced for the lower mass systems. The reason for
this is that the higher-mass systems have effectively circu-
larized by the time they reach LISA’s most sensitive
frequency range in the millihertz, while this is not the case
for the lower-mass systems. Let us demonstrate this behavior
through the following two arguments.
First, consider removing the frequency dependence of

LISA’s sensitivity by setting SN to a constant, i.e., by
considering (flat) white noise. If, indeed, the argument we
presented above is true, we would expect that the overlaps
would now decrease for the lower-mass and the higher-
mass systems in roughly the same way. Indeed, this is what
we see in Fig. 8.
Let us now consider how rapidly the low- and high-mass

systems circularize in the LISA band for the test cases we
have studied above. In particular, let us investigate the GW
amplitude evolution and the eccentricity evolution, as a
function of frequency, for a low-mass (M ¼ 2 × 103M⊙)
system and a high-mass (M ¼ 2 × 105M⊙) system, as
shown in Fig. 9, fixing the initial eccentricities to e0 ¼
0.45 and e0 ¼ 0.65. The GWamplitudes are here computed
directly from the EFPE and EFPE_ME models, where we
focus on the total characteristic strain of the A and E modes

of each model, h̃i;c ¼ 2f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jh̃i;Aj2 þ jh̃i;Ej2

q
, as these modes

dominate over the T mode (at least at low frequencies), and
their characteristic noise strain, Sc ¼

ffiffiffiffiffiffiffiffiffiffiffi
fSA;E

p
, which coin-

cides for these two modes. The square of their ratio,
ðh̃i;c=ScÞ2, integrated in logarithmic frequency, is then
the signal-to-noise ratio (SNR), and thus, roughly speaking,
the area between these two curves is a measure of the
detectability of the signal. The frequency evolution of the
eccentricity is obtained by first integrating the radiation-
reaction equations [Eq. (16)] to obtain e2 ¼ e2ðλ̇Þ, and then
mapping λ̇ to frequency with Eq. (37a), using the quadru-
pole harmonic n ¼ 2.
This figure reveals some important information. First,

observe from the strain panels, for our choice of initial
orbital separation, the higher-mass systems in the right
column appear in the LISA band at lower initial frequen-
cies. Thus, even if a high-mass binary starts off at a large e0,
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causing large discrepancies between the models at early
times, the detector will be less sensitive to them because the
detector’s noise is higher at its low-frequency end. Second,
observe that, when the higher-mass system is inside the
most sensitive range of the LISA band (roughly at
4 × 10−3 Hz), its eccentricity will be very small (and the
system will be effectively circular), as one can see in the
eccentricity evolution panels. This is in contrast to lower-
mass binaries on the left column, whose eccentricities
remain moderate once the binary enters the most sensitive
range of the LISA band. Thus, the effect of eccentricity is
larger in lower-mass binaries than in higher-mass binaries,
which explains why the overlaps drop for the former much
more rapidly than for the latter.
To understand how significant such a loss in overlap can

be for interpreting the GWs emitted by eccentric systems,
we can use that the expectation value of the match M,
which is the overlap maximized over the extrinsic time and
phase shifts between two waveforms, at high SNRs is

E½M� ¼ 1 −
D − 1

2SNR2
; ð87Þ

where D is the number of parameters in the model [47]. If
the systematic error due to not including our eccentric

amplitudes are to be smaller than the statistical errors, then
M must be greater than this expectation value. While our
overlaps are not maximized over extrinsic parameters
(although the D − 1 accounts for the cancellation of the
overall amplitude of the waveforms), using this expectation
value gives a conservative estimate of the threshold for our
overlaps, as the factor of D accounts for our model’s larger
degree of freedom. In Fig. 8, we indicate this threshold at
SNRs of 12, 25, and 50 for D ¼ 17. We can therefore see
that at masses smaller than ≈105M⊙, for equal-mass
binaries with e0 greater than ≈0.5, eccentric amplitudes
are important even at moderate SNRs; that is, incorrectly
modeling the eccentricity in the GW amplitudes would
induce a systematic bias that is larger than statistical errors,
thus biasing all GW inferences. Keeping these amplitudes
as accurate as possible is important for the future detection
of intermediate-mass BH binaries with moderate eccen-
tricities that merge within LISA’s lifetime.

C. Timing comparison

In the previous sections, we introduced the EFPE_ME
model with amplitudes accurate for moderate eccentricities
as it contains the necessary harmonics to represent each
Fourier mode. In contrast to the previous EFPE model,
which has these harmonics expanded in powers of

FIG. 8. Overlaps for five different equal-mass binaries as a function of initial eccentricity e0. We compute the overlaps in blue dots
using the LISA noise, and in the orange dots with a flat noise to illustrate the effects of LISA’s sensitivity, which yields higher overlaps
for larger masses at higher e0. For SNRs of 12, 25, and 50, we show the expected overlap thresholds in red, purple, and brown lines
(O ≈ 0.944, 0.987, and 0.997, respectively) if a model is to have smaller systematic errors than the statistical errors of the detector.
Systems with overlaps below these thresholds will require eccentric amplitudes to be included.

ARREDONDO, KLEIN, and YUNES PHYS. REV. D 110, 044044 (2024)

044044-20



eccentricity, our amplitudes contain the full expressions of
the series representations, as shown in Sec. III. However,
this adds computational costs when evaluating the ampli-
tudes at each value of eccentricity throughout a binary’s
inspiral. We benchmark these costs by estimating the
evaluation time of generating the frequency-domain wave-
forms presented in the previous section for initial eccen-
tricities e0 ∈ ½0.1; 0.8�.

Taking the evaluation time for both models at each mass
throughout our set of e0, we find that it is independent of
the duration of the signal. That is because our quadrature
scheme, which determines the frequencies at which the
waveforms are evaluated, returns the same amount of
points, 901; in fact, the EFPE’s evaluation time is inde-
pendent of both e0 and mass, taking approximately
0.2 seconds to evaluate this number of points for all

FIG. 9. Characteristic strains and eccentricity evolution for four of our sample binaries for the EFPE (blue line) and the EFPE_ME
models (dashed orange line). In the left column are binaries of total mass M ¼ 2 × 103M⊙, while in the right column they are of
M ¼ 2 × 105M⊙. The top row are binaries with e0 ¼ 0.45, while the bottom row have e0 ¼ 0.65. The LISA spectral noise density of the
A and E modes is illustrated with the black line. Observe that, by the time the higher-mass systems reach the most sensitive part of the
LISA band (as illustrated by the shaded regions starting at 2 × 10−3 Hz), the eccentricity of these binaries has dropped almost to zero.
This explains why the overlaps observed in Fig. 8 do not drop as rapidly for the high-mass binaries as for the low-mass ones.
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binaries. What the evaluation time of the EFPE_MEdepends
on instead is, as expected, the initial eccentricity. Therefore,
we first fix e0 and amodel to estimate the evaluation times for
a set of masses (forM∈ ½200; 2 × 105�M⊙) and compute the
median; we then repeat this sequence of steps for various
choices of e0 so that we can plot the ratio of these medians
when computed with the slower model (EFPE_ME) to the
medians computedwith the fastermodel (EFPE), as shown in
Fig. 10. Since the EFPE_ME adds more harmonics at higher
eccentricities, its evaluation time increases with e0 drasti-
cally. At e0 ¼ 0.8 the EFPE_ME model takes a thousand
times longer to evaluate than the EFPE model (around
22 minutes), although the latter’s accuracy cannot be trusted
at this eccentricity. Nevertheless, a more balanced compro-
mise between efficiency and accuracy has to be reached in
order for the EFPE_ME model to be useful for parameter
estimation applications. A straightforward optimization
could be to expand the amplitudes to an appropriate power
of eccentricity that makes it fast to evaluate as a polynomial,
while keeping enough terms to be as accurate as desired. The
underlying model can also be optimized, such as by
computing the waveform at the requested frequencies in
parallel. In this study, however, we have focused on accu-
rately modeling binaries at moderate eccentricities, rather
than on reducing the model’s computation time. Once these
options for optimization are explored in future work,
combining them with the accuracy achieved by the
EFPE_ME would render the EFPE family an excellent tool
to analyze GW data.

V. CONCLUSIONS

As current GW detectors continue to increase their
sensitivity and millihertz detectors are poised to come
online within the next decade, our scope into the universe

will expand, reaching the remnants of stars unlike those that
we have seen so far. If we are to be prepared to characterize
new systems properly, then we will need models accurate
enough to capture the relevant physics. The extension to the
EFPE developed in this work is a step forward in this
direction, which allows us to model binaries in a large
regime of their parameter space.
Our new EFPE_ME model extends the EFPE inspiral

waveform of [42] for eccentric and spin-precessing binaries
from e ≤ 0.3 (for the EFPE model) to e ≤ 0.8 (for the
EFPE_ME model). We have developed a procedure for
determining the harmonics necessary in the Fourier ampli-
tudes of the GW polarizations to ensure that they are
convergent and accurate, while retaining computational
efficiency. These harmonics are tabulated and included in
Ref. [62]. Unlike the previous implementation of ampli-
tudes expanded in small eccentricity, our amplitudes
maintain high accuracy across eccentricities up to
e ¼ 0.8. Other waveform models that use the spherical
harmonic decomposition can adopt our procedure to more
accurately represent moderately eccentric binaries. Placing
these eccentric amplitudes within the EFPE framework, we
now have a new EFPE_ME model.
One may ask if the inspiral model presented here can

be considered at such high eccentricities. After all, the
validity of the SUA and the orbit-averaged equations of
motion are based on the assumption that the orbital time-
scale be the fastest and the radiation-reaction timescale be
the longest, with the precession timescale between them
(see Sec. II), an assumption that could break down at high
eccentricities [66,67]. We find that of the binaries consid-
ered in Sec. IV B, the one that is most likely to violate this
hierarchy is the heaviest (M ¼ 2 × 105M⊙) and most
eccentric (e0 ¼ 0.8). Evaluating the leading-order expres-
sions of these timescales for this binary [68], we find the
ratios of timescales at the beginning of the simulations to be
Trr=Tpr ≈ 180 and Trr=Torb ≈ 26000, large enough to
ensure the validity of the assumption. Of course, this
hierarchy breaks down as the orbit decays and the binary
approaches merger, at which point the PN approximation
also breaks down. The EFPE_ME is thus valid for the
inspiral.
We computed matches in the LISA band between the

EFPE and EFPE_ME models across eccentricity for differ-
ent equal-mass binaries merging within the observatory’s
lifetime and found that the systematic errors of using the
small-eccentricity expansions can surpass statistical errors
for binaries with masses below ≈105M⊙ when e0 ≥ 0.5.
Therefore, while binaries with e0 < 0.5 can be modeled
with the EFPE, intermediate-mass BH binaries with mod-
erate eccentricities will need accurate amplitudes like ours
to be properly interpreted.
The EFPE_ME, however, is only one of the first steps

towards a truly efficient and complete model of a spin-
precessing and eccentric binary coalescence. The inclusion

FIG. 10. The ratios of the median evaluation time of the
EFPE_ME to the EFPE for the binaries described in Sec. IV B.
The absolute time for the EFPE model to generate 901 frequency
points is approximately 0.2 seconds.
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of so many harmonics for large eccentricities increases the
computation time significantly, and must be reduced in
order to be useful in the inference of a detected binary’s
parameters. We have not attempted to computationally
optimize our implementation of the EFPE_ME model, but
this is indeed possible, and we leave it to future work. The
EFPE_ME model is also limited to e ≤ 0.8 by the slow
convergence of the Fourier series at higher e; a more careful
analysis will have to be done to extract a convergent series
if one wishes to model binaries with higher eccentricity.
Future work could explore various resummations of the
Fourier series, perhaps through spectral methods, to
improve the convergence of the approximation, which is
also an avenue for future work. Moreover, the EFPE_ME
model only includes the dominant Newtonian amplitudes
of the GW. Higher PN-order modes for aligned spins with
eccentricity were recently found up to 2PN in [69], and
could be straightforwardly (though tediously) used to
extend the EFPE_ME to higher PN order. Whether this
is necessary or not for parameter estimation remains to be
seen and can be the topic of future research. While higher
PN-order amplitudes are suppressed, they may be signifi-
cant for stitching the inspiral model to the merger and
ringdown model, a critical step toward extending the EFPE
family into an inspiral-merger-ringdown model. Currently,
this extension is hindered by the lack of accurate, spin-
precessing, and moderately eccentric numerical relativity
simulations of merging BHs. Once these become available,
a phenomenological inspiral-merger-ringdown model
based on the EFPE scheme will be developed.
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APPENDIX A: SIMPLIFYING Em
k

To simplify Eq. (53) to a manifestly regular expression,
we first note the origin of its apparent divergences. First, the
binomial coefficient is�

k − 1

k −m

�
¼ ðk − 1Þ!

ðk −mÞ!ðm − 1Þ! : ðA1Þ

If a factorial has a negative argument, then it diverges to
infinity,7 which occurs in the denominator for m > k,

making the binomial coefficient vanish. At the same time,
the hypergeometric function can be written as

2F1ð−m; b; c; zÞ ¼
Xm
n¼0

ð−mÞnðbÞn
ðcÞnn!

zn ðA2Þ

for m a positive integer [70]. Here, we have used
Pochhammer’s symbol ðaÞn ¼ aðaþ 1Þ � � � ðaþ n − 1Þ.
For negative a ¼ −m, this symbol can be written as

ð−mÞn ¼ ð−1Þn m!

ðm − nÞ! ðA3Þ

for 0 ≤ n ≤ m [70], which is always the case in Eq. (A2).
Given this, we can expand the hypergeometric function by
substituting in our arguments b ¼ k and c ¼ k −mþ 1
and simplifying, to obtain

ð−mÞnðbÞn
ðcÞn

¼ m!ðk −mÞ!
ðk − 1Þ!

ð−1Þnðkþ n − 1Þ!
ðk −mþ nÞ!ðm − nÞ! : ðA4Þ

Here, we see that the hypergeometric function can diverge
due to the factorial of k −m. However, the whole first
fraction can be factored out of the sum and the divergence is
then canceled out precisely by the denominator of Eq. (A1).
Together, the binomial coefficient and the hypergeometric
function yield the regular polynomial�

k − 1

k −m

�
2F1ð−m; k; k −mþ 1; zÞ

¼ m
Xm
n¼0

ð−1Þnðkþ n − 1Þ!
ðk −mþ nÞ!ðm − nÞ!n! z

n: ðA5Þ

The denominator will still diverge when m > k, but this
will occur only for terms in the series where n < m − k,
simply making them vanish. Inserting z ¼ β2 into the above
equation yields Eq. (55).

APPENDIX B: OBTAINING THE INITIAL PN
PARAMETER FROM THE TIME OF MERGER

To determine the initial value of the PN parameter y0 ¼
yðt0Þ (akin to determining the initial orbital frequency)
given the total time of inspiral tf , one can consider the
leading-order evolution of y from the first term a0 of
Eq. (16a). This reveals that its evolution is coupled to that
of e and depends on the value of η. Thus, obtaining y0 from
tf is nontrivial if the evolution of e is not ignored. Obtaining
tf given y0 and e0, however, was explored in Ref. [71]. In
that study, using the leading-order evolution equations with
no spin effects, a fitting function Tfit for the time of inspiral
was obtained as a function of the initial eccentricity and the
nondimensional semilatus rectum x ¼ 1=y2. This fit was
found to be accurate within 2% of the true time of inspiral
for e ≤ 0.999. The fitting function Tfit is

7Recall that n! ¼ Γðnþ 1Þ, where the gamma function ΓðxÞ
can be analytically continued to nonpositive x and has simple
poles at integers x ¼ 0;−1;−2;….
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Tfit=M¼ 5

256η
ðx40−xðtfÞ4Þ

�
1þ8ð1−e20Þ

x0

�
Gðe0Þ; ðB1Þ

where Gðe0Þ is a function of the initial eccentricity e0. Thus,
we rewrite Tfit as a quintic polynomial in x0 and define

tf ¼ Tfit. The end of the inspiral is characterized by the
innermost stable circular orbit when xðtfÞ ¼ 6. Taking
our initial conditions listed in Sec. IV B, we solve the
polynomial for x0 using the GSL function gsl_poly_
complex_solve and thus obtain y0 ¼ y0ðtf ; e0; ηÞ for
our systems of interest.
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