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We minimally coupled a scalar potential VðϕÞ with asymmetric vacua to the Einstein gravity to
numerically construct the hairy Reissner-Nordström black hole (RNBH) as a direct generalization of
RNBHs to possess scalar hair. By fixing the electric charge to mass ratio q, a branch of hairy RNBHs
bifurcates from the RNBH when the scalar field ϕH is nontrivial at the horizon. The values of q are
bounded for 0 ≤ q ≤ 1, which contrast to a class of hairy black holes with q > 1 in the Einstein-
Maxwell-scalar theory. We find that the profiles of solutions affected by the competition between the
strength of ϕH and q, for instance, the gradient of scalar field at the horizon can increase very sharply
when q → 1 and ϕH is small, but its gradient can be very small which is independent of q when ϕH is
large. Furthermore, the weak energy condition of hairy RNBHs, particularly at the horizon can be
satisfied when q > 0.
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I. INTRODUCTION

According to the no-hair theorem [1–3], the state of
black holes in general relativity (GR) can only be described
by the three global charges which are the mass, electrical
charge, and angular momentum. The Reissner-Nordström
black hole (RNBH) [4,5] is the solution to the Einstein-
Maxwell theory and satisfies the no-hair theorem.
Nevertheless, a black hole is known as a hairy black hole
when it is supported by a matter field outside the event
horizon and may possess additional global charge (refers to
“hair”) which is associated with the matter field. Hairy
black holes can exhibit a deviation of their properties from
the electrovacuum black holes in the strong gravity regime
but are indistinguishable in the weak gravity regime. A
mechanism which is known as the spontaneous scalariza-
tion (SS) to allow black holes can evade the no-hair
theorem to possess a nontrivial scalar field ϕ outside the
horizon; hence the RN black hole can be extended to a
broader class of charged hairy black holes; for instance, a
various form of scalar function fðϕÞ nonminimally couples
with the Maxwell field [6–32] in the Einstein-Maxwell-
scalar theory can give rise to the tachyonic instabilities
so that charged hairy black holes can be spontaneously
scalarized from the RNBH. A few decades ago T. Damour

and G. Esposito-Farèse [33] proposed the concept of SS to
predict the deviation of properties for the neutron stars from
GR in the strong gravity regime, but it becomes indistin-
guishable in the weak gravity regime within the framework
of the scalar-tensor theory, which nonminimally couples a
scalar function with the Ricci scalar.
However, one may overlook that an RNBH can also be

extended to another class of charged hairy black holes in
the simplest and direct manner, i.e., one can minimally
couple the Einstein gravity and Maxwell field with a scalar
potential VðϕÞ. By properly introducing the form of VðϕÞ
which is associated with the profile of VðϕÞ to evade the
no-hair theorem, the solutions of hairy black holes can be
bifurcated from the electrovacuum black holes, and they are
regular everywhere in the spacetime. Recently, the authors
have employed two different profiles of VðϕÞ to construct
the neutral hairy black holes without the anticipation of
other extended objects, for instance the Gauss-Bonnet term
or matter fields and study their properties in detail [34–36].
The first profile of VðϕÞ with the shape of two asymmetric
vacua which contain a local maximum, a local minimum,
and a global minimum to describe the phase transition of
vacuum bubbles from the false vacuum (local minimum) to
the true vacuum (global minimum) [37]. The second profile
of VðϕÞwith the shape of the inverted Mexican hat contains
two degenerate maxima and a local minimum [36].
Therefore, we generalize those neutral hairy black holes
in [35] to possess an electric charge and study their
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properties in this paper. Other choices of VðϕÞ or a similar
construction can refer to [38–46].
On the other hand, the RNBH possesses an inner

horizon, instead of the outer horizon. The inner horizon
is known as the Cauchy horizon which can preserve the
predictability in GR. Recently, various attempts have been
made to prove the nonexistence of a Cauchy horizon for
the static and charged black holes [47–51]. For instance,
the investigations for the interior of the static charged
hairy black holes with spherical and planar symmetries in
the Born-Infield theory [47] and the Einstein-Maxwell-
Klein-Gordon theory with a scalar potential of a complex
scalar field [48] have been done numerically to demon-
strate the nonexistence of the Cauchy horizon. However,
the interior of the charged black holes will not remain as
the static case when we consider the scenario of gravi-
tational collapse with the time evolution. Thus, the authors
(we) [50] adopted the double-null formalism to investigate
the gravitational collapse of charged black holes and
found that the behavior of the Cauchy horizon could
behave differently from the static case; for instance, the
Cauchy horizon cannot be generated during collapse of
the charged black holes in the Brans-Dicke theory,
which demonstrates that the scalar field at the outer
horizon does not lead to the formation of the Cauchy
horizon in the evolution. Therefore, it provides a good
motivation for us to construct such charged black holes as
a first step to studying the existence of the Cauchy horizon
by any approach.
This paper is organized as follows. In Sec. II, we briefly

introduce our theoretical setup comprising the Lagrangian
and the metric ansatz. Then, we derive the set of coupled
differential equations and study the asymptotic behavior
of the functions. In Sec. II C, we briefly introduce the
quantities of interest for the black holes. In Sec. II D, we
perform a spherical perturbation to the background of hairy
RNBHs and the matter fields to calculate numerically the
(un)stable mode. In Sec. III, we present and discuss our
numerical findings. Finally, in Sec. IV, we summarize our
work and present an outlook.

II. THEORETICAL SETTING

A. Theory and Ansätze

In the Einstein-Maxwell-Klein-Gordon (EMKG) system,
we consider an asymmetric potential VðϕÞ of a scalar field
ϕ which is given by [34,35] to minimally couple with the
Maxwell field and the Einstein gravity,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R

16πG
−
1

4
FμνFμν −

1

2
∂μϕ∂

μϕ − VðϕÞ
�
;

ð1Þ

where Fμν ¼ ∂μAν − ∂νAμ is the electromagnetic field
strength tensor. The explicit form of VðϕÞ is given by

VðϕÞ ¼ V0

12
ðϕ − aÞ2½3ðϕ − aÞ2 − 4ðϕ − aÞðϕ0 þ ϕ1Þ

þ 6ϕ0ϕ1�; ð2Þ

with a, V0, ϕ0, and ϕ1 as the constants. As shown in Fig. 1,
when ϕ ¼ a, this potential VðϕÞ possesses a local mini-
mum which is also a zero of VðϕÞ. The asymptotic value of
ϕ at the infinity is fixed by ϕ ¼ a. VðϕÞ also possesses a
local maximum at ϕ ¼ aþ ϕ0 and a global minimum at
ϕ ¼ aþ ϕ1. In this paper, we choose a ¼ 0 such that the
scalar field is asymptotically flat at the spatial infinity.
Note that the asymmetrical profile of VðϕÞ is caused by
the appearance of cubic term ϕ3; thus VðϕÞ can become
symmetric if the cubic term disappears; for instance,
the authors recently have employed a symmetric profile
of VðϕÞ which possesses two degenerate global
maxima and local minimum to construct the hairy black
holes [36] and gravitating scalaron [52]. Furthermore, a
similar form of Eq. (2) has been applied to construct the
Fermionic star [53].
Then we obtain the Einstein equation, Klein-Gordon

equation, and Maxwell equation by varying the action
[Eq. (1)] with respect to the metric, scalar field, and
Maxwell field, respectively:

Rμν −
1

2
gμνR ¼ βTμν; ð3Þ

∇μ∇μϕ ¼ dV
dϕ

; ð4Þ

∇μFμν ¼ 0; ð5Þ

where β ¼ 8πG and the stress-energy tensor Tμν is given by

FIG. 1. The authors have considered the scalar potential VðϕÞ
with a false vacuum at ϕ ¼ 0, a barrier at ϕ ¼ ϕ0, and a true
vacuum at ϕ ¼ ϕ1 to construct the hairy black holes [35].
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Tμν ¼ −gμν
�
1

2
∂αϕ∂

αϕþ VðϕÞ
�
þ ∂μϕ∂νϕþ gαβFμαFνβ

−
1

4
gμνFαβFαβ: ð6Þ

We employ the following spherically symmetric Ansatz
to construct the charged hairy black hole solutions,

ds2¼−NðrÞe−2σðrÞdt2þ dr2

NðrÞþr2ðdθ2þsin2θdφ2Þ; ð7Þ

where NðrÞ ¼ 1–2mðrÞ=r with mðrÞ is the Misner-Sharp
mass function [54]. Note that we can read off the mass
of black holes with the condition mð∞Þ ¼ M where M is
the Arnowitt-Deser-Misner (ADM) mass. Moreover, the
Ansatz for the gauge field is chosen to be

Aμ ¼ UðrÞdt: ð8Þ

B. Ordinary differential equations (ODEs)

To derive the ordinary differential equations (ODEs)
from Eqs. (3)–(5), we begin with Eq. (5) to directly obtain a
first-order ODE,

U0 ¼ Qe−σ

r2
; ð9Þ

where the prime denotes the derivative of the functions with
respect to the radial coordinate r and we denote Q as the
electric charge. The substitution of Eq. (7) into the EMKG
system yields a set of nonlinear ODEs for the following
functions:

m0 ¼ β

4
r2
�
Nϕ02 þ 2V þQ2

r4

�
; σ0 ¼ −

β

2
rϕ02;

ðe−σr2Nϕ0Þ0 ¼ e−σr2
dV
dϕ

: ð10Þ

If the scalar field vanishes ðϕ ¼ 0Þ, then the trivial solution
for the EMKG system is the RNBH which is given by

mðrÞ¼M−
Q2

2r
; σðrÞ¼0; UðrÞ¼U∞−

Q
r
; ð11Þ

where M is the ADM mass and U∞ is the electric
potential. The horizon rH of the RNBH is given by

rH ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
. However, if the scalar field does

not vanish, but the scalar potential vanishes ðVðϕÞ ¼ 0Þ,
the solution of the above EMKG system is still the RNBH
but with the scalar field diverging at the horizon. Hence, the
proper introduction of VðϕÞ is very crucial so that it can
regularize the scalar field at the horizon. Previously the
authors considered Eq. (2) to construct the neutral hairy

black holes and study their properties. Thus, in this paper,
we generalize them to possess the electric charge Q.
To construct the charged hairy black hole solutions that

are globally regular, the functions and their derivatives are
required to be finite, particularly at the horizon. Hence, the
asymptotic behavior of the functions at the horizon can be
described by the power series expansions in which the few
leading terms in the series expansion are given by

mðrÞ ¼ rH
2
þm1ðr − rHÞ þOððr − rHÞ2Þ; ð12Þ

σðrÞ ¼ σH þ σ1ðr − rHÞ þOððr − rHÞ2Þ; ð13Þ

ϕðrÞ ¼ ϕH þ ϕH;1ðr − rHÞ þOððr − rHÞ2Þ; ð14Þ

UðrÞ ¼ Qe−σH

r2H
ðr − rHÞ −

Qe−σHð2þ σ1rHÞ
2r3H

ðr − rHÞ2

þOððr − rHÞ3Þ; ð15Þ

where

m1 ¼
β

4
r2H

�
2VðϕHÞ þ

Q2

r4H

�
; σ1 ¼ −

βrH
2

ϕ2
H;1;

ϕH;1 ¼
rH

dVðϕHÞ
dϕ

1 − βr2HVðϕHÞ − βQ2

2r2H

: ð16Þ

Here σH and ϕH are the values of σ and ϕ at the horizon.
The asymptotic expansion for the functions at infinity are
given by

mðrÞ ¼ M þ m̃1

exp ð−2meffrÞ
r

þ � � � ; ð17Þ

σðrÞ ¼ σ̃1
exp ð−2meffrÞ

r
þ � � � ; ð18Þ

ϕðrÞ ¼ ϕ̃H;1
exp ð−meffrÞ

r
þ � � � ; ð19Þ

UðrÞ ¼ U∞ −
Q
r
þ � � � ; ð20Þ

where m̃1, σ̃1, and ϕ̃H;1 are constants; U∞ is the electric
potential; and M is the ADM mass of the charged hairy
black holes. Note that the denominator of ϕH;1 has to be

imposed with the condition 1 − βr2HVðϕHÞ − βQ2

2r2H
≠ 0 in

order to keep ϕðrÞ and σðrÞ finite at the horizon. Moreover,
the effective mass of the scalar field is given by
meff ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V0ϕ0ϕ1

p
.

Since the ODEs are nonlinear, it would be very chal-
lenging to obtain the closed form for the charged hairy
black holes, although the ODEs look very simple, so we
integrate the ODEs by the professional solver Colsys which
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employs the Newton-Raphson method to solve a set of
nonlinear ODEs by providing the adaptive mesh refinement
to generate the solutions with high accuracy and the
estimation of errors of solutions [55]. In the numerics
we compactify the radial coordinate r by r ¼ rH=ð1 − xÞ
with x∈ ½0; 1� which can map the one-to-one correspon-
dence of horizon and infinity to 0 and 1, respectively. We
also introduce the following dimensionless parameters:

r →
rffiffiffi
β

p ; m →
mffiffiffi
β

p ; ϕ →
ffiffiffi
β

p
ϕ;

ϕ1 →
ffiffiffi
β

p
ϕ1; ϕ0 →

ffiffiffi
β

p
ϕ0; V →

ffiffiffi
β

p
V: ð21Þ

Therefore, we are left with the following free parameters:
ϕ0, ϕ1, rH, q, σH, ϕH, m̃1, σ̃1, ϕ̃H;1, U∞, and M. The
parameters σH, m̃1, σ̃1, ϕ̃H;1, U∞, and M are determined
when the solutions satisfy the boundary conditions; thus the
input parameters in the numerics are given by ϕ0, ϕ1, rH, q,
and ϕH.

C. Basic properties of charged hairy black holes

In this subsection, we study the basic properties of
charged hairy black holes; in particular, we are interested in
the area of horizon AH and Hawking temperature TH of
black holes,

AH ¼ 4πr2H; TH ¼ 1

4π
N0ðrHÞe−σH ; ð22Þ

where σH is the value of function σ at the horizon. For the
convenience of comparing our black hole solution with a
known solution, which is the RNBH in this case, we
introduce the following reduced quantities at the horizon of
the black holes,

aH ¼ AH

16πM2
; tH ¼ 8πTHM: ð23Þ

The explicit form of aH and tH for the RNBH are given
by [18]

aH¼1

4

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1−q2

q �2

; tH¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffi
1−q2

p
�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1−q2

p �
2
; ð24Þ

where q is interpreted as ratio of the charge Q to the ADM
mass M and defined as

q ¼ Q
M

: ð25Þ

The values of aH and tH are unity when the black hole is
the Schwarzchild black hole (q ¼ 0). aH is bounded
in between 1=4 ≤ aH ≤ 1 for the RNBH where

aH ¼ 1=4 corresponds to the extremal RNBH (q ¼ 1).
Moreover, tH is bounded in between 0 ≤ tH ≤ 1 for the
RNBH where tH ¼ 0 corresponds to the extremal RNBH.
On the other hand, we could inspect the violation

of the weak energy condition (WEC) for the hairy
RNBHs since VðϕÞ is not entirely positive definite with
VðϕÞ < 0 in some regions of ϕ; thus the expression of
WEC is given by

ρ ¼ −Tt
t ¼

N
2
ϕ02 þ V þ Q2

2r4
: ð26Þ

We observe that ρ approaches zero at the infinity but at the
horizon, given that NðrHÞ ¼ 0, the WEC of neutral hairy
RNBHs which is from our previous work [35] is violated at
the horizon with ρ ¼ VðϕHÞ < 0. Therefore, it will be
interesting to study if the inclusion of Q could reduce the
violation of WEC.

D. The spherical perturbation

Here we study the linear stability of hairy black holes by
performing the spherical perturbation on the background
metric, scalar field, and the Maxwell field, respectively:

ds2 ¼ −NðrÞe−2σðrÞ½1þ ϵe−iωtFtðrÞ�dt2

þ 1

NðrÞ ½1þ ϵe−iωtFrðrÞ�dr2 þ r2ðdθ2 þ sin2θdφ2Þ;

ð27Þ

Φ ¼ ϕðrÞ þ ϵΦ1ðrÞe−iωt; ð28Þ

Ū ¼ UðrÞ þ ϵU1ðrÞe−iωt; ð29Þ

where FtðrÞ, FrðrÞ, Φ1ðrÞ, and U1ðrÞ are the small
perturbations to the nonperturbed solutions. The substitu-
tion of the above Ansatz into Eqs. (3), (4), and (5) yields
a set of ODEs for the perturbation functions to the first
order of ϵ,

Fr ¼ βrΦ1ϕ
0; ð30Þ

F0
t ¼ −F0

r þ 2βrΦ0
1ϕ

0; ð31Þ

U0
1 ¼

QðFt þ FrÞe−σ
2r2

; ð32Þ

Φ00
1 ¼

�
σ0 −

N0

N
−
2

r

�
Φ0

1 þ
�
1

N
∂
2V
∂ϕ2

− ω2
e2σ

N2

�
Φ1

þ Fr

N
∂V
∂ϕ

þ F0
r − F0

t

2
ϕ0: ð33Þ
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Equation (33) can be simplified using Eqs. (30) and (31).
Then Eq. (33) can be transformed into a Schrödinger-like
master equation by defining ZðrÞ ¼ rΦ1ðrÞ,

d2Z
dr2�

þ ðω2 − VRðrÞÞZ ¼ 0; ð34Þ

with the effective potential VRðrÞ,

VRðrÞ¼Ne−2σ
�
−
N
r2
þ 1

2r4
ðβr2ϕ02−1Þð2βr4V−2r2þβQ2Þ

þ2βrϕ0∂V
∂ϕ

þ∂
2V
∂ϕ2

�
: ð35Þ

The tortoise coordinate r� is

dr�
dr

¼ eσ

N
: ð36Þ

If the mode ω2 < 0, this indicates that the perturbation Z
is unstable where Z can grow exponentially with time.
Nevertheless, the perturbation Z can be stable and decay
exponentially with time when ω2 > 0. Since Eq. (34) is an
eigenvalue problem, then we compute the mode numeri-
cally by using COLSYS and treating ω2 as the eigenvalue.
In the numerics, we demand that the first-order derivative
of the perturbation function vanishes at the boundaries
∂rZðrHÞ ¼ ∂rZð∞Þ ¼ 0. Since Eq. (34) is homogeneous,
we can introduce an auxiliary equation d

drω
2 ¼ 0, that

allows us to impose the condition ZðrpÞ ¼ 1 at some point
rp which typically lies in the middle of horizon and infinity,
in order to obtain a nontrivial and normalizable solution
for Z. The eigenvalue ω2 is found automatically when Z
satisfies all the asymptotic boundary conditions.

III. RESULTS AND DISCUSSIONS

Recall that the input parameters in the calculation are
given by ϕ0, ϕ1, rH, q, and ϕH. To generate the solutions of
charged hairy black holes, we choose the values of global
minimum ϕ1 as ϕ1 ¼ 0.5, 1.0. For each ϕ1, we fix several
values for the electrical charge q in the range [0, 1] and then
increase the scalar field at the horizon ϕH from ϕH ¼ 0
until ϕH ¼ ϕ1; hence we find that a family of charged hairy
black holes bifurcates from the RNBH when ϕH is non-
trivial. Here we identify the charged hairy black holes as the
hairy RNBHs where the nonextremal case corresponds to
0 ≤ q < 1 and the extremal case corresponds to q ¼ 1.
Subsequently, we present their properties based on our
numerical results.
First, we exhibit the reduced area of horizon aH for the

hairy RNBHs in Fig. 2 with (a) ϕ1 ¼ 0.5 and (b) ϕ1 ¼ 1.0.
When ϕH ¼ 0, the charged black hole is merely the RNBH,
and aH is bounded in between [0.25, 1] (blue curve) where
aH ¼ 0.25 corresponds to the extremal RNBH (q ¼ 1) and
aH ¼ 1 corresponds to the Schwarzschild black hole
(q ¼ 0). When q ¼ 0, a branch of neutral hairy black
holes (black curve) bifurcates from the Schwarzschild
black hole when ϕH increases from ϕH ¼ 0 to ϕH ¼ ϕ1

where their properties have been studied extensively by the
authors in [35]. In the case q > 0, when ϕH increases from
ϕH ¼ 0 until ϕH ¼ ϕ1, a family of hairy RNBHs bifurcates
from the RNBH where hairy RNBHs behave very differ-
ently than the RNBH, we find that aH decreases mono-
tonically from unity to zero. In the limit ϕH ¼ ϕ1, ϕH sits
exactly at the global minimum of VðϕÞ; hence hairy
RNBHs do not exist anymore. Overall, aH for both cases
ϕ1 ¼ 0.5 and ϕ1 ¼ 1.0 behave qualitatively the same. Note
that for a fixed value of ϕH, aH decreases with the increase
of q, which implies the ADM mass of hairy RNBHs
increases when q increases; thus the extremal hairy RNBHs
(red curve) are the most massive hairy black holes while the
neutral hairy black holes (black curve) are the lightest hairy
black holes. Moreover, the value of q in our theory is

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5

1=0.5, rH=1

a H

H

q=0
q=0.2
q=0.5
q=0.7
q=0.9
q=1.0

RN

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

1=1.0, rH=1

a H

H

q=0
q=0.2
q=0.5
q=0.7
q=0.9
q=1.0

RN

FIG. 2. The reduced area of horizon aH of the hairy RNBHs with rH ¼ 1 and several q for (a) ϕ1 ¼ 0.5 and (b) ϕ1 ¼ 1.0.
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bounded for 0 ≤ q ≤ 1, where this is in contrast to the
charged hairy black holes in the Einstein-Maxwell-scalar
case where they can possess q greater than 1 [18,28]; thus
our hairy RNBHs are not overcharged.
Second, we show the reduced Hawking temperature tH

for the hairy RNBHs in Fig. 3 with (a) ϕ1 ¼ 0.5 and
(b) ϕ1 ¼ 1.0 analogous to aH, when ϕH ¼ 0, tH (blue
curve) is bounded in 0 ≤ tH ≤ 1 where tH ¼ 1 corresponds
to the Schwarzcshild black hole (q ¼ 0) and tH ¼ 0
corresponds to the extremal Reissner-Nordström black hole
(q ¼ 1). Similarly, when ϕH increases, a branch of hairy
RNBHs emerges from the RNBH for a fixed value of q.
When q ¼ 0, the corresponding hairy RNBHs are neutral
where they have been considered by the authors in
Ref. [35]. When 0 < q < 1, tH increases very sharply
when ϕH increases from ϕH ¼ 0 to ϕH ¼ ϕ1; this also
indicates that the hairy RNBHs do not exist when ϕH ¼ ϕ1.
Interestingly, the inset of Figs. 3(a) and 3(b) demonstrates
that tH possesses a nonzero value when q ¼ 1 where the
extremal hairy RNBH emerges from the extremal RNBH.

Furthermore, tH behaves qualitatively the same for both
cases ϕ1 ¼ 0.5 and ϕ1 ¼ 1.0.
Figure 4 exhibits the profiles of mass function mðxÞ of

the hairy RNBHs with rH ¼ 1 and ϕ1 ¼ 1.0 in the
compactified coordinate x for (a) ϕH ¼ 0.5 and
(b) ϕH ¼ 0.99 (in the limit ϕH → ϕ1). We observe that
mðxÞ (black curve) with q ¼ 0 as depicted in Figs. 4(a)
and 4(b) possess almost a constant function inside the bulk,
corresponding to the global minimum of the potential VðϕÞ
which is the true vacuum ϕ1. Moving away from the
horizon, they develop a sharp boundary which looks like a
global minimum at some intermediate region of the
spacetime, where the functions rapidly change to another
set of almost constant function which corresponds to the
imposed false vacuum ðϕ ¼ 0Þ at infinity, where the scalar
field sits in the local minimum. However, when q increases
as shown in Fig. 4(a) for ϕH ¼ 0.5, the gradient of mðxÞ at
the horizon and the infinity also increases; thus mðxÞ no
longer possess almost constant functions inside the bulk
and at the infinity; this has reduced the sharp boundary in
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some intermediate region of the spacetime, as the
consequence the global minimum is being lifted and then
finally disappears. Thus, mðxÞ (red curve) becomes almost
a linear function when q ¼ 1 for extremal hairy RNBHs.
Nevertheless, Fig. 4(b) demonstrates that when ϕH ¼ 0.99,
mðxÞ still possess a sharp boundary that connects two
different sets of almost constant functions at the horizon
and the infinity, although that sharp boundary has been
reduced with the increasing of q; therefore the global
minimum ofmðxÞ still can exist even for q ¼ 1 (red curve).
Meanwhile, we find trivially that the profiles of solutions
are heavily dominated by either the strength of q or ϕH.
Fig. 5 exhibits the profiles of scalar field ϕðxÞ of the

hairy RNBHs with rH ¼ 1 and ϕ1 ¼ 1.0 in the compacti-
fied coordinate x for (a) ϕH ¼ 0.1 and (b) ϕH ¼ 0.99 (in
the limit ϕH → ϕ1). Overall ϕðxÞ decreases monotonically
to zero from the horizon to the infinity. As shown in
Fig. 5(a), when ϕH ¼ 0.1, the behavior of ϕðxÞ is

qualitatively similar to mðxÞ where initially the gradient
of ϕðxÞ is very small for small q, but it becomes the steepest
at the horizon when q ¼ 1. This phenomenon can be
described by the denominator of ϕH;1 [Eq. (16)] where

VðϕHÞ < 0 and dVðϕHÞ
dϕ < 0; the increasing of q decreases

the denominator of ϕH;1. Hence ϕH;1 increases and then
becomes largest but still remains finite when q ¼ 1.
Nevertheless, when we increase ϕH, for instance,
ϕH ¼ 0.99 as shown in Fig. 5(b), the increasing of ϕH
can flatten the profile of the scalar field in the bulk because
the increasing of VðϕHÞ increases the denominator of ϕH;1;
hence ϕðxÞ looks like an almost constant function and is
unaffected by q in the bulk.
Figure 6 exhibits the profiles of metric function σðxÞ

of the hairy RNBHs with rH ¼ 1 and ϕ1 ¼ 1.0 in the
compactified coordinate x for (a) ϕH ¼ 0.5 and
(b) ϕH ¼ 0.99 (in the limit ϕH → ϕ1). In general σðxÞ
behaves quite similarly to the function ϕðxÞ where it also
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FIG. 5. The profiles of scalar field ϕðxÞ in the compactified coordinate x for the hairy RNBHs with rH ¼ 1, ϕ1 ¼ 1.0, and several q
for (a) ϕH ¼ 0.1 [56] and (b) ϕH ¼ 0.99.
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decreases monotonically to zero from the horizon to the
infinity. As shown in Fig. 6(a) for ϕH ¼ 0.1, the profile of
σðxÞ is analogous to ϕðxÞ for small q where the gradient
of σðxÞ is very small which also looks like almost a
constant function at the horizon that corresponds to the true
vacuum ϕ1. However, the value of σðxÞ and its gradient at
the horizon increase very sharply when q increases where it
follows the similar changes of ϕðxÞ since σ1 ∝ ϕ2

H;1 [see
Eq. (16)]. Hence, σðxÞ (red curve) is the steepest at the
horizon when q ¼ 1. However, when ϕH is large, for
instance as demonstrated in Fig. 6(b), the gradient of σðxÞ
at the horizon is unaffected by any values of q since ϕH;1 is
very small; thus we observe that σðxÞ still can behave like
an almost constant function in the bulk.
Figure 7 shows the profiles of gauge field UðxÞ of the

hairy RNBHs with rH ¼ 1 and ϕ1 ¼ 1.0 in the compacti-
fied coordinate x for (a) ϕH ¼ 0.5 and (b) ϕH ¼ 0.99. In
Fig. 7(a), the profile of UðxÞ is a linear function, and its

gradient increases with the increase of q. In Fig. 7(b), UðxÞ
is still a linear function that increases linearly with the
increase of x but increases a little sharply with a larger
gradient near x ¼ 1.
Figure 8 shows the WEC of Eq. (26) with several values

of q in the compactified coordinate x for (a) ϕH ¼ 0.5 and
ϕH ¼ 0.99. When ϕH ¼ 0.5 and q ¼ 0, we observe that the
WEC is violated since the local energy density is negative
ðρ ¼ VðϕHÞ < 0Þ, particularly at the horizon. When we
increase q, ρ can become strictly positive since the
inclusion of q can reduce the violation of WEC. Hence,
it gives us an important hint that the WEC of neutral hairy
black holes in Ref. [36] can be possibly satisfied if they
become charged black holes. When ϕH ¼ 1.0 and q ¼ 0,
WEC is violated at the horizon since ρ < 0. Similarly,
WEC is also being satisfied at the horizon when we
increase q. However, WEC is slightly violated in some
regimes of x since ρ < 0. Note that there are some small
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peaks that form near x ¼ 1 due to the global minimum
of mðxÞ.
Meanwhile, the quantity Tr

r is depicted in Fig. 9 for
a) ϕH ¼ 0.5 and b) ϕH ¼ 0.99. According to the no-hair
theorem, Tr

r has to be negative and decreasing with r near
the horizon [1,57]. When ϕH ¼ 0.5 and q ¼ 0, the energy
condition of Tr

r is violated at the horizon since Tr
r > 0,

although it decreases monotonically after the horizon.
However, when we increase q and find that Tr

r < 0,
particularly at the horizon, but it increases with x near
the horizon, the criteria for Tr

r set by the no-hair theorem is
still being violated. Similarly, when ϕH ¼ 0.99 and q ¼ 0,
the energy condition of Tr

r is being violated since it is
strictly positive, although it decreases monotonically.
Nevertheless, when we increase q, although we find that
Tr
r < 0, particularly at the horizon, the criteria for Tr

r is still
violated since it increases monotonically. Analogous to ρ,
Tr
r possesses a local maximum exactly at the location of the

global minimum of mðxÞ.

Figure 10 shows the parameter ϕ0 as the function of ϕH
for ϕ1 ¼ 0.5 and ϕ1 ¼ 1.0. Both cases ðϕ1 ¼ 0.5; 1.0Þ
demonstrate that ϕ0 increases monotonically as ϕH
increases from zero, and ϕ0 is almost indistinguishable
for small q but becomes distinct when q → 1.
Figure 11 shows the profiles of the potential VðϕÞ for

(a) ϕ1 ¼ 0.5, q ¼ 0.5 and (b) ϕ1 ¼ 1.0, q ¼ 0.5. VðϕÞ
contains three roots, and the negative region of VðϕÞ is
bounded by two roots. When ϕH increases, we find that the
global minimum Vðϕ1Þ has been lifted while ϕ0 moves
toward ϕ1, and the height of barrier Vðϕ0Þ increases as
well. Note that the values of VðϕHÞ are always negative.
Figures 12(a) and 12(b) exhibit the effective potential

VRðxÞ in the compactified coordinate x for ϕ1 ¼ 1.0. We
observe that some region of VRðxÞ is negative; this
indicates the instability might appear in the configuration
of hairy RNBH. Thus, we can show the existence of the
unstable modes ω2 for the black hole configuration
with ϕ1 ¼ 0.5 and ϕ1 ¼ 1.0 in Figs. 13(a) and 13(b),
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respectively by numerically solving Eq. (34). For a fixed q,
as ϕH increases from zero, we observe that ω2 decreases
from zero to a minimum value, and then increases again
to approach zero in the limit ϕH → ϕ1. The existence of
unstable modes implies the hairy RNBH are unstable and
the perturbation will grow exponentially with time. The
unstable modes only disappear in the limit ϕH → ϕ1 where
the hairy RNBHs do not exist anymore in that limit. Note
that ω2 increases with the increasing of q for a fixed ϕH
with a certain range; this implies the q could “weakly”
improve the stability of the hairy RNBHs. Hence, the
extremal hairy RNBH is relatively more stable than other
nonextremal hairy RNBH for a certain range of ϕH.

IV. CONCLUSION

In this paper, we have broadened the class of RNBH by
minimally coupling a scalar potential VðϕÞ in the EMKG
theory to construct charged hairy black holes. Here we
introduce VðϕÞ which possesses a local minimum, a global
minimum ϕ1, and a local maximum ϕ0 where it has been
applied in the cosmology to describe the phase transition of
bubbles from the false vacuum (local maximum) to the true
vacuum (global minimum). Previously the corresponding
VðϕÞ has been applied by the authors to construct the
asymptotically flat neutral hairy black holes [35], and
hence, we generalize them to the charged hairy black holes
which possess the electric charge Q.
In the EMKG theory, the trivial solution is the RNBH

with the scalar field diverging at the horizon when VðϕÞ
does not exist. When we include VðϕÞ, we demonstrate that
it is possible to circumvent the no-hair theorem where we
can obtain the charged hairy black holes that are globally
regular outside the horizon. Thus, the family of hairy
charged black holes emerges from the RNBH with a fixed
value of charge per unit mass, q ¼ Q=M when the scalar
field at the horizon ϕH is nontrivial and we can identify the
charged hairy black holes as the hairy RNBHs. The value of
q is bounded in [0, 1] where q ¼ 0 corresponds to the
neutral hairy black holes [35] and 0 ≤ q < 1 corresponds to
nonextremal hairy RNBHs, while q ¼ 1 corresponds to the
extremal hairy RNBHs. This is also in contrast to the hairy
black holes in the Einstein-Maxwell-scalar theory where
they can possess q > 1 [18,28].
The properties of neutral hairy black holes (q ¼ 0) have

been studied previously by the authors [35]. Here we study
the properties of hairy RNBHs by choosing ϕ1 ¼ 0.5, 1.0,
and then we fix a value of q; when we increase ϕH from
zero, we find that the reduced area of horizon aH decreases
from unity to zero while the reduced Hawking temperature
tH increases very sharply when ϕH ¼ ϕ1. This might imply
that the hairy RNBHs do not exist in that limit. Note that the
extremal hairy RNBHs possess the nontrivial tH while
RNBH possesses the vanishing tH.
Then we briefly summarize the profiles of solutions.

When q ¼ 0, the mass function possesses almost a constant

function inside the bulk, corresponding to the global
minimum of the potential VðϕÞ which is the true
vacuum ϕ1. Moving away from the horizon, it develops
a sharp boundary which looks like a global minimum at
some intermediate region of the spacetime, where the
function rapidly changes to another set of almost constant
function which corresponds to the imposed false vacuum
(a ¼ 0) at infinity, where the scalar field sits in the local
minimum. When ϕH ¼ 0.5 with q ≠ 0, the gradient of
mass function at the horizon and the infinity increases;
hence the sharp boundary is reduced, and then the global
minimum is being lifted when we increase q. Thus the
global minimum disappears for the extremal case (q ¼ 1),
and the mass function looks like a linear function as a
consequence. When ϕH ¼ 0.99, the two different sets of
almost constant functions are still connected by a sharp
boundary although the global minimum is also being lifted
slightly but eventually still can be preserved when q ¼ 1.
The scalar field decreases monotonically from its maxi-
mum value at the horizon to zero at the infinity. When
ϕH ¼ 0.1, the scalar field also possesses an almost constant
function at the horizon, but its gradient at the horizon
increases very sharply when q increases; thus it is the
steepest at the horizon when q ¼ 1. However, the gradient
of the scalar field at the horizon can still become very small
when ϕH ¼ 0.99, even q ¼ 1. Furthermore, the gauge field
increases linearly from the horizon to the infinity. When
ϕH ¼ 0.99, the gradient of the gauge field slightly increases
near the infinity for ϕ1 ¼ 1.0. Overall, we find a very
interesting phenomenon that the profiles of solutions are
heavily dominated by either the electric charge q or the
scalar field.
The WEC which can be described by the local energy

density ρ ¼ −Tt
t is violated, particularly at the horizon for

the neutral hairy RNBHs (q ¼ 0). However, WEC can be
satisfied with ρ > 0 at the horizon when q ≠ 0 for
ϕ1 ¼ 0.5. Thus, this could imply that the WEC of neutral
hairy black holes [36] can be possibly satisfied if they
become charged black holes. Nevertheless, WEC is slightly
violated in the region of compactified coordinate 0.5 <
x < 1 for ϕ1 ¼ 1.0 although q increases. Meanwhile, the
component of stress-energy tensor Tr

r is strictly positive
for neutral hairy black holes (q ¼ 0) but becomes negative,
particularly at the horizon when q ≠ 0 for ϕ1 ¼ 0.5, 1.0.
The neutral hairy black holes from our previous

work [35] are found to be unstable against the linear
perturbation. We also study the stability of hairy RNBHs by
performing the spherical perturbation to the background
spacetime and the matter fields to obtain the Schrödinger-
like master equation. We perform the numerical mode
analysis and then find that the solutions of the hairy
RNBHs also possess the unstable modes; hence they are
also unstable against the linear perturbation. Here we find
that the presence of q merely “weakly” improves the
stability of the hairy RNBHs where the extremal hairy
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RNBHs could be relatively stable than nonextremal hairy
RNBHs for a certain range of ϕH. Note that the unstable
modes only disappear when ϕH → ϕ1 where the hairy
RNBHs do not exist anymore in that limit.
There also could be several extensions from this work.

First, we can consider the dyon case where the hairy
RNBHs can possess the magnetic charge and study their
properties systematically. Then, it will be worthwhile to
stress that the hairy RNBHs recently have gained some
interest in the context of the Cauchy horizon theorems
where some research shows that the inner Cauchy horizon
may not exist if there is a scalar hair at the outer horizon
[58–62]. Hence, the investigation of the dynamical evolu-
tion of charged hairy black holes will be useful for us to
understand the process of formation of the Cauchy horizon,
since we lack the analytical proof on this [50].
Therefore, we can study the nonexistence of the Cauchy

horizon for the hairy RNBHs by following the approaches
from Refs. [47,48] to adopt a static metric with spherical
and planar symmetries, which can describe the interior of
the hairy RNBHs by solving the equations of motion
numerically. We can also adopt the double-null formalism
to study the evolution of hairy RNBHs by employing a
generic metric in the double-null coordinate,

ds2 ¼ −α2ðu; vÞdudvþ r2ðu; vÞðdθ2 þ sin2θdφ2Þ; ð37Þ

where u and v denote the ingoing null direction and
outgoing null direction, respectively. Then Eq. (37) can
be substituted into the EMKG system to obtain a set of
nonlinear partial differential equations with respect to u and
v, which can be solved numerically with appropriate
boundary conditions. However, our solutions only cover
from the horizon to the infinity; hence we probably still
need to obtain the interior solutions of hairy RNBHs which
served as the initial condition for the numerics, so we will
leave this as a future investigation.
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