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Effective-one-body (EOB) waveforms employed by the LIGO-Virgo-KAGRA Collaboration have
primarily been developed by resumming the post-Newtonian expansion of the relativistic two-body
problem. Given the recent significant advancements in post-Minkowskian (PM) theory and gravitational
self-force formalism, there is considerable interest in creating waveform models that integrate information
from various perturbative methods in innovative ways. This becomes particularly crucial when tackling the
accuracy challenge posed by upcoming ground-based detectors (such as the Einstein Telescope and Cosmic
Explorer) and space-based detectors (such as LISA, TianQin, or Taiji) expected to operate in the next
decade. In this context, we present the derivation of the first spinning EOB (SEOB) Hamiltonian that
incorporates PM results up to three-loop order: the SEOB-PM model. The model accounts for the
complete hyperbolic motion, encompassing nonlocal-in-time tails. To evaluate its accuracy, we compare its
predictions for the conservative scattering angle, augmented with dissipative contributions, against
numerical-relativity data of nonspinning and spinning equal-mass black holes. We observe very good
agreement, comparable, and in some cases slightly better to the recently proposed wEOB-potential model, of
which the SEOB-PM model is a resummation around the probe limit. Indeed, in the probe limit, the SEOB-
PM Hamiltonian and scattering angles reduce to the one of a test mass in Kerr spacetime. Once
complemented with nonlocal-in-time contributions for bound orbits, the SEOB-PM Hamiltonian can be
utilized to generate waveform models for spinning black holes on quasicircular orbits.
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I. INTRODUCTION

The observation of gravitational waves (GWs) from
coalescing binary black holes (BHs) and neutron stars
provides a unique opportunity to probe fundamental
physics, dynamical gravity, and matter under extreme
conditions [1–5]. Having access to a large number of
GW signals—more than 100 published observations by the
LIGO-Virgo-KAGRA (LVK) Collaboration and indepen-
dent analyses [6–8] at the time of writing—permits us to
shed light on the astrophysical scenarios responsible for the

formation of these binary systems [9]. Successful GW
searches, precise inference of astrophysical and cosmo-
logical properties, and correct identifications of sources
require detailed knowledge of the expected signals. This is
achieved by employing waveform models that are built by
combining the best available methods to solve the two-
body problem in general relativity.
On one side, for the inspiral stage of the binary

coalescence, we can solve Einstein’s equations analytically,
but approximately, in (i) the weak-field and small-velocity
limit [i.e., in post-Newtonian (PN) theory [10–14] ], (ii) in
the weak-field regime [i.e., in post-Minkowskian (PM)
theory [15–24] ], and (iii) in the small mass-ratio limit [i.e.,
in the gravitational-self force (GSF) formalism [25–37] ].
On the other side, for the late inspiral, merger, and
ringdown stages, we can solve the Einstein’s equations
numerically [38–40] on supercomputers, obtaining highly
accurate GW predictions. Performing simulations in
numerical relativity (NR), however, is time consuming.
Thus, NR cannot be used alone to build the several hundred
thousand (million) waveform models or templates that are
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used in matched-filtering searches (follow-up Bayesian
analysis) [6]. Importantly, analytical and numerical results
need to be combined synergistically to achieve the accuracy
that is needed. This is obtained through the effective-one-
body (EOB) formalism [41–45] that maps the two-body
dynamics onto the dynamics of a test mass [43,46–49] (or
test spin [50–52]) moving in a deformed Schwarzschild or
Kerr spacetime, the deformation being the mass ratio. The
EOB formalism also predicts the full coalescence wave-
form through physically motivated Ansätze for the merger
and BH perturbation theory, and it can be made highly
accurate through calibration to NR [53–67].
So far, EOB waveform models employed by the LVK

Collaboration have been built on resummations of the PN
expansion, except for Refs. [67,68], which include sec-
ond-order GSF results [37] for the gravitational modes
and radiation-reaction force. Given the recent results in
PM [22,23,69–80] and GSF [36,37] theories, there is now
great interest in exploring and developing waveform
models that assemble the information from all the differ-
ent perturbative methods and in novel ways. This is
particularly important when addressing the accuracy
challenge posed by ever more sensitive detectors operat-
ing in the next decade: on the ground, such as the Einstein
Telescope [81] and Cosmic Explorer [82], and in space,
such as LISA [83], TianQin, or Taiji, which demand an
improvement of the waveforms by 2 orders of magnitude
or more, depending on the parameter space [84–86],
and the inclusion of all physical effects (spin preces-
sion, eccentricity, matter). We remark that the LVK
Collaboration also employs waveform models for the
inspiral, merger, and ringdown in the frequency domain
by combining PN, EOB, and NR results (i.e., the
phenomenological templates [87,88]) and waveforms that
interpolate directly NR simulations (i.e., the NR-surrogate
models [89,90]).
Building on previous work [49,91–95], in this paper, we

present the first EOB Hamiltonian for spinning bodies
based on the PM expansion (henceforth, SEOB-PM) that
includes complete nonspinning [76,77,96–98] and spinning
information [99–109] through 4PM order for hyperbolic
motion, with additional corrections at 5PM. Our PM
counting is a physical one for compact objects, such as
black holes and neutron stars, spin orders contributing as
well as loop orders. We assess the accuracy of the SEOB-
PM Hamiltonian by comparing its predictions for the
scattering angle with available NR results [110–112] for
nonspinning and spinning bodies with equal masses and
equal spins. We contrast our model predictions with the
nonspinning EOB model in Ref. [95], which is also based
on an EOB Hamiltonian, and the wEOB model, which was
developed in Refs. [112,113]. We also discuss its improve-
ment against its PN counterpart and its comparison against
the wEOB model in the probe limit (and unequal-mass
scatterings), since, differently from wEOB, the SEOB-PM

model does reduce to the probe limit (i.e., it reduces to the
Schwarzschild and Kerr results).
Importantly, the SEOB-PM model entails (or is based

on) a Hamiltonian. Thus, it can be used to describe the two-
body dynamics for bound orbits, and, combined with a
suitable radiation-reaction force and gravitational modes, it
can be employed to generate waveform models for binary
BHs with spins. To describe waveforms from quasicircular
orbits, Ref. [114] has augmented such a Hamiltonian with
nonlocal-in-time terms at 4PN order [115–119] for bound
orbits. The local-in-time contributions to the 4PM non-
spinning Hamiltonian, valid for both bound and unbound
orbits, have also now been derived explicitly [120],
although (for now) the bound-orbit tail contributions are
accessible only via PN expansion for quasicircular orbits.
The paper is organized as follows. After summarizing the

notation used in this work, in Sec. II, we review the
perturbative conservative and dissipative contributions to
the scattering angle and also estimate the effect of the recoil
on the scattering angles of BHs carrying different spin
magnitudes. In Sec. III, we highlight the scattering angle in
the probe limit, i.e., for a test mass in a hyperbolic orbit
about the Kerr spacetime. In Sec. IV, we derive the SEOB-
PM Hamiltonian, resumming information at both 4PM and
5PM orders, which is the main result of this paper. In
Sec. V, we assess its validity by comparing its predictions
for the scattering angle with NR data in Refs. [111,112] and
also with the so-called wEOB-potential model proposed in
those papers. Finally, we summarize our main conclusions
in Sec. VI.

A. Notation

Henceforth, we work in the (initial) center-of-mass
(c.m.) frame and employ natural units G ¼ c ¼ 1. For
our spinning two-body system, consisting of two scattered
massive bodies (BHs), we introduce the following combi-
nations of masses m1 and m2:

M¼m1þm2; ν¼ μ

M
¼m1m2

M2
; δ¼m1−m2

M
; ð1Þ

so δ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ν

p
with m1 ≥ m2. We also introduce the total

energy E ¼ E1 þ E2 and effective energy Eeff, which are
related by the energy map:

Γ≡ E
M

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2νðγ − 1Þ

p
; ð2aÞ

γ ≡ Eeff

μ
¼ E2 −m2

1 −m2
2

2m1m2

: ð2bÞ

The boost factor γ > 1 is given by
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γ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ; ð3Þ

where v is the relativistic relative velocity.
The initial c.m. frame, as defined with respect to

the incoming momenta, is pμ
1 ¼ ðE1; p∞=ΓÞ and pμ

2 ¼
ðE2;−p∞=ΓÞ, where p2

i ¼ m2
i and p1 · p2 ¼ γm1m2—see

Fig. 1. The relative c.m. momentum at past infinity p∞ has
magnitude

p∞ ¼ jp∞j ¼ μv∞ ¼ μ
ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

q
: ð4Þ

The two bodies are initially separated by the impact
parameter b, with b · p∞ ¼ 0 and b ¼ jbj. As the motion
evolves, we use the dynamical relative position and
momentum vectors r and p to describe the two-body
motion:

p2¼p2
r þ

L2

r2
; pr¼ r̂ ·p; L¼ r×p; ð5Þ

where r ¼ jrj and r̂ ¼ r=r; L is the canonical orbital
angular momentum with directed length L ¼ bp∞=Γ. In
the limit r → ∞, we have p → p∞. We also introduce
u ¼ M=r, which we use as the PM counting parameter,
and l ¼ L=ðMμÞ is the dimensionless orbital angular
momentum.
Finally, we specialize to spin vectors Si of the two bodies

aligned with the orbital angular momentum L. The total
angular momentum J is then given by

J ¼ Lþ S1 þ S2; Si ¼ miai ¼ m2
i χi: ð6Þ

Here, ai are the directed spin lengths—for Kerr BHs, these
are the radii of the ring singularities, and the dimensionless
spin lengths are −1 < χi < 1. Including, for clarity, units,
one has Si ¼ Gm2

i χi=c. We also introduce the combinations

a� ¼ Mχ� ¼ a1 � a2: ð7Þ

Results from the PM-scattering literature are often given in
terms of the covariant orbital angular momentum Lcov. For
aligned spins, the covariant orbital angular momentum Lcov
is related to the total angular momentum J by

J ¼ Lcov þ E1a1 þ E2a2: ð8Þ

Using Eq. (6), we may eliminate the total angular momen-
tum J and learn that

Lcov ¼ L −
E −M

2

�
aþ −

δ

Γ
a−

�
: ð9Þ

We use this to reexpress Lcov in terms of L.

II. PERTURBATIVE RELATIVISTIC
SCATTERING

Let us focus on two-body relativistic BH scattering
events—depicted in Fig. 1. In order to prepare the ground
for the scattering angles derived with the spinning EOB
model based on PM (SEOB-PM) in Sec. IV, we focus first
on the conservative and dissipative PM dynamics in
Secs. II A and II B, respectively, and then consider the
probe motion in Sec. III. In connection with the PM regime,
we also consider the PN and GSF expansions. Each of the
three perturbative regimes may be defined by assuming
certain combinations of the initial data to be small, of the
order of ϵ ≪ 1. UsingM as a scale, the three dimensionless
parameters 1=l, v, and ν, together with the spins Si, fully
describe the initial state. The scalings of these parameters
together with u for the different perturbative schemes are
summarized in Table I. Notice that, in this physical
counting scheme, the PM expansion does not align with
the loop expansion, as it does in a formal counting—on
dimensional grounds, powers of the spins Si ¼ Gm2

i χi=c
come with additional factors of v, l, and/or u, which are
included in the counting. The scalings of other variables
may be inferred by expressing them in terms of the basic
ones in Table I.

A. Conservative scattering angle

Let us first consider the ideal setting of conservative
scattering, whose main characteristic is that the total energy
and c.m. angular momentum, E and L, respectively, are

FIG. 1. Kinematic setup of a planar two-body scattering event,
with two separate scattering angles θ1 and θ2 in the dissipative
case. For the conservative dynamics, θ1 ¼ θ2 ¼ θcons. We spe-
cialize to aligned spins, with directed spin lengths a1 ¼ S1=m1

and a2 ¼ S2=m2. (Diagram reproduced with minor edits from
Ref. [121], with permission of the authors.).

TABLE I. Scalings of the dimensionless variables l, v, ν, and u
in the PM, PN, and GSF regimes, with ϵ ≪ 1 a counting
parameter. The dimensionless spins are taken with scaling
χi ∼ 1 in all three regimes.

l−1 v2 ν u

PM ∼ϵ ∼1 ∼1 ∼ϵ
PN ∼

ffiffiffi
ϵ

p
∼ϵ ∼1 ∼ϵ

GSF ∼1 ∼1 ∼ϵ ∼1
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conserved (implying, in turn, also that, e.g., v, b, and p∞
are conserved). In this case, the motion is completely
symmetric and fully described by the scattering angle
which we label θcons. This angle is related to the
conservative momentum impulse Δpμ

cons ¼ Δpμ
1;cons ¼

−Δpμ
2;cons via

sin
�
θcons
2

�
¼ Γ

jΔpμ
consj

2p∞
; ð10Þ

which may be derived by geometrical arguments. In this
setting, the two angles θi in Fig. 1 are equal and denoted
by θcons.
In this conservative approximation, the dynamics and

scattering angle may equally well be described by a
Hamiltonian. Rather than the Hamiltonian, in this section
we find it useful to use the effective potential w defined
from the mass-shell constraint:

p2
r ¼ p2

∞ −
L2

r2
þ wðEeff ; L; r; a�Þ: ð11Þ

Using the Hamilton-Jacobi formalism (see, e.g.,
Ref. [122]), the relationship between the potential and
the angle is

θ þ π ¼ −2
Z

∞

rmin

dr
∂

∂L
pr; ð12Þ

where rmin is the closest point of approach defined as the
largest root of prðrminÞ ¼ 0. Here, we have omitted the
“cons” subscript on the angle, because in Sec. II B we also
define a “dissipative” effective potential. This formula is
generic and applies to both the conservative setting dis-
cussed here and the dissipative effects to be discussed in
Sec. II B.
By way of Eq. (12), the scattering angle θ and the

effective potential w are in one-to-one correspondence. An
expression for the potential in isotropic gauge in terms of
the angle is given by the Firsov formula discussed in
Refs. [70,113]. While the angle is gauge invariant, the
potential is not; thus, it is uniquely determined by the angle
only when a gauge condition is imposed. Nevertheless, the
potential has certain advantages over the angle: It is finite in
the PN limit, and it has a simple expression (compared with
the angle; see, e.g., Ref. [123]) in the probe limit. The angle
generally depends on the dimensionless initial state vari-
ables (γ, ν, l, and χi), while the potential, in addition to
these, also depends on the relative position u (and on M to
balance dimensions).
The PM expansions of the angle and potential are

θ ¼
X
n≥1

θðnÞ

ln ; ð13aÞ

w ¼
X
n≥1

unwðnÞ; ð13bÞ

respectively, n counting the PM orders with PM expansion
variables 1=l and u (see Table I). We define also mPM
accurate scattering angles: θmPM ¼Pm

n¼1 θ
ðnÞ=ln. We may

further expand the PM coefficients with respect to the BHs’
spins:

θðnÞ ¼
Xn−1
s¼0

Xs
i¼0

θðnÞðs−i;iÞδ
σðiÞχs−iþ χi−; ð14aÞ

wðnÞ ¼
Xn
s¼0

ðluÞσðsÞ
Xs
i¼0

wðnÞ
ðs−i;iÞδ

σðiÞχs−iþ χi−: ð14bÞ

Here, s counts the spin orders and i the powers of χ−. The
function σ is given as

σðnÞ ¼
�
0; n even;

1; n odd
ð15Þ

and controls the introduction of δ to terms with odd powers
of χ− and a power of lu for odd s in the potential.
As seen from Eq. (14a), the nPM angle gets contribu-

tions only from spin orders s < n. Our physical PM
counting, valid for compact objects, is different from the
formal PM counting often used in the PM literature, which
aligns with the loop order. The relation between the
physical PM counting relevant for spinning BHs and the
formal loop-order PM counting is summarized in Table II.
Essentially, an l-loop result at spin order s contributes to the
ðlþ sþ 1Þ-PM order, so that both loops and spin orders

TABLE II. The relation between loop orders, spin orders, and
physical PMorders (as adopted in this work), with currently known
results for the aligned-spin scattering angle θ bold. The tree-level
all-order-spin angle is given in Eq. (34). The one-loop angle is
known up to quartic G6 order in spin [103,104], with higher-order
predictions in Refs. [125–127]. The two-loop G3 conservative
dynamics were derived in Refs. [23,71,128–130], extended to
include radiation [131–139] and G4, G5 linear- and quadratic-in-
spin effects [105–107]. The three-loop nonspinning G4 terms
were obtained in Refs. [76,77] (conservative) and [96–98]
(full dissipative). Spin-orbit effects (G5) were incorporated in
Refs. [108,109]. Finally, 5PM nonspinning conservative effects at
1GSF have most recently been derived in Ref. [140].

S0 S1 S2 S3 S4 S5

Tree level 1PM 2PM 3PM 4PM 5PM 6PM
One-loop 2PM 3PM 4PM 5PM 6PM 7PM
Two-loop 3PM 4PM 5PM 6PM 7PM 8PM
Three-loop 4PM 5PM 6PM 7PM 8PM 9PM
Four-loop 5PM 6PM 7PM 8PM 9PM 10PM
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climb up in PM orders. Bold entries in Table II indicate
known results. The expansion coefficients of the angle
depend nontrivially only on γ and, when suitable variables
are chosen and up to overall factors, on polynomials of the
mass ratio (i.e., the mass polynomiality first observed in
Refs. [99,124]).
The PM expansion of the potential w takes a particularly

simple form in quasi-isotropic gauge, which is defined by

requiring that the expansion coefficients of Eq. (14b) wðnÞ
ðj;iÞ

depend only on γ and the masses and that the sum on s

terminates at n − 1 (i.e. wðnÞ
ðn−i;iÞ ¼ 0 for all i). We refer to

this potential generally as wPM or, up to a specified PM
order, wnPM:

wnPM ¼
Xn
m¼1

Xm−1

s¼0

lσðsÞXs
i¼0

wðmÞ
PM;ðs−i;iÞδ

σðiÞχs−iþ χi−: ð16Þ

In Refs. [112,113],1 it was shown that this potential defines
a useful resummation of the angle: Simply by inserting
wnPM into Eq. (12), one already finds a good agreement
with the NR scattering angles (in particular, when incor-
porating dissipative effects as discussed in Sec. II B). In the
same two papers, this computation of the scattering angles
was dubbed wEOB. In the present work, however, we prefer
to refer to a model as an EOB model only if it reproduces
the probe motion in the limit ν → 0. That is, from a PM
perspective, we require that the EOBmodel incorporates all
PM orders in the ν → 0 limit, which is not the case for
wnPM. The computation of the PM-expanded scattering
angle through Eq. (16) also coincides with Refs. [70,141],
where it was dubbed “fn theory” (for nonspinning 2PM
dynamics).
The PM expansion of the potential w in the SEOB-PM

model (see Sec. IV) takes a more general form with

dependence of wðnÞ
ðj;iÞ on lu and nonzero wðnÞ

ðn−i;iÞ. Note,
however, that the SEOB-PM ν-deformation parameters
have the same simplicity as the wPM expansion coefficients.
Let us finally analyze the PN structure of the scattering

angle and wPM potential, which is schematically shown in
Table III. The PM/PN structure of wPM is identical to the
PM/PN structure of the SEOB-PM deformations to be
introduced below. Thus, we refer to it generically in
Table III as w. In Table III, all scalings of v, l, and u
are shown in a combined PM and PN expansion up to 5PM
and 4.5PN, respectively. This table illustrates a key
advantage of the potential over the angle, namely, that in
the angle 0PN terms appear with arbitrarily high PM orders.
Instead, for the potential 0PN is completely determined by

1PM and, generally, nPN is completely determined by
(nþ 1)PM. Table III also illustrates how spin pushes result
to both higher PM and PN orders. The bold cells indicate
terms that receive a dissipative correction at a subleading
0.5PN order, which we discuss in the next section. As
stated above, full analytic PM results exist for all rows in
Table III except the spinless row at 5PM. For the non-
spinning, conservative PN angle, PN resummations along
the columns to 3PN order can be found in Ref. [142]
(including, also, partial 4PN order results).
To illustrate these points, the 1PM row and 0PN

columns are, respectively, given by the following two
expressions:

θ ¼ 2

lv
1þ v2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p þO
�
1

l2

�
ð17aÞ

¼ 2 arctan

�
1

lv

�
þOðv2Þ: ð17bÞ

The expansion of the second line in 1=l clearly illustrates
that the 0PN angle gets contributions at arbitrarily high
(odd) PM orders. Yet both of these limits are included in the
w1PM angle:

θw1PM ¼ 2 arctan

�
1

lv
1þ v2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
�
; ð18Þ

which clearly reproduces Eqs. (17a) and (17b) in their
respective limits. This angle agrees with expressions found
in Refs. [70,113].

B. Dissipative effects

Naturally, the true relativistic two-body system is dis-
sipative. As seen from the initial c.m. frame, each BH loses
energy, and so the two momentum impulses Δpμ

i generally
differ:

Δpμ
1 þ Δpμ

2 ¼ ΔPμ ≠ 0: ð19Þ

The four-vector ΔPμ describes the total loss of linear
momentum of the system. If this vector has a nonzero
spatial part with respect to the initial c.m. frame, then
the final c.m. frame (defined from pμ

i þ Δpμ
i ) is

different from the initial one. This effect is referred to
as recoil, and we define the spatial part of ΔPμ ¼
ðΔE;ΔPÞ with respect to the initial c.m. frame as the
recoil vector.2

A nonzero recoil implies, and is implied by, unequal
scattering angles of the two bodies—see Fig. 1. In this more
general setting, the scattering of either body is computed by
the geometric formula

1Note, however, that their inclusion of spin effects does not
follow the physical PM counting introduced here. Instead, their
counting follows the formal PM counting. Thus, their nPMmodel
includes the bold entries of the first n rows of Table II, omitting
the tree-level S5 and the three-loop S1 contributions.

2Another source of dissipation is horizon absorption [144,145],
which we will not consider in this work.
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cos θi ¼
ðpi þ ΔpiÞ · pi
jpi þ Δpijjpij

: ð20Þ

With zero recoil, Δp1 ¼ −Δp2, and the two angles are
equal (using, also, p1 ¼ −p2). At leading order in the
PM expansion, one finds for the angle difference θ1 − θ2
that

θ1 − θ2 ¼
Γ
p∞

�
ΔP · b
b

−
ΔP · p∞
p∞

θcons

�
þ � � � : ð21Þ

For generic masses, this effect starts at 4PM order, because
the recoil starts at 3PM in the p∞ direction and at 4PM in
the b direction (the leading-order 1PM part of θcons
balances the counting).
In the comparisons with NR in this work, we consider

only equal-mass scattering scenarios. In this case, the recoil
ΔP is proportional to χ− and, therefore, suppressed by one
further PM order (so that θ1 − θ2 starts at 5PM order). This
is because, generally, the recoil is a symmetric function of
the two black holes: Its coefficients of b and p∞ must be
antisymmetric and, therefore, include either δ or χ−. For the
kinematics relevant to the NR comparisons of this work,
namely, ν ¼ 1=4, Γ ¼ 1.023, and l ¼ 4.58, Eq. (21) eval-
uates to

θ5PM1 − θ5PM2 ≈ −8.4° × 10−4χ−: ð22Þ

Hence, this effect is extremely small compared, e.g., to the
4PM scattering angle, which for these kinematics (and to
leading order in spins) takes the value θ4PM ≈ 144.5°þ
Oðχ�Þ. We mostly, therefore, ignore this effect in our
subsequent comparisons of the angle with NR data.3 We
note also that the 5PM effect in Eq. (22) is an order of
magnitude smaller than the 4PMeffect due to unequalmasses,
which at itsmaximumfor ν ≈ 0.17 (and, as before,Γ ¼ 1.023
and l ¼ 4.58) takes the value θ4PM1 −θ4PM2 ≈�5.1°×10−3

with a minus (plus) sign for m1>m2 (m2<m1).
With the presence of recoil, one may still define a relative

scattering angle which is symmetric in the two BHs. One
possibility involves the covariant impulse Δpμ

rel of the
relative momentum:

pμ
rel ¼ ð0; p∞Þ ¼

E2p
μ
1 − E1p

μ
2

M
: ð23Þ

This impulse is defined by considering the change of
each variable of the rightmost side of Eq. (23) including

TABLE III. Schematic overview of the terms appearing in a combined PM and PN expansion of the angle (left) and potential (right). In
these expansions, terms with the above scalings in l, v, and u appear with coefficients depending only on the symmetric mass ratio ν and
the dimensionless spins χ� (neither of which scales in the PM or PN expansions); empty cells are absent from the expansion. The
explicitly shown terms are valid for the conservative dynamics, while cells with a bold face dot also pick up a 0.5PN subleading
dissipative correction. The PN counting of the potential wmatches that of the Hamiltonian—see, e.g., Ref. [143]. The analytic results of
all PM rows (to all PN orders) are known except for 5PM S0—see Table II. The dissipative and tail terms of the 5PM S0 row are, thus, only
an expectation. Entries with a centered dot indicate 0.5PN subleading dissipative terms without a conservative counterpart.

θ 0PN 1PN 2PN 3PN 4PN w 0PN 1PN 2PN 3PN 4PN

1PM S0 l−1v−1 l−1v l−1v3 l−1v5 l−1v7 1PM S0 u uv2 uv4 uv6 uv8

2PM S0 l−2 l−2v2 l−2v4 l−2v6 2PM S0 u2 u2v2 u2v4 u2v6

3PM S0 l−3v−3 l−3v−1 l−3v• l−3v3• l−3v5• 3PM S0 u3• u3v2• u3v4•
4PM S0 l−4• l−4v2• l−4v4•a 4PM S0 • u4• u4v2•a

5PM S0 l−5v−5 l−5v−3 l−5v−1• l−5v• l−5v3•a 5PM S0 • • u5•a

3PM S2 l−3v l−3v3 l−3v5 3PM S2 u3 u3v2 u3v4

4PM S2 l−4 l−4v2 l−4v4 4PM S2 u4 u4v2

5PM S2 l−5v−1 l−5v l−5v3• 5PM S2 u5•

5PM S4 l−5v3 5PM S4 u5

θ 0.5PN 1.5PN 2.5PN 3.5PN 4.5PN w 0.5PN 1.5PN 2.5PN 3.5PN 4.5PN

2PM S1 l−2v l−2v3 l−2v5 l−2v7 2PM S1 lu3 lu3v2 lu3v4 lu3v6

3PM S1 l−3 l−3v2 l−3v4 l−3v6 3PM S1 lu4 lu4v2 lu4v4

4PM S1 l−4v−1 l−4v l−4v3• l−4v5• 4PM S1 lu5• lu5v2•
5PM S1 l−5 l−5v2• l−5v4• 5PM S1 • lu6•

4PM S3 l−4v3 l−4v5 4PM S3 lu5 lu5v2

5PM S3 l−5v2 l−5v4 5PM S3 lu6

aThese cells have a tail contribution, implying logðvÞ dependence.

3One remaining puzzle is that the 5PM perturbative result
Eq. (22) suggests ðθ1 − θ2Þ=χ− < 0. Meanwhile, the NR data in
Ref. [112] for unequal spins uniformly has ðθ1 − θ2Þ=χ− > 0.
These NR data, however, exist mostly outside the PM expan-
sion’s regime of validity. It will be important to understand this
behavior in the future when more NR data will be available.
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the energies Ei. The relative scattering angle θrel is then
defined by

cos θrel ¼
ðp∞ þ ΔprelÞ · p∞
jp∞ þ Δpreljp∞

: ð24Þ

This angle was first computed at 4PM order in Ref. [96]
(from where we have adopted the relative subscript) and the
5PM spin-orbit part in Ref. [109]. This relative scattering
angle is defined for dissipative motion including recoil.
In the following comparisons against NR (Sec. V), we

will work with equal masses and spins, in which case the
recoil vanishes. Generally, for a vanishing recoil the relative
scattering angle of Eq. (24) coincides with the (also
coinciding) individual angles θi. Dissipative effects, how-
ever, may still be nonzero. More generally, for a nonzero
recoil, we are not aware of any simple relationship between
the relative angle and the individual angles.
We define a split of the relative angle into conservative

and dissipative effects by writing

θrel ¼ θcons þ θdiss: ð25Þ
Since the conservative and relative angles have been defined
above in Eqs. (10) and (24), the present equation defines
the remaining part θdiss (naturally, when dissipation is
negligible, this equation is an identity, because then θrel
and θcons coincide). Similarly to the conservative angle, we
may determine an effective potential wrel that, when using
Eqs. (11) and (12), reproduces θrel. While the physical
intuition for this potential is less clear, one can certainly
always imagine a conservative system that reproduces a given
scattering angle. This idea was pursued in Refs. [112,113],
where it was seen to improve the wPM model drastically (this
idea was also suggested in Ref. [146]).
In the PM expansion of the scattering angles, dissipative

effects first appear at the 3PM order (without, yet, any
recoil effects). These are odd-in-velocity dissipative effects,
characterized from the PM loop integration perspective by a
single radiative (on-shell) graviton [97,109]. Until 4PM
order, it was shown that these odd dissipative parts of the
scattering angle can be reconstructed from the conservative
angle through linear response [109,147]. At the 4PM order,
even-in-velocity dissipative effects appear, characterized by
two radiative gravitons. For similar kinematics as consid-
ered above, namely, ν ¼ 1=4, Γ ¼ 1.023, and χ� ¼ 0, one
finds that in the PM expansion odd dissipative effects are
much larger than the even effects:

θ4PModd diss

θ4PMeven diss

≈ 32.2lþ 578.3: ð26Þ

This is also expected on account of the even effects being
suppressed by one PM order in comparison to the odd
effects. Because of the equal masses, there is no ambiguity
of the angle in Eq. (26) (i.e., θ1 ¼ θ2 ¼ θrel).

Let us then discuss the appearance of dissipative effects
in the combined PM and PN expansion of the relative
angle. In Table III, terms in this expansion where dis-
sipative effects appear are indicated with bold face dots. All
dissipative effects shown in this table (i.e., to 5PM and 4PN
order) are odd and so appear at a shifted 0.5PN order
compared with the corresponding conservative terms. Thus,
for even orders in spin, odd dissipative effects appear at
half-integer PN orders (for odd orders in spin, they appear
at integer PN orders). Odd dissipative effects appear first at
2.5PN order, while even dissipative effects first appear at
5PN order (and, thus, are not present in Table III).
Generally, in the PM and PN expansions, dissipative effects
first show up in the nonspinning part; spin dependence
pushes their appearance to higher perturbative orders. From
the loop counting perspective, however, dissipative effects
appear uniformly at the two-loop order (see Table II).
Analytic dissipative and conservative PM results along

the rows in Table III are known except for the spinless 5PM
part of the angle (see, however, the recent [140]). We are,
however, not aware of a dissipative result for the PN angle
in the sense of Eq. (17), which would resum the 2.5PN
spinless column in Table III. We note, also, that the
dissipative effects of the potential as defined in the present
work do not seem to have the same upper triangular pattern
as the conservative results. As the 5PM S0 terms are not yet
known, however, we cannot draw any definite conclusions.
Let us finally consider how the perturbative nPM and

mPN scattering angles compare against equal-mass, non-
spinning NR data. In Fig. 2, we plot these angles for
1 ≤ n ≤ 4 and 0 ≤ m ≤ 3 against NR data from4

Refs. [111,112] (the PM curves in the left panel have
already appeared in Refs. [95,113]). For n ≥ 3 and m ≥ 3,
we distinguish between the conservative angles (labeled
cons) and the dissipative ones (where, again, equal mass
means that θ1 ¼ θ2 ¼ θrel). Clearly, in the left panel, both
the higher-order perturbative PM and PN angles describe
the NR data well for sufficiently large angular momentum
l. Generally, however, as noticed in Ref. [113], close to the
critical angular momentum beyond which the plunge
occurs, the agreement between the perturbative angles
and NR is poor. This is due to the fact that, by expanding
Eq. (12) [with pr from Eq. (11)] perturbatively (PN or PM),
one cannot capture the pole in the scattering angle
corresponding to the critical angular momentum.
Furthermore, in the right panel in Fig. 2, where the

energy is varied, one notes a clear difference between the
PN and PM angles. In the low-velocity v → 0 limit
(Γ → 1), the PN angles have a finite limit, while the PM
angles diverge. One can easily read off the v → 0

4We note that we could use only the nonspinning NR data in
Ref. [111], because for the spinning data we found an incon-
sistency between the total angular momentum and the sum of the
orbital angular momentum and the binary’s total spin.
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asymptotic behavior with fixed l of the nPM angles from
the (spinless) 0PN column in Table III:

θ2nPM ∼ θð2nþ1ÞPM ∼ v−2n−1: ð27Þ

However, after resumming the entire column, one finds the
result in Eq. (17), namely, 2 arctanð1=lvÞ, with the finite
limit π (180°).
For the phase-space points considered in Fig. 2, dis-

sipative effects of the PM angle are very small. However,
when computing the results by evaluating the scattering
angle from Eq. (12) without first expanding it perturba-
tively (in PM or PN), thus capturing the pole at the critical
angular momentum, this is no longer the case, as found in
the PM case in Ref. [113]. We note that Eq. (26), which
compares odd and even dissipation, is valid for the phase-
space points in the left panel. We may, therefore, gather
that, for this kinematics, the conservative part is much
larger than the odd dissipation, which is much larger than
the even dissipation: θ4PMcons ≫ θ4PModd diss ≫ θ4PMeven diss.

III. SCATTERING IN THE PROBE LIMIT

To prepare for our discussion of the SEOB-PM
model, let us also review the simple case of a nonspinning
probe of mass μ, moving under the influence of a Kerr
BH. In Boyer-Lindquist coordinates ðt; r; θ;ϕÞ, where
pμ ¼ ðEKerr;−pr;−pθ;−pϕÞ, the (inverse) Kerr metric
takes the form (see, e.g., Ref. [52])

gμνKerr∂μ∂ν ¼
Λ
ΔΣ

∂
2
t −

Δ
Σ
∂
2
r −

1

Σ
∂
2
θ

−
Σ − 2Mr
ΣΔsin2θ

∂
2
ϕ þ

4Mra
ΣΔ

∂t∂ϕ; ð28Þ

where we have introduced

Σ ¼ r2 þ a2 cos2 θ; ð29aÞ

Δ ¼ r2 − 2Mrþ a2; ð29bÞ

Λ ¼ ðr2 þ a2Þ2 − a2Δ sin2 θ: ð29cÞ

Specializing to aligned spins, we restrict ourselves to the
orbital plane θ ¼ π

2
. We find it helpful to introduce the

specific combinations (as done in Ref. [49])

AKerr ¼ ΔΣ
Λ

¼ 1 − 2uþ χ2u2

1þ χ2u2ð2uþ 1Þ ; ð30aÞ

BKerr
np ¼ r2

Σ

�
Δ
r2

− 1

�
¼ χ2u2 − 2u; ð30bÞ

BKerr
npa ¼ −

r2

ΣΛ
ðΣþ 2MrÞ ¼ −

1þ 2u
r2 þ a2ð1þ 2uÞ ; ð30cÞ

where a ¼ mχ. We can now solve the mass-shell constraint
gμνKerrpμpν ¼ μ2 for the radial momentum pr:

FIG. 2. The perturbative scattering angle θ plotted at different PM and PN orders, conservative “cons” or full dissipative, compared
with NR-data points [111,112]. Both plots have equal masses and zero spins, absence of recoil at these perturbative orders thus implying
θrel ¼ θ1 ¼ θ2. To the left, we fix energy while varying angular momentum; to the right, vice versa. As pointed out in Ref. [113] for the
PM case, the perturbative angles do not perform well when the NR scattering angles become too large (close to the critical angular
momentum). These results change drastically, and approach the NR data, when evaluating the scattering angle (12) without first
expanding it perturbatively (in PM or PN), thus capturing the pole at the critical angular momentum.
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p2
r ¼

1

ð1þ BKerr
np Þ

�
1

AKerr

�
EKerr −

2MLa
r3 þ a2ðrþ 2MÞ

�
2

−
�
μ2 þ L2

r2
þ BKerr

npa
L2a2

r2

��
: ð31Þ

Alternatively, by solving for the energy EKerr ¼
HKerrðpr; L; r; aÞ, we obtain a one-body Hamiltonian:

HKerr ¼
2MLa

r3þa2ðrþ2MÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AKerr

�
μ2þL2

r2
þð1þBKerr

np Þp2
r þBKerr

npa
L2a2

r2

�s
:

ð32Þ

This is our starting point for setting up the SEOB-
PM model.
At leading order in G, using Eqs. (12) and (31), one can

derive the tree-level scattering angle [148]:

θtree ¼
2

l
ffiffiffiffiffiffiffiffiffiffiffiffi
γ2p − 1

q 2γ2p − 1 − 2γpðγ2p − 1Þ χ
l

1 − ðγ2p − 1Þ χ2

l2

; ð33Þ

where γp ¼ EKerr=μ and l are the dimensionless energy and
angular momentum of the probe, respectively. As was
explained in Ref. [148], this formula is in one-to-one
correspondence with the tree-level scattering angle between
two comparable-mass spinning bodies:

θtree ¼
2

lcov

ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p 2γ2 − 1 − 2γðγ2 − 1Þ χþ
Γlcov

1 − ðγ2 − 1Þ χ2þ
Γ2l2cov

; ð34Þ

which involves the (dimensionless) covariant angular
momentum lcov ¼ Lcov=ðMμÞ. This formula accounts for
the entire first row in Table II and holds to arbitrarily high
orders in spin. In subsequent work [99], it was also shown
that—with an appropriate EOB mapping—the correspon-
dence may be extended to 2PM order, including spin
effects. We note that in the nonspinning case at 1PM order
such a result was obtained in Ref. [122].

IV. SEOB-PM HAMILTONIAN
AND w POTENTIAL

We now derive the main result of this work, a spinning
EOB Hamiltonian based on the PM perturbative results
(SEOB-PM) that fully accounts for hyperbolic motion
through 4PM order. We employ it in this work to compute
its corresponding (resummed) conservative and dissipative
scattering angles, while Ref. [114] uses it to derive wave-
form models for spinning BHs on generic orbits upon
completing it with the nonlocal-in-time 4PN contributions
for bound orbits.

The EOB formalism maps the spinning two-body
dynamics onto the dynamics of an effective test body in
a deformed Kerr spacetime. Here, when including PM
contributions into the EOB Hamiltonian (i.e., the SEOB-
PMmodel), we start from the mass-ratio deformation of the
probe limit for a test mass in Kerr spacetime that was used
in Ref. [49] [see Eq. (26) therein] to build the most-recent
SEOB model based on PN results (i.e., the SEOBNRv5
model [66,67] used by the LVK Collaboration). Then, we
include PM results by generalizing to the spinning case the
so-called post-Schwarzschild* (PS*) deformation of the
geodesic motion introduced in Refs. [94,95], wherein
gμνeffpμpν ¼ μ2.5 Thus, we obtain

Heff ¼
MLðgaþaþþga−δa−Þ
r3þa2þðrþ2MÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A

�
μ2þL2

r2
þð1þBKerr

np Þp2
r þBKerr

npa
L2a2þ
r2

�s
;

ð35Þ

where we identify the orbital angular momentum Lwith the
one of the effective test body and choose the (deformed)
Kerr spin a to be aþ [49]. The resummed EOB two-body
Hamiltonian is then given by

HSEOB-PM ¼ M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ν

�
Heff

μ
− 1

�s
; ð36Þ

which is the usual EOB energy map. As the deformations
withinHeff [i.e., in A and ga� , as seen in Eq. (38) below] are
themselves γ dependent, the Hamiltonian technically
depends on itself.6 Therefore, following our discussion
in Sec. II A and imposing Eeff ¼ Heff , we rewrite the above
equation in terms of p2

r (thus placing all Eeff dependence on
the right-hand side):

p2
r ¼

1

ð1þ BKerr
np Þ

�
1

A

�
Eeff −

MLðgaþaþ þ ga−δa−Þ
r3 þ a2þðrþ 2MÞ

�
2

−
�
μ2 þ L2

r2
þ BKerr

npa
L2a2þ
r2

��
; ð37aÞ

5We find that the alternative post-Schwarzschild (PS) defor-
mation, wherein gμνSchwpμpν ¼ μ2 þQ, with deformations incor-
porated into Q [94,95,122], gives a weaker agreement with NR
data for the binding energy for bound orbits and also for
scattering trajectories. Therefore, we do not describe this EOB
model.

6To circumvent this problem, in Refs. [94,95,122], for the
nonspinning case, γ was expressed in terms ofHSchw plus suitable
PM corrections, depending on the PM order at which the
Hamiltonian was computed (see for details Appendix B in
Ref. [95]).
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≡p2
∞ −

L2

r2
þ wSEOB-PMðEeff ; L; r; a�Þ: ð37bÞ

The last equation (impetus formula) defines a specific
resummation of the w potential for the SEOB-PM model,
which we use in the rest of this work when comparing the
scattering angle to NR data [111,112] and the wPM-
potential model [112,113].
To build the SEOB-PM effective Hamiltonian (35), we

incorporate even-in-spin corrections into the A potential
and odd-in-spin corrections into the gyro-gravitomagnetic
coefficients ga� :

7

A¼ 1−2uþχ2þu2þΔA
1þχ2þu2ð2uþ1Þ ; ga� ¼

Δga�
u2

: ð38Þ

In the nonspinning probe limit ν → 0, where also a� → a1
(i.e., the spin on the probe a2 vanishes), we demand that
A → AKerr and gaþ þ ga− → 2; thus, SEOB-PM reduces to
the probe limit (31). Deformations of the model are PM-
expanded:

ΔA¼
X
n≥2

unΔAðnÞ; Δga� ¼
X
n≥2

unΔgðnÞa� : ð39Þ

As the linear-in-G scattering angle contains only the
nonspinning probe limit, it is already encoded by the
undeformed impetus formula (31); thus, our deformations
begin at quadratic order in G. The A potential incorporates
even-in-spin corrections:

ΔAðnÞ ¼
Xbðn−1Þ=2c

s¼0

X2s
i¼0

αðnÞð2s−i;iÞδ
σðiÞχ2s−iþ χi−: ð40Þ

The dimensionless coefficients αðnÞði;jÞ are functions of the
boost factor γ (in this context, the dimensionless effective
energy Eeff ) and the dimensionless mass ratio ν. We
incorporate odd-in-spin corrections to the model into the
gyro-gravitomagnetic factors ga� (which are themselves
even in spin):

ΔgðnÞaþ ¼
Xbðn−2Þ=2c

s¼0

Xs
i¼0

αðnÞð2ðs−iÞþ1;2iÞχ
2ðs−iÞ
þ χ2i− ; ð41aÞ

ΔgðnÞa− ¼
Xbðn−2Þ=2c

s¼0

Xs
i¼0

αðnÞð2ðs−iÞ;2iþ1Þχ
2ðs−iÞ
þ χ2i− : ð41bÞ

The coefficients αðnÞði;jÞ are in one-to-one correspondence
with the gauge-invariant coefficients of the full two-body

scattering angle—except for θð1Þð0;0Þ, which has no counter-

part αð1Þð0;0Þ.
The essential constraint on the SEOB-PM model is that

the PM-expanded resummed scattering angle must equal
the two-body scattering angle determined from perturbative
PM calculations—see Table II:

θSEOB-nPM ¼ θ þO
�

1

lnþ1

�
; ð42Þ

where, in general, θ should be identified with θrel in
Sec. II B, which has both conservative and dissipative
contributions [see Eq. (25)]. In order to determine the

coefficients αðnÞði;jÞ, we compute the scattering angle pertur-

batively using Eq. (12). We simply PM-expand pr and then
perform the r integration. However, a particular challenge
when performing these integrals is that one encounters
divergences; furthermore, rmin must itself also be deter-
mined perturbatively. To solve both problems, a convenient
solution is to instead use [124,149]

θSEOB-PM ¼ −π − 2Pf
Z

∞

r̄min

dr
∂

∂L
prðEeff ; L; r; a�Þ; ð43Þ

where r̄min ¼ Ml=
ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
is the turning point only at

leading-PM order. The partie finie (Pf) operation instructs
us to take only the nondivergent term.
Following this procedure up to 2PM order, we find that

θSEOB-PM¼ 2ð2γ2−1Þ
l

ffiffiffiffiffiffiffiffiffiffiffi
γ2−1

p þ
π
�
γ2ð15−2αð2Þð0;0ÞÞ−3

	
4l2

−
2γ

ffiffiffiffiffiffiffiffiffiffiffi
γ2−1

p �
αð2Þð1;0Þχþþαð2Þð0;1Þδχ−

	
l2

þOðl−3Þ:
ð44Þ

No deformations appear at 1PM, and the scattering angle
already agrees with the known result (17a). At 2PM order,
comparing with the expansion of the scattering angle given
in Eq. (13a), we may straightforwardly invert to yield the
deformation coefficients as a function of the scattering
angle:

αð2Þð0;0Þ ¼
15

2
− γ−2

 
2θð2Þð0;0Þ
π

þ 3

2

!
; ð45aÞ

αð2Þð1;0Þ ¼−
θð2Þð1;0Þ

2γ
ffiffiffiffiffiffiffiffiffiffiffi
γ2−1

p ; αð2Þð0;1Þ ¼−
θð2Þð0;1Þ

2γ
ffiffiffiffiffiffiffiffiffiffiffi
γ2−1

p : ð45bÞ

Plugging in the known results, we find that

7Typically gyro-gravitomagnetic factors are taken independent
of the spins and, thus, account for only linear-in-spin corrections
to the model; we choose to include all odd-in-spin terms here and,
thus, avoid introducing further deformation functions.
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αð2Þð0;0Þ ¼
3ðΓ − 1Þð5γ2 − 1Þ

2γ2Γ
; ð46aÞ

αð2Þð1;0Þ ¼
2

Γ
−
ðΓ − 1Þð2γ2 − 1Þ
2γðγ2 − 1ÞΓν ; ð46bÞ

αð2Þð0;1Þ ¼
ðΓ − 1Þð2γ2 − 1Þ
2γðγ2 − 1ÞΓν : ð46cÞ

A similar matching of the spin-orbit gyro-gravitomagnetic
factors ga� up to physical 3PM order (one-loop) has
previously been performed in Refs. [91,92], and our results
agree precisely [see Eqs. (7.3) and (7.7) in Ref. [92] ].
In the probe limit ν → 0, δ → 1 and Γ → 1 imply that

αð2Þð0;0Þ → 0 (i.e., the nonspinning deformation vanishes). As

for the spinning coefficients, αð2Þð1;0Þ þ αð2Þð0;1Þ → 2 reflects the

SEOB-PM model being built around the motion of a
nonspinning probe (or test mass) moving in a Kerr back-
ground: a2 ¼ 0, implying aþ ¼ a−. For the higher-PM
deformations, we generically observe that

Xs
i¼0

αðnÞði;s−iÞ !
ν→0
�
2; if s ¼ 1; n ¼ 2;

0; otherwise:
ð47Þ

Proceeding in this way to higher PM orders, we reconstruct
all of the needed coefficients from the scattering angle. A
complete set of results up to 4PM is provided in
Appendix A and up to 5PM (excluding the nonspinning
component) in Supplemental Material [150].
Starting at two-loop order (3PM in the nonspinning

case), we may choose to insert either the conservative or
full dissipative scattering angle into the model, as part of
this matching procedure. Wewill examine both possibilities
in the next section. In either case, the deformations also
now include special functions of γ that are inherited from
the scattering angle: for example, arccoshγ when including
two-loop results. At three-loop order (4PM in the non-
spinning case), we also encounter logarithms and dilogar-
ithms of rational functions of γ, plus the complete elliptic
functions Kðγ−1γþ1

Þ and Eðγ−1γþ1
Þ of the first and second kind,

respectively.
Lastly, we note that, in the nonspinning limit, the

conservative scattering angles of the SEOB-PM model
coincide with the ones obtained in Ref. [95], since our
model uses the PS* gauge. On the other hand, the
dissipative effects differ from the ones of Ref. [95], because
the latter included only the odd contributions following
Ref. [147], since the even contributions were absent at the
time the paper was published. In particular, working at
linear order in the radiation reaction, the odd radiative
contributions to the total scattering angle are estimated as
half of the difference of the conservative scattering angle
evaluated on the outgoing and incoming states (see the

HEOB;PS�
4PM;hyp model with and without odd dissipation in the

right panels in Figs. 7 and 8 in Ref. [95]). Furthermore, the
conservative scattering angle in Ref. [95] was computed by
evolving the EOB Hamilton equations without the radia-
tion-reaction force and following the substitutions for γ
explained in footnote 6. We will see below the impact of
those differences when comparing the results of Ref. [95]
with the SEOB-PM model and the NR data.

V. EOB SCATTERING ANGLE
AND NR COMPARISONS

Let us now consider scattering angle predictions of the
SEOB-PM model. In Sec. VA, we compare these against
angles computed from NR simulations in Refs. [111,112]
including also predictions of the wPM model (16) in
Refs. [112,113]. Since both models can be expressed in
terms of an effective potential wðrÞ (11), given explicitly
in Eq. (37b) and in Eq. (16), their predictions for the
scattering angle are then given simply by (12):

θ¼−π−2

Z
∞

rmin

dr
∂

∂L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
∞−

L2

r2
þwðEeff ;L;r;a�Þ

r
: ð48Þ

As stated above, rmin is the largest root of the equation
pr ¼ 0. Since the potentials depend on r in quite general
manners (in particular, the SEOB-PM potential), the
integral cannot easily be evaluated analytically. Thus, we
simply evaluate this integral numerically to a sufficient
degree of precision. The energy, angular momentum,
masses, and spins are fixed to values corresponding to
the particular phase-space point under consideration.
Each model comprises a series of models corresponding

to the kind of perturbative input given to the deformations.
The most basic series of submodels here are the ones
corresponding to a given PM order—where one may
choose to include dissipative effects or not. Below, in
Sec. V B, however, we also explore the PN and spin
expansions of these deformations. Here, we also compare
the SEOB-PM and wPM models for unequal masses
ν ≠ 1=4. Finally, in Sec. V C, we compute the critical
angular momentum predicted by the SEOB-PM and wPM
models and analyze their effective potentials.

A. NR comparisons

The available NR simulations for the scattering angles of
two BHs are still rather limited and are all restricted to
equal masses. We consider here the three nonspinning
series of simulations in Ref. [112] with varying angular
momentum and three fixed energies: Γ ≈ 1.023, Γ ≈ 1.040,
and Γ ≈ 1.055 (similar simulations with the first energy
were first carried out in Ref. [110]). We consider also the
single spinning series of simulations in Ref. [112] with
varying (equal) dimensionless spins and fixed energy
Γ ≈ 1.023 and angular momentum l ≈ 4.58. Finally, we
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consider the single nonspinning series of simulations in
Ref. [111] with varying energy and fixed angular momen-
tum l ≈ 4.61.
In this section, we focus on the models that include

dissipation and compare those with the NR simulations.
Thus, 4PM is the highest order at which the perturbative
data is known, and, also, the dissipative models agree much
better than the conservative models with the NR data.
The 4PM dissipative models explored here are, therefore,
the most accurate models available. We explore the
conservative part of the models below in Sec. V B.
In Fig. 3, we compare the nonspinning SEOB-PM and

wPM models, at 4PM with dissipative effects, against the

nonspinning NR data. Comparisons to the NR data for the
wPM model have already appeared in Refs. [112,113], and
our results are in full agreement. In each plot, we show the
SEOB-4PM and w4PM predictions across the relevant
ranges of angular momentum or energy together with
the NR simulation data points. In most of the phase space
shown, the two models and the NR data lie very closely. In
order to distinguish their behavior, we also plot in each case
the fractional difference δθ:

δθ ¼ θmodel − θNR
θNR

; ð49Þ

FIG. 3. Comparison of the dissipative SEOB-4PM and w4PM models against the four equal-mass spinless NR datasets in
Refs. [111,112]. In each figure, the scattering angle θ (in degrees) is shown in the top panel and the fractional difference δθ (49)
in the lower panel. In the bottom-right figure, the energy Γ is varied, while the angular momentum l is held fixed; vice versa in the other
three figures. Both models show good agreement with NR, but this worsens in the strong-field regime near plunge (small l). The
agreement also worsens for large energies with fixed angular momentum, particularly for the wPM model.
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where θmodel is the angle computed with either the SEOB-
4PM or w4PM models.
Generally the agreement between the models and NR

data is rather remarkable: Only in the strong field, near
plunge does the relative difference rise to more than 10%.
For the SEOB-4PM model, it never goes beyond 10%.
When the models predict a plunge rather than scattering, no
value for δθ is plotted. The performances of both the
SEOB-4PM and w4PM models are good and comparable,
though the relative difference of the SEOB-4PM model
generally is smaller than that of w4PM. This is evident, in
particular, for the series of data at fixed angular momentum
and varying energy in the bottom-right panel in Fig. 3.
In Fig. 4, we turn to the equal-mass, equal-spin simu-

lations with constant energy and angular momentum but
varied spin. Here, we consider both the 4PM models (in the
left panel) and incomplete 5PMmodels [5PM(I) in the right
panel]. The incomplete 5PM model is defined by including
all known information at 5PM (i.e., everything except the
four-loop spinless contribution; see Table III).
Considering first the 4PM models in the left panel in

Fig. 4, both models agree with the NR simulations within a
relative difference of about 5%. It is, however, interesting
that the agreement of both models worsens when the spin is
increased. For positive spins, the scattering angle also
decreases, and one might have expected the models to
perform better in this more perturbative regime (smaller
angle). However, the positive spin becomes quite large;
thus, it seems desirable to improve the models in this phase

space where the angles are not too big and should be
describable. This could be achieved by including higher-
spin terms beyond 4PM order (e.g., the tree-level S4 or one-
loop S3) or exploring alternative deformations of the Kerr
metric.
Considering, then, the incomplete 5PM models in the

right panel in Fig. 4, we see that the agreement of the wPM
model with NR is significantly worse, reaching 50%. This,
to a much lesser extent, is also true for the SEOBmodel, for
which the difference with NR rises to about 10%. It will be
interesting to see if the models improve once the genuine
nonspinning 5PM contribution is computed. (We note that
Ref. [112] improved the wPM model by fitting the 5PM S0

and 6PM S1 terms to the NR scattering-angle data.)

B. Dependence on dissipation,
perturbative orders, and mass ratio

Let us now analyze the importance of dissipation and
different PM, PN, and spin orders. In Fig. 5, we compare
the scattering angles of the full SEOB-4PM model (i.e.,
conservative plus odd and even dissipative) with the ones
obtained by including only the odd dissipative terms. In
accordance with Sec. II B [see also Eq. (26)], we find that,
for the phase-space configurations for which we have NR
data, the contribution to the scattering angle of the
even dissipative terms is negligible, becoming more
noticeable only in the strong field (see the lower panel).
We also compare the conservative scattering angles of the

FIG. 4. Comparisons with the equal-mass, equal-spin NR simulations in Ref. [112]. The top and lower panels show the absolute and
fractional scattering angles, respectively. The energy and angular momentum are kept approximately fixed with Γ ≈ 1.023 and l ≈ 4.58.
In the left panel, we show the SEOB-PM and wPM models at 4PM order, and in the right panel at the incomplete 5PM order, since the
nonspinning 5PM contributions are currently unknown.
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SEOB-4PM model with the ones of the EOB model in
Ref. [95] (see the HEOB;PS�

4PM;hyp model in Figs. 7 and 8 therein),
which employed the same nonspinning PM Hamiltonian of
this work but computed the angles evolving the EOB
Hamilton equations without the radiation-reaction force

(see also footnote 6). The two conservative predictions are
very close. We also show the curve of Ref. [95], where the
odd dissipative effects were included, following the method
of Ref. [147]. (The even dissipative terms were not
available at that time and were later computed in
Ref. [96].) We find that the estimation of the odd dissipative
terms in Ref. [147] largely underestimates, at least for
this phase-space configuration, the true odd dissipative
contributions.
In Fig. 6, we plot scattering angle predictions of the

SEOB-PM and wPM models at 1, 2, 3, and 4PM orders. In
addition, at 3PM and 4PM—where the conservative and
dissipative models differ—we also plot the conservative
SEOB-PM model predictions. Clearly, the dissipative
effects have a large impact, as was already observed for
the wPM model [112,113]. The dissipative 3PM and 4PM
models are, however, sufficiently close to each other that
one might hope for some sort of convergence. Interestingly,
the SEOB-PM model converges from above in both cases
(with an oscillatory behavior between the 3PM and 4PM
order for the SEOB-PM model), in contrast to the wPM
which converges from below. Also, recall that the SEOB-
PM model at 1PM encodes simply the probe limit. We note
also that the w1PM curves may be computed with the
formula given above in Eq. (18).
Next, in Fig. 7, we consider the importance of perturba-

tive spin orders. Focusing on the SEOB-PM model at 4PM
order, we omit progressively different orders of the spin
corrections from the deformations. Thus, the models shown
labeled by 4PM Ss with s ¼ 0; 1; 2; 3 denote a model where

we include deformations αðnÞði;jÞ only with n ≤ 4 and

ðiþ jÞ ≤ s. Thus, referring to Table II, the model s ¼ 0
corresponds to the first column, the model s ¼ 1

FIG. 5. Relative importance of odd and even dissipative effects in
the SEOB-4PM model. In addition, we compare the angles’
predictions of the SEOB-PM model here and in Ref. [95], where
odd dissipative effects were incorporated with the radiation
reaction of Ref. [147]. (We thank Mohammed Khalil for sharing
with us the data, including the results of the last three data points in
the strong field fromRef. [110] thatwere not included inRef. [95].).

FIG. 6. Analysis of the models at different PM orders, with or without dissipative effects. The energy is fixed Γ ≈ 1.023: To the left l is
varied with fixed χ� ¼ 0, while to the right χþ is varied with fixed l ≈ 4.58 and χ− ¼ 0. The two plots share a single phase-space point
marked with the vertical dotted gray lines.

BUONANNO, JAKOBSEN, and MOGULL PHYS. REV. D 110, 044038 (2024)

044038-14



corresponds to the first two columns, and so on up to 4PM
order. The top panel shows the scattering angle, and the
lower panel shows fractional errors with respect to the
genuine 4PMmodel (i.e., 4PM S3). We define the fractional
difference in this case by

Δθ ¼ θmodel − θSEOB-4PM
θSEOB-4PM

; ð50Þ

where the subscript “model” could be any of the models
4PM Ss. From Fig. 7, it is clear that the spin-orbit S1

corrections to the model are essential, while the contribu-
tions from higher spin orders are comparably much smaller.
For larger values of the dimensionless spins, however, they
do become relevant.
Let us then turn to PN contributions, and ask: Is the all-

order-in-v PM information important, or can a PN model
describe the NR data equally well? Again, we focus on the
SEOB-PMmodel and define a series of submodels, each of
which contains only part of the information of the full 4PM
model. Namely, we terminate the deformation parameters
at a given PN order starting from 3PN and progressing to
5PN. Thus, generally, we may define a modelmPN ∩ 4PM
which includes all deformations until mPN order and 4PM

order. Referring back to the right panel in Table III, this
corresponds to including all terms in the rectangle extend-
ing downward to 4PM and to the right to mPN. We start
from the model 3PN ∩ 4PM ¼ 3PN and include the next
two subleading orders in the comparison. Again, we
compute a relative angle by comparing to the full 4PM
model predictions just as in Eq. (50). Figure 8 shows the
comparison of the mPN ∩ 4PM against the 4PM model for
m ¼ 3; 4; 5. Only at the subsubleading order to 3PN do the
velocity-expanded models keep in good agreement with the
4PM model all the way in the strong field, near to plunge.
In the three datasets plotted in Fig. 8, one also notes that
increasing the energy worsens the PN approximations.
Finally, we consider the mass dependence of the two

models SEOB-PM and wPM. Naturally, the SEOB-PM
model is designed to describe exactly the probe limit
ν → 0 and aþ ¼ a−, which is a feature not included in
the wPM model. In Fig. 9, we plot angle predictions of the
two models across the whole range of 0 ≤ ν ≤ 1=4. We do
so for the phase-space points of two of the NR datasets.
First, in the left panel, we do so for each value of l of the
third series of NR data in Ref. [112] with energy Γ ≈ 1.055.
Second, in the right panel, we do so for a selection of the
equal-spin simulations in Ref. [112]. Note, however, that as
a function of ν we do not keep Γ and l fixed but instead fix
the dimensionless effective energy γ and impact parameter
b=M. Thus, the ν → 0 limit with fixed total energy implies

FIG. 7. Analysis of importance of perturbative spin orders for
the dissipative SEOB-4PM model. The kinematics is the same as
the equal-mass, equal-spin NR simulations: Γ ≈ 1.023 and
l ≈ 4.58. In the upper panel, we plot SEOB-4PM angles omitting
first all spin deformations (blue) and adding, then, successively
linear (orange), quadratic (green), and cubic (red) spin deforma-
tions to the model. Starting from linear order in spins, the curves
lie very near to each other, and in the lower panel we plot their
fractional difference to the (full) SEOB-4PM S3 model. The
vertical dotted line indicates the transition to plunge as predicted
by the SEOB-4PMmodel. We note that this figure compares only
its submodels, where certain spin deformations are omitted, with
itself and not with the NR data.

FIG. 8. Analysis of importance of perturbative PN orders for
the (dissipative) SEOB-PM model. Focusing on spinless, equal-
mass dynamics, we consider three fixed energies Γ ¼ 1.023,
1.040, and 1.055 (corresponding to the velocities v ≈ 0.40, 0.51,
and 0.58) and vary the impact parameter (which is used instead of
l in order that the curves do not lie on top of each other). In the
lower panel, the fractional difference of each PN approximation
with respect to the 4PM model is shown. The vertical gray lines
indicate the transition to plunge predicted by the 4PM model.
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an arbitrarily large relative velocity ðγ → ∞Þ, and we rather
keep the relative velocity constant.
As we already saw above, the two models give relatively

similar results in the ν ¼ 1=4 regime. As seen in Fig. 9,
this, however, is generally not the case for smaller mass
ratios. Thus, for increasing scattering angles, the two
models begin to differ more and more for mass ratios
ν ≠ 1=4. By design, the leftmost ν → 0 prediction of the
SEOB-PM model in the left panel in Fig. 9 is exact. This is
not the case for the right panel, as that would require a
vanishing spin on the probe. As an example, for b=M ≈ 7.7
in the left panel, wPM predicts a finite angle in this limit,
while probe motion would predict a plunge.
On the other hand, for smaller scattering angles, the

curves are more or less insensitive to the changing mass
ratio. This is in good agreement with the fact that the 1PM
and 2PM perturbative scattering angles essentially are
independent of ν (except for too large energies). It will
be very important to produce NR simulations of scattering
BHs for a variety of mass ratios and spins, so that those
models can be validated much more broadly. We also
remark that, for the unequal masses considered in Fig. 9,
recoil effects will be nonzero and the scattering angles θ1,
θ2, and θrel are different. While we have no NR data to
compare with, one may think of the predictions shown there
as referring to θrel (which can also be extracted from NR
simulations if the impulses Δpi are known).

C. Importance of the critical angular momentum

An essential feature of the nonperturbative dynamics is
the possibility of a plunge for small values of the angular
momentum l. Thus, if one fixes all variables but l, there is

a critical value denoted by l0 for which the orbital motion
goes from scattering to plunge. This scenario is ideally
explored in the three panels in Fig. 3 with fixed energy
(using the NR data in Ref. [112]). Here, the NR data
explore this limit where the curve meets a vertical asymp-
tote (i.e., l0). In fact, every series of NR data was
terminated only after a plunge was ascertained for a given
value of l (see, e.g., the tables in Appendix B). In each of
the three cases, with the energies Γ1 ¼ 1.02264,
Γ2 ¼ 1.04033, and Γ3 ¼ 1.05548, one may therefore
bound the critical angular momentum:

4.3076 ≤ l0ðΓ1Þ ≤ 4.3536; ð51aÞ

4.602 ≤ l0ðΓ2Þ ≤ 4.638; ð51bÞ

4.2 ≤ l0ðΓ3Þ ≤ 4.9: ð51cÞ

The bound for the third energy, however, is very wide.
The accuracy of an analytical model in the strong field

greatly depends on its ability to predict the critical angular
momentum. Its appearance may be gathered from the
shapes of the effective potentials Veff ¼ p2

∞ − p2
r of the

models plotted in Fig. 10. These shapes are characteristic of
the effective potential of BH metrics (i.e., the SEOB-1PM
curve in Fig. 10). The plunge (or inspiral) happens when
there is no longer a barrier generated by the potential, in
other words, when the gray dash-dotted line is never
crossed by the potentials. The critical point of transition
from scattering to plunge is then determined by the
potential touching the gray dash-dotted line just once. In
other words, prðrminÞ ¼ 0 and ∂prðrminÞ=∂r ¼ 0. For the
three energies Γi, we determine the critical angular

FIG. 9. Predictions of the SEOB-4PM and w4PM models across the full range of symmetric mass ratios 0 ≤ ν ≤ 1=4. In each curve, we
keep the dimensionless effective energy, impact parameter, and spins fixed. In the left panel, γ ≈ 1.228, χ� ¼ 0, and the numbers along
the right vertical axis indicate values of b=M for the different curves. In the right panel, γ ≈ 1.092, b=M ≈ 10.7, χ− ¼ 0, and the numbers
along the right vertical axis indicate values of χþ. Note that for unequal masses there is recoil and, thus, a difference between θ1, θ2, and
θrel. The curves shown here are modeled around θrel (as discussed in Sec. II B).
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momenta predicted by the dissipative SEOB-4PM and
w4PM models to be

lSEOB-4PM
0 ðΓ1Þ¼ 4.3046; lwPM

0 ðΓ1Þ¼ 4.3148; ð52aÞ

lSEOB-4PM
0 ðΓ2Þ¼ 4.6089; lwPM

0 ðΓ2Þ¼ 4.6439; ð52bÞ

lSEOB-4PM
0 ðΓ3Þ¼ 4.9072; lwPM

0 ðΓ3Þ¼ 4.9272: ð52cÞ

Generally, these values lie within or near the bounds given
in Eq. (51).

VI. CONCLUSIONS

Building on earlier work [49,91–95], we have derived
the spinning EOB Hamiltonian SEOB-PM that resums PM
perturbative calculations fully through 4PM order and at
5PM where results are known. Our PM counting is a
physical one, with both loop and spin orders contributing;
thus, both three-loop spin-orbit [108,109] and two-loop
spin-squared [105–107] scattering results contribute to the
model at 5PM order. The SEOB-PM Hamiltonian includes
nonlocal-in-time (tail) contributions for unbound orbits
and, thus, fully describes hyperbolic trajectories. We have
employed the SEOB-PM model to compute resummed
conservative scattering angles for nonspinning and spin-
ning BHs, and, after accounting for dissipative contribu-
tions, we have compared the total scattering angles to
the NR data in Refs. [111,112]. We have also compared

SEOB-PM results with the wPM-potential-model predic-
tions in those papers (therein referred to as wEOB), which
can be viewed as a PM-expanded version of our wSEOB-PM-
potential model.
We find that the performance of both the SEOB-PM and

wPM models is very good and comparable, though the
fractional difference of the SEOB-PM model to NR is
generally slightly smaller than that of wPM. This is evident,
in particular, for the set of scattering angles at fixed angular
momentum and varying energy, toward larger energy, and
also when comparing to NR data the models at the
(incomplete) 5PM order. However, the NR data here are
so limited that we cannot draw from these few examples
any definitive conclusions. In fact, in the region of
parameter space where we expect the two models to differ
the most, notably toward the probe limit (i.e., symmetric
mass ratio different from 1=4), we do not have any NR
data. Nevertheless, we stress that whereas the SEOB-PM
model (by construction) reduces to the w potential and
Hamiltonian of a test mass in the Schwarzschild or Kerr
spacetime, this is not the case for the wPM model.
Similarly to what was found for the wPM model in

Ref. [112], when comparing to spinning NR data for equal-
mass BHs, SEOB-PM performs worse when spins are
aligned with the angular momentum and the spin magni-
tude increases. Although in this case, the scattering angles
are small, thus in the weak-field region, the models are not
yet sufficiently accurate. This motivates the need to
completeG5 by computing the nonspinning 5PM scattering
dynamics. We also found that including radiative (dissi-
pative) effects is also necessary for achieving a good
agreement with NR, though the odd dissipation plays a
significantly more important role than the even one.
The resummed conservative scattering-angle results that

we derived here were obtained from an EOB Hamiltonian.
Thus, our SEOB-PMmodel has the advantage that it can be
tested also for bound orbits and it can be used to construct
waveform models. Indeed, Ref. [114] is already employing
the SEOB-PM Hamiltonian at 4PM, augmented with
known local-in-time contributions at 4PN order for bound
orbits [115–119], to produce waveform models for spin-
ning BHs on quasicircular orbits.
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FIG. 10. For each model, we plot the effective potential VeffðrÞ
defined from the radial action as p2

r ¼ p2
∞ − VeffðrÞ. The phase-

space point is equal-mass, nonspinning with Γ ¼ 1.02264 and
l ¼ 4.4. The gray dash-dotted straight line indicates the corre-
sponding value of p2

∞: A model predicts plunge if the potential
never rises beyond that line. The effective potentials depend on
the kinematics, and the condition for the critical angular mo-
mentum is that the peak of the potential (if it exists) touches the
line of p2

∞.
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APPENDIX A: SEOB-PM DEFORMATION COEFFICIENTS

In this appendix, we present the deformations required to fully specify the SEOB-PMmodel up to physical 4PM order, as
a function of the scattering angle (13a). No deformations are required at 1PM order; results up to 2PM are provided in the
main text (45). At 3PM, we require results up to quadratic in spin:

αð3Þð0;0Þ ¼
12ð6γ4 − 11γ2 þ 5Þθð2Þð0;0Þ þ πð−142γ6 þ 309γ4 − 3γ2ðθð3Þð0;0Þv∞ þ 68Þ þ 3θð3Þð0;0Þv∞ þ 35Þ

6πγ2v4∞
; ðA1aÞ

αð3Þð1;0Þ ¼
πð5γ2 − 3Þθð2Þð1;0Þ − 2θð3Þð1;0Þv∞

2πγv3∞
; αð3Þð0;1Þ ¼

πð5γ2 − 3Þθð2Þð0;1Þ − 2θð3Þð0;1Þv∞
2πγv3∞

; ðA1bÞ

αð3Þð2;0Þ ¼
2γ2 − 1

γ2
−

θð3Þð2;0Þ
2γ2v∞

; αð3Þð1;1Þ ¼ −
θð3Þð1;1Þ
2γ2v∞

; αð3Þð0;2Þ ¼ −
θð3Þð0;2Þ
2γ2v∞

; ðA1cÞ

where v∞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
. At 4PM our results go up to cubic order in spins:

αð4Þð0;0Þ ¼
1

48π2γ4v6∞
ð96v4∞ð3γ2−2Þðθð2Þð0;0ÞÞ2−32πv2∞ð2v2∞γ2θð4Þð0;0Þ þ3ð33γ6−58γ4þ30γ2−3Þθð2Þð0;0ÞÞ

þπ2ð4127γ10−12976γ8þ42γ6ð4θð3Þð0;0Þv∞þ365Þ−4γ4ð72θð3Þð0;0Þv∞þ2011Þþ γ2ð120θð3Þð0;0Þv∞þ1703Þ−108ÞÞ;
ðA2aÞ

αð4Þð1;0Þ ¼
4ð5γ4−7γ2þ2Þθð2Þð0;0Þθ

ð2Þ
ð1;0Þ−2πv2∞γ2θ

ð4Þ
ð1;0Þ þπð−99γ6þ132γ4−57γ2þ6Þθð2Þð1;0Þ þ24ð2γ2−1Þγ2θð3Þð1;0Þv∞

8πγ3v5∞
; ðA2bÞ

αð4Þð0;1Þ ¼
4ð5γ4−7γ2þ2Þθð2Þð0;0Þθ

ð2Þ
ð0;1Þ−2πv2∞γ2θ

ð4Þ
ð0;1Þ þπð−99γ6þ132γ4−57γ2þ6Þθð2Þð0;1Þ þ24ð2γ2−1Þγ2θð3Þð0;1Þv∞

8πγ3v5∞
; ðA2cÞ

αð4Þð2;0Þ ¼ −
3πðv∞ð84γ6 − 152γ4 þ γ2ð68 − 15ðθð2Þð1;0ÞÞ2Þ þ 3ðθð2Þð1;0ÞÞ2Þ þ 8ð5 − 7γ2Þγ2θð3Þð2;0ÞÞ þ 64γ2θð4Þð2;0Þv∞

48πγ4v3∞
; ðA2dÞ

αð4Þð1;1Þ ¼
9πð5γ2 − 1Þθð2Þð0;1Þθ

ð2Þ
ð1;0Þv∞ þ 12πð7γ2 − 5Þγ2θð3Þð1;1Þ − 32γ2θð4Þð1;1Þv∞

24πγ4v3∞
; ðA2eÞ

αð4Þð0;2Þ ¼
9πð5γ2 − 1Þδ2ðθð2Þð0;1ÞÞ2v∞ þ 24πð7γ2 − 5Þγ2θð3Þð0;2Þ − 64γ2θð4Þð0;2Þv∞

48πγ4v3∞
; ðA2fÞ

αð4Þð3;0Þ ¼
v2∞θ

ð2Þ
ð1;0Þ − θð4Þð3;0Þ
4γv3∞

; αð4Þð2;1Þ ¼
v2∞θ

ð2Þ
ð0;1Þ − θð4Þð2;1Þ
4γv3∞

; αð4Þð1;2Þ ¼ −
θð4Þð1;2Þ
4γv3∞

; αð4Þð0;3Þ ¼ −
θð4Þð0;3Þ
4γv3∞

: ðA2gÞ

Inserting the scattering-angle coefficients θðnÞði;jÞ, in either the conservative or dissipative, yields the full coefficients. These

are provided in Supplemental Material [150] up to 5PM order, plus a 6PM term at quartic order in spins (S4).
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APPENDIX B: SCATTERING ANGLES

In Tables IV–VIII, we list the data for the NR simulations as well as the scattering-angle predictions for the models
considered in this paper. We indicate a plunge (or prediction thereof) with a three centerdots, “� � �.” We always show the
angle in degrees with the fractional uncertainty in percentage in brackets. We note that, for Tables IV, VI, and VII, Ref. [112]
reported an uncertainty in whether the final scattering simulation before plunge could also have been a plunge.

TABLE IV. Spinning NR data of Ref. [112] and model predictions. The following variables are constant across all data points: χ− ¼ 0
and l ¼ 4.5824.

NR data SEOB-4PM w4PM SEOB-5PM(I) w5PMðIÞ

χþ Γ θ [deg] θ½deg�ðδθ½%�Þ θ½deg�ðδθ½%�Þ θ½deg�ðδθ½%�Þ θ½deg�ðδθ½%�Þ
−0.3 1.02269 � � � 444.865 521.326 � � � � � �
−0.25 1.02268 367.545þ0

−4.84. 343.778 (−6.5) 353.322 (−3.9) 404.532 (10.1) � � �
−0.23 1.02267 334.345þ0.084

−1.573 323.065 (−3.4) 329.103 (−1.6) 357.495 (6.9) 495.03 (48.1)
−0.22 1.02267 322.693þ0.099

−1.004 314.512 (−2.5) 319.468 (−1.0) 341.921 (6.) 412.428 (27.8)
−0.21 1.02267 312.795þ0.187

−0.364 306.799 (−1.9) 310.926 (−0.6) 329.068 (5.2) 375.805 (20.1)
−0.2 1.02266 303.884þ0.222

−0.466 299.644 (−1.4) 303.102 (−0.3) 317.95 (4.6) 351.697 (15.7)
−0.17 1.02266 286.603þ0.154

−0.01 281.815 (−1.7) 284.027 (−0.9) 292.662 (2.1) 309.066 (7.8)
−0.16 1.02266 277.849þ0.23

−0.003 276.702 (−0.4) 278.644 (0.3) 285.91 (2.9) 299.349 (7.7)
−0.15 1.02265 272.603þ0.26

−0.003 271.827 (−0.3) 273.537 (0.3) 279.648 (2.6) 290.746 (6.7)
−0.1 1.02265 251.028þ0.559

−0.003 251.762 (0.3) 252.829 (0.7) 255.221 (1.7) 260.003 (3.6)
−0.05 1.02264 234.568þ0.845

−0.003 236.109 (0.7) 236.923 (1) 237.352 (1.2) 239.441 (2.1)
0 1.02264 221.823þ0.762

−0.002 223.442 (0.7) 224.179 (1.1) 223.442 (0.7) 224.179 (1.1)
0.05 1.02264 211.195þ0.61

−0.002 212.83 (0.8) 213.568 (1.1) 212.089 (0.4) 212.078 (0.4)
0.1 1.02265 202.608þ0.388

−0.002 203.765 (0.6) 204.545 (1) 202.568 (0) 202.123 (−0.2)
0.15 1.02265 194.542þ0.183

−0.001 195.838 (0.7) 196.673 (1.1) 194.359 (−0.1) 193.654 (−0.5)
0.2 1.02266 187.838þ0.02

−0.141 188.854 (0.5) 189.753 (1) 187.203 (−0.3) 186.344 (−0.8)
0.3 1.02269 176.586þ0.001

−0.653 176.997 (0.2) 178.026 (0.8) 175.197 (−0.8) 174.202 (−1.4)
0.4 1.02274 167.545þ0.002

−0.941 167.228 (−0.2) 168.374 (0.5) 165.423 (−1.3) 164.405 (−1.9)
0.6 1.02288 154.139þ0.005

−1.443 151.833 (−1.5) 153.156 (−0.6) 150.206 (−2.6) 149.265 (−3.2)
0.8 1.02309 145.357þ0.006

−1.528 140.053 (−3.6) 141.474 (−2.7) 138.705 (−4.6) 137.879 (−5.1)
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TABLE VI. First equal-mass, spinless series of NR data from
Ref. [112] and model predictions. The w4PM predictions com-
puted here are identical to the ones given in Ref. [112]. The
energy is fixed with Γ ¼ 1.02264.

NR data SEOB-4PM w4PM

l θ½deg� θ½deg�ðδθ½%�Þ θ½deg�ðδθ½%�Þ
4.3076 � � � 609.322ð−Þ � � �
4.3536 376.275þ0.026

−14.69 366.188ð−2.7Þ 379.31 (0.8)
4.3764 329.057þ0.003

−1.534 333.711 (1.4) 341.135 (3.7)
4.3808 323.422þ0

−1.914 328.694 (1.6) 335.476 (3.7)
4.3856 318.394þ0

−1.575 323.552 (1.6) 329.728 (3.6)
4.39 313.764þ0

−1.331 319.111 (1.7) 324.803 (3.5)
4.3992 305.734þ0.056

−0.694 310.548 (1.6) 315.401 (3.2)
4.4452 274.368þ0.074

−0.016 277.789 (1.2) 280.337 (2.2)
4.5368 235.447þ0.912

−0.003 237.465 (0.9) 238.507 (1.3)
4.5824 221.823þ0.762

−0.002 223.442 (0.7) 224.179 (1.1)
4.6744 200.81þ0.62

−0.004 201.581 (0.4) 201.991 (0.6)
4.766 184.684þ0.221

−0.002 185.16 (0.3) 185.411 (0.4)
5.0408 152.106þ0.055

−0.446 152.15 (0) 152.231 (0.1)
5.4992 120.804þ0.013

−0.307 120.8 (0) 120.821 (0)
5.9572 101.616þ0.059

−0.002 101.696 (0.1) 101.704 (0.1)
6.4156 88.26þ0.337

−0.002 88.42 (0.2) 88.423 (0.2)
6.874 78.296þ0.52

−0.002 78.514 (0.3) 78.515 (0.3)
7.332 70.404þ0.927

−0.003 70.776 (0.5) 70.777 (0.5)

TABLE VII. Second equal-mass, spinless series of NR data
from Ref. [112] and model predictions. The w4PM predictions
computed here are identical to the ones given in Ref. [112]. The
energy is fixed with Γ ¼ 1.04033.

NR data SEOB-4PM w4PM

l θ½deg� θ½deg�ðδθð%ÞÞ θ½deg�ðδθð%ÞÞ
4.602 � � � � � � � � �
4.638 392.815þ0.006

−7.477 413.403 (5.2) � � �
4.662 338.973þ0.156

−0.756 359.875 (6.2) 430.914 (27.1)
4.68 317.637þ0.142

−0.444 334.244 (5.2) 374.716 (18)
4.722 283.359þ0.343

−0.007 294.155 (3.8) 312.437 (10.3)
4.758 262.825þ0.749

−0.008 270.784 (3) 282.302 (7.4)
4.8 244.21þ1.22

−0.005 250.183 (2.4) 257.74 (5.5)
5.04 184.138þ0.439

−0.004 186.039 (1) 187.734 (2)
5.28 153.119þ0.226

−0.227 153.934 (0.5) 154.603 (1)
5.4 141.986þ0.244

−0.213 142.634 (0.5) 143.094 (0.8)
5.64 124.805þ0.154

−0.238 125.244 (0.4) 125.487 (0.5)
5.7 121.233þ0.18

−0.153 121.669 (0.4) 121.88 (0.5)
5.76 117.897þ0.157

−0.091 118.333 (0.4) 118.517 (0.5)
6 106.459þ0.207

−0.004 106.904 (0.4) 107.016 (0.5)
7.2 73.095þ1.358

−0.006 73.808 (1) 73.826 (1)
8.4 56.489þ1.242

−0.006 57.155 (1.2) 57.16 (1.2)
9.6 45.982þ1.53

−0.008 46.866 (1.9) 46.868 (1.9)

TABLE VIII. Third equal-mass, spinless series of NR data from
Ref. [112] and model predictions. The w4PM predictions com-
puted here are identical to the ones given in Ref. [112]. The
energy is fixed with Γ ¼ 1.05548.

NR data SEOB-4PM w4PM

l θ½deg� θ½deg�ðδθð%ÞÞ θ½deg�ðδθð%ÞÞ
4.2 � � � � � � � � �
4.9 354.118þ0.307

−0.633 � � � � � �
5.04 248.95þ1.203

−0.005 273.639 (9.9) 280.445 (12.7)
5.18 206.064þ1.479

−0.006 216.687 (5.2) 218.732 (6.1)
5.32 179.815þ0.484

−0.006 185.602 (3.2) 186.552 (3.7)
5.6 146.516þ0.354

−0.096 149.089 (1.8) 149.418 (2)
6.3 104.166þ0.361

−0.006 105.225 (1) 105.287 (1.1)
7 82.275þ0.924

−0.007 83.171 (1.1) 83.191 (1.1)
7.7 68.351þ1.485

−0.007 69.33 (1.4) 69.339 (1.4)

TABLE V. Equal-mass, spinless series of NR data from
Ref. [111]. The angular momentum is approximately fixed.
The values of Γ and l reported here are rounded off. For
computations, we have used the values reported in Table II in
Ref. [111]. The w4PM angles agree with those reported in
Ref. [113].

NR data SEOB-4PM wPM

Γ l θNR½deg� θ½deg�ðδθð%ÞÞ θ½deg�ðδθð%ÞÞ
1.00457 4.608 201.9þ4.8

−4.8 205.227 (1.6) 202.688 (0.4)
1.01479 4.6077 195.9þ1.3

−1.3 197.077 (0.6) 196.008 (0.1)
1.01988 4.6076 207.03þ0.99

−0.99 207.849 (0.4) 207.683 (0.3)
1.02496 4.6074 225.54þ0.87

−0.87 226.256 (0.3) 227.839 (1)
1.03503 4.6061 307.13þ0.88

−0.88 311.297 (1.4) 334.271 (8.8)
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