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In this paper, we consider a well-established magnetic Penrose process (MPP) and bring out its impact on
the efficiency of energy extraction from higher dimensional (i.e., D > 4) black holes. We derive the field
equations of motion and determine the expressions for the energy efficiency of energy extraction for the case
of higher dimensional black holes.We also examine the efficiency of energy extraction from black holes with
(n − 1) and n rotations. We demonstrate that black holes with (n − 1) rotations has only one horizon,
resulting in infinitely large energy efficiency even without MPP. On the other hand, for black holes with n
rotations in D > 4, the energy efficiency is not infinitely large, but the efficiency can be significantly
enhanced byMPP. This enhancement allows for arbitrarily large energy efficiency.We find that the efficiency
of energy extraction can exceed 100% for D ¼ 5, 6 and D ¼ 7, 8 dimensions. Interestingly, for rotation
parameters near the extremal value, the energy efficiency remains above 100% in D ¼ 7, 8 compared to
D ¼ 5, 6. MPP can eventually make higher dimensional black holes more efficient even with n rotations.
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I. INTRODUCTION

Black holes are believed to form as a consequence of the
gravitational collapse of massive stars, and their existence
is regarded as a generic result of Einstein’s general theory
of relativity. Thus, they have so far been regarded as the
most fascinating compact objects due to their remarkable
nature and aspects. However, black holes had been con-
sidered candidates due to the absence of direct detection.
After the detection of gravitational waves as a consequence
of two black hole mergers [1,2] and the first image of the
supermassive black hole located in the center of the galaxy
M87 by BlackHoleCam and the Event Horizon Telescope
(EHT) Collaborations [3,4], these modern observations
opened up new avenues to verify the existence of black
holes in nature and to provide potential explanations for
some high energy x-ray sources [5], active galactic nuclei
(AGNs) [6], and gamma-ray bursts [7] that give rise to an
enormous amount of released energy in general relativity.
Also, these observations can be considered as direct tests to

probe the remarkable nature of their geometry in the close
vicinity of the black hole horizon as well as highly
energetic astrophysical events associated with energies of
the order of 1042–1047 erg=s [8–10]. Therefore, astrophysi-
cal black holes have been considered as sources of highly
energetic astrophysical phenomena and as key points in
explaining these extremely powerful events [11–15].
Energy extraction mechanisms come into play and become
increasingly important in explaining these highly energetic
powerful astrophysical phenomena by extracting the rota-
tional energy from rapidly rotating black holes.
The Penrose process (PP) [16] for the energy extraction

mechanism was proposed as a potential explanation for
highly energetic astrophysical events around black holes.
Penrose formulated this process theoretically and showed
that it is possible to extract the rotational energy of a rapidly
rotating black hole. This was formulated by taking advan-
tage of the ergosphere, which exists in the region between
the black hole’s horizon and the static limit that is bounded
by the surface from the outside. To extract the energy from
the black hole, there must exist an ergosphere where an
infalling particle splits into two pieces so that one falls into
the black hole, while the other escapes to infinity with
larger energy than the original one. With this, the energy of
the escaping particle can be extracted from the black hole,
thus resulting in the black hole slowing down. However,
there are limitations to the Penrose process, such as the low
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cross section, which makes it difficult to extract more
energy from the black hole. Bardeen et al. [17] and later
Wald [18] independently showed that for PP to be efficient,
the original incident particle or relative velocity of the two
splitting pieces has to be relativistic. Otherwise, the energy
extraction can never be larger. Despite these limitations, the
Penrose process has been considered and extended to a
large variety of contexts, including Kerr-Newman Taub-
NUT spacetime [19], rotating regular black holes [20],
collisional Penrose process with spinning particles [21],
and axially symmetric magnetized Reissner-Nordström
black holes [22].
It is worth noting, however, that PP has since been

considered highly theoretical and not directly observed.
There can exist extreme conditions in the surrounding
environment of rotating black holes that make the process
complicated to analyze in detail. Therefore, this mechanism
may not provide valuable insights into the behavior of
black holes associated with the source of highly energetic
astrophysical phenomena in the universe. In this context,
the original PP may not be efficient enough to address the
most powerful energy sources, such as the outflows coming
out from active galactic nuclei and highly energetic quasars
in the universe. Later, in 1985 Wagh et al. [23] reformu-
lated the original PP and proposed a new mechanism as the
magnetic Penrose process (MPP). In this process, the weak
magnetic field existing in the close environment surround-
ing a black hole plays a crucial role in providing the energy
required for an escaping particle to ride on a negative
energy orbit, allowing it to overcome the constraint velocity
of the original Penrose process. The magnetic Penrose
process is analogous to the Blandford-Znajeck mecha-
nism [24], which utilizes the electromagnetic processes
to extract the rotational energy of a rotating Kerr black hole.
This addresses the impact of a purely magnetic field on the
released energy from AGNs (see, for example, [25]). The
magnetic Penrose process [23,26] has been considered an
efficient mechanism for demonstrating the effect of a purely
magnetic field on the energy extraction process over the
years (see, for example, [22,27–33]). It should also be
noted that other theoretical explanations for highly ener-
getic objects have been proposed, such as magnetic
reconnection [34] and superradiance processes [35], lead-
ing to energy extraction from black holes. This has also
sparked increased research activity, with various authors
investigating these processes in different scenarios [36–44].
As mentioned, black holes are very fascinating gravita-

tional objects in the universe. There is also an interesting
solution that describes axially symmetric five-dimensional
black hole spacetime in the supergravity of the Einstein-
Maxwell equation [45]. An interesting point to note is that a
rotating black hole in higher dimensions (D > 4) would
have more than one rotation axis [46]. Therefore, five-
or six-dimensional black holes can have two rotation
parameters with the two axes. Following [45,46], there

are investigations in which the energetic properties of
a higher dimensional rotating/charged black hole were
demonstrated in Ref. [47], addressing the energy extrac-
tion process. This was all done in the absence of a mag-
netic field in the environment surrounding the black hole.
There is also an extensive analysis that has been done
regarding the linear and nonlinear accretion process
for higher dimensional Myers-Perry (MP) rotating black
holes [48–51].
In this paper, we investigate higher dimensional MP

rotating black holes in the presence of an external magnetic
field. We explore MPP for black holes with (n − 1) and n
rotations in odd D ¼ 2nþ 1 and even D ¼ 2nþ 2 dimen-
sions, based on the spacetime geometry introduced by
Myers and Perry [46]. The point to be noted is that rotation
in higher dimensions (D > 4) has two aspects: more than
one rotation and the other through (n − 1) and n rotations
with various horizon structures. This is a remarkable and
distinguishing feature of these higher dimensional black
holes, which does not exist in the D ¼ 4 dimensional
analog. The main objective of this study is to analyze
the efficiency of energy extraction in these scenarios and
generalize all higher dimensional black holes with (n − 1)
and n rotation cases, highlighting the impact of the MPP
and providing valuable insights into their energetic proper-
ties. We find that the energy extraction efficiency is
significantly different for black holes with (n − 1) rotations
compared to those with n rotations. Surprisingly, black
holes with even PP exhibit a higher efficiency in extracting
rotational energy compared to those with n rotations.
However, we demonstrate that it is still possible for black
holes with n rotations to efficiently extract their rotational
energy using MPP.
The paper is organized as follows: In Sec. II, we discuss

higher dimensional (D > 4) MP rotating black hole space-
time, which can be further used to formulate MPP in both
odd and even dimensions. In Sec. III, we proceed to review
the magnetic field and charged particle dynamics in the
close surrounding environment of the MP black hole. In
Sec. IV, we consider MPP and derive its energy efficiency
expressions for higher dimensional MP black holes
together with the magnetic field part in odd D ¼ 2nþ 1
and evenD ¼ 2nþ 2 dimensions. In Sec. V, we discuss the
efficiency of energy extraction from black holes with
(n − 1) and n rotations and analyze its results together
with further comparisons in the given D > 4 dimension.
Finally, we end up with a conclusion in Sec. VI.
Throughout we use the following system of units in which
G ¼ c ¼ 1.

II. HIGHER DIMENSIONAL MYERS-PERRY
BLACK HOLE SPACETIME

The metric describing the well-known higher dimen-
sional MP rotating black holes in Boyer-Lindquist coor-
dinates is given by [46]
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ds2 ¼ −dt2 þ r2dβ2 þ
Xn
i¼1

ðr2 þ a2i Þðdμ2i þ μ2i dϕ
2
i Þ

þ μr
ΠF

�
dtþ

Xn
i¼1

aiμ2i dϕi

�
2

þ ΠF
Δ

dr2; ð1Þ

with

F ¼ 1 −
Xn
i¼1

a2i μ
2
i

r2 þ a2i
; ð2Þ

Π ¼
Yn
i¼1

ðr2 þ a2i Þ; ð3Þ

Δ ¼ Π − μr2n−Dþ3; ð4Þ

where μ and ai refer to black hole mass and rotation para-
meters, respectively, while n ¼ ½ðD − 1Þ=2�; ½ðD − 2Þ=2�
to the maximum number of rotations the black hole can
have in given D ¼ 2nþ 1; 2nþ 2 dimensions. Here, μi
and β for D ¼ 2nþ 2; 2nþ 1 are given by the following
relations [52]:

Xn
i¼1

μ2i þ β2 ¼ 1; ð5Þ

Xn
i¼1

μ2i ¼ 1: ð6Þ

It should be noted here that Eq. (6) and the metric for
D ¼ 2nþ 1 are always satisfied in the limit of β ¼ 0. To be
more informative, we define μi and β by the following
expressions with the direction cosines; i.e., for D ¼ 2nþ 2

8>>>>>><
>>>>>>:

μ1 ¼ sin θ1
μ2 ¼ cos θ1 sin θ2
………

μn ¼ cos θ1 cos θ2 � � � sin θn
β ¼ cos θ1 cos θ2 � � � cos θn;

ð7Þ

and D ¼ 2nþ 1

8>>>>>><
>>>>>>:

μ1 ¼ sin θ1
μ2 ¼ cos θ1
………

μn−1 ¼ cos θ1 cos θ2 � � � sin θn−1
μn ¼ cos θ1 cos θ2 � � � cos θn−1:

ð8Þ

For example, μi and β for D ¼ 5, 6 dimensions take the
following forms as

μ1 ¼ sin θ1 and μ2 ¼ cos θ1 ð9Þ

and

μ1 ¼ sinθ1; μ2 ¼ cosθ1 sinθ2; and β ¼ cosθ1 cosθ2:

ð10Þ

The horizon equation is given by

Δ ¼ Π − μr2n−Dþ3 ¼ 0; ð11Þ

which solves to give the black hole horizon in odd
D ¼ 2nþ 1 and even D ¼ 2nþ 2 dimensions, depending
on the number n of rotation parameters, which will be
further discussed (see, for example, [49,53,54]). It is to be
emphasized that the black hole can be endowed with
more rotations n ¼ ½ðD − 1Þ=2�; ½ðD − 2Þ=2� in higher
D¼2nþ1;2nþ2 dimensions; e.g., n¼2, 3 for D¼5, 6
and D ¼ 7, 8 dimensions, respectively.
Another interesting point to be noted is that, due to

stationary and axial symmetry the higher dimensional MP
rotating black hole can permit having more than two
Killing vectors [46], i.e.,

ξðtÞ ¼
∂

∂t
; ξðϕ1Þ ¼

∂

∂ϕ1

;…; ξðϕnÞ ¼
∂

∂ϕn
: ð12Þ

This is an interesting aspect of all higher dimensional MP
black holes. It is to be emphasized that, for example, in
D ¼ 5, 6 dimensions there exist three Killing vectors, i.e.,
ξðtÞ represents a stationary, while the other two ξðϕ1Þ and
ξðϕ2Þ exhibit an axisymmetry ofD ¼ 5, 6 dimensional black
hole spacetime. There does therefore exist three of the
conserved quantities correspondingly, such as the energy
and two angular momenta for a test particle with mass m
due to the aforementioned Killing vectors that are also
sufficient to construct an electromagnetic n-vector potential
for the Maxwell test field in the higher dimensional MP
rotating black hole spacetime. It should also be noted that
the n-velocity of the zero angular momentum observer in
higher dimensional MP rotting black hole spacetime can be
defined by [53]

uμ ¼ α
�
ξμðtÞ þΩϕ1

ξμðϕ1Þ þ � � � þ Ωϕn
ξμðϕnÞ

�
; ð13Þ

which is perpendicular to the surface with t ¼ const that
implies r ¼ const and θi ¼ const, i.e., ur ¼ 0 and uθi ¼ 0.
Here, α are referred to as a normalization constant which
can be determined by imposing the normalization condition
gμνuμuν ¼ −1. We now turn to describe the static limit
surface where the timelike Killing vector ξðtÞ of the metric
turns out to be null; i.e., gtt ¼ 0 that solves to give rst
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implicitly. For example, rst for D ¼ 5, 6 dimensions will,
respectively, read as follows [47]:

rst ¼
ffiffiffiffiffiffiffiffiffiffiffi
μ − κ

p ð14Þ

and

rst ¼
21=3

�
9μþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
81μ2 þ 12κ3

p �
2=3

− 231=3κ

62=3
�
9μþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
81μ2 þ 12κ3

p �
1=3 ; ð15Þ

where κ ¼ a21 cos
2 θ þ a22 sin

2 θ. It isworth noting that for the
energy extraction through PP there must exist the ergosphere
which occurs in the region between the black hole horizon rþ
and the static limit rst bounded by the surface from outside,
i.e., rþ < r < rst. Note that the black hole’s ergosphere
takes a different rst in the given D dimension accordingly.
This is one advantage of having ergosphere for the energy
extraction via either PP [16] or MPP [23].

III. THE MAGNETIC FIELD AND THE CHARGED
PARTICLE DYNAMICS

The aim of this section is to consider the magnetic field
and the charged particle motion around the higher dimen-
sional MP rotating black hole spacetimes described by
the line element of Eq. (1). To this end, the black hole is
supposed to be placed in a uniformly distributed magnetic
field. With this regard, the black hole can experience the
magnetic field being uniform at large distances and being
weak enough for any change in the background geo-
metry as a test field (i.e., which is of order B1 ∼ 108 G
and B2 ∼ 104 G for stellar mass and supermassive black
holes, respectively [55–57]). It is to be emphasized that the
magnetic field was estimated to be of order B ∼ 33.1�
0.9 G in the corona as suggested by the observational
analysis for binary black hole system V404 Cygni [58].
Very recently, the EHT Collaborations reported that obser-
vations at 230 GHz were able to image the polarized
synchrotron radiation in the vicinity of the supermassive
black hole sitting at the center of the M87 galaxy, probing
the magnetic field structure in the environment surrounding
the black hole and suggesting that the average magnetic
field strength is of order B ∼ 1–30 G in the emission region
[59,60]. It is worth noting that, although the magnetic field
is small, it can strongly influence the geodesics of charged
particles. Modeling the charged particle motion around a
black hole endowed with an external uniform magnetic
field has been developed by Wald and since been widely
used as the well-known formalism [61]. The point to be
noted here is that Killing vectors in a vacuum spacetime
come into play to construct electromagnetic potential for
the Maxwell test field [62]. Hence, the magnetic field
solution can be obtained as a test field in the surrounding
environment of background spacetime. It is to be emphasized

that the magnetic field, although small, influences the
motion of charged particles more drastically than the
gravity because of the Lorentz force. It does therefore
contribute to changing the motion of charged particles in
the curved background spacetime. There has been a large
amount of work devoted to the study of the magnetic field
impact on charged particle motion and on different
astrophysical processes in the close surrounding environ-
ment of black holes (see, e.g., [63–73]).
Unlike the Kerr black hole in four dimensions, the higher

D > 4 dimensional MP metric, as mentioned, admits more
than two Killing vectors, i.e., the stationary ξðtÞ and axial
ones ξðϕ1���ϕnÞ of the spacetime Eq. (1). It was also discussed
by [74] addressing the electromagnetic field existing in the
surrounding environment of the five-dimensional black
hole spacetime. Afterwards, Wald’s method [61,74] permits
one to write the Maxwell field equation for the vector
potential Aμ in the MP spacetime, and it is given by [75]

Aμ;ν
;ν − Rμ

νAν ¼ 0; ð16Þ

which can have the same form for Killing vector ξ as

ξμ;ν;ν − Rμ
νξν ¼ 0; ð17Þ

where Rμν refers to the Ricci tensor. It is clearly seen from
Eq. (17) that the second term associated with the Ricci
tensor gets vanished in the vacuum case, thereby taking the
simpler form □ξμ ¼ 0. This implies the same form as
□Aμ ¼ 0 of the Maxwell equations for the vector potential.
Taking all together, the n-vector potential of the electro-
magnetic field in the n-dimensional black hole spacetime
can be written as [74,76]

Aμ ¼ C0ξ
μ
ðtÞ þ

Xn
i¼1

Ciξ
μ
ðϕiÞ; ð18Þ

where we refer to the uniform external magnetic field
strength as Bi in relation to ϕi rotation planes. Here, C0

and Ci are usually referred to as arbitrary parameters as
integration constants that stem from the field properties
(see, for example, [53]). We note that the n-vector potential
involves a uniformly magnetic field and a Coulomb-type
component which can be induced by the rotation of the
black hole. It happens because the magnetic field is more
likely to be distorted because of black hole rotation, thereby
giving rise to the induced charge which can remain present
regardless of the absence of the black hole electric charge
(i.e.,Q ¼ 0). However, for our purpose and further analysis
we will omit this component so that the time component of
Aμ reads as

At ¼
Xn
i¼1

Bi

n

�
ξtðϕiÞ þ aiξtðtÞ

�
: ð19Þ
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We now examine the charged particle motion around the
higher dimensional MP rotating black hole placed in an
external uniform magnetic field. As mentioned, we assume
that the magnetic field considered here is uniform at large
distances and weak enough for any change in the back-
ground geometry as a test field. With this in view, we
consider the Hamiltonian for a charged particle as [77]

H ¼ 1

2
gμνðπμ − qAμÞðπν − qAνÞ; ð20Þ

where πμ and Aμ are referred to as the canonical momentum
and the vector potential of the electromagnetic field, which
are written by the following relation:

pμ ¼ gμνðπν − qAνÞ: ð21Þ

It is to be emphasized that, according to the spacetime
metric (1) the canonical momentum facilitates, for example,
three constants of motion which denote the particle’s
energy and angular momenta relative to ϕ1 and ϕ2 planes
in D ¼ 5, 6 dimensions. Further, we also discuss nþ 3
conserved quantities. In the following, we write Hamilton’s
equations of particle motion as

dxα

dλ
¼ ∂H

∂πα
and

dπα
dλ

¼ −
∂H
∂xα

; ð22Þ

where we have denoted λ ¼ τ=m as the affine parameter
with the proper time τ for timelike geodesics. Equation (22)
then allows one to define the above-mentioned constants of
motion for timelike geodesics, and they are given by

8>>>><
>>>>:

πt − qAt ¼ gttpt þPn
i¼1 gtϕi

pϕi ;

πϕ1
− qAϕ1

¼ gϕ1tp
t þPn

i¼1 gϕ1ϕi
pϕi ;

………

πϕn
− qAϕn

¼ gϕntp
t þPn

i¼1 gϕnϕi
pϕi ;

ð23Þ

where the metric functions stem from Eq. (1). Taken

altogether, the action for D ¼
n
2nþ 1
2nþ 2

can be written

according to the Hamilton-Jacobi equation as

S ¼ 1

2
m2τ − Etþ

Xn
i¼1

Lϕi
ϕi þ Sr þ

(P
n−1
i¼1 SθiP
n
i¼1 Sθi

; ð24Þ

where the quantities E≡ −πt and Lϕn
≡ πϕn

refer to the
constants of motion, i.e., test particle’s energy and
n-angular momenta relative to ϕn axes, whereas Sθi and
Sr represent the radial and angular functions of r and θ,
respectively. It should be noted here that the system has
nþ 3 independent constants of motion, namely, we have
described nþ 2, such as E, Lϕ1���ϕn

, and m2 (wherem is the
mass of the particle). The (nþ 3)th one is described by the

latitudinal motion of particles. We will not focus on it when
considering motion to either the equatorial plane or the
polar plane in the higher D > 4 dimensional MP spactime
(i.e., θ1 ¼ θ2 � � � θn ¼ π=2; 0).
In particular, for D ¼ 5, 6 dimensions (i.e., with two

rotation axes ϕ1 and ϕ2) Eq. (23) permit one to derive the
n-velocity components required to define the effective
potential for the radial motion of test particles as

Γpt ¼ −
�ðEþ qAtÞ

�
g2ϕ1ϕ2

− gϕ1ϕ1
gϕ2ϕ2

	
− ðLϕ2

− qAϕ2
Þgϕ1ϕ1

gtϕ2
þ �ðLϕ2

− qAϕ2
Þgtϕ1

þ ðLϕ1
− qAϕ1

Þgtϕ2

	
gϕ1ϕ2

− ðLϕ1
− qAϕ1

Þgϕ2ϕ2
gtϕ1



;

ð25Þ

Γpϕ1 ¼ −
�ðEþ qAtÞ

�
gϕ2ϕ2

gtϕ1
− gϕ2ϕ1

gtϕ2

	
þ �ðLϕ2

− qAϕ2
Þgtϕ1

− ðLϕ1
− qAϕ1

Þgtϕ2

	
gtψ

−
�ðLϕ2

− qAϕ2
Þgϕ2ϕ1

− ðLϕ1
− qAϕ1

Þgϕ2ϕ2

	
gtt


;

ð26Þ

Γpϕ2 ¼ −
�ðEþ qAtÞ

�
gϕ1ϕ1

gtϕ2
− gϕ2ϕ1

gtϕ1

	
−
�ðLϕ2

− qAϕ2
Þgtϕ1

− ðLϕ1
− qAϕ1

Þgtϕ2

	
gtϕ1

þ �ðLϕ2
− qAϕ2

Þgϕ1ϕ1
− ðLϕ1

− qAϕ1
Þgϕ2ϕ1

	
gtt


;

ð27Þ

where we have defined Γ and electromagnetic potentials as

Γ ¼ gϕ2ϕ2
g2tϕ1

− 2gϕ2ϕ1
gtϕ1

gtϕ2
þ gϕ1ϕ1

g2tϕ2
þ g2ϕ2ϕ1

gtt

− gϕ1ϕ1
gϕ2ϕ2

gtt: ð28Þ

By plugging the above velocity components into the
normalization condition, gμνpμpν ¼ −m2, the effective
potential for timelike radial motion of the charged particle
in the equatorial plane (i.e., θ1 ¼ θ2 ¼ π=2) can be gen-
erally obtained as follows [78,79]:

VeffðrÞ ¼ −
q
m
At þ ω

�
Lϕ −

q
m
Aϕ

�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δ
gϕϕr2ðn−1Þ

��
Lϕ −

q
m Aϕ

	
2

gϕϕ
þ 1

�s
; ð29Þ

where Lϕ (for further analysis we shall for simplicity use
ϕ1 → ϕ) represents angular momentum of the charged
particle, while ω ¼ −gtϕ=gϕϕ refers to the frame dragging
angular velocity. Here, we note that n is referred to as the
maximum number of rotation parameters in higher dimen-
sions. It is to be emphasized that the effective potential is a
valuable tool to gain a deeper understanding in relation to
how test particles move in the close environment of black
holes. Determining the minimum value of the effective
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potential allows one to define the location of the innermost
stable circular orbits referring to the closest possible path
for the particle to be on a circular orbit without falling into
the black hole or coming out to space. With this in view, the
occurrence of no bound orbits around black holes in higher
dimensions was discussed in Refs. [78,79].
We further need to determine the bounds of the charged

particle’s angular velocity. To do that the circular motion of
the charged particle is required together with r ¼ const
and θi ¼ const. Afterwards, we can examine with the case
u ∼ ξðtÞ þ

P
n
i¼1 Ωϕi

ξðϕiÞ, where Ωϕi
¼ dϕi=dt ¼ uϕi=ut

are referred to as the angular velocities measured by a
far away observer. As mentioned, we note that we restrict
the motion of the charged particle to the equatorial plane;
i.e., θ1 ¼ θ2 � � � θn ¼ π=2. It implies the condition which
satisfies the bound of angular velocity asΩ− < Ω < Ωþ for
the timelike vector u, and it is given by

Ω�
ϕ ¼

−gtϕ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgtϕÞ2 − gttgϕϕ

q
gϕϕ

: ð30Þ

The above equation reduces to Ωþ
ϕ ¼ 0 and Ω−

ϕ ¼ −2ω
at the static surface; i.e., gtt ¼ 0. It is, however, valuable to
note that the limiting values of Ω ¼ Ω�

ϕ refer to the photon
motion. We then write the n-momentum for the circular
motion of the charged particle with r ¼ const as

π� ¼ pt
�
1; 0; 0;Ω�

ϕ1
;…;Ω�

ϕn

	
; ð31Þ

which gives the following equation for the timelike
circular motion (υðr;θiÞ ¼ 0) at the equatorial plane (i.e.,
θ1 ¼ θ2 � � � θn ¼ π=2):

ðgϕϕπ2t þ g2tϕÞΩ2 þ 2gtϕðπ2t þ gttÞΩþ gttðπ2t þ gttÞ ¼ 0;

ð32Þ
with πt ¼ −ðE þ qAt=mÞ. It is then obvious from the above
equation that the angular velocity for the circular orbit of
the charged particle can be obtained by [22,26,30]

Ωϕ ¼
−gtϕ

�
π2t þ gtt

	þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
π2t þ gtt

	�
g2tϕ − gttgϕϕ

	
π2t

q
gϕϕπ2t þ g2tϕ

:

ð33Þ

Following expressions for angular velocity and charged
particle motion we intend to investigate the energy extrac-
tion from the black hole through MPP in the next section.

IV. MAGNETIC PENROSE PROCESS
IN HIGHER DIMENSIONS

We now focus on MPP, according to which a falling
neutral particle within the ergosphere of the black hole is

divided into two parts; that is, one continues to fall into the
black hole, while the other keeps on coming outward to
space [16]. The point to be noted here is that the escaping
part can take out some energy from a rapidly rotating black
hole, thereby resulting in making the black hole slow down.
Here, the energy the escaping particle carried away depends
on the magnetic field strength, and thus the MPP becomes
increasingly important in driving out the black hole rota-
tional energy. We now turn to examine a scenario in which
a massive particle that has energy with E1 ≥ 1 and keeps on
falling inwards splits into two charged parts together with
energies E2 and E3 in the ergosphere. As stated byMPP, the
one keeps on falling into the black hole with energy E2 < 0,
whereas the other flings away into space with positive
energy E3 > 0. Following conservation principles for
energy and angular momentum, this phenomenon at the
splitting point can be written as

E1 ¼ E2 þ E3; Lϕ1 ¼ Lϕ2 þ Lϕ3; ð34Þ

m1 ¼ m2 þm3; q1 ¼ q2 þ q3: ð35Þ

It should be noted that the condition given in the above
satisfies E2 < 0 and E3 ≫ E1 as stated by the MPP.
Interestingly, the particle that escapes from the black hole
acquires E2 exceeding over the energy of the incident
particle, thereby extracting the rotational energy of the
black hole. Also, one can depict the momentum as [23,30]

m1u
μ
1 ¼ m2u

μ
2 þm3u

μ
3; ð36Þ

where we keep only the ϕ component of n-velocity which
is defined by uϕ ¼ Ωϕut ¼ −ΩϕF=B. Consequently, one
can rewrite Eq. (36) as follows:

Ωϕ1m1F1B2B3 ¼ Ωϕ2m2F2B3B1 þ Ωϕ3m3F3B2B1; ð37Þ

with the following notations Fi ¼ Ei þ qiAt=mi and
Bi ¼ gtt þ Ωϕigtϕ. In doing so, the above equation can
be simplified as follows:

E3 þ q3At

E1 þ q1At
¼
�
Ωϕ1B2 −Ωϕ2B1

Ωϕ3B2 −Ωϕ2B3

�
B3

B1

: ð38Þ

From the above equation the energy the escaping particle
carried away can be obtained as

E3 ¼ χðE1 þ q1AtÞ − q3At; ð39Þ

where χ is given by

χ ¼
�
Ωϕ1 −Ωϕ2

Ωϕ3 −Ωϕ2

�
B3

B1

: ð40Þ
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To be more informative we have defined Ωϕi as follows:

Ωϕ1 ¼ Ωϕ; Ωϕ2 ¼ Ω−
ϕ; and Ωϕ3 ¼ Ωþ

ϕ : ð41Þ

To gain a deeper understanding we now examine the energy
efficiency in relation to the maximum amount of energy
extracted through the MPP. Let us then write the simpler
form of the energy efficiency as

η ¼ jE2j
E1

¼ E3 − E1

E1

: ð42Þ

Equation (39) permits the energy efficiency of the MPP at
the horizon to be depicted as

η ¼ χ − 1þ q3At

m1πt1 þ q1At
−

q1At

m1πt1 þ q1At
χ; ð43Þ

where χ is given by

χ ¼
�Ωϕ −Ω−

ϕ

Ωþ
ϕ −Ω−

ϕ

��
gtt þ Ωþ

ϕ gtϕ
gtt þ Ωϕgtϕ

�

¼
gϕϕ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gtt þ π2t
p

þ 1
�
þ g2tϕ

2gϕϕ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gtt þ π2t

p : ð44Þ

We now turn to analyze energy efficiency pertaining to
the maximum energy extracted from the black hole due to
the radiation of the incident particle split into two parts
in the ergoregion. We shall then consider the possible case
in which q1 ¼ 0 can be taken; i.e., q2 þ q3 ¼ 0 as per the
conservation principle for two split particles which can be
either positive or negative. For further analysis we for
simplicity take q3 ¼ q ¼ −q2. With this regard, the energy
efficiency takes the following form at the splitting point as

η ¼
�Ωϕ − Ω−

ϕ

Ωþ
ϕ −Ω−

ϕ

��
gtt þΩþ

ϕ gtϕ
gtt þ Ωϕgtϕ

�
− 1 −

qAt

E1

: ð45Þ

The energy efficiency depends on the splitting point; i.e.,
it reaches the maximum efficiency when the splitting point
occurs very close to the horizon r ¼ rþ which will be
discussed in the next section. For analysis we shall further
consider q=E1 ¼ q=m (i.e., E1=m1 ¼ 1) at the splitting
point. For further analysis of the energy efficiency expres-
sion we shall for simplicity set a1 ¼ a2 � � � an ¼ a and
θ1 ¼ θ2 � � � θn ¼ θ ¼ π=2. With this in view, taking all Ωϕi

into account together with Eqs. (1) and (19) we obtain
the energy efficiency for D ¼ 2nþ 1 and D ¼ 2nþ 2
dimensions as

ηð2nþ1Þ
MPP ¼ 1

2

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

r2þ

s
− 1

!

þ a
μð2nþ1Þ

bð2nþ1Þ

�
1 −

n − 1

n
μr2þ
ΠF

�
ð46Þ

and

ηð2nþ2Þ
MPP ¼ 1

2

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

r2þ

s
− 1

!

þ a
μð2nþ2Þ

bð2nþ2Þ

�
1 −

n − 1

n
μrþ
2ΠF

�
; ð47Þ

where we have denoted the magnetic field parameter b for
D ¼ 2nþ 1; 2nþ 2, usually referred to as the interaction
parameter as

b2nþ1 ¼
qBGμð2nþ1Þ

mc4
and b2nþ2 ¼

qBGμð2nþ2Þ
mc4

: ð48Þ

Here B indicates the strength of the uniform external mag-
netic field. It is to be emphasized that the energy efficiency
has two parts: one refers to the efficiency ηjq¼0 for the
neutral particle while the other part ηjq≠0 gives the MPP due
to the magnetic field, as seen in Eqs. (46) and (47).

V. THE EFFICIENCY OF ENERGY
EXTRACTION VIA MPP

In this section we consider the energy efficiency via the
well-established theoretical MPPmechanism that facilitates
the energy extraction from a rotating black hole. It turns out
that when one of rotations is switched off, the efficiency
of energy extraction would be arbitrarily large. For the
efficiency of energy extraction we shall further examine
(n − 1) and n rotation cases separately.

A. For (n− 1) rotations
Interestingly, it turns out that higher dimensional black

holes have only one horizon in the case when one of the
rotations is zero. This happens for both odd D ¼ 2nþ 1
and even D ¼ 2nþ 2 dimensions. Let us then recall the
horizon equation, Δ, Eq. (4) which for (n − 1) rotations
yields

ðr2 þ a2Þ � � � ðr2 þ a2n−1Þ
r2ðn−2Þ

− μr5−D ¼ 0; ð49Þ

which can be simply defined by the following form:

r2ðn−1Þ þ f1ðaiÞr2n−4 þ � � �− μr2nþ1−D þ a21a
2
2 � � �a2n−1 ¼ 0;

ð50Þ
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with f1ðaiÞ ¼ a21 þ a22 þ � � � þ a2n−1. To be more inform-
ative we further consider D ¼ 5, 7 dimensional black holes
with (n − 1) rotations. For D ¼ 5, 7 the horizon equa-
tion (50) gives implicitly rþ as follows:

r2þ ¼ ðμ − a2Þ ð51Þ

and

r2þ ¼ −
a21 þ a22

2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4μþ ða21 − a22Þ2

q
; ð52Þ

which for a1 ¼ a2 takes the form as r2þ ¼ ð ffiffiffi
μ

p − a2Þ. It
should be noted that the D ¼ 7 dimensional black hole has
three rotations (i.e., a1, a2, and a3); see more details in
Refs. [54,80] addressing the cases in which one or more
rotations are zero. As can be observed clearly from
Eqs. (51) and (52) the horizon equation (50) can be solved
to give only one positive real root (i.e., only one horizon)
for both D ¼ 2nþ 1; 2nþ 2, thus resulting in no extrem-
ality condition occurring which can further give rise to
infinitely large energy efficiency even via PP as well as
MPP. Let us then turn to obtain the efficiency of energy
extraction for (n − 1) rotations; for example, Eqs. (46)
and (47) for D ¼ 5, 7 will, respectively, read as

ηq¼0ja1¼a;a2¼0 ∼
�

1

μ − a2

�ð1=2Þ
ð53Þ

and

ηq¼0ja1¼a2¼a;a3¼0 ∼
�

1ffiffiffi
μ

p − a2

�ð1=2Þ
: ð54Þ

This clearly shows that the energy efficiency can yield
arbitrarily large values in the limit of a → μ even for PP
(i.e., b ¼ 0). This happens because the rotation or angular
momentum is not bounded from above due to the existence
of no extremality condition when considering black holes
having (n − 1) rotations. A similar result in relation to
infinitely large energy efficiency when one rotation is
infinitesimally small (i.e., a1 ≫ a2) has also been noticed
in Ref. [30]. Similarly, one can observe the same result for
even 2nþ 2 dimensions. Therefore, the energy efficiency
even without MPP can approach infinitely large values for
higher dimensional D > 4 black holes with (n − 1) rota-
tions regardless of the dimension being odd D ¼ 2nþ 1 or
even D ¼ 2nþ 2. It is to be emphasized that the inclusion
of MPP (i.e., b ≠ 0) here can only support and enhance the
efficiency of energy extraction from MP black holes.

B. For n rotations

As shown earlier a black hole with (n − 1) rotations
has only one horizon; thereby it comes out in favor of
infinitely large energy efficiency for both D ¼ 2nþ 1 and

D ¼ 2nþ 2 dimensions. Hence, the black holes can be
characteristically different from the ones with n rotations in
D > 4 dimensions. For n rotations the horizon equation,
Δ ¼ 0, is given by

r2n þ f1ðaiÞr2n−2 þ � � � − μr3−Dþ2n þ a21a
2
2 � � � a2n ¼ 0;

ð55Þ

which always has two positive roots for which the black
hole can exist in two horizons accordingly despite the
dimension being odd D ¼ 2nþ 1 or even D ¼ 2nþ 2
[54,81]. For example, r� for D ¼ 5 reads as follows [49]:

r2� ¼ μ − a21 − a22
2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμ − a21 þ a22Þ2

4
− a21a

2
2

r
; ð56Þ

which for a1 ¼ a2 ¼ a yields

r2� ¼ μ

2
− a2 � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μðμ − 4a2Þ

q
:

For that the necessary condition for extremality is then well
satisfied, i.e., μ ¼ 4a2. This therefore gives an allowed
range of rotation; i.e., it is bounded from above, a ≤ ffiffiffi

μ
p

=2.
In addition, the approach a →

ffiffiffi
μ

p
=2 allows the splitting

point of the incident particle to occur around the black hole,
especially very close to the horizon rst < r ≤ rþ where the
efficiency of energy extraction reaches its maximum. The
question then arises, could the efficiency rate of energy
extraction be the same as the one for (n − 1) rotations? The
answer, however, comes out to be no; i.e., the efficiency
that we further show explicitly cannot become arbitrarily
large for the maximum allowed n rotations in the case of the
Penrose process. To this end, we shall consider the MPP
and examine the efficiency of the energy extraction process.
This is what we intend to address and gain a deeper
understanding of in the following.
Let us then turn to the analysis of the energy efficiency

for MP black holes with n rotations. We demonstrate the
energy efficiency driven out through MPP at the splitting
point occurring in the close vicinity of the horizons in
Figs. 1 and 2. Figure 1 depicts the profile of the efficiency
of energy extraction from black holes in D ¼ 5, 6 as a
function of the magnetic field parameter b and the rotation
parameter a, while Fig. 2 shows similar behavior of the
efficiency in D ¼ 7, 8 for various combinations of rotation
parameters (i.e., n ¼ 2, 3 for D ¼ 5, 6 and D ¼ 7, 8) and
the magnetic field parameter. As can be observed from
Eqs. (46) and (47) as well as from Fig. 1 the energy
efficiency, respectively, reaches the maximum of

ηjD¼5ða → aextÞ ¼
1

2

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

r2þ

s
− 1

!
∼ 20.7%; ð57Þ
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ηjD¼6ða → aextÞ ¼
1

2

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

r2þ

s
− 1

!
∼ 50%; ð58Þ

when considering b ¼ 0. However, the MPP part also goes
to ηjq≠0 ¼ 0 as a → aext for rotation, as shown in the top
and bottom rows of Fig. 1, similar to what was observed in
the rotating Kerr case in D ¼ 4 dimensions [31]. Here we
note that the horizon for the above expression respectively
takes values as rþðaextÞ ¼ 0.5;∼0.3969 inD ¼ 5, 6, where
the mass parameter has been set as μ ¼ 1. However, the
energy efficiency is enhanced drastically when the inter-
action of a magnetic field with a charged particle is
included, referred to MPP. Figure 1 (top row) clearly
shows that the energy efficiency curves shift upward toward
its higher values with the increase in the value of a. This
happens because the splitting point gets closer to the black
hole’s horizon whenever a approaches its larger values.
Another interesting point to note here is that the energy
efficiency slightly increases with increasing the parameter
b for both D ¼ 5, 6 cases. To achieve the maximum
efficiency, it requires b > 1 for the dimensionless magnetic

parameter values, thus allowing the magnetic field effect to
dominate over gravity all through. As can be seen from
Fig. 1 (bottom row), the energy efficiency curves shift
upward toward its larger values and go over 100% as a
consequence of an increase in the value of the magnetic
parameter b for both D ¼ 5, 6 cases. It then emerges that
the MPP can eventually become more efficient than the PP
due to the fact that the magnetic field circumvents the
formidable velocity threshold of PP, causing the efficiency
of energy extraction to increase enormously. To understand
more quantitatively and astrophysically, we need to esti-
mate the constraint value of the dimensionless parameter b
for which the efficiency exceeds 100%. For that we will
impose the condition η ≥ 100% as given in Eqs. (46)
and (47). Consequently, it solves to give b ≥ 6.27 and 3.40,
respectively, for a charged particle around D ¼ 5, 6 dimen-
sional black holes with the same rotations, for example,
a1 ¼ a2 ¼ 0.4. Furthermore, we provide a more detailed
numerical analysis and tabulate the threshold values of the
magnetic parameter b required for the efficiency of energy
extraction to exceed 100% in Table I. This constraint value
of b can be expected to be smaller than these values for the

FIG. 1. Energy efficiency of MPP for MP rotating black holes having the maximum allowed n rotations in D ¼ 5 (left column) and
D ¼ 6 (right column) dimensions. One must keep in mind that here we have considered the case in which a1 ¼ a2 ¼ a for both D ¼ 5,
6. Note that the extremal value of the rotation parameter corresponds to aext ¼ 0.5 and 0.6873 for D ¼ 5, 6 dimensions, respectively.
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same rotations in D ¼ 7, 8 dimension cases. As can be
observed from Fig. 1, the MPP can enhance the energy
efficiency that can be likely to grow significantly and thus
reaches its possible maximum values for D ¼ 5, 6, which
are surprisingly quite large and exceed 100%.

Similarly, we begin to examine the maximum efficiency
of PP for D ¼ 7, 8. Hence, we can now be somewhat more
quantitative. That is, the efficiency does, respectively, take

ηjD¼7ða → aextÞ ¼
1

2

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

r2þ

s
− 1

!
∼ 36.5%; ð59Þ

ηjD¼8ða → aextÞ ¼
1

2

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

r2þ

s
− 1

!
∼ 72%; ð60Þ

when considering b ¼ 0 for aext in D ¼ 7, 8 dimensions.
Interestingly, we observe from Fig. 2 that the energy
efficiency remains above 100% when a → aext in both
D ¼ 7, 8 dimensions. From the bottom row of Fig. 2, it is
clearly seen that ηjb≠0 > ηjD¼7;8ða → aextÞ is always sat-
isfied as a consequence of the presence of b. This is the
remarkable difference from D ¼ 5, 6 dimensions, where
the MPP part goes to zero, as shown in both top and bottom
rows of Fig. 1. However, the energy efficiency rate can

FIG. 2. Energy efficiency of MPP for MP rotating black holes having the maximum allowed n rotations in D ¼ 7 (left column) and
D ¼ 8 (right column) dimensions. One must keep in mind that here we have considered the case in which a1 ¼ a2 ¼ a3 ¼ a for both
D ¼ 7, 8. Note that the extremal value of the rotation parameter corresponds to aext ¼ 0.6204 and 0.7631 for D ¼ 5, 6 dimensions,
respectively.

TABLE I. The threshold values of the magnetic parameter b
required for the efficiency of energy extraction to exceed 100%
for various values of the rotation parameter. Note that here we
have considered the case in which a1 ¼ a2 ¼ a for D ¼ 5, 6 and
a1 ¼ a2 ¼ a3 ¼ a for D ¼ 7, 8, respectively.

a D ¼ 5 D ¼ 6 D ¼ 7 D ¼ 8

0.1 20.1548 13.3447 20.0509 12.8544
0.2 10.3428 6.69123 10.1076 6.42317
0.3 7.29715 4.48663 6.84556 4.27790
0.4 6.27322 3.40308 5.28343 3.20470
0.5 � � � 2.78938 4.48119 2.56189
0.6 � � � 2.49669 4.65416 2.13956
0.7 � � � � � � � � � 1.87652
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rapidly increase once the MPP effect is included. Hence, its
growing rate is much more prominent due to the MPP,
similar to what is observed in D ¼ 5, 6 dimensions.
However, it must be noted that the increasing rate of the
efficiency through the MPP grows significantly as the
number of rotations increases. The efficiency of energy
extraction is greatly enhanced in bothD ¼ 7, 8 dimensions,
eventually exceeding 100% as b increases for appropriate
values of the rotation parameter. This can be seen in both
the top and bottom rows of Fig. 2. We also estimate the
constraint values of b for the charged test particle.
Similarly, by imposing the condition η ≥ 100% we con-
sequently find b ≥ 5.28 and 3.20 for D ¼ 7, 8 with the
same a1 ¼ a2 ¼ a3 ¼ 0.4 (see details, e.g., in Table I).
From Figs. 1 and 2, one can observe that the energy
efficiency via the MPP can reach up to its huge values in all
cases. This might happen due to the dimensionless param-
eter b that can take any value astrophysically in the case of
elementary particles. Here, the magnetic field effect with
the rotation plays an important role as a powerful tool in
increasing the efficiency of energy extraction exceeding
100%. Therefore, the rotational energy of MP black holes
in all D > 4 can be efficiently driven out through the MPP
as stated by the escaping charged particle interacting with
the magnetic field existing in the environment surrounding
the black hole.

VI. CONCLUSIONS

It has widely been believed that astrophysical rotating
black holes are regarded as the primary sources of energy
for highly powerful astrophysical phenomena. Hence,
black hole energetics is increasingly important to gain a
deeper understanding about their rotational energy. With
this in view, higher dimensional MP black holes would also
be an alternative source of information about high energy
astrophysical objects and strong gravity field regimes,
together with the surrounding geometry. Therefore, it is
important to test the effects that stem from higher dimen-
sions on black hole energetics. In this paper, we extensively
studied the energy efficiency of MPP for odd D ¼ 2nþ 1
and even D ¼ 2nþ 2 dimensional black holes with both
(n − 1) and n rotations.
We have shown that the efficiency of energy extraction

can yield infinitely large values in the case when the black
hole has only rotation (i.e., a2 ¼ 0) in both D ¼ 5, 6
dimensions. This large amount of energy efficiency can
also be reached even by PP (i.e., b ¼ 0). This happens
because there exists no extremality (i.e., only one horizon),
thereby leading to the case in which rotation is not
constrained from above. This is the case for all higher
dimensional black holes with (n − 1) rotations, as there is
no extremality condition irrespective of whether the dimen-
sion is odd D ¼ 2nþ 1 or even D ¼ 2nþ 2. Therefore,
the energy efficiency can approach infinitely large values.
This result has also been noticed in Ref. [30]. This is a

characteristic distinction in contrast to the cases with n
rotations in all D > 4 dimensions. Additionally, the con-
tribution of MPP here can more likely enhance the
efficiency of energy extraction.
However, it has been shown that the energy efficiency is

not expected to be the same as in the case of (n − 1)
rotations, thus referring to limited energy efficiency for the
maximum allowed n rotations; i.e., η ∼ 20.7% and 50% for
D ¼ 5, 6 while ∼36.5% and 72% for D ¼ 7, 8 dimensions
when considering b ¼ 0 and a → aext, referred to as pure
PP. In fact, one can observe that the horizon equation,
Δ ¼ 0, has only two positive roots, thereby leading to the
existence of two horizons of black holes with n rotations in
both D ¼ 2nþ 1 and D ¼ 2nþ 2 dimensions [54,81].
Therefore, the energy efficiency for PP cannot become
arbitrarily large but can be limited instead for the maxi-
mum allowed n rotations unless there exists another
promising thought mechanism. To that end, we further
considered a well-established mechanism, referred to as
MPP, and showed its impact on the efficiency of energy
extraction through the interaction of the magnetic field with
the escaping charged particle.
We have demonstrated that energy efficiency increases

and tends to reach higher values as a consequence of the
increase in the magnetic parameter b for both D ¼ 5, 6
dimensions. It should be noted that it requires overesti-
mated values of the parameter b for high energy efficiency
extracted from the black hole. Additionally, with the rise in
the value of the rotation parameter a, we have shown that
the efficiency of energy extraction is significantly enhanced
by the MPP, and thus it begins to grow and goes over 100%
for D ¼ 5, 6 dimensions, respectively. This enhancement
occurs due to the splitting point near the black hole’s close
vicinity, especially very close to its horizon rþ, as depicted
in Fig. 1. To provide a quantitative understanding, we
have determined the constraint values of b that allow the
efficiency to exceed 100%, finding them to be approximately
b ≥ 6.27, 3.40 for D ¼ 5, 6 in the presence of a charged
particle around the MP black hole with rotation a ¼ 0.4.
Similarly, for D ¼ 7, 8 the values are ≥ 5.28, 3.20,
respectively, with the same rotation; see details, e.g., in
Table I. Furthermore, we have shown that the efficiency of
energy extraction for D ¼ 7, 8 is also strongly enhanced by
theMPP, similar to the cases ofD ¼ 5, 6. The rate of growth
in energy efficiency is much more prominent in D ¼ 7, 8
dimensions, increasing significantly due to the MPP. To be
somewhat more quantitative with estimates of energy
efficiency, we have demonstrated that it can easily exceed
100% in D ¼ 7, 8 dimensions, as shown in Fig. 2.
Interestingly, we observed that, for the corresponding values
of b, the energy efficiency remains above 100% as a → aext
in both D ¼ 7, 8, unlike in D ¼ 5, 6 where the MPP part
goes to zero (see, for example, Fig. 1). It has been established
that the efficiency of energy extraction can surpass 100% in
all higher dimensions (i.e., D > 4) through the MPP.
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It is remarkable to note that the energetics of higher
dimensional MP black holes were studied by several
authors from different perspectives [30,47,82]. For exam-
ple, the energy extraction from higher dimensional MP
black holes and black rings was considered with the usage
of the PP in Ref. [30]. Later, the center of mass energy via
the Banados-Silk-West mechanism in the vicinity of higher
dimensional D ¼ 5 MP black holes was studied in
Refs. [82,83], showing that the head-on collision energy
of two particles can be arbitrarily high near an extremal
black hole. Also, the energetics of a rotating charged black
hole in D ¼ 5 dimensional supergravity was studied in
Ref. [47], addressing the energy extraction from the black
hole using the PP. In all of this work, the magnetic field
effect on the extraction of energy efficiency was not
included. From an astrophysical viewpoint, it is increas-
ingly important to explore the pivotal role of the magnetic
field in altering the geodesics of charged test particles in
the close vicinity of a black hole. Based on the results
presented in this paper, MPP could potentially be a more

effective and viable mechanism for extracting the rota-
tional energy of higher dimensional black holes with n
rotations, significantly enhancing the efficiency of energy
extraction. This would be a primary astrophysical sig-
nificance, as it does not exclude the existence of higher
dimensional astrophysical black holes that could serve as
sources of highly energetic astrophysical phenomena and
play a crucial role in explaining these extremely powerful
events.

ACKNOWLEDGMENTS

We are grateful to the anonymous referees for their
insightful comments and constructive suggestions that
definitely helped us improve the clarity and quality of
the manuscript. This work is supported by the National
Natural Science Foundation of China under Grant
No. 11675143 and the National Key Research and
Development Program of China under Grant
No. 2020YFC2201503.

[1] B. P. Abbott et al. (Virgo and LIGO Scientific Collabora-
tions), Phys. Rev. Lett. 116, 061102 (2016).

[2] B. P. Abbott et al. (Virgo and LIGO Scientific Collabora-
tions), Phys. Rev. Lett. 116, 241102 (2016).

[3] K. Akiyama et al. (Event Horizon Telescope Collaboration),
Astrophys. J. 875, L1 (2019).

[4] K. Akiyama et al. (Event Horizon Telescope Collaboration),
Astrophys. J. 875, L6 (2019).

[5] A. R. King, M. B. Davies, M. J. Ward, G. Fabbiano, and M.
Elvis, Astrophys. J. 552, L109 (2001).

[6] B. M. Peterson, An Introduction to Active Galactic Nuclei
(New York Cambridge University Press, Cambridge, 1997).

[7] P. Meszaros, Rep. Prog. Phys. 69, 2259 (2006).
[8] R. P. Fender, T. M. Belloni, and E. Gallo, Mon. Not. R.

Astron. Soc. 355, 1105 (2004).
[9] K. Auchettl, J. Guillochon, and E. Ramirez-Ruiz, Astro-

phys. J. 838, 149 (2017).
[10] The IceCube Collaboration et al., Science 361, eaat1378

(2018).
[11] I. M. McHardy, E. Koerding, C. Knigge, P. Uttley, and R. P.

Fender, Nature (London) 444, 730 (2006).
[12] S. E. Woosley, Astrophys. J. 405, 273 (1993).
[13] G. Preparata, R. Ruffini, and S.-S. Xue, Astron. Astrophys.

338, L87 (1998).
[14] R. Popham, S. E. Woosley, and C. Fryer, Astrophys. J. 518,

356 (1999).
[15] S. A. Rappaport, P. Podsiadlowski, and E. Pfahl, Mon. Not.

R. Astron. Soc. 356, 401 (2005).
[16] R. Penrose, Riv. Nuovo Cimento 1, 252 (1969).
[17] J. M. Bardeen, W. H. Press, and S. A. Teukolsky, Astrophys.

J. 178, 347 (1972).
[18] R. M. Wald, Astrophys. J. 191, 231 (1974).

[19] A. A. Abdujabbarov, B. J. Ahmedov, S. R. Shaymatov, and
A. S. Rakhmatov, Astrophys. Space Sci. 334, 237 (2011).

[20] B. Toshmatov, A. Abdujabbarov, B. Ahmedov, and Z.
Stuchlík, Astrophys. Space Sci. 357, 41 (2015).

[21] K. Okabayashi and K.-i. Maeda, Prog. Theor. Exp. Phys.
2020, 013E01 (2020).

[22] S. Shaymatov, P. Sheoran, R. Becerril, U. Nucamendi, and
B. Ahmedov, Phys. Rev. D 106, 024039 (2022).

[23] S. Wagh, S. Dhurandhar, and N. Dadhich, Astrophys. J. 290,
12 (1985).

[24] R. D. Blandford and R. L. Znajek, Mon. Not. R. Astron.
Soc. 179, 433 (1977).

[25] J. C. McKinney and R. Narayan, Mon. Not. R. Astron. Soc.
375, 531 (2007).

[26] S. Parthasarathy, S. M. Wagh, S. V. Dhurandhar, and N.
Dadhich, Astrophys. J. 307, 38 (1986).

[27] S. M. Wagh and N. Dadhich, Phys. Rep. 183, 137 (1989).
[28] D. Alic, P. Moesta, L. Rezzolla, O. Zanotti, and J. L.

Jaramillo, Astrophys. J. 754, 36 (2012).
[29] P. Moesta, D. Alic, L. Rezzolla, O. Zanotti, and C.

Palenzuela, Astrophys. J. 749, L32 (2012).
[30] M. Nozawa and K.-I. Maeda, Phys. Rev. D 71, 084028 (2005).
[31] N. Dadhich, A. Tursunov, B. Ahmedov, and Z. Stuchlík,

Mon. Not. R. Astron. Soc. 478, L89 (2018).
[32] A. Tursunov and N. Dadhich, Universe 5, 125 (2019).
[33] A. Tursunov, Z. Stuchlík, M. Kološ, N. Dadhich, and B.

Ahmedov, Astrophys. J. 895, 14 (2020).
[34] L. Comisso and F. A. Asenjo, Phys. Rev. D 103, 023014

(2021).
[35] R. Brito, V. Cardoso, and P. Pani, Superradiance. New

Frontiers in Black Hole Physics (Springer International
Publishing, Berlin, 2020), Vol. 971.

SANJAR SHAYMATOV PHYS. REV. D 110, 044042 (2024)

044042-12

https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.241102
https://doi.org/10.3847/2041-8213/ab0ec7
https://doi.org/10.3847/2041-8213/ab1141
https://doi.org/10.1086/320343
https://doi.org/10.1088/0034-4885/69/8/R01
https://doi.org/10.1111/j.1365-2966.2004.08384.x
https://doi.org/10.1111/j.1365-2966.2004.08384.x
https://doi.org/10.3847/1538-4357/aa633b
https://doi.org/10.3847/1538-4357/aa633b
https://doi.org/10.1126/science.aat1378
https://doi.org/10.1126/science.aat1378
https://doi.org/10.1038/nature05389
https://doi.org/10.1086/172359
https://doi.org/10.1086/307259
https://doi.org/10.1086/307259
https://doi.org/10.1111/j.1365-2966.2004.08489.x
https://doi.org/10.1111/j.1365-2966.2004.08489.x
https://doi.org/10.1086/151796
https://doi.org/10.1086/151796
https://doi.org/10.1086/152959
https://doi.org/10.1007/s10509-011-0740-8
https://doi.org/10.1007/s10509-015-2289-4
https://doi.org/10.1093/ptep/ptz143
https://doi.org/10.1093/ptep/ptz143
https://doi.org/10.1103/PhysRevD.106.024039
https://doi.org/10.1086/162952
https://doi.org/10.1086/162952
https://doi.org/10.1093/mnras/179.3.433
https://doi.org/10.1093/mnras/179.3.433
https://doi.org/10.1111/j.1365-2966.2006.11220.x
https://doi.org/10.1111/j.1365-2966.2006.11220.x
https://doi.org/10.1086/164390
https://doi.org/10.1016/0370-1573(89)90156-7
https://doi.org/10.1088/0004-637X/754/1/36
https://doi.org/10.1088/2041-8205/749/2/L32
https://doi.org/10.1103/PhysRevD.71.084028
https://doi.org/10.1093/mnrasl/sly073
https://doi.org/10.3390/universe5050125
https://doi.org/10.3847/1538-4357/ab8ae9
https://doi.org/10.1103/PhysRevD.103.023014
https://doi.org/10.1103/PhysRevD.103.023014


[36] S. Kumar Jha, M. Khodadi, A. Rahaman, and A. Sheykhi,
Phys. Rev. D 107, 084052 (2023).

[37] A. Rahmani, M. Khodadi, M. Honardoost, and H. R.
Sepangi, Nucl. Phys. B960, 115185 (2020).

[38] M. Khodadi and R. Pourkhodabakhshi, Phys. Lett. B 823,
136775 (2021).

[39] M. Khodadi and R. Pourkhodabakhshi, Phys. Rev. D 106,
084047 (2022).

[40] W. Liu, Astrophys. J. 925, 149 (2022).
[41] M. Khodadi, Phys. Rev. D 105, 023025 (2022).
[42] C.-H. Wang, C.-Q. Pang, and S.-W. Wei, Phys. Rev. D 106,

124050 (2022).
[43] M. Khodadi, D. F. Mota, and A. Sheykhi, J. Cosmol.

Astropart. Phys. 10 (2023) 034.
[44] S. Shaymatov, M. Alloqulov, B. Ahmedov, and A. Wang,

arXiv:2307.03012.
[45] Z.-W. Chong, M. Cvetič, H. Lü, and C. N. Pope, Phys. Rev.

D 72, 041901 (2005).
[46] R. C.Myers andM. J.Perry,Ann.Phys. (N.Y.)172, 304(1986).
[47] K. Prabhu and N. Dadhich, Phys. Rev. D 81, 024011 (2010).
[48] J. An, J. Shan, H. Zhang, and S. Zhao, Phys. Rev. D 97,

104007 (2018).
[49] S. Shaymatov, N. Dadhich, and B. Ahmedov, Eur. Phys. J. C

79, 585 (2019).
[50] S. Shaymatov, N. Dadhich, and B. Ahmedov, Phys. Rev. D

101, 044028 (2020).
[51] S. Shaymatov, N. Dadhich, B. Ahmedov, and M. Jamil,

Eur. Phys. J. C 80, 481 (2020).
[52] R. C. Myers, arXiv:1111.1903.
[53] A. N.Aliev andV. P. Frolov, Phys. Rev.D 69, 084022 (2004).
[54] S. Shaymatov and N. Dadhich, Phys. Dark Universe 31,

100758 (2021).
[55] M. Y. Piotrovich, N. A. Silant’ev, Y. N. Gnedin, and T. M.

Natsvlishvili, arXiv:1002.4948.
[56] A.-K. Baczko, R. Schulz et al., Astron. Astrophys. 593, A47

(2016).
[57] R. A. Daly, Astrophys. J. 886, 37 (2019).
[58] Y. Dallilar et al., Science 358, 1299 (2017).
[59] Event Horizon Telescope Collaboration, Astrophys. J. Lett.

910, L13 (2021).
[60] R. Narayan, D. C. M. Palumbo, M. D. Johnson et al.,

Astrophys. J. 912, 35 (2021).

[61] R. M. Wald, Astrophys. J. 191, 231 (1974).
[62] A. Papapetrou, Ann. Inst. Henri Poincare, Sect. A 4, 83

(1966).
[63] R. M. Wald, Phys. Rev. D 10, 1680 (1974).
[64] A. N. Aliev and N. Özdemir, Mon. Not. R. Astron. Soc. 336,

241 (2002).
[65] V. P. Frolov and A. A. Shoom, Phys. Rev. D 82, 084034

(2010).
[66] S. Shaymatov, J. Vrba, D. Malafarina, B. Ahmedov, and Z.

Stuchlík, Phys. Dark Universe 30, 100648 (2020).
[67] A. Tursunov, Z. Stuchlík, and M. Kološ, Phys. Rev. D 93,

084012 (2016).
[68] S. Shaymatov, P. Sheoran, and S. Siwach, Phys. Rev. D 105,

104059 (2022).
[69] S. Shaymatov, D. Malafarina, and B. Ahmedov, Phys. Dark

Universe 34, 100891 (2021).
[70] S. Shaymatov, B. Narzilloev, A. Abdujabbarov, and C.

Bambi, Phys. Rev. D 103, 124066 (2021).
[71] S. Hussain, I. Hussain, and M. Jamil, Eur. Phys. J. C 74, 210

(2014).
[72] S. Shaymatov, M. Jamil, K. Jusufi, and K. Bamba, Eur.

Phys. J. C 82, 636 (2022).
[73] S. Shaymatov and B. Ahmedov, Gen. Relativ. Gravit. 55, 36

(2023).
[74] A. N. Aliev, Mod. Phys. Lett. A 21, 751 (2006).
[75] A. N. Aliev and N. Özdemir, Mon. Not. R. Astron. Soc. 336,

241 (2002).
[76] J. Kunz, F. Navarro-Lerida, and A. K. Petersen, Phys. Lett.

B 614, 104 (2005).
[77] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation

(W. H. Freeman, San Francisco, 1973).
[78] N. Dadhich and S. Shaymatov, Int. J. Mod. Phys. D 31,

2150120 (2022).
[79] N. Dadhich and S. Shaymatov, Phys. Dark Universe 35,

100986 (2022).
[80] J. Doukas, Phys. Rev. D 84, 064046 (2011).
[81] S. Shaymatov, B. Ahmedov, and E. Karimbaev, Universe 9,

190 (2023).
[82] A. Abdujabbarov, N. Dadhich, B. Ahmedov, and H.

Eshkuvatov, Phys. Rev. D 88, 084036 (2013).
[83] N. Tsukamoto, M. Kimura, and T. Harada, Phys. Rev. D 89,

024020 (2014).

EFFICIENCY OF MAGNETIC PENROSE PROCESS IN HIGHER … PHYS. REV. D 110, 044042 (2024)

044042-13

https://doi.org/10.1103/PhysRevD.107.084052
https://doi.org/10.1016/j.nuclphysb.2020.115185
https://doi.org/10.1016/j.physletb.2021.136775
https://doi.org/10.1016/j.physletb.2021.136775
https://doi.org/10.1103/PhysRevD.106.084047
https://doi.org/10.1103/PhysRevD.106.084047
https://doi.org/10.3847/1538-4357/ac3de3
https://doi.org/10.1103/PhysRevD.105.023025
https://doi.org/10.1103/PhysRevD.106.124050
https://doi.org/10.1103/PhysRevD.106.124050
https://doi.org/10.1088/1475-7516/2023/10/034
https://doi.org/10.1088/1475-7516/2023/10/034
https://arXiv.org/abs/2307.03012
https://doi.org/10.1103/PhysRevD.72.041901
https://doi.org/10.1103/PhysRevD.72.041901
https://doi.org/10.1016/0003-4916(86)90186-7
https://doi.org/10.1103/PhysRevD.81.024011
https://doi.org/10.1103/PhysRevD.97.104007
https://doi.org/10.1103/PhysRevD.97.104007
https://doi.org/10.1140/epjc/s10052-019-7088-6
https://doi.org/10.1140/epjc/s10052-019-7088-6
https://doi.org/10.1103/PhysRevD.101.044028
https://doi.org/10.1103/PhysRevD.101.044028
https://doi.org/10.1140/epjc/s10052-020-8009-4
https://arXiv.org/abs/1111.1903
https://doi.org/10.1103/PhysRevD.69.084022
https://doi.org/10.1016/j.dark.2020.100758
https://doi.org/10.1016/j.dark.2020.100758
https://arXiv.org/abs/1002.4948
https://doi.org/10.1051/0004-6361/201527951
https://doi.org/10.1051/0004-6361/201527951
https://doi.org/10.3847/1538-4357/ab35e6
https://doi.org/10.1126/science.aan0249
https://doi.org/10.3847/2041-8213/abe4de
https://doi.org/10.3847/2041-8213/abe4de
https://doi.org/10.3847/1538-4357/abf117
https://doi.org/10.1086/152959
https://doi.org/10.1103/PhysRevD.10.1680
https://doi.org/10.1046/j.1365-8711.2002.05727.x
https://doi.org/10.1046/j.1365-8711.2002.05727.x
https://doi.org/10.1103/PhysRevD.82.084034
https://doi.org/10.1103/PhysRevD.82.084034
https://doi.org/10.1016/j.dark.2020.100648
https://doi.org/10.1103/PhysRevD.93.084012
https://doi.org/10.1103/PhysRevD.93.084012
https://doi.org/10.1103/PhysRevD.105.104059
https://doi.org/10.1103/PhysRevD.105.104059
https://doi.org/10.1016/j.dark.2021.100891
https://doi.org/10.1016/j.dark.2021.100891
https://doi.org/10.1103/PhysRevD.103.124066
https://doi.org/10.1140/epjc/s10052-014-3210-y
https://doi.org/10.1140/epjc/s10052-014-3210-y
https://doi.org/10.1140/epjc/s10052-022-10560-1
https://doi.org/10.1140/epjc/s10052-022-10560-1
https://doi.org/10.1007/s10714-023-03082-y
https://doi.org/10.1007/s10714-023-03082-y
https://doi.org/10.1142/S0217732306019281
https://doi.org/10.1046/j.1365-8711.2002.05727.x
https://doi.org/10.1046/j.1365-8711.2002.05727.x
https://doi.org/10.1016/j.physletb.2005.03.056
https://doi.org/10.1016/j.physletb.2005.03.056
https://doi.org/10.1142/S0218271821501200
https://doi.org/10.1142/S0218271821501200
https://doi.org/10.1016/j.dark.2022.100986
https://doi.org/10.1016/j.dark.2022.100986
https://doi.org/10.1103/PhysRevD.84.064046
https://doi.org/10.3390/universe9040190
https://doi.org/10.3390/universe9040190
https://doi.org/10.1103/PhysRevD.88.084036
https://doi.org/10.1103/PhysRevD.89.024020
https://doi.org/10.1103/PhysRevD.89.024020

