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Dissipative tidal interactions can be used to probe the out-of-equilibrium physics of neutron stars using
gravitational wave observations. In this paper, we present the first post-Newtonian (PN) corrections to the
orbital dynamics of a binary system containing objects whose tidal interactions have a dissipative
contribution. We derive the 1 PN-accurate equations of motion in the center-of-mass frame and a
generalized energy-balance law that is valid for dissipative tidal interactions. We show how mass and energy
loss due to the absorption of orbital energy change the orbital dynamics and derive the next-to-leading order
correction to the gravitational wave phase of a binary system in a quasicircular orbit containing initially
nonspinning components. We then use this waveform model to constrain, for the first time, the individual
dissipative tidal deformabilities of each of the binary components that generated the GW170817 event using
real data. We find that the GW170817 data require Ξ1 ≲ 1121 and Ξ2 ≲ 1692 at 90% confidence, where Ξ1;2

are the individual tidal deformabilities of the primary and secondary binary components that produced the
GW170817 event.
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I. INTRODUCTION

A neutron star in a binary system is tidally deformed by
its companion, and the strength of the tidal deformation
depends on the internal properties of the star [1]. The tidal
deformation affects the gravitational wave phase and helps
one probe the properties of high density nuclear matter, an
important unsolved problem in astrophysics and nuclear
physics [2–4]. The tidal deformation of a neutron star
depends both on its equilibrium properties, such as the
equation of state [5], and on its out-of-equilibrium proper-
ties, such as the internal viscosity of the nuclear matter in
neutron stars or the absorption of gravitational waves by the
event horizon of a black hole [6,7].
Tidal effects that conserve the orbital energy of the

binary correct the gravitational wave phase of point
particles starting at 5 post-Newtonian (PN) order [1]. A
great amount of work has been carried out to model the
conservative tidal response of compact objects [8–10].
Data from the gravitational wave event GW170817 [11]
has also been used to constrain the 5 PN term in the
gravitational wave phase and understand the properties of
the equation of state of high density nuclear matter [12].
The constraints on the conservative tidal effects are
expected to improve with next-generation detectors,

leading to more stringent inferences on the equation of
state [13].
For conservative tidal interactions, the leading (5 PN

order) tidal contribution to the gravitational wave phase
depends on an effective combination of the tidal deform-
abilities of each star [1]. To break the degeneracy in this
effective combination and measure the individual tidal
deformabilities of each star in the system, it is important to
find PN corrections to the leading PN order contribution.
Motivated by these considerations, conservative tidal
effects have been calculated to 6 PN order in the gravi-
tational wave phase [14,15] for quadrupolar tidal effects.
The current state-of-the-art model incorporates electric
quadrupolar, electric octupolar, and current quadrupolar
tidal effects to next-to-next-to leading order in the gravita-
tional wave phase [16,17]. Several studies have also con-
sidered the effects of rotation in the conservative tidal
interaction [18–20] and dynamic contributions due to
resonant excitation of fluid modes inside the neutron
stars [21,22].
Tidal effects that dissipate the orbital energy of the binary

correct the gravitational wave phase of point particles,
starting at 4 PN order for nonspinning objects [6,23] and
at 2.5 PN order for spinning objects [7]. For black holes, the
source of dissipation is the absorption of gravitational waves
by the event horizon [7,23]. For neutron stars, the source of
dissipation is internal mechanisms, such as bulk or shear
viscosity of the high density nuclear matter [6,24–26]. To
calculate the dissipative tidal response of black holes and
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exotic compact objects, techniques from black hole pertur-
bation theory [27–30], PN theory [27,31,32], and effective
field theory [33] have been used. The first calculation of the
dissipative tidal response of nonspinning neutron stars was
carried out in [26], using a polytropic equation of state for
the nuclear matter. The first constraints on the leading PN
order dissipative tidal deformability were then obtained
in [34] using the GW170817 event. Since these constraints
probe the internal dissipative mechanisms of neutron stars,
they open a new avenue to probe the out-of-equilibrium
properties of high density nuclear matter with gravita-
tional waves.
Just as in the case of the conservative tidal deformabil-

ities, in order to break the degeneracy between the indi-
vidual dissipative tidal deformabilities of each star it is
necessary to go beyond leading PN order in the calculation
of the gravitational wave phase. For black holes, these PN
corrections have been calculated using several methods. The
first calculations were carried out in [7] using black hole
perturbation theory in the extreme mass-ratio limit, which
focused on the black hole energy absorption rate and was
completed to very high PN orders [7]. For the case of
comparable-mass spinning black holes in binary systems,
corrections to the gravitational wave phase up to 1.5 PN
order higher than the leading 2.5 PN effect were calculated
in [29,31,35]. While important, these spin-dependent effects
are suppressed for neutron stars, because their spin is
expected to be small. Therefore, to break the degeneracy
between the dissipative tidal deformabilities of each neutron
star in a binary, it is necessary to calculate the next-to-
leading PN order correction to the 4 PN effect, which is the
main focus of this paper.
We accomplish this goal in this paper by leveraging

important previous results in the PN literature. Racine and
Flanagan derived the 1 PN correction to the equations of
motion for compact objects with arbitrary internal structure
in [36,37], generalizing the work of Damour, Soffel and
Xu (DSX) [38–40]. Later, Vines and Flanagan (VF) used
the formalism of Racine and Flanagan to derive the 1 PN
correction to the equation of motion of binary systems,
incorporating quadrupolar and spin-orbit interactions [41].
In this paper, we specialize the formalism of VF to the case
of dissipative quadrupolar interactions and derive the effect
of tidal dissipation on the orbital motion of the binary
system in the center of mass (c.m.) frame to 1 PN order. In
the presence of dissipative tidal interactions, the mass and
spin of the objects in the binary are not conserved. We
derive a generalized energy balance equation and show-
case how dissipative tidal interactions remove energy from
the orbit and how the evolution of the mass and spin of the
object contribute to the dissipative tidal flux. We then
specialize our discussion to the case of initially non-
spinning compact objects in a quasicircular binary inspiral
and present the 5 PN correction (relative to the leading PN

order point-particle contribution) due to dissipative tidal
interactions in the gravitational wave phase.
The first constraint on the dissipative tidal deformability

of neutron stars was obtained by analyzing the GW170817
event with the leading PN order dissipative tidal wave-
form [34], which depends on a certain combination of the
individual dissipative tidal deformabilities. Because of this,
the individual dissipative tidal deformabilities of the binary
components that produced the GW170817 event could not
be constrained using that model due to correlations
between the individual deformabilities. Owing to these
degeneracies, only heuristic estimates on the magnitude of
the individual dissipative tidal deformabilities were made
in [34], by assuming that the binary components that
produced the GW170817 event had exactly the same mass
and the equation of state. Here, we improve on these
heuristic calculations by using the GW170817 data to
properly estimate and constrain the individual dissipative
tidal deformabilities through a Bayesian analysis that uses
the next-to-leading PN order dissipative tidal waveform
model that we have calculated. While we find that the
GW170817 data are not sufficiently informative to measure
the individual dissipative tidal deformabilities, we do place
the first constraints on these quantities for neutron stars.
More precisely, we find that Ξ1 ≲ 1121 and Ξ2 ≲ 1692 to
90% confidence, where Ξ1;2 are the individual tidal
deformabilities of the primary and secondary binary com-
ponents that produced the GW170817 event. These con-
straints will enable us to bound the magnitude of the bulk or
shear viscosities inside each star in this binary; once more
detailed theoretical calculations are carried out to connect
these viscosities to the dissipative tidal deformabilities.
The rest of this paper presents the details of the

calculations summarized above, and it is outlined as
follows. In Sec. II we provide a summary of the 1 PN
equations of motion presented by VF, and we derive the
generalized energy-balance equation for dissipative tidal
interactions. In Sec. III, we then derive the gravitational
wave phase for a binary system in a quasicircular orbit
containing nonspinning objects. In Sec. IV, we analyze the
GW170817 event using the gravitational phase derived in
Sec. III. In Sec. V, we present our conclusions and discuss
possible future research. Henceforth, we use the following
conventions: the signature of our metric is ð−;þ;þ;þÞ;
we set G ¼ 1 but retain powers of c in our expressions to
count PN orders; spacetime indices are labeled with
lowercase Greek letters ðα; β;…Þ, while spatial indices
are labeled as lowercase Latin letters ða; b; c;…Þ in the
middle of the alphabet; we use h� � �i in index lists to denote
the symmetric tracefree combination of tensorial indices;
repeated indices stand for the Einstein summation con-
vention, where we raise and lower indices with the flat
spacetime metric (because we are working in PN theory).
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II. EQUATIONS OF MOTION

In this section, we summarize the 1 PN equations of
motion, following primarily the work of VF in [41], and we
calculate the generalized energy-balance equation for
binaries with dissipative tidal interactions to 1 PN order.
In particular, we set up notation in Sec. II A, and calculate
the 1 PN equations of motion and the energy flux due to
dissipative tidal interactions in Sec. II B. We describe the
tidal response function in Sec. II C and derive the gener-
alized energy balance equation in Sec. II D.

A. Notation

We follow the notation of [14,41] to describe the orbital
equations of motion and the gravitational wave phase. We
warn the reader that this notation is different from that used
in our earlier paper [6], which derived the leading PN order
phase contribution at 4 PN order. We choose the notation
of [14,41] to make comparisons easier.
We label the two objects in the binary, and any physical

quantities associated with them, with the subscripts 1 and 2.
We use the word “object” instead of “neutron star” or “black
hole,” to remain agnostic about the system in question. The
masses of the two objects are M1 and M2, the total mass is
M≡M1 þM2, the reduced mass is μ≡M1M2=M, and the
symmetric mass ratio is η≡ μ=M. The characteristic radii of
the objects areR1 andR2, which could refer to the equatorial
radius for a neutron star or the areal radius for a black hole,
while their orbital separation is denoted by r. We also define
the mass ratio q ¼ M2=M1 and1 X1;2 ≡M1;2=M with the
convention thatM1 > M2. The compactness of each body is
defined by C1;2 ≡M1;2=ðR1;2c2Þ. Following VF, we define
three coordinate systems: a global conformally harmonic
coordinate system denoted by ðt; xjÞ, and two local coor-
dinate systems covering the neighborhood of the two
objects in the binary denoted by ðs1;2; yj1;2Þ. A schematic
diagram of such a binary system is presented in Fig. 1.
We denote the (electric-type, quadrupolar) dissipative

tidal deformability of each object by Ξ1;2. The dissipative
tidal deformability quantifies the dissipative tidal response
of the object to the external tidal field. Schematically, the
dissipative quadrupolar deformation of object A when in
the presence of an external time-dependent quadrupolar
tidal field is

Qab;diss
A ¼ −

ΞA

c13
M6

A
d
dsA

Gab; ð1Þ

where Qdiss
ab is the dissipative contribution to the (mass-

type) quadrupole field tensor and Gab is the (electric-type)
quadrupole tidal field tensor [see Eq. (16) below for more
details]. We also define two combinations of the individual

dissipative tidal deformabilities, which we refer to as the
binary dissipative tidal deformabilities, namely

Ξ̄≡ f1ðηÞ
Ξ1 þ Ξ2

2
þ g1ðηÞ

Ξ2 − Ξ1

2
; ð2aÞ

δΞ̄≡ f2ðηÞ
Ξ1 þ Ξ2

2
þ g2ðηÞ

Ξ2 − Ξ1

2
; ð2bÞ

where

f1ðηÞ ¼ 8ð2η2 − 4ηþ 1Þ; ð3aÞ

g1ðηÞ ¼ −8
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4η

p
ð1 − 2ηÞ; ð3bÞ

f2ðηÞ ¼
1568η3

753
þ 3288η2

251
−
23536η

753
þ 5996

753
; ð3cÞ

g2ðηÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4η

p �
1232η2

753
þ 3848η

251
−
5996

753

�
: ð3dÞ

The binary dissipative tidal deformabilities will appear in
the gravitational waveform that we calculate in this paper.
Following VF, we define an effective M1 −M2−

S2 −Q2 system in which we will carry out some of
our calculations. This system will be composed of a

FIG. 1. Cartoon (not to scale) depicting the motion of two
tidally interacting neutron stars (shown in dark blue, with masses
M1;2 and radii R1;2) in a quasicircular orbit of radius r on a
constant time slice. The spacetime is separated into three zones:
the inner body zones (shown in orange, close to objects 1 and 2),
where we employ a local coordinate system ðs1;2; yi1;2Þ, and a
post-Newtonian zone (shown in light blue, far from either object),
where we employ a global coordinate system ðt; xiÞ.

1Note that VF use χ1;2 instead of X1;2.
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nondeformable point particle of mass M1 (object 1) and a
deformable body (object 2) with a mass monopole
moment M2, a quadrupole moment Qab

2 , and a spin dipole
moment Sa2; higher-order multipole moments will con-
tribute at higher PN order, so we neglect them here. Given
such an effective system, we will then focus on the
trajectory of body 2 and calculate how the tidal deforma-
tions of body 2 due to the external universe generated by
body 1 affect the trajectory of body 2. Once this has been
calculated, we will immediately know how the tidal
deformations of body 1 due to the external universe
generated by body 2 affect the trajectory of body 1
through a symmetry exchange of labels 1 ↔ 2 in the
tidal terms. With that in hand, we will then be able to
compute the equations of motion in the c.m. frame for our
physical system of two orbiting deformable bodies.

B. Dynamical equations of motion

The 1 PN-accurate equations of motion for objects with
arbitrary multipole moments was first derived by DSX
assuming that the 1 PN approximation was valid through-
out the spacetime [38–40]. Racine and Flanagan then
extended this approach to objects with arbitrarily strong
internal structure moving in a PN environment in [37]. VF
provided a simplified set of equations for the M1 −M2 −
S2 −Q2 system in the c.m. frame and showed how the
equations of motion can be derived from a generalized
Lagrangian. We now summarize their method here.
We denote the relative acceleration in the c.m. frame by

ai ¼ ai2 − ai1, the relative velocity by v
i ¼ vi2 − vi1, and the

relative normal vector by ni ¼ ni2 − ni1, where aiA, viA
and niA are the acceleration, the velocity, and the normal
vector of body A. The c.m. acceleration of the effective
M1 −M2 − S2 −Q2 system can be decomposed into three
different pieces,

ai ¼ aiM þ aiS2 þ aiQ2
; ð4Þ

where aiM is the monopolar (point-particle) contribution
(including the mass monopole pieces of both bodies),

aiM ¼ −
M
r2

ni −
1

c2
M
r2

�
ni
�
ð1þ 3ηÞv2 − 3η

2
ṙ2

− 2ð2þ ηÞM
r

�
− 2ð2− ηÞṙvi

�
þOðc−4Þ; ð5Þ

aiS2 denotes the contribution due to the coupling between
the orbital angular momentum and the spin dipole moment
of object 2 (i.e., a spin-orbit coupling),

aiS2 ¼
ϵabcSc2
c2X2r3

½ð3þ X2Þvaδbi − 3ð1þ X2Þṙnaδbi þ 6naivb�

þOðc−4Þ; ð6Þ

and aiQ2
denotes the contribution from the quadrupolar

interaction of object 2,

aiQ2
¼ −

3Q2;ab

2X2r4
½5nabi − 2naδbi� þ 1

c2

�
Q2;ab

r4

�
nabi

�
B1v2 þ B2ṙ2 þ B3

M
r

�

þ naδbi
�
B4v2 þ B5ṙ2 þ B6

M
r

�
þ B7ṙnabvi þ B8navbi þ B9ṙnaivb þ B10vabni þ B11ṙvaδbi

�

þ Q̇2;ab

r3
½B12nabvi þ B13ṙnabi þ B14naivb þ B15vaδbi þ B16ṙnaδbi� þ

Q̈2;ab

r2
½B17nabi þ B18naδbi�

�
þOðc−4Þ: ð7Þ

The coefficients Bi depend on the component masses and
are provided explicitly in Appendix A. Observe that we do
not include the spin-spin terms or terms that couple the
spin and the quadrupolar interaction because, as mentioned
earlier, they would contribute at higher PN order.
In the absence of tidal interactions, the mass and spin of

object 2 is conserved, but in their presence, tidal inter-
actions extract energy from the orbit and lead to the
evolution of the mass and spin of the object. In the effective
M1 −M2 − S2 −Q2 system, the equations governing this
interaction are

∂tSi2 ¼ ϵijkQ
ja
2 Gk

2;a þOðc−2Þ; ð8aÞ

∂tM2 ¼ −
1

c2

�
Gij

2 ∂tQ2;ij þ
3

2
Q2;ij∂tG

ij
2

�
þOðc−3Þ; ð8bÞ

where Gij
2 is the tidal field tensor experienced by body 2

due to body 1. The 1 PN accurate expression for the tidal
field tensor is
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Gab
2 ¼ 3M1

r3
nhabi þ 3M1

r3c2

��
3v2 −

5X2
2

2
ṙ2 −

5þX1

2

M
r

�
nhabi

þ vhabi − ð3−X2
2Þṙnhavbi

�
þOðc−3Þ: ð9Þ

Before we proceed, note that Eqs. (5)–(7) differs from
Eq. (5.9d) of VF. The reason is because VF chose to split
the mass M2 as

M2 ¼ nM2 þ
1

c2
ðE2;int þ 3UQ2

Þ þOðc−3Þ; ð10Þ

where the “Newtonian” mass nM2 is conserved
∂tðnM2Þ ¼ 0. The “internal energy” E2;int and the tidal
potential energy contributions are given by

∂tðE2;intÞ ¼
1

2
G2;ij∂tQ

ij
2 ; ð11aÞ

UQ2
ðtÞ ¼ −

1

2
G2;ijQ

ij
2 : ð11bÞ

We do not make this distinction when writing down Eq. (7),
and instead, we account for the evolution ofM2 due to tidal
interaction directly in the equations of motion.
With this in hand, one can now easily return to our

physical system of two deformable bodies. The tidal
corrections to the acceleration of body 1 due to the
quadrupolar deformations it experiences due to the tidal
field of body 2 are simply

aS1 ¼ Ê½aS2 �; aQ1
¼ Ê½aQ2

�; ð12Þ

where we have defined the label exchange operator Ê½·� as
one which makes the transformation 1 ↔ 2 in the labels of
its argument. For example, Ê½X2� ¼ X1 and Ê½q� ¼ 1=q.
Notice that when acting the label exchange operator on
relative three-vector quantities, like vi and ni, one incurs a
minus sign due to their definitions. The total relative
acceleration of the binary system in the c.m. frame is then
simply

ai ¼ aiM þ aiS1 þ aiS2 þ aiQ1
þ aiQ2

: ð13Þ

The evolution of the mass monopoleM1 and the spin dipole
S1, which implicitly appear in the above equation, can be
obtained by acting the label exchange operator on Eqs. (8a)
and (8b).

C. Internal dynamics and tidal response

To close the dynamical equations [Eqs. (4), (8a),
and (8b)] in the effective M1 −M2 − S2 −Q2 system,
we need to describe the dynamics of the quadrupole
moment Qab

2 . Linear response theory can be used to model

the tidal response in the body frame of the object (see
Sec. III of [26] for more details) as

Qab
2 ðs2ðtÞÞ∝

Z
∞

−∞
K2ðs2ðtÞ− s2ðt0ÞÞGab

2 ðs2ðt0ÞÞ
�
dt0

ds2

�
ds2;

ð14Þ

where K2ð·Þ is the tidal response function of the object and
Gab

2 ð·Þ is the tidal moment of the object [Eq. (9)]. The
function s2ðtÞ denotes the dependence of the local time in
the body frame as a function of the global time coordinate.
The factor ðdt=ds2Þ is then the local redshift factor, and one
can show that

�
dt
ds2

�
¼ 1þ v2X2

1

c2
þM1

rc2
þOðc−4Þ; ð15Þ

by using the 1 PN accurate coordinate transformations in
Eq. (2.17) of [37], and specializing these coordinate
transformations to the body adapted gauge of VF (see
the discussion above Eq. (3.45) of [37]). Since we are
interested in the inspiral, we can assume weak tidal
interactions and truncate the tidal response function in a
small frequency approximation. We retain only the leading
order conservative and dissipative evolution for the quadru-
pole moment and ignore contributions from the spin of the
object to obtain

Qab
2 ¼ Λ2X5

2M
5

c10
Gab

2 ð1þOðc−3ÞÞ

−
Ξ2

c13
X6
2M

6

�
dt
ds2

�
∂tGab

2 ð1þOðc−3ÞÞ; ð16Þ

where Λ2 is the conservative tidal deformability of object 2,
and Ξ2 is the dissipative tidal deformability of object 2. We
refer to these terms as conservative and dissipative because
they are even and odd under time reversal. We have
uncontrolled remainders of Oðc−3Þ in the expression above
because the tidal field [Eq. (9)] has uncontrolled remainders
of Oðc−3Þ. Returning to the physical problem, a similar
expression holds for the quadrupole moment tensor of body
1 by acting the label exchange operator on Eq. (16).
The value of the conservative tidal deformability Λ2

depends only on the equation of state of the object and has
been extensively studied in the literature [13]. The value of
the dissipative tidal deformability depends not only on the
equation of state, but also on the details of the internal
dissipative mechanism of the object. For example, if object
2 is a black hole, then the internal dissipative mechanism is
the absorption of gravitational waves by the black hole’s
event horizon; the value of Ξ2 for a rotating and nonrotating
black hole can be found in [27,29]. On the other hand, if
the object is composed of a viscous fluid, then the value of
Ξ2 depends on the shear and bulk viscosity of the fluid.
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A method for calculating the value of Ξ2 for a relativistic
viscous fluid object was described recently by us in [26],
which greatly extends the previous Newtonian work of [42].
As explained in [26], Ξ2 can be obtained by solving the
perturbed Einstein equations, once an equation of state and a
viscosity profile have been prescribed; the latter requires the
modeling of internal nuclear dissipative rates, such as Urca
reactions [43–51]. This is an involved calculation that is
currently being tackled separately [52]. Therefore, in this
paper, we will not concern ourselves with the mapping
between Ξ1;2 and the shear or bulk viscosities of the stars,
deferring such an analysis to future work.
We introduce the following notation for the conservative

and dissipative sectors of the quadrupole moment

Qcons;ab
2 ¼ Λ2X5

2M
5

c10
Gab

2 ; ð17aÞ

Qdiss;ab
2 ¼ −

Ξ2

c13
X6
2M

6

�
dt
ds2

�
∂tGab

2 ; ð17bÞ

and similar expressions for the quadrupole deformations of
body 1, obtained by applying the label exchange operator to
the above equations. These expressions will be used to
simplify some equations below.

D. Generalized Lagrangian and energy
balance relationship

To evaluate the gravitational wave phase and flux, we
need to derive an energy-balance relation from the orbital
equation of motion. To do this, we first derive the
equations of motion [Eq. (4)] from a generalized accel-
eration dependent Lagrangian. The Lagrangian L of the
effectiveM1 −M2 − S2 −Q2 system can be split into three
contributions [41]:

L ¼ LM þ LS2 þ LQ2
; ð18Þ

where the monopolar piece is given by

LM ¼ μMv2

2
þ μM

r
þ μ

c2

�
1 − 3η

8
v4

þM
2r

�
ð3þ ηÞv2 þ ηṙ2 −

M
r

��
þOðc−4Þ; ð19Þ

the spin contribution due to body 2 is given by

LS2 ¼
X1ϵabcSa2v

b

c2

�
2
M
r
nc þ X1

2
ac
�
þOðc−4Þ; ð20Þ

and the quadrupolar contribution due to body 2 is

LQ2
¼ 3M1Qab

2 nanb

2r3
þ 1

c2

�
MQab

2

r3

�
nanb

×

�
A1v2 þ A2ṙ2 þ A3

M
r

�
þ A4vavb þ A5ṙnavb

�

þMQ̇ab
2

r2

h
A6navb þ A7ṙnanb

i

− 3UQ2

�
A8v2 þ A9

M
r

��
þOðc−4Þ: ð21Þ

Note that the tidal potential energy due to the quadrupole
moment UQ2

[see Eq. (11b)] is to be understood as a
function of time in the above expression, i.e., the expression
forG2;ab [Eq. (9)] in Eq. (11b) is only substituted in after the
Lagrangian is derived and the equations of motion are
obtained. The same comments apply to the quadrupole
moment Qab

2 ðtÞ. The physical reason behind this is that the
tidal moments Gab

2 ðtÞ are obtained by evaluating on the
worldlines of the objects in a matched asymptotic expan-
sion. We first write down the field equations and then obtain
the tidal moments by matching the gravitational metric to
the external field in the reference frame of the object. We are
therefore interested in the dynamics of the objects after
integrating out the gravitational field. The technical term for
this procedure is the method of reduced actions. We refer the
reader to Sec. II E of [15] for a summary of this technique.
In practice, we have obtained the Lagrangians displayed
above by writing down all possible combinations of the
terms that appear at 1 PN order and then matching the
equations of motion derived from the Lagrangian to Eq. (4).
The generalized Lagrangian approach to deriving the

quadrupolar interaction was first followed by VF. Our
approach differs nominally from their approach because we
do not split the mass of object 2 as given in Eq. (10). This
difference then leads to the appearance of UQ2

ðtÞ in
Eq. (21), while Eq. (5.10 d) of VF has a term proportional
to E2;int in the Lagrangian. The coefficients Ai are the same
in both our expressions and those of VF, and thus, we list
them in Appendix B.
The equations of motion can be derived from the

generalized Lagrangian by using the generalized Euler-
Lagrange equation

−
d2

dt2

�
∂L
∂ai

�
þ d
dt

�
∂L
∂vi

�
−
∂L
∂zi

¼ 0: ð22Þ

For solutions to the equations of motion, a generalized
energy balance law can also be obtained:

d
dt

E ¼ −
∂L
∂t

; ð23Þ

where the generalized energy is a function of the gener-
alized Lagrangian evaluated on shell,
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E½L� ¼ ai
∂L
∂ai

− vi
d
dt

∂L
∂ai

þ vi
∂L
∂ai

− L: ð24Þ

This generalized energy is not to be confused with the
orbital energy, and instead, it should be thought more of as
a “Hamiltonian.”
We can obtain orbital energy-balance law from the above

generalized energy-balance law if we implement a sepa-
ration of conservative and dissipative terms. As we men-
tioned before, by “conservative” and “dissipative”we mean
terms that are even and odd under time reversal. Therefore,
it is natural to decompose the quadrupolar part of the
Lagrangian into conservative and dissipative contributions,

LQ2
¼ LQ2;cons þ LQ2;diss; ð25Þ

where

LQ2;cons ¼ LQ2

h
Qcons;ab

2

i
; ð26aÞ

LQ2;diss ¼ LQ2

h
Qdiss;ab

2

i
; ð26bÞ

and whereQcons;ab
2 andQdiss;ab

2 are the terms proportional to
Λ2 and the Ξ2 in Eq. (16) respectively. Similar decom-
positions can be applied in the physical system to find the
quadrupolar part of the Lagrangian of body 1, LQ1

simply
by acting the exchange label operator on Eq. (25). With this
decomposition, Eq. (23) becomes

dEorb

dt
≔

d
dt

E þ ∂Lcons

∂t
¼ −

∂Ldiss

∂t
≔ F diss; ð27Þ

where we have identified the left-hand side as the rate of
change of the orbital energy with respect to time and the
right-hand side with a dissipative flux.
Let us tackle the left- and right-hand sides of this energy-

balance equation separately. The orbital energy can be
written as

Eorb ¼ E½LM þ LS1 þ LQ1;cons þ LS2 þ LQ2;cons�

þ
Z �

∂LQ1;cons

∂t
þ ∂LQ2;cons

∂t

�
dt

¼ Eorb;M þ Eorb;S þ Eorb;Q; ð28Þ

where we have decomposed the orbital energy into a piece
that depends on the monopole part of the Lagrangian,
another one that depends on the spin dipole moment, and a
third that depends on the conservative part of the quadru-
pole moment. Evaluating each of these pieces, one finds

Eorb;M ¼ μv2

2
−
Mμ

r
þ μ

c2

�
3

8
ð1 − 3ηÞv4

þM
2r

�
ð3þ ηÞv2 þ ηṙ2 þM

r

�
þOðc−2Þ

�
; ð29Þ

Eorb;S ¼−
1

c2

�
X2
1M
r2

ϵabcnaSb2v
cþOðc−2Þ

�
þ 1↔ 2; ð30Þ

Eorb;Q ¼ −
3M7X2

1X
5
2Λ2

2r6c10

�
1þ 1

c2

�
−
2M
r

þ 3ṙ2ðX2
1 þ 4X1 − 4Þ − v2X1ð2X1 þ 3Þ

�

þOðc−3Þ
�
þ 1 ↔ 2: ð31Þ

Not surprisingly, the orbital energy [Eq. (28)] is the same
as the 1 PN accurate conserved orbital energy for purely
conservative tidal interactions [see2 Eq. (2.7) of [14] ].
However, note that unlike the case of purely conservative
tidal interaction, the mass monopole moment M2 and the
spin S2 are not conserved [see Eqs. (8a) and (8b) for their
evolution equations].
The flux due to internal dissipation can be further

decomposed into

F diss ¼ −
∂Ldiss

∂t
¼ F diss;M þ F diss;S þ F diss;Q ð32Þ

to separate the part of the flux that comes from the
monopole term, from that which comes from the spin
dipole moment and the quadrupole moment. More specifi-
cally, the dissipative mass flux F diss;M is given by

F diss;M ¼ −
∂LM

∂t
;

¼ ∂tðμMÞ
2

v2 þ ∂tðμMÞ
r

þOðc−4Þ; ð33Þ

the dissipative spin flux F diss;S is given by

F diss;S ¼ −
∂LS1

∂t
−
∂LS2

∂t
;

¼ 3M2X2
1ð4 − X1Þ
2c2r5

nbQdiss;bc
2 ðncṙ − vcÞ

þOðc−4Þ þ 1 ↔ 2; ð34Þ

2The same comments made above Eq. (10) apply when
comparing Eq. (2.7) of [14] to Eq. (28).
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and the dissipative quadrupolar flux F diss;Q is given by

F diss;Q ¼ −
d
dt

ðE½LQ1;diss�Þ −
∂LQ1;diss

∂t
−

d
dt

ðE½LQ1;diss�Þ −
∂LQ2;diss

∂t
;

¼ −
3MX1

2r4
naQdiss;ab

2 ð5nbṙ − 2vbÞ þ 1

c2

�
Qdiss;ab

2 M
r4

�
nanbṙ

�
α1v2 þ α2ṙ2 þ α3

M
r

�
þ ṙα4vavb

þ navb
�
α5v2 þ α6ṙ2 þ α7

M
r

��
þ Q̇diss;ab

2 M
r3

h
nanb

	
α8v2 þ α9ṙ2



þ α10vavb þ α11ṙnavb

i

þ Q̈diss;ab
2 M
r2

h
α12ṙnanb þ α13navb

i�
þOðc−4Þ þ 1 ↔ 2; ð35Þ

where an overhead dot denotes derivatives with respect to the global time coordinate t, and the coefficients αi are listed in
Appendix C. The total dissipative flux can be further simplified by substituting Eq. (16) to obtain

F diss ¼ −
9Ξ2M8X2

1X
6
2

c13r8

�
ð2ṙ2 þ v2Þ þ 1

c2

�
2M2X1

r2
þMṙ2ð−86þ 94X1 þ X2

1Þ
2r

þ v4
�
−2þ 7X1 þ

3

2
X2
1

�

þ 5ṙ4ð−25þ 28X1 þ 2X2
1Þ þ v2

�
ṙ2ð76 − 108X1 − 5X2

1Þ −
Mð2þ 22X1 þ X2

1Þ
2r

���
þ 1 ↔ 2: ð36Þ

The leading PN order expression for the dissipative flux
[Eq. (36)] was derived by us in Eq. (24b) of [6], and it is the
familiar Newtonian tidal heating term. The 1 PN correction
to this leading PN order expression is new and derived here
for the first time. We also write down the simplified
expressions for the spin and mass evolution equations
[Eqs. (8a) and (8b)] after substituting Eq. (16),

∂tSi2 ¼
9Ξ2M8X2

1X
6
2

r7c13
ϵiajn

avj½1þOðc−2Þ�; ð37aÞ

∂tM2 ¼
9Ξ2M8X2

1X
6
2

r9c15
ð2M þ 18rṙ2 − rv2Þ½1þOðc−2Þ�;

ð37bÞ

since these equations were used to simplify some of the
terms when deriving Eq. (36). Similar expressions can be
obtained for the spin and mass evolution equations of body
1 through the action of the label exchange operator on the
above equations.

III. GRAVITATIONAL WAVE PHASE
FOR A CIRCULAR ORBIT

In this section, we specialize to the case of quasicircular
orbits and calculate the gravitational wave phase for the
dissipative tidal interaction to 1 PN order beyond the
leading PN order tidal effects in the phase. The leading
PN order corrections to the phase due to conservative tidal
interactions were presented in [1,14,17]. We are mainly
interested in deriving the gravitational wave flux due to

dissipative tidal interactions, so we will ignore the
conservative tidal contribution from here on and set Λ2

to zero; we will restore Λ2 at the end of our calculation. We
also assume that the dynamics of the M1 −M2 − S2 −Q2

system can be specified to leading order using point-particle
dynamics, which evolves adiabatically under the influence
of gravitational wave and tidal dissipation. Finally, we
assume that objects are initially nonspinning.
With these assumptions, we add the gravitational wave

dissipation into the energy-balance law [Eq. (27)],

dEorb

dt
¼ F diss þ FGW; ð38Þ

where the gravitational wave flux is given by [see, e.g.,
Eq. (454) of [53] ]

FGW ¼ −
1

5c5
ð∂3t Qij

sysÞ3 − 1

c7

�
1

189
ð∂4t Qijk

sysÞ3þ 16

45
ð∂3t SijsysÞ3

�

þOðc−8Þ: ð39Þ

In the above equation, Qij
sys is the mass quadrupole

moment, Qijk
sys the mass octupole moment, and Sijsys is

the current quadrupole moment of the system. To calculate
these quantities, we can ignore the purely dissipative
quadrupolar interaction, as it would contribute as a high
PN order correction to the orbital energy instead of the
flux. The point-particle contributions are well known [see,
e.g., Eqs. (445) and (451) of [53] ].

R., RIPLEY, and YUNES PHYS. REV. D 110, 044041 (2024)

044041-8



The equations governing the motion to two point
particles moving around each other in a circular orbit of
radius r and orbital frequency F is given by

r ¼ M1=3

ω2=3 −
Mð3 − ηÞ

3c2
þOðc−3Þ; ð40Þ

whereω ¼ 2πF and theOðc−3Þ contributions are due to the
spin of the object [53]. We are allowed to use this version of
Kepler’s third law at 1 PN order because the dissipative
tidal effects only enter through the dissipative flux, and do
not modify the orbital energy (unlike the conservative tidal
deformations). Using the adiabatic evolution assumption,
we can rewrite Eq. (38) as

�
dEorb

dx

�
ẋþ

�
dEorb

dM2

�
Ṁ2 þ

�
dEorb

dSb2

�
Ṡb2

¼ hFGWi þ hF dissi; ð41Þ

where

x≡
�
2πMF
c3

�
2=3

¼
�
Mω

c3

�
2=3

; ð42Þ

and the angular brackets are used to denote the fact that the
expressions are evaluated for a circular orbit.
Let us now evaluate each of the terms that appear in the

averaged energy-balance law of Eq. (41). For circular
orbits, the gravitational wave flux to 1 PN order can be
evaluated to [see, e.g., Eq. (480) of [53] ]

hFGWi ¼ −
32c5η2x5

5

�
1þ

�
−
1247

336
−
35

12
η

�
xþOðc−3Þ

�
:

ð43Þ

The 1 PN accurate expression for the dissipative flux
hF dissi, the spin evolution Ṡb2 , and the mass evolution
Ṁ2 can be obtained by substituting Eq. (40) into Eq. (36),
(37b), and (37a) respectively to obtain

hF dissi ¼ −9Ξ2x9X2
1X

6
2c

5

�
1þ x½3þ X2

1 − 2X1ð1þ X2Þ�

þ 1 ↔ 2þOðc−4Þ
�
; ð44aÞ

D
Ṁ2

E
¼ 9Ξ2x9c3X2

1X
6
2½1þOðc−2Þ�; ð44bÞ

D
Ṡb2
E
¼ 9Ξ2x7cϵbacMnavcX2

1X
6
2½1þOðc−2Þ�: ð44cÞ

To evaluate Eq. (41) we need to calculate the product of the
derivative of the orbital energy with respect to the dipole
and the quadrupole moments contracted onto themselves.
Doing so, one finds

�
dEorb

dM2

�D
Ṁ2

E
¼ 9c5ðX1 − 2ÞX3

1X
6
2Ξ2x10

2
½1þOðc−2Þ�;

ð45aÞ

�
dEorb

dSb2

�D
Ṡb2
E
¼ 9c5X4

1X
6
2Ξ2x10½1þOðc−2Þ�: ð45bÞ

Using that the rate of change of the orbital energy with
respect to x is simply dEorb=dx ¼ −MX1X2c2=2½1 −
xð9þ ηÞ=6� to 1 PN order, and using Eqs. (44) and (45)
we can simplify Eq. (41) to obtain

ẋ ¼
��

dEorb

dx

��
−1
�
hFGWi þ hF dissi

−
�
dEorb

dM2

�D
Ṁ2

E
−
�
dEorb

dSb2

�D
Ṡb2
E�

; ð46Þ

or explicitly,

ẋ¼ 64x5ηc3

5M

�
1−

x
336

ð743þ 924ηÞ þOðc−3Þ
�

þ 18Ξ2x9X1X5
2c

3

M

�
1þ x

6
ð27þ 15X2

1 −X1ð18þ 11X2ÞÞ

þOðc−3Þ
�
: ð47Þ

We see that the dissipative tidal contribution goes as x9, so
it is a 4 PN contribution relative to the leading PN order
point-particle contribution, which is proportional to x5. The
1 PN corrections on the right-hand side goes as x10, so it is a
5 PN contribution, and it enters at the same order as the
conservative tidal effects (which for simplicity we have not
written out explicitly in any of the above equations).
We can use Eq. (46) to find the gravitational wave phase

in the stationary phase approximation. We will assume here
that both objects are deformable. We denote the gravita-
tional wave frequency by f and the orbital frequency by F.
In the stationary phase approximation, we have that f ¼ 2F
(we consider an l ¼ 2 mode) and the gravitational wave
Fourier phase ΨðfÞ, can be written as [54]
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ΨðfÞ ¼ 2π ftðfÞ − 2ϕðfÞ ð48Þ

where

tðfÞ ¼ tc þ
Z

F¼f
2 1

ẋ
dx; ð49aÞ

ϕðfÞ ¼ φc

2
þ π

8
þ 2π

Z
F¼f

2 c3x3=2

M
dt
dx

dx: ð49bÞ

Using the above expressions and Eq. (46) we find that

ΨðfÞ ¼ 2π ftc − φc −
π

4
þΨpp þ Ψcons þ Ψdiss; ð50Þ

where we have here restored the conservative tidal effects,
u ¼ ð2πfM=c3Þ1=3 is another PN expansion parameter, φc
is the coalescence phase, and tc is the coalescence time. The
point-particle contribution to the phase to 1 PN order is
given by

Ψpp ¼
3

128ηu5

�
1þ

�
3715

756
þ 55η

6

�
u2 þOðc−3Þ

�
; ð51Þ

higher-order corrections up to 4.5 PN order can be found in
Eq. (484) of [53]. The conservative tidal contribution to the
phase to 1 PN order is given by [1,14]

Ψcons ¼
3u5

128η

��
−
39

2
Λ̃
�
þ
�
−
3115

64
Λ̃

þ 6595

364

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4η

p
δΛ̃

�
u2 þOðc−3Þ

�
; ð52Þ

where Λ̃ and δΛ̃ are effective combinations of the
conservative tidal deformabilities of each of the stars
[see Eqs. (5) and (6) of [55] ]. Higher-order corrections
up to 7 PN order can be found in [17]. The dissipative tidal
contribution to the phase is given by

Ψdiss ¼
3u3

128η

�
25

4
Ξ2X4

2−
75Ξ2

4
logðuÞX4

2þ
15Ξ2u2

448

×X4
2ð−1415−280X2þ196X2

2ÞþOðc−3Þ
�
þ1↔ 2;

¼ 3u3

128η

�
25

32
Ξ̄−

75

32
Ξ̄ logðuÞ−11295u2

1792
δΞ̄þOðc−3Þ

�
;

ð53Þ

where the Ξ̄ and δΞ̄ are the binary tidal dissipative
deformabilities defined in Eq. (2). Observe that one of
the leading order terms in the dissipative tidal phase of
Eq. (53) [the one that is independent of the logðuÞ]
contributes in the same way as the time of coalescence.
Absorbing this term in a redefinition of tc via

t̄c ≡ tc þ
75MΞ̄
8192c3η

; ð54Þ

we then obtain the final result,

ΨðfÞ ¼ 2π ft̄c − φc −
π

4
þ Ψpp þΨcons

−
3u3

128η

�
75

32
Ξ̄ logðuÞ þ 11295u2

1792
δΞ̄þOðc−3Þ

�
:

ð55Þ

We see then clearly that the logðuÞ term in the dissipative
tidal correction to the Fourier phase ensures that the leading
PN order correction is not degenerate with t̄c. The leading
PN order contribution to the phase due to dissipative tidal
corrections was provided in Eq. (43) of [6], and the above
expression [Eq. (55)] provides the 1 PN correction for the
first time.

IV. ANALYSIS OF GW170817

In this section, we analyze the gravitational wave event
GW170817 by adding the next-to-leading PN order dis-
sipative tidal correction to the gravitational wave phase.
The analysis with the leading order tidal correction was
presented in [34], where we discussed the data analysis
method in detail. We review the main steps for complete-
ness below and present our results using the 1 PN corrected
Fourier phase.
For the waveform model, we enhance the

IMRPhenomPv2_NRTidal model by adding the dissipa-
tive tidal correction [Eq. (53)] to the gravitational wave
phase. In the frequency domain, we represent the model
via the Fourier transform of the Gravitational wave (GW)
strain h̃ðfÞ ¼ Aðf; θÞeiΨðf;θÞ, where Aðf; θÞ is the Fourier
GW amplitude and Ψðf; θÞ is the Fourier GW phase. The
parameters in our model are denoted by θ, and the
parameters in IMRPhenomPv2_NRTidal are denoted
by θa. The enhanced phase Ψðf; θÞ is given by

Ψðf; θÞ ¼ ΨPv2NRTðf; θaÞ þ Ψdissðf; Ξ̄; δΞ̄Þ; ð56Þ

where the dissipative tidal contribution is provided in
Eq. (53). There are 19 parameters in our enhanced model;
the IMRPhenomPv2_NRTidal GW model contains 17
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parameters, and we have included two dissipative tidal
parameters. To sample the conservative tidal deformabilities
we use the binary Love relations [56], and we marginalize
over their uncertainty [57]. We use these relations to rewrite
λa ¼ ðΛ1 − Λ2Þ=2 as a function of λs ¼ ðΛ1 þ Λ2Þ=2, thus
reducing the total number of parameters to 17þ 2 − 1 ¼ 18.
As usual in GW data analysis, we assume the noise is

Gaussian and stationary, so that the log likelihood of the
strain data s̃ðfÞ given a GW template h̃ðf; θÞ with model
parameters θ is given by [58]

lnLðs̃jθÞ ¼ −
1

2
ðr̃ðθÞjr̃ðθÞÞ ¼ −2

Z
∞

0

df
jr̃ðf; θj2
SnðfÞ

; ð57Þ

where r̃ðf; θÞ≡ h̃ðf; θÞ − s̃ðfÞ is the residual and SnðfÞ is
the noise power spectral density of the GW detector. We use
128s of the publicly available 4 kHz GW170817 (glitch-
cleaned) GW strain data [59] for our data analysis. For
sampling the likelihood, we use the Bilby [60] GW
library with the nested sampling algorithm, as implemented
in DYNESTY [61]. Within the Bilby interface to that code,
we set nlive¼ 1500, nact¼ 10, dlogz¼ 0.01, sam-
ple¼‘rwalk’, and bound¼‘live’, which has been
verified to give convergent solutions [34]. We sample
the likelihood over all 18 parameters of the model, and
we marginalize over the reference phase.
We choose the following priors for our parameter

estimation analysis. We derive the inferred prior on the
chirp mass and mass ratio q using uniform priors on the
component masses. We constrain the chirp mass M to lie
within the range ½1.184M⊙; 1.25M⊙�, and we constrain the
mass ratio q to lie within the range [0.5, 1]. As the
IMRPhenomPv2_NRTidal model does not include spin
corrections to the conservative tidal effects,3 we use the
“low-spin” prior defined in [11]; that is, we use uniform
priors for the neutron star spins ða1; a2Þ in the range
[0, 0.05]. We use a triangular prior for λs with mean 1500
and range [0, 3000]. To sample the dissipative tidal
deformabilities, we use uniform priors on the individual
dissipative tidal deformabilities ðΞ1;Ξ2Þ in the range
[0, 8000]. The lower edge of this prior is set to zero
because we exclude the possibility of antidissipative
processes within each star (Ξ1;2 < 0). The upper edge of
the prior is set by a heuristic constraint on the timescale for
causal momentum transport across the star: dissipative/
viscous effects should not transport momentum faster than
the speed of light [6]. The rest of our waveform parameter
priors follow the choices of [11,34].
The results of our Bayesian parameter estimation study

on all the nontidal parameters are consistent with [11]. We
present the marginalized posteriors and priors on the

dissipative tidal parameters Ξ1;2 in Fig. 2 (the full corner
plots are included in Appendix D). This figure shows that
we can place the first-ever constraints on the individual
tidal deformabilities of neutron stars using the GW170817
event: the data are sufficiently informative to constrain the
dissipative tidal parameters to Ξ1 ≤ 1121 and Ξ2 ≤ 1692 at
90% credible levels. These constraints are consistent with
the heuristic study we carried out previously in [34], where
we used a uniform prior on Ξ̄ and assumed GW170817 was
produced by an exactly equal-mass neutron star binary to
obtain Ξ1;2 ≤ 1200 at 90% confidence. In this paper, we
have improved on this heuristic estimate by using the next-
to-leading order correction to the waveform and appropri-
ately carrying out a Bayesian parameter estimation study.
Figure 2 also shows that Ξ1 is better constrained than Ξ2

because of the dependence of Ξ̄ and δΞ̄ on η. Suppose that
we have a system whereM1 ≫ M2. Expanding Ξ̄ and δΞ̄ in
a small mass ratio expansion, we find

Ξ̄¼ ð−8η4 þ 16η2 − 32ηþ 8ÞΞ1 þ 8η4Ξ2 þOðη5Þ; ð58aÞ

δΞ̄ ¼
�
−
5660η4

753
þ 1568η3

753
þ 3288η2

251
−
23536η

753

þ 5996

753

�
Ξ1 þ

5660η4Ξ2

753
þOðη5Þ: ð58bÞ

We see that when η → 0, both Ξ̄ and δΞ̄ are proportional to
Ξ1, and the dependence on Ξ2 shows up at Oðη4Þ.
Therefore, we see that Ξ1 is the dominant contribution
to both Ξ̄ and δΞ̄. Unless, there is prior information on Ξ1;2,

FIG. 2. Marginalized posterior distribution for Ξ1;2 for the
GW170817 event and 90% credible intervals. The priors for Ξ1;2

are plotted in blue and orange respectively. The marginalized
posterior distribution of Ξ1;2 are plotted as red and green
histograms. We also show the 90% credible interval for Ξ1;2

as a green dotted line (Ξ1 ≈ 1121) and a red dotted line
(Ξ2 ≈ 1692). Observe that the data are sufficiently informative
to constrain the dissipative tidal parameters.

3We note that our dissipative tidal term contains no spin
corrections either.
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one will always constrain the dissipative tidal deformability
of the larger mass better.

V. CONCLUSIONS

In this paper, we have calculated the 1 PN correction to
the equations of motion and the gravitational wave phase
of a binary system in a quasicircular inspiral undergoing
dissipative tidal interactions. In our calculation, we trun-
cated the tidal dynamics to electric quadrupolar contribu-
tions and derived the equations of motion using the
Lagrangian method of [41]. We then formulated a gener-
alized energy-balance law for the dissipative tidal inter-
action. Finally, we calculated the gravitational wave
Fourier phase for a nonspinning binary system in a
quasicircular inspiral using the stationary phase approxi-
mation. The final expression for the gravitational wave
phase can be found in Eq. (55). We used this waveform to
constrain the individual dissipative tidal deformabilities of
each star using the GW170817 data through a Bayesian
analysis. The marginalized posteriors derived from our
analysis are shown in Fig. 2, which present the first
constraints on the individual tidal deformabilities of
neutron stars. This analysis improves previous work that
derived constraints on a certain combination of the
individual tidal deformabilities by working with a wave-
form with leading PN order dissipative tidal effects.
The work carried out here shows in detail that each

object’s dissipative tidal deformability, if present, imprints
onto the gravitational waves emitted by inspiraling neutron
stars in such a way that could potentially be observed in
current and future gravitational wave events. Therefore, it is
crucial that future work study the aspects of nuclear physics
that one is constraining or measuring by inferring the value
of the individual tidal deformabilities. In previous work, we
have shown how to calculate these quantities, given an
equation of state and the shear or bulk viscosity profile
inside a neutron star. The latter, however, requires micro-
physical calculations that are only now becoming available.
By combining these microphysical calculations with rela-
tivistic fluid and PN calculations, one should be able to
determine precisely how the tidal deformabilities depend on
the equation of state and out-of-equilibrium processes inside
neutron stars, work that is currently ongoing.
The conservative tidal deformabilities have been shown

to satisfy approximately equation-of-state insensitive
(binary Love) relations, which can be used to aid parameter
estimation, so one may wonder if similar relations also exist
for the dissipative tidal deformabilities. Future work could
study the existence of such relations, although we suspect
that perhaps the dissipative tidal deformabilities will not be
as insensitive to the other important physics that control
out-of-equilibrium processes in neutron stars, such as
internal temperature.
Another interesting line of future work is the study of

the impact of dissipative processes in dynamical fluid

excitations inside neutron stars. Previous work has shown
that certain fluid modes may be excited into effectively
simple harmonic motion, very close but before the merger
of neutron stars, as the frequency of the fluid modes
becomes near resonant with the orbital frequency [22,62–
64]. One could imagine extending these calculations to
include dissipative effects, which we expect will damp
these dynamical excitations. Whether the effect of the
dynamical excitations will remain or not will depend on
whether the dissipative timescales in play are larger or
smaller than the orbital timescale very close to merger.
This, in turn, will depend on the microphysical processes
that lead to dissipation in the first place, all of which are
ripe for future study.
Recently, Ref. [33] constrained the dissipative tidal

effects of spinning black holes and exotic compact objects
using data from the first observing run to the third observing
run of the Ligo-Virgo-Kagra Collaboration [65]. This
reference only incorporated leading PN order, electric
and magnetic quadrupolar spin-dependent effects using
effective field theory techniques, in addition to the leading
PN order, nonspinning contribution, when analyzing gravi-
tational wave data. It would be interesting to see how the 1
PN correction calculated in this paper improves their
constraints on black hole tidal heating.
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APPENDIX A: VALUES OF Bi

The values of the coefficients Bi that appear in Eq. (7) are
given below:

B1 ¼ −
15

2X2

ð1þ 3ηÞ; B2 ¼
105X1

4
;

B3 ¼ −
3ð−40þ 3X2 þ 13X2

2Þ
2X2

;

B4 ¼
3

X2

ð2þ 2X2 − 3X2
2Þ; B5 ¼ −

15

2X2

ð2−X2 −X2
2Þ;

B6 ¼ −
3

X2

ð8−X2 − 3X2
2Þ; B7 ¼

15

X2

ð2− ηÞ;

B8 ¼ −
3

2X2

ð7− 2X2 þ 3X2
2Þ; B9 ¼ −

15X1

2X2

ð1þX2Þ;
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B10 ¼
3X1

2X2

; B11 ¼
3

2X2

ð5 − 4X2 − X2
2Þ;

B12 ¼ −
3

2X2

ð4 − X2Þ; B13 ¼ −
15X1

2
; ðA1Þ

B14 ¼
6

X2

; B15 ¼ −
3X1

X2

;

B16 ¼
3

X2

ð1 − 2X2 − X2
2Þ; B17 ¼

3

4
; B18 ¼

3

2
: ðA2Þ

Note that all Bi, except B3, are identical to those provided
in Eq. (5.9 e) of VF [41], although we do not includeB19, as
this does not enter our final expressions. The difference
arises because the tidal acceleration of VF aiQ;VF is related
to Eq. (7) via

aiQ;VF ¼ aiQ −
3

r2c2
UQni −

E2;int

r2c2
: ðA3Þ

The reason for this difference is the splitting of the massM2

[Eq. (10)] used by VF.

APPENDIX B: VALUES OF Ai

The values of the coefficients Bi that appear in Eq. (21)
are given below:

A1 ¼
3X1ð3þ ηÞ

4
; A2 ¼

15ηX1

4
;

A3 ¼ −
3X1

2
ð1þ 3X1Þ; A4 ¼

3X2
1

2
;

A5 ¼ −
3X2

1

2
ð3þ X2Þ; A6 ¼ −

3η

2
;

A7 ¼ −
3η

4
; A8 ¼

X2
1

2
; A9 ¼ X1: ðB1Þ

APPENDIX C: VALUES OF αi

The values of the coefficients αi that appear in Eq. (35)
are given below:

α1 ¼
15

4
X1ð3 − X1 þ 7X2

1Þ; ðC1aÞ

α2 ¼
105

4
ð1 − X1ÞX2

1; ðC1bÞ

α3 ¼ −
3

2
X1ð−9 − 17X1 þ 2X2

1Þ; ðC1cÞ

α4 ¼ −
3

2
ð−7þ X1ÞX2

1; ðC1dÞ

α5 ¼ −
9

2
X1ð1 − X1 þ 2X2

1Þ; ðC1eÞ

α6 ¼
15

2
X2
1ð−5þ 2X1Þ; ðC1fÞ

α7 ¼
3

2
X1ð−2 − 8X1 þ X2

1Þ; ðC1gÞ

α8 ¼ −
3

2
X1ð3þ X1 þ 2X2

1Þ; ðC1hÞ

α9 ¼
15

2
ð−1þ X1ÞX2

1; ðC1iÞ

α10 ¼ −3X2
1; ðC1jÞ

α11 ¼ −3ð−4þ X1ÞX2
1; ðC1kÞ

α12 ¼ −
3

4
ð−1þ X1ÞX1; ðC1lÞ

α13 ¼ −
3

2
ð−1þ X1ÞX1: ðC1mÞ

APPENDIX D: CORNER PLOT

We present the corner plot for subset ðM1;M2; DL;
Ξ1;Ξ2; λsÞ in Fig. 3. We have verified that our analysis
is consistent with that of [11] for the nondissipative tidal
parameters and the nontidal parameters.
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