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Nonperturbative contributions of the Euclidean path integral are important to understand the information
loss paradox. In this paper, we revisit the Yang-Mills instantons in the Einstein-Yang-Mills theory.
There exists a globally regular solution that is known as the Bartnik-McKinnon solution and a black hole
solution. The regular and the black hole solutions are smoothly connected in the small horizon limit. Their
Euclidean action is solely characterized by the ADM mass, and the transition probability follows the usual
Bekenstein-Hawking entropy formula. Therefore, the Yang-Mills instantons provide a nonperturbative
channel to the black hole evaporation, which competes effectively with perturbative processes, and
becomes dominant toward the end of evaporation. We show that these instantons provide a smooth
transition mechanism from a black hole to regular spacetime.
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I. INTRODUCTION

The evaporation of black holes is a consequence of
general relativity and quantum mechanics [1]. It poses,
however, a serious challenge about the consistency between
these two fundamental theories since it appears to imply the
violation of unitarity. In other words, a consistent descrip-
tion of an evaporating black hole demands the reconcilia-
tion of the tension between general relativity and unitary
quantum mechanics [2]. Recently, many important and
interesting solutions are reported in the literature [3]. The
common features of them indicate that the following two
conditions are required to explain the unitarity of black hole
evaporation [4]:
(1) Multihistory condition: One must take account of the

contribution of different semi-classical histories to
the wave function of the system, which include

information-preserving histories, i.e., geometries
without event horizons.

(2) Late-time dominance condition: The contribution of
information-preserving histories should dominate
the wave function at the late time of the black hole
evaporation.

If these two conditions are realized, the unitary evolution of
the black hole system is automatically guaranteed, and one
can consistently derive the Page curve [5] for the entangle-
ment entropy [4].
Although the above two conditions look conceptually

simple, they are practically highly nontrivial to realize.
First, one needs a formulation that is naturally endowed
with the multihistory condition, which includes information-
preserving histories. One possibility is to take account of
replica wormholes [3]. In this case, the two conditions seem
realizable by including replica wormhole configurations
in the path integral. However, since the computations of
replica wormholes are based on the density matrix instead
of the wave function, it is unclear whether they can be
embedded in the canonical path integral formalism.
An alternative is to develop a method to compute the
contribution of trivial geometries, i.e., those with neither
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horizon nor singularity, in the evolution of the system [6].
In this case, a crucial issue is to exhibit the late-time
dominance condition. In our recent papers [4], we showed
that the probability of tunneling toward trivial geometries
will dominate as the black hole approaches the endpoint of
evaporation, and hence, the late-time condition is realized,
under the assumption that instantons that mediate tunneling
from the black hole geometry to a trivial geometry exist in
general. A price to pay was the modification of the Page
curve in such a way that it no longer respects the
Bekenstein-Hawking entropy bound [7].
It is fair to say that, at this moment, the final answer is

not yet in sight. It is clear, however, that there is more to
be learned about nonperturbative tunneling channels that
may contribute to the black hole evaporation. In this paper,
we take the second, canonical wave function approach, and
discuss nonperturbative tunneling channels in the Einstein-
Yang-Mills (EYM) theory, with the attempt to shed some
lights on the important issue of information loss paradox.
An example of a nonperturbative tunneling channel was

discussed under the thin-shell approximation, namely, a
matter field that allows for a thin spherical shell configu-
ration [8]. This is a nice example of nonperturbative
tunneling channels to trivial geometries, but it is valid
only under the assumption of a highly tuned potential, and
hence, the generality is lost. Another interesting example is
to consider a black hole plus free scalar field instantons [9],
where the Hawking radiation is described as tunneling
mediated by these instantons in the small back-reaction
limit.1 However, while we should be able to consistently
describe not only the perturbative Hawking radiation but
also the nonperturbative tunneling to trivial geometries,
explicit construction of these instantons that includes
backreaction remains a technical challenge, as one has to
deal with the space-time dependent dynamics of non-
perturbative complex-valued instantons.
In this context, it is of great interest if there exists a fully

nonlinear instanton solution that can describe the non-
perturbative tunneling of a black hole to a trivial geometry.
In this paper, with this point of view in mind, we revisit the
EYM instantons in the light of the black hole evaporation.
Since Yang-Mills (YM) fields surely exist in nature, such
instanton solutions are expected to make an important
contribution to black hole evaporation.
It has been shown that there are no globally regular

solutions in the pure YM field [11–13]. However, Bartnik
and McKinnon discovered that regular and asymptotically
flat solutions exist once gravity is taken into account, that
is, in EYM theory [14]. Subsequently, a black hole solution
with a nontrivial YM field configuration was also con-
structed [15–17]. These two solutions are connected

smoothly in the small horizon limit. Furthermore, they
possess infinite sequences of solutions, which can be
labeled as k to represent the higher nodes for the excitation
of the gauge field and approach the extremal Reissner-
Nordstrom black hole for k → ∞. It is important to mention
that they are unstable against linear or nonlinear perturba-
tions [18–28]. For a more detailed review, see, e.g., Galtsov
and Volkov [29]. Thus, they will eventually decay into
particles and radiation.
The fact that they are actually saddle points of the

Euclidean action was pointed out by Moss and Wray [30],
which implies that they can be legitimately regarded as
instantons that contribute to quantum tunneling. The
question is then whether they contribute to the black hole
evaporation. By computing the bounce action, we argue
that this is indeed the case. In particular, we conclude that
the regular Yang-Mills instantons (and their eventual decay
products) constitute part of the information-preserving
histories. We note that, from the point of view of the Page
curve, as these instantons somewhat enhance the probability
of trivial geometries relative to the black hole geometry, the
violation of the Bekenstein-Hawking bound is slightly eased,
though the modification will is significant only toward the
endpoint of evaporation.
This paper is organized as follows. In Sec. II, we discuss

our model and solutions of EYM theory. In Sec. III, we
evaluate the Euclidean action of the solutions; based on this
computation, we conclude that they indeed play the role of
instantons mediating the evaporation process, and they
contribute not only near the endpoint of the evaporation but
also in a large black hole background. Finally, in Sec. IV
and Sec. V, we discuss in light of the information loss
paradox and discuss possible future research directions.

II. MODEL

In this section, we review the Einstein-Yang-Mills
instantons and discuss their physical properties.

A. Einstein-Yang-Mills theory

We consider the Einstein-Yang-Mills (EYM) theory with
the SU(2) non-Abelian gauge group,

S ¼
Z �

R
16πG

−
1

2e2
TrðFμνFμνÞ

� ffiffiffiffiffiffi
−g

p
dx4; ð1Þ

where R is the Ricci scalar, e is the coupling constant of the
YM theory, and Fμν is the field strength for the non-Abelian
gauge field Aμ, which is defined as

Fμν ¼ ∇μAν −∇νAμ þ i½Aμ; Aν�; ð2Þ

Aμ ¼
1

2
τaAa

μ; ð3Þ

where τa is the Pauli matrices.

1The idea of describing the Hawking radiation as tunneling
seems quite old. See, e.g., [10]. We thank Ted Jacobson for letting
us know about this reference.
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Taking variations with respect to the metric gμν and the
non-Abelian gauge field Aμ yields the Einstein equation
and the Yang-Mills equation, respectively,

Rμν −
1

2
gμνR ¼ 2κ

e2
Tr

�
FμαFα

ν −
1

4
gμνFαβFαβ

�
; ð4Þ

∇μFμν þ i½Aμ; Fμν� ¼ 0; ð5Þ

where κ ¼ 8πG. In the following, we use the Planck units,
G ¼ 1, and set e ¼ 1. Note that the e → 0 limit corre-
sponds to the decoupling limit of the Yang-Mills field;
e ≫ 1 corresponds to the strong coupling limit, and e ≪ 1
corresponds to the weak coupling limit.
We employ a spherically symmetric ansatz for the

metric,

ds2 ¼ −
�
1 −

2mðrÞ
r

�
σðrÞdt2 þ dr2

1 − 2mðrÞ
r

þ r2ðdθ2 þ sin2 θdφ2Þ; ð6Þ

and a purely magnetic gauge field ðAt ¼ 0Þ with the
spherically symmetric property to construct the solutions
in the EYM theory,

Aμdxμ ¼
1 − wðrÞ

2
ðτφdθ − τθ sin θdφÞ; ð7Þ

wherem, σ, and w are the functions of r. The functionmðrÞ
is known as the Misner-Sharp mass [31], where it provides
the ADM mass M at the spatial infinity, i.e., mð∞Þ ¼ M.
The substitution of Eqs. (6) and (7) into the Einstein and

Yang-Mills equations yields the following ordinary differ-
ential equations (ODEs) for m, σ, and w:

m0 ¼ κ

2

�
1 −

2m
r

�
w02 þ κ

ðw2 − 1Þ2
4r2

; ð8Þ

σ0 ¼ 2κσ

r
w02; ð9Þ

w00 ¼ w0

2r3
�
1− 2m

r

� ðκðw2 − 1Þ2 − 4rmÞ þ wðw2 − 1Þ
r2
�
1− 2m

r

� : ð10Þ

B. Solutions

There exist two regular and asymptotically flat solutions
in the EYM theory. The first solution is known as the
Bartnik-Mckinnon (BM) solution that is entirely regular
and does not have a horizon at the center; the second
solution is a black hole with a nontrivial Yang-Mills hair
outside the event horizon. We need to solve the ODEs with
two different sets of boundary conditions in order to
construct them numerically.

To construct the BM solution numerically, we integrate
the ODEs from the origin (r ¼ 0) to infinity. All functions
have to be regular at the center (r ¼ 0). The requirement
that all functions have to be regular at the center (r ¼ 0) is
attained by requiring the functions to be finite and their
first-order derivatives vanish at r ¼ 0; thus, a series
expansion of a regular solution at r ¼ 0 takes the form,

mðrÞ ¼ κW2
2r

3 þ 4

5
κW3

2r
5 þOðr7Þ; ð11Þ

σðrÞ ¼ σ0 − 2κW2
2r

2 þOðr4Þ; ð12Þ

wðrÞ ¼ 1þW2r2 þ
1

10
W2

2ð3þ 4κW2Þr4 þOðr4Þ; ð13Þ

where σ0 and W2 are the values at the origin.
For the black hole solution, which we call the Yang-Mills

black hole (YMBH) solution, we integrate the ODEs from the
horizon rh to infinity. Like most BM solutions, all the func-
tions and their derivatives have to be regular at the horizon rh.
Imposing these regularity conditions, we also obtain a series
expansion of a regular solution at rh in the form,

mðrÞ ¼mh þ
κ

4r2h
ð1−W2

hÞ2ðr− rhÞ þOððr− rhÞ2Þ; ð14Þ

σðrÞ ¼ σh − κ
W̃2

1

rh
ðr − rhÞ þOððr − rhÞ2Þ; ð15Þ

wðrÞ ¼ Wh þ W̃1ðr − rhÞ þOððr − rhÞ2Þ; ð16Þ

where mh ¼ rh=2 is the Misner-Sharp mass at the horizon
(if there is no horizon, rh ¼ mh ¼ 0), σh and Wh are the
values at the horizon, and W̃1 is given by

W̃1 ¼
2rhWhð1 −W2

hÞ
κð1 −W2

hÞ2 − 2r2h
: ð17Þ

At infinity, both the YMBH solution and the BM
solution share the same asymptotic behavior by requiring
the metric functions to be asymptotically flat and the gauge
field is bounded to unity. Namely, both solutions have the
asymptotic behavior given by

mðrÞ ¼ M −
κw2

1

2r3
∓ κw2

1ð4w1 � 5MÞ
4r4

þO
�
1

r5

�
; ð18Þ

σðrÞ ¼ 1 −
κw2

1

2r4
∓ 6κw1ðw1 � 2MÞ

5r5
þO

�
1

r6

�
; ð19Þ

wðrÞ ¼ �1þ w1

r
� 3w1ðw1 � 2MÞ

4r2
þO

�
1

r3

�
; ð20Þ

where w1 is a constant determined by each solution.
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Note that there are three parameters at the center
(mh ¼ 0, σ0, and W̄2 for the BM solution; mh, σh, and Wh
for the black hole solution). The choice of mh determines
M, while the other two must be tuned so that σ → 1 and
w → �1 at infinity. Technically, as clear from Eq. (9), σ has
a constant rescaling degree of freedom. This is fixed by the
asymptotic value σð∞Þ ¼ 1, which consequently fixes
the value of σ0. Therefore, the only nontrivial parameter
is W2 for the BM solution or Wh for the YMBH solution,
which is to be determined by the condition wð∞Þ ¼ �1.
An interesting feature of the BM and the YMBH solu-
tions is that there exists a sequence of solutions, where
each solution has a different number of zeros of wðrÞ.
We call the solution with k nodes the kth node solution,
where k ¼ 1; 2; 3;….

1. Regular solutions: Bartnik-McKinnon model

Let us first review the profiles of the BM solutions for
mðrÞ, wðrÞ and σðrÞ with nodes k ¼ 1, 2, 3, 4, 5, in the
logarithmic scale of the radial coordinate r in Fig. 1.
Figures 1(a) and 1(b) show that the functions mðrÞ and
σðrÞ behave monotonically regardless of k. Since the BM

solution possesses infinite sequences of solutions, then the
number of zeros for wðrÞ increases when k increases as
shown in Fig. 1(c). Note that wðrÞ is bounded in between
�1. The ADM mass of BM solutions can be read directly
from Fig. 2(a). In the limit of k → ∞, w → 0 in the region
1 < r < rk, and the geometry there approaches the extremal
Reissner-Nordstrom black hole solution, with the asymptotic
ADM mass approaching a limiting value of the order of
∼MPl as shown in Fig. 2(a). Figure 2(b) shows the location
of the outermost zero for each BM solution. If we define the
outermost zero of the BM solution as its effective size, then
the size of the back hole increases exponentially when k
increases linearly, as shown in Fig. 2(c).
Note that, from the Einstein equations, Eq. (4), one

readily sees that the effect of e ≠ 1 is to replace κ by κ=e2.
Then an inspection of Eqs. (8)–(10) tells us that the solution
can be obtained by the rescaling [14],

meðrÞ ¼
1

e
m1ðerÞ; ð21Þ

where me is the solution for an arbitrary e and m1 is the
solution for e ¼ 1. Since m1ð∞Þ ≃MPl, the ADM mass of
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FIG. 1. The profiles of the functions (a) mðrÞ, (b) lnðσÞ, and (c) wðrÞ, describing the BM solutions with k nodes (k ¼ 1, 2, 3, 4, 5) in
the logarithmic scale of radial coordinate r.
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the solution increases as e decreases. One can easily notice
that, as e goes to zero, the size of the solution increases,
and accordingly, the mass approaches infinity. Oppositely,
if e goes to infinity, the size and the mass of the solution
become zero.

2. Black holes in Einstein-Yang-Mills theory

Similar to the case of the BM solutions, the black holes
also possess an infinite sequence of solutions. Figure 3
shows the profiles of the YMBH solutions with nodes
k ¼ 1, 2, 3, 4, 5, respectively, for rh ¼ 1 in the logarithmic
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FIG. 2. Properties of the BM solution: (a) the ADM mass Mk and (b) the location rmax
k of the outermost zero as a function of k.
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(c) wðrÞ.
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scale of the radial coordinate r. The similarity also holds
for the behaviors of the functions mðrÞ, σðrÞ, and
wðrÞ. Figures 3(a) and 3(b) show that mðrÞ and σðrÞ
behave monotonically regardless of k, and Fig. 3(c)
shows that wðrÞ is bounded in between �1 and the number
of zeros for wðrÞ increases as k increases. The ADM
mass of the black hole solutions can be read off from
Fig. 3(a).
In Fig. 4, we show the properties of these infinite

sequences of solutions. Figure 4(a) shows the ADM mass
as a function of k in the case of rh ¼ 1. Figure 4(b) shows
the locations of the outermost zero of w, which increases
exponentially with k. Figure 4(c) exhibits the ADM mass
by varying the radius of horizon rh for the solutions with
nodes k ¼ 1, 2, 3, 4. In the limit k → ∞, the solution also
approaches the extremal Reissner-Nordstrom black hole.
The difference is that we may have an arbitrary large black
hole by choosing an arbitrarily large Misner-Sharp mass at
the horizon mh. Hence, the ADM mass approaches the
Misner-Sharp mass in the large mass limit, M ∼mh as
shown in Fig. 4(c).

III. APPLICATIONS FOR EVAPORATION

In this section, regarding the BM and YMBH solutions
as instantons, we compute their Euclidean actions. As they
are static, the Euclidean solutions are easily obtained by the
Wick rotation of the time coordinate. The periodicity in the
Euclidean time is arbitrary in the case of the BM solutions,
while it is fixed by the Misner-Sharp mass in the case of the
black hole solutions.
To describe the process of the initial black hole tunneling

to a BM or YMBH solution, we consider the analytic
continuations from Lorentzian to Euclidean geometries and
vice versa, as illustrated in Fig. 5. The lower part of Fig. 5
describes the initial Lorentzian Schwarzschild black hole
and its analytic continuation to a Euclidean Schwarzschild
spacetime. It is joined to the instantons in the Euclidean
spacetime, and analytically continued back to the
Lorentzian geometry as illustrated in the upper part of
Fig. 5. We note that since there is neither horizon nor
singularity in the BM solution, which is topologically
equivalent to that of Minkowski, there is only a single
asymptotic infinity. In order to compute the tunneling
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k Þ, as a function

of k, for rh ¼ 1. (c) The mass M versus the horizon radius rh for k ¼ 1, 2, 3, 4 in a log-log plot.
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probability, following the standard procedure, we evaluate
the Euclidean actions of the two Euclidean geometries and
subtract each other.

A. Euclidean action

The Euclidean action is

SE ¼
Z
M

�
−

R
16π

þ 1

2
TrðFμνFμνÞ

� ffiffiffiffiffiffiþg
p

dx4

−
1

8π

Z
∂M

ðK − K0Þ
ffiffiffiffiffiffiffiþh

p
d3x; ð22Þ

where K and K0 in the second term are the Gibbons-
Hawking boundary term of the solution and the Minkowski
background, respectively.
Let us first focus on the gravity sector. If the Euclidean

time period β is arbitrary, there exists a conical singularity
at the event horizon in general. To regularize the conical
singularity, we cut a ball B near the event horizon and
compute the Euclidean action as follows [32] (we will
consider the limit of the radius of ∂B as rh):

−
1

16π

Z
M−B

R
ffiffiffiffiffiffiþg

p
dx4 −

1

8π

Z
r→∞

ðK − K0Þ
ffiffiffiffiffiffiffiþh

p
d3x

þ 1

8π

Z
∂B

K
ffiffiffiffiffiffiffiþh

p
d3xþ IE; ð23Þ

where

IE ¼ −
1

16π

Z
B
R

ffiffiffiffiffiffiþg
p

dx4 −
1

8π

Z
∂B

K
ffiffiffiffiffiffiffiþh

p
d3x: ð24Þ

From [32], without loss of generality, we obtain

IE ¼ −πr2h: ð25Þ

In addition, the contribution from the Gibbons-Hawking
boundary term at infinity, which is the same as that in the
Schwarzschild black hole case, is given by

−
1

8π

Z
r→∞

ðK − K0Þ
ffiffiffiffiffiffiffiþh

p
d3x ¼ β

M
2
: ð26Þ

The Ricci scalar term is, after the integration by parts,

Z �
−

R
16π

� ffiffiffiffiffiffiþg
p

dx4 ¼ 4πβ

Z
∞

rh

dr
ffiffiffi
σ

p �
−
2

κ
m0

�
þ β

4

�
ð2m − 2rm0Þ ffiffiffi

σ
p þ ðr − 2mÞr σ0ffiffiffi

σ
p

�				
∞

rh

: ð27Þ

Note that the asymptotic behavior of the solution, Eqs. (18) and (19), requires σ → 1, σ0 ¼ Oðr−5Þ and m0 ¼ Oðr−4Þ at
infinity; hence, the boundary term at r → ∞ in Eq. (27) will be βM=2. On the other hand, the boundary term at rh in
Eq. (27) will be canceled by the boundary term of ∂B in Eq. (23).
Therefore, as we sum up all results, we obtain

−
1

16π

Z
M−B

R
ffiffiffiffiffiffiþg

p
dx4 −

1

8π

Z
r→∞

ðK − K0Þ
ffiffiffiffiffiffiffiþh

p
d3xþ 1

8π

Z
∂B

K
ffiffiffiffiffiffiffiþh

p
d3xþ IE ¼ 4πβ

Z
∞

rh

dr
ffiffiffi
σ

p �
−
2

κ
m0

�
þ βM − πr2h:

ð28Þ

FIG. 5. Schematic diagram of the quantum transition from a
black hole to a regular Yang-Mills solution. The red dotted line in
the lower figure is the hypersurface through which the Lorentzian
black hole is analytically continued to the Euclidean solution.
The red dotted lines of the upper figure is the hypersurface
through which the Euclidean BM solution is analytically con-
tinued to its Lorentzian counterpart. The hypersurfaces τ ¼ 0 and
τ ¼ τ0 are to be identified, with τ0 being equal to the inverse
black hole temperature β.

YANG-MILLS INSTANTONS AS THE ENDPOINT OF BLACK … PHYS. REV. D 110, 044043 (2024)

044043-7



The Yang-Mills term is

Z �
1

2
TrðFμνFμνÞ

� ffiffiffiffiffiffiþg
p

dx4

¼ 4πβ

Z
∞

rh

dr
ffiffiffi
σ

p �ð1 − w2Þ2
2r2

þ
�
1 −

2m
r

�
w02

�

¼ 4πβ

Z
∞

rh

dr
ffiffiffi
σ

p �
2

κ
m0

�
; ð29Þ

where we have used Eq. (9) form0 to obtain the second line.
Adding Eqs. (28) and (29), we obtain

SE ¼ βM − πr2h: ð30Þ

Now this has a natural thermodynamic interpretation.
Namely, since the second term may be expressed as
S ¼ 4πm2

h, which is the entropy of the black hole at the
center, we have TSE ¼ M − TS, which is the free energy of
the black hole.

B. Interpretation

1. Large black holes

If one considers the Hawking radiation from a
Schwarzschild black hole as tunneling mediated by the
above instanton, we should take β ¼ 8πM, where M is the
total energy of the system that remains the same before
and after the tunneling. In this case, since the horizon
mass is mh ¼ M − ω, where ω is the energy carried out as
Hawking radiation, there appears a cusp at the horizon.
However, by using the regularization method [32], one can
compute the correction due to the cusp, and the difference
between the final and initial Euclidean actions is found to
be given exactly by the difference between the initial and
final horizon surface areas [30],

B≡ SEðM − ωÞ − SEðMÞ ¼ ΔA
4

¼ 4πðM2 − ðM − ωÞ2Þ
≃ 8πMω ¼ βω; ð31Þ

where we assumed ω ≪ M.
Here, a comment is in order. Since there exist infinitely

many solutions for a given M with increasing size rk
(k ¼ 1; 2; 3: � � �), one should sum over all the contributions.
Let us define ωk ¼ M −mh;k. As ωk approaches a constant
in the limit k → ∞, as discussed in Sec. II, one might
worry that these infinitely many solutions would lead to a
divergent contribution to the probability, whereas we have
only considered the leading order WKB action so far. The
contribution from the next WKB order is commonly
interpreted as the prefactor A of the tunneling rate, that is,

Γ ≃ Ae−B: ð32Þ

It is known in general that A has the volume dependence [33],
which is proportional to the energy divided by the volume
(see also [34], where A is inversely proportional to the
fourth power of the instanton size). Therefore, although we
do not explicitly compute the prefactor here, as it is beyond
the scope of the present paper, it is reasonable to expect
that the prefactor Ak for the k-node solution will provide a
large additional suppression factor ∼V−1

k ¼ r−3k , since the
volume is exponentially large, Vk ∝ eCk, whereC ¼ Oð10Þ
[see Fig. 2(b)].
To summarize, the dominant contribution comes only

from small k’s, and hence, we obtain

Γbh→sol ≃ e−βω ð33Þ

as we expected.

2. Final stage of black hole evaporation

The contribution of the regular BM solutions to the
evaporation of a black hole of massM should be important
only when M ≃Mk, based on mass conservation. Since
Mk ¼ OðMPlÞ for any k, they play an important role only
near the end of the evaporation, that is, only for Planck-
mass scale black holes. Note that since the mass of the BM
solution scales as 1=e, where e is the gauge coupling
constant as given in Eq. (21), it could be much heavier than
the Planck mass if e ≪ 1. However, we expect e ∼ 0.1 as a
typical value in the standard model. Thus, it is expected that
the mass is somewhat larger than the Planck mass, but not
extremely larger.
The tunneling rate due to the k-node solution is then

approximately,

Γk ≃ e−βMkþ4πM2 ¼ e−4πM
2
k ; ð34Þ

when M ¼ Mk. If all k’s would contribute equally, this
would mean a catastrophic end of evaporation when the
black hole mass becomes equal to that of the BM solution
with asymptotically large k. However, repeating the same
argument as the one in the previous subsection, we do not
expect this to happen. Still, we expect that the regular BM
solutions may have a mild influence on the evaporation at
the final stage, by contributing a few additional evaporating
channels. In any case, as the black hole mass approaches
the Planck scale, the semiclassical approximation would
break down. It is therefore premature to draw any definitive
conclusion.
The final question is, what happens after the tunneling?

The instability of the Yang-Mills instantons is known in the
literature [18]. On the other hand, it is important to note that
the Bartnik-McKinnon solution is a natural generalization
of the sphalerons [23]. It is therefore reasonable to expect
that after they are formed, they would decay into particles.
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The decay of these instantons may contribute to the baryon
number violation.

IV. IMPLICATIONS TO THE INFORMATION
LOSS PROBLEM

In order to explain the unitary of the Page curve, let us
recall the following two ansatz [4]:
(1) Multihistory condition: For the entire path integral,

there must be contributions from various semi-
classical histories, some of which are information-
preserving.

(2) Late-time dominance condition: The contribution
from the information-preserving histories should
dominate at the late time of the black hole evapo-
ration.

For simplicity, let us assume that there are only two
semiclassical histories; one is the information-losing his-
tory, in which the black hole evaporates and vanishes in the
end, and the information-preserving history, in which the
black hole tunnels to a trivial geometry mediated by an
instanton. Let p1ðtÞ be the probability of the information-
losing history, which is a function of time, and p2ðtÞ be the
probability of the information-preserving history, where
p1 þ p2 ¼ 1 at each instant of time.
Now consider the entanglement entropy by separating

the system into two: the regions inside and outside the
black hole. It is natural to expect that S1 monotonically
increases. Namely, if S0 ¼ 4πM2

0 is the initial Bekenstein-
Hawking entropy of the black hole and S ¼ 4πM2 is the
Bekenstein-Hawking entropy at some later time, we may
assume

S1ðSÞ ¼ S0 − S; ð35Þ

as long as the Hawking radiation produces maximally entan-
gled pairs [35]. On the other hand, for the information-
preserving history, in which there is neither horizon nor
singularity, we have

S2ðSÞ ¼ 0: ð36Þ
Then the expectation value of the entanglement entropy of
the entire system is given by

S ¼ p1S1 þ p2S2 ¼ p1ðS0 − SÞ: ð37Þ

It is clear that the entanglement entropy increases at the
early stage of the evaporation when p1ðtÞ ≈ 1, while it
decreases to zero toward the end of evaporation as p1ðtÞ ¼
1 − p2ðtÞ → 0 by assumption. This explains the unitary
Page curve. The technical justification of this process is
discussed in [4].
Then the next question is: what happens if we include

additional nonperturbative contributions like those dis-
cussed in this paper? Note that p2 will dominate near

the Planck scale. If multiple instantons contribute to the
tunneling toward trivial geometries, it is quite reasonable
to expect that the probability for p2 would be enhanced.
This would then render the dominance of information-
preserving histories to shift toward an earlier time. Namely,
for a given black hole mass, the probability of tunneling to a
trivial geometry should be higher with multiple instantons
than without. Consequently, the Page time, at which the
expectation value of the entanglement entropy starts to
decrease, may appear earlier than the case without such
nonperturbative channels.
One may ask whether we can still trust our original

Euclidean action even at the Planck scale. Although it is fair
to say that we do not know the exact action at the Planck
scale, we can surely say that the drastic change of the
entanglement entropy will be observed before the Planck
scale, because the size of the black hole at the Page time can
be semiclassical after detailed computations [4]. Therefore,
we can believe that the effectiveness of the contributions of
BM solutions is definitely robust.

V. CONCLUSION

In this paper, we presented an alternative interpretation
of the known static Einstein-Yang-Mills solutions as
instantons that may contribute to the black hole evapora-
tion. There are two classes of solutions: One is the globally
regular Bartnik-Mckinnon (BM) solutions, and the other is
the Yang-Mills black holes (YMBHs) that have black holes
at the center. The YMBH solutions smoothly reduce to the
BM solutions in the limit of vanishing horizon radius. It is
known that there exists an infinite number of solutions,
characterized by the number of nodes in the gauge field.
However, we gave a reasonable argument that only the
solutions with zero node would make a dominant contri-
bution to the evaporation.
Both BM and YMBH solutions have no gauge charges.

They are characterized solely by their ADM mass at spatial
infinity. Hence, their Euclidean actions agree with the usual
entropy formula without conserved charges. This allows
us to regard these solutions as instantons that provide a
nonperturbative channel to the black hole evaporation, that
can compete with perturbative processes at late time.
Furthermore, when the mass of an evaporating black hole
becomes equal to that of the BM solution, it will provide a
smooth transition mechanism from the black hole geometry
to a regular spacetime.
To conclude, let us emphasize again the importance of

nonperturbative instantons. To demonstrate our point, we
focused on the SUð2Þ gauge theory in this paper, knowing
that there should exist more diverse solutions from larger
fundamental gauge symmetries. In general, there can be
diverging contributions in the effective field theory frame-
work [36]. If we include nonperturbative solutions from
the contributions, this will provide interesting phenom-
enology to the black hole evaporation. Even though
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we still retain the conclusion that the Bekenstein-Hawking
entropy bound should be violated in our description, the
violation is tamed when nonperturbative solutions are
considered as the black hole mass approaches the Planck
scale. We will continue to investigate such nonperturbative
instantons.
In this paper, we assumed that the BM solution con-

tributes as a single instanton. However, in principle, the
contribution to the multiple instantons can be a very
interesting and important topic. Especially, one can ask
whether the multiple instanton effect can be negligible or
can be even dominated. If the latter is the case, this will
drastically change the shape of the entanglement entropy
curve. This subject goes beyond the scope of this paper, but
we leave this as an important future research topic.
Finally, let us mention that there may be instantons that

violate global symmetries, such as the baryon number. The
implications of the global charge violation, not only in
terms of Euclidean quantum gravity but also in terms of

particle physics and cosmology, must be an interesting
future research topic. In addition, if the BM solutions
change the aspects of black hole evaporation, this may be
related to cosmological issues, especially relating to pri-
mordial black holes [37]. We leave this interesting topic for
future investigations.
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