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We study higher dimensional charged Kerr-Schild (KS) spacetimes that can be constructed by a KS
transformation of a vacuum solution with an arbitrary cosmological constant, and for which the vector
potential is aligned with the KS vector k. Focusing on the case of an expanding k, we first characterize the
presence of shear as an obstruction to non-null fields (thereby extending an early no-go result of Myers and
Perry). We next obtain the complete family of shearfree solutions. In the twistfree case, they coincide with
charged Schwarzschild-Tangherlini-like black holes. Solutions with a twisting k consist of a four-parameter
family of higher dimensional charged Taub-NUT metrics with a base space of constant holomorphic
sectional curvature. In passing, we identify the configurations for which the test-field limit gives rise to
instances of the KS double copy. Finally, it is shown that null fields define a branch of twistfree but shearing
solutions, exemplified by the product of a Vaidya-like radiating spacetime with an extra dimension.
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I. INTRODUCTION

A. Background

The celebrated vacuum black hole metric of Kerr [1] can
be written as

g ¼ η − 2Hk ⊗ k; ð1Þ

where the “background” metric,

η ¼ −du2 þ 2drðduþ a sin2 θdϕÞ þ ðr2 þ a2 cos2 θÞdθ2
þ ðr2 þ a2Þ sin2 θdϕ2; ð2Þ

is flat, the covector field,

k ¼ duþ a sin2 θdϕ; ð3Þ

is null (with respect to both metrics η and g), and the scalar
function H is given by

2H ¼ 2HKerr ≡ −
2mr

r2 þ a2 cos2 θ
: ð4Þ

It is remarkable that the chargedKerr-Newman solution [2]
can be described by exactly the samemetric (1)–(3) provided
one takes a vector potential of the form

A ¼ −
er

r2 þ a2 cos2 θ
k; ð5Þ

and simply replaces (4) in (1) by the new function1

2H ¼ 2HKN ≡ −
2mr − e2

r2 þ a2 cos2 θ
: ð6Þ

One can also easily obtain the Kerr-Newman-(A)dS solution
from theKerr-(A)dSmetric with a similar method [where η is
now the (anti) de–Sitter [(A)dS)] metric, cf. appendix A and
references therein].
More generally, line element (1) with η flat and k null

(but not necessarily of the form (2), (3), and with H
a priori unspecified) defines the Kerr-Schild (KS) class of
spacetimes [5] (see also the earlier [6]), which clearly
includes both the Kerr and the Kerr-Newman metrics
as particular members. It readily follows from the results
of [7] (see also [3]) that, similarly as in the Kerr case, all
diverging vacuum KS metrics can be charged by simply
taking

A ¼ αk; ð7Þ

for a suitable spacetime function α, and accordingly
redefining H

*Contact author: ortaggio@math.cas.cz
†Contact author: srinivasan@math.cas.cz

1In order to match the standard four-dimensional conven-
tions [3,4], both in (6) and in Appendix A we set the
gravitational constant κ ¼ 2 [cf. (9)]. However, in the rest of
the paper we find it more convenient to leave it unspecified.
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H ¼ Hvac → Helec; ð8Þ

such as to keep into account the backreaction of the
electromagnetic field in the Einstein equation. The form of
the metric (1) (in particular k) is otherwise unchanged in
the charging process.2

In view of such a simple relation connecting vacuum KS
solutions to their charged counterparts, it is desirable to
clarify whether and to what extent a similar method can be
used to produce electrovac solutions also in spacetime
dimensions other than four. This is particularly relevant
in the context of black holes, given that the higher-
dimensional analogues of the Kerr black hole, i.e., the
Myers-Perry spacetimes, are precisely of the KS form [11]
(see also [12] in eight dimensions),3 and that a similar
property holds also in the presence of a cosmological
constant Λ [16,17].4

An early attempt at obtaining charged rotating black
holes within the KS class was already performed in [11].5 It
was concluded there that for metrics with precisely one
nonzero spin, the Maxwell and the Einstein equations
become incompatible if the KS ansatz is assumed.
However, one might hope that such a no-go result could
be circumvented in a more general context, e.g., by adding
spins or a cosmological constant to the seed black hole.
There are indeed several reasons why an ansatz as (1)
with (7), (8) seems a promising one in order to construct a
charged solution from a vacuum one, and which motivate
its further exploration in an arbitrary number of dimensions
n. The most important ones, which will be useful through-
out the paper, are summarized below.
(1) If g in (1) is an Einstein spacetime, then the null

congruence defined by k must be geodesic. More
generally, geodesicity is equivalent to the much
milder condition Rabkakb ¼ 0 [15,23]. The geodesic
property holds simultaneously in any geometry (1)
(i.e., regardless of the choice of H, including the
background with H ¼ 0). It plays a crucial role in

what follows and will be understood from now on.
Similarly, also the optical matrix of k (cf. Sec. II B)
does not depend on the function H, and must obey
the optical constraint [15,23] [this is defined in (28)
below, cf. [15,23–26], and becomes trivial if k is
non-expanding].

(2) For any H, the Riemann tensor of the geometry g is
of type II (or more special), aligned with k [15,23] in
the classification of [27] (cf. also [26]), which thus
also defines a multiple Weyl aligned null direction
(mWAND) [28]. Imposing the Einstein equation, this
implies, in particular, that the energy-momentum
tensor of any geometry ds2 must satisfy Tabkakb ¼
0 ¼ kaTa½bkc� (i.e., it is also of type II or more
special). This condition is compatible, in particular,
with a Maxwell field of the form F ¼ dA with (7),
which is automatically aligned with k (i.e., Fa

bkb ∝
ka or, equivalently, kaFa½bkc� ¼ 0; cf. also [29]).

(3) The mixed Ricci components Ra
b are linear in the

function H and its derivatives [30,31]. The same
is true for the frame Ricci components [15,23]
(cf. Appendix B).

(4) One can easily see that
ffiffiffiffiffiffi−gp ¼ ffiffiffiffiffiffi−ηp

and [with (7)]
gacgbdFcd ¼ ηacηbdFcd, therefore the Maxwell
equation for F, i.e., ð ffiffiffiffiffiffi−gp

FabÞ;b ¼ 0, is independent
of H—this means that one can solve it in the
background η, thereby obtaining a test-field solution
F valid for any H. The specific form of H will be
subsequently determined by solving the Einstein
equation (9), (11), thus arriving at a full Einstein-
Maxwell solution which keeps into account the
backreaction. In the case Λ ¼ 0 this was already
observed in [11].

The above results were already known for the special
case n ¼ 4 and are scattered in various papers [5,7–
9,30,32–35] (see also [3]).
It is also worth mentioning that the ansatz (1) with (7) is

further motivated from the viewpoint of the KS double
copy [36] (further comments will be given in Secs. III B 3
and IVA).

B. Summary of results

The present contribution aims at classifying all higher-
dimensional electrovac KS spacetimes that can be obtained
by charging a vacuum KS spacetime via the ansatz (1), (7)
with the redefinition (8), where k is null and expanding
(cf. Sec. II A), and η of constant curvature. After prelimi-
narily defining certain key quantities and setting up the
field equations for the KS ansatz in Sec. II, our main results
can be summarized as follows (see also Table I).

(i) If k is twisting (Sec. III), then it must be shearfree
and F ¼ dA is necessarily non-null. This is possible
only in even dimensions and, as it turns out, the only
such solution is given by the special charged Taub-
NUT solution (57)–(60). This is specified by four

2This can be also understood as a particular case of a KS
transformation [8–10]. However, there also exist electrovac KS
solutions for which A is not of the form (7) [3,7].

3That this is not the case for black rings [13] has been proven
in [14,15].

4In the latter case, it is understood that in (1) η is a spacetime of
constant nonzero curvature, such that (1) defines the KS-(A)dS
class. For the sake of brevity, however, throughout this paper we
shall simply call any g of the form (1) a KS spacetime, provided η
is of constant (positive, negative or zero) curvature. In order to
disregard the trivial (vacuum) case g ¼ η, it will also be under-
stood that H ≠ 0.

5When the angular momentum vanishes, a static charged black
hole (with an arbitrary Λ) has been known for some time [18], and
it is easy to see it indeed admits a KS representation (e.g. using
Robinson-Trautman coordinates [19], cf. also Sec. IVA). Five-
dimensional charged black holeswith nonzero angularmomentum
exist [20–22] which do not belong to the KS class [22].
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independent parameters μ, l, α0 and β0 (roughly
corresponding to mass, NUT, electric charge and
asymptotic magnetic field strength), in addition to an
arbitrary cosmological constant.6 The base space
metric h must be Kähler-Einstein and of constant
holomorphic sectional curvature [cf. (C32)]. We
observe that the no-go result of [11] was obtained
for a KS ansatz based on a shearing k, which
explains why there is no contradiction with the
KS solutions found here.

(ii) If k is twistfree (Sec. IV) there are two possibilities.
(i) For zero shear, one is left with a subclass of
the Robinson-Trautman electrovac solutions [42],
for which F is again non-null. It eventually reduces
to the solution (72), (73), which describes electri-
cally charged Schwarzschild-Tangherlini black
holes [18,43] (see also [44]), characterized by mass
and charge parameters μ and α0, and with a base
space of constant curvature. (ii) For nonzero shear, F
is instead null. Solutions in this branch, which
include products of a Vaidya-like radiating space-
time with flat extra dimensions, will be studied in
more detail elsewhere.

The appendices contain several auxiliary results.
Appendix A reviews the KS form of the four-dimensional
Kerr-Newman-(A)dS solution and its “topological” coun-
terparts [45,46]. Appendix B presents the connection
(Ricci rotation coefficients) and the Riemann and
Ricci tensors [15,23] in an arbitrary adapted frame for
KS spacetimes with a geodesic k in n dimensions.
Appendix C summarizes basic properties of the higher-
dimensional Taub-NUT metrics of [47–49], and reviews
the integration of the corresponding Einstein equation in
vacuum. A few new observations are also added, in
particular concerning the overlap with the KS class.
Finally, Appendix D contains the details of the integration

of the Einstein-Maxwell equations for the case of a
shearfree twisting KS vector field k, relevant to the
branch of solutions of Sec. III B 3.

II. PRELIMINARIES AND FIELD EQUATIONS

A. Notation

We will consider the Einstein-Maxwell equations in n
spacetime dimensions in the form

Gab þ Λgab ¼ κTab; ð9Þ

∇bFab ¼ 0; ð10Þ

where Gab is the Einstein tensor and

Tab ¼ FacFb
c −

1

4
gabFcdFcd: ð11Þ

It will be also convenient to define a rescaled cosmological
constant as

λ≡ 2Λ
ðn − 1Þðn − 2Þ : ð12Þ

We will use a frame adapted to the KS ansatz (1), i.e., a
set of n vectors mðaÞ which consists of two null vectors
k≡mð0Þ, n≡mð1Þ and n − 2 orthonormal spacelike vec-
tors mðiÞ, with a; b… ¼ 0;…; n − 1 while i; j… ¼
2;…; n − 1 [26,28]).7 The Ricci rotation coefficients

Lab, Nab and M
i

ab are defined by (the following quantities
are meant as projections onto the basis vectors) [50]

Lab ¼ ka;b; Nab ¼ na;b; M
i

ab¼mðiÞ
a;b; ð13Þ

and satisfy the identities L0a ¼N1a¼N0aþL1a¼M
i

0a þ
Lia ¼M

i

1aþNia ¼M
i

jaþM
j

ia¼ 0.
Since by construction k is geodesic (cf. point 1.1 in

Sec. I A), with no loss of generality we will also assume
it is affinely parametrized, and define an affine parameter r
such that

ka∂a ¼ ∂r: ð14Þ

By also using a frame parallelly transported along k [41],
one thus has

Li0 ¼ L10 ¼ M
i

j0 ¼ Ni0 ¼ 0: ð15Þ

TABLE I. Summary of the n > 4 charged KS solutions
obtained with the ansatz (1), (7), (8), where k is assumed to
be expanding (θ ≠ 0). The optical scalars are defined in (18).
Note that the solution (75), (76) only represents a particular five-
dimensional example for the null field branch ω ¼ 0 ≠ σ (which
will deserve a separate study elsewhere).

ω σ F Solution n

≠ 0 0 Non-null (57)–(60) Even
0 0 Non-null (72), (73) Any
0 ≠ 0 Null (75), (76) Any

6Vacuum spacetimes with multiple NUT parameters [37]
cannot be charged with the procedure employed in this paper
precisely because they are (twisting and) shearing [25,38–40]
(although some of them belong to the KS class [38]). For the
same reason, the charged version of the odd-dimensional sol-
utions of [37] is also ruled out (cf. [41]).

7With a slight abuse of notation, we will use the symbol k to
denote both the vector field ka∂a and the corresponding covector
kadxa (where ka ¼ gabkb). In all cases, it will be clear from the
context what is the object under consideration.
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Furthermore, it also follows that the rank of the optical
matrix

Lij ¼ ka;bma
ðiÞm

b
ðjÞ; ð16Þ

is a frame-independent property (cf. Sec. 2.2 of [41]).
The symmetric and antisymmetric parts of the optical

matrix

Sij≡LðijÞ ¼ σijþθδij; Aij≡L½ij�; ð17Þ

where σii ¼ 0, can be used to define the expansion, shear
and twist scalars, namely [41,50]

θ≡ 1

n−2
Sii; σ2≡σijσij; ω2≡AijAij: ð18Þ

Covariant derivatives along the frame vectors are
denoted as

D≡ka∇a; Δ≡na∇a; δi≡ma
ðiÞ∇a: ð19Þ

Throughout the paper we will consider only solutions for
which k is expanding, i.e., from now on we assume θ ≠ 0.
In addition, k will define a null direction doubly aligned
with the Riemann tensor (see point 1.1 in Sec. I A), i.e.,

R0i0j ¼ 0; R0ijk ¼ 0 ¼ R010i: ð20Þ

Upon using (15) and (20), a subset of the components of
the Ricci identity [41] take the form

DL1i ¼−L1jLji; DLi1 ¼−LijLj1; ð21Þ

DLij ¼ −LikLkj; ð22Þ

δ½jjLijk� ¼L1½jjLijk� þLi1L½jk� þLilM
l

½jk� þLl½jjM
l

ijk�; ð23Þ

while the commutators of the derivative operators [51]
reduce to

ΔD−DΔ¼L11DþLi1δi; ð24Þ

δiD−Dδi ¼L1iDþLjiδj; ð25Þ

δiΔ−Δδi¼Ni1DþðLi1−L1iÞΔþðNjiþM
j

i1Þδj; ð26Þ

δ½iδj� ¼ N½ij�Dþ L½ij�ΔþM
k

½ij�δk: ð27Þ

B. Optical matrix

Throughout the paper a frame as described in Sec. II A
will be employed. The optical matrix (16) of a vacuum KS

seed must obey the optical constraint [15,23]

LikLjk ¼
LlkLlk

ðn − 2Þθ Sij: ð28Þ

Together with the Sachs equation (22), this implies that one
can always choose a parallelly transported frame such that
Lij takes the block diagonal form [15,23–26]

Lij¼

0
BBBBBBBBBBBBBBBBB@

Lð1Þ

. .
.

LðpÞ

L̃

1
CCCCCCCCCCCCCCCCCA

; ð29Þ

where the first p blocks are 2 × 2 and the last block L̃ is an
ðn − 2 − 2pÞ × ðn − 2 − 2pÞ-dimensional diagonal matrix.
They read

LðμÞ ¼
�

sð2μÞ A2μ;2μþ1

−A2μ;2μþ1 sð2μÞ

�
ðμ¼ 1;…;pÞ;

sð2μÞ ¼
r

r2þða0ð2μÞÞ2
; A2μ;2μþ1¼

a0ð2μÞ
r2þða0ð2μÞÞ2

; ð30Þ

L̃ ¼ 1

r
diagð1;…; 1|fflfflffl{zfflfflffl}

ðm−2pÞ
; 0;…; 0|fflfflffl{zfflfflffl}
ðn−2−mÞ

Þ; ð31Þ

where 0 ≤ 2p ≤ m ≤ n − 2, r is defined in (14), and the
functions a0ð2μÞ are independent of r. The integer m denotes

the rank of Lij (which must be nonzero since k is
expanding), so that Lij is nondegenerate when m ¼ n − 2.
Using the above expression for Lij, one obtains for the

optical scalars (18)

ðn − 2Þθ ¼ 2
Xp
μ¼1

r

r2 þ
�
a0ð2μÞ

�
2
þm − 2p

r
; ð32Þ

ω2 ¼ 2
Xp
μ¼1

0
B@ a0ð2μÞ

r2 þ
�
a0ð2μÞ

�
2

1
CA

2

; ð33Þ

σ2 ¼ 2
Xp
μ¼1

0
B@ r

r2 þ
�
a0ð2μÞ

�
2
− θ

1
CA

2

þ ðm − 2pÞ
�
1

r
− θ

�
2

þ ðn − 2 −mÞθ2: ð34Þ
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Clearly k is twistfree (ω ¼ 0 ⇔ Aij ¼ 0) if and only if
p ¼ 0, so that nonzero twist requires p ≥ 1 and thusm ≥ 2,
n ≥ 4 (cf. also [52]). It is shearfree (σ ¼ 0 ⇔ σij ¼ 0)
when m ¼ n − 2 and additionally either: (i) p ¼ 0 (i.e., for
Robinson-Trautman spacetimes [19]) or (ii) ða0ð2ÞÞ2 ¼
ða0ð4ÞÞ2 ¼ … ¼ ða0ð2pÞÞ2 and 2p ¼ m ¼ n − 2, which is

clearly possible only when n is even (cf. [15,24] for more
details).

C. Maxwell equation

Thanks to (7), the nonzero components of F read

F01¼Dα; Fij¼−2αAij; F1i¼−2αL½1i�−δiα: ð35Þ

Weobserve thatF is (nonzero and) null (cf., e.g., [51,53,54])
if and only if Dα ¼ 0 ¼ Aij.
The Maxwell equation (10) can thus be written as (cf.,

e.g., [55,56])

D2αþ ðn − 2ÞθDαþ 2αω2 ¼ 0; ð36Þ

½Dδi þ ð3Aji − σijÞδj þ ðn − 3Þθδi þ ðL1i − 2Li1ÞD�α
þ 2α

h
δjAji þ ðn − 4ÞθL½1i� − 2σijL½1j� − 2AjiLj1

þM
k

jjAki þM
k

ijAjk

i
¼ 0; ð37Þ

�
ΔDþ δjδj þ 4L½1j�δj þ NjjDþM

k

jjδk
�
α

þ 2α
�
2L½1j�L½1j� þ δjL½1j� þM

k

jjL½1k� þ NkjAjk

�
¼ 0;

ð38Þ

where in (37) we have used (21) to get rid of a term
proportional to DL½1i�. Using (B1)–(B4) and (B5), it is easy
to see that the components (36)–(38) of the Maxwell
equation do not containH (although some of the individual
terms appearing above do) and thus reduce to equations in
the background space η, as expected from the comments in
point 1.1 in Sec. I A.
For later use, let us note that (36) can be alternatively

rewritten as D2 ln α þ ðD ln αÞ½D ln α þ ðn − 2Þθ� þ
2ω2 ¼ 0, from which it follows

ðD ln αÞ2½ðD ln αÞ2 þ 2ω2�2

¼
�
1

2
D½ðD ln αÞ2� þ ðn − 2ÞθðD ln αÞ2

	
2

: ð39Þ

1. Twisting case (p ≥ 1)

Equation (36) can be used to fix the r dependence of α.
After some manipulations one arrives at

α ¼ β

rm−2p−1

Yp
μ¼1

1

r2 þ ða02μÞ2
; ð40Þ

where the auxiliary function β is defined for even and odd
m as, respectively,

β¼ α0þβ0
Xp
μ¼0

A0
μ

m−1−2μ
rm−1−2μ ðm≥ 2 evenÞ; ð41Þ

β ¼ α0 þ β0

 
A0

m−1
2

ln rþ
Xp
μ¼0

ð2μ≠m−1Þ

A0
μ

m − 1 − 2μ
rm−1−2μ

!

ðm ≥ 3 oddÞ; ð42Þ

with

A0
0¼1;

A0
μ¼

X
ν1<ν2<…<νμ



a0ð2ν1Þ

�
2


a0ð2ν2Þ

�
2…


a0ð2νμÞ

�
2 ðμ¼1;…;pÞ;

ð43Þ

and α0 and β0 are two r-independent integration functions.

2. Twistfree case (p = 0)

When there is no twist (p ¼ 0) a solution to (36) can be
written simply as

α ¼ α0r1−m þ β0
m − 1

ðm ≠ 1Þ; ð44Þ

α ¼ α0 þ β0 ln r ðm ¼ 1Þ: ð45Þ

D. Einstein equation

Using (35), one finds FcdFcd ¼ −2ðDαÞ2 þ 4α2ω2 and
thus the nonzero components of the energy-momentum
tensor (11) take the form

T01 ¼ −
1

2
ðDαÞ2 − α2ω2;

Tij ¼ 4α2AikAjk −
1

2
½−ðDαÞ2 þ 2α2ω2�δij; ð46Þ

T1i ¼ −ð2αL½1i� þ δiαÞDαþ 2αAijð2αL½1j� þ δjαÞ; ð47Þ

T11 ¼ ð2αL½1i� þ δiαÞð2αL½1i� þ δiαÞ: ð48Þ

Using (B14) with (28) and (46), the (spatial) trace and
the tracefree part of the ðijÞ component of the Einstein
equation (9) read, respectively,
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2DH þ 2Hðn − 2Þθ − 2H
LmnLmn

ðn − 2Þθ
¼ −

κ

ðn − 2Þθ ½2α
2ω2 þ ðDαÞ2�; ð49Þ

Sij
ðDαÞ2þ2α2ω2

ðn−2Þθ ¼ 4α2AikAjkþ
δij
n−2

½ðDαÞ2−2α2ω2�;

ð50Þ

while the (01) component is satisfied identically as a
consequence of the Bianchi identity, and can thus from
now on be omitted.
Owing to the block structure (29)–(31) of the matrix Lij,

Eq. (50) contains only diagonal terms, which give rise to
different conditions depending on what component one is
looking at. If p ≥ 1, from the block Lð1Þ one obtains

r

r2þ
a0ð2Þ�2
ðDαÞ2þ2α2ω2

ðn−2Þθ

¼ 4α2
� a0ð2Þ
r2þ
a0ð2Þ�2

�2

þ 1

n−2
½ðDαÞ2−2α2ω2� ðp≥ 1Þ;

ð51Þ

with (32) and (33), and similarly for the remaining blocks
LðμÞ, up to LðpÞ.
Nonzero and zero entries of L̃ are present, respectively,

when m > 2p and m < n − 2, and give rise to

ðDαÞ2−2α2ω2¼ 1

rθ
½ðDαÞ2þ2α2ω2� ðm> 2pÞ; ð52Þ

ðDαÞ2 − 2α2ω2 ¼ 0 ðm < n − 2Þ: ð53Þ

For the time being, we do not need to display the
remaining components [i.e., the ð1iÞ and (11) ones] of the
Einstein equation.

III. TWISTING SOLUTIONS (n ≥ 4, p ≥ 1)

As mentioned in Sec. II B, twist is nonzero if and only if
p ≥ 1, which will thus be assumed throughout the present
section. Equations (52) and (53) are clearly incompatible
when α2ω2 ≠ 0, therefore we have only to consider here the
following possible cases [cf. (31)]: (i) m ¼ n − 2 > 2p,
i.e., L̃ ¼ r−1diagð1;…; 1Þ; (ii) m ¼ n − 2 ¼ 2p, i.e., the
block L̃ is absent in (29) (n even); (iii) m ¼ 2p < n − 2,
i.e., L̃ ¼ diagð0;…; 0Þ (m even). These are analyzed in
what follows. Note that necessarily n > 4 in cases (i) and
(iii), and recall that Lij is nondegenerate if and only if
m ¼ n − 2, i.e., in cases (i) and (ii). The fact that the
standard case n ¼ 4 [7] is possible only in branch (ii) is a
consequence of the Goldberg-Sachs theorem [3,57–59].

A. Nondegenerate Lij with 2p < n− 2
Combining (51) and (52) one obtains

ðDαÞ2 þ 2α2ω2 ¼ −4α2
ðn − 2Þθr
r2 þ ða0ð2ÞÞ2

; ð54Þ

which is clearly inconsistent since the lhs and the rhs have
opposite signs [notice that here (32) gives θr > 0].
Therefore this case cannot occur. We observe that we
arrived at this conclusion without using the Maxwell
equation.

B. Nondegenerate Lij with 2p= n− 2 (n even)

Here one has p ¼ 1 ⇔ m ¼ 2 ⇔ n ¼ 4, and since the
four-dimensional case has been already elucidated [7],8 we
can focus hereafter on the case p ≥ 2. Along with (51) we
thus have a similar equation with a0ð2Þ replaced by a0ð4Þ. If
a0ð2Þ ≠ a0ð4Þ, a linear combination of those equations gives

ðD ln αÞ2 − 2ω2 ¼ −
4ðn − 2Þr2


r2 þ ða0ð2ÞÞ2
�

r2 þ ða0ð4ÞÞ2

� ¼ 0

ðif a0ð2Þ ≠ a0ð4ÞÞ: ð55Þ

Further analysis requires us to consider three possible
subcases separately, depending on the multiplicity of the
functions ða0ð2μÞÞ2.

1. Case with at least three distinct ða0ð2μÞÞ2 (n ≥ 8)

Let us assume p ≥ 3 and that there exist at least three
distinct ða0ð2μÞÞ2, say (up to a relabeling of the frame

vectors) a0ð2Þ, a0ð4Þ and a0ð6Þ. Since the lhs of (55) is

independent of the choice of the block, considering the
remaining two equations obtained by performing the
substitutions of indices ð24Þ → ð46Þ → ð62Þ in (55),
one concludes that ðr2 þ ða0ð2ÞÞ2Þðr2 þ ða0ð4ÞÞ2Þ ¼ ðr2 þ
ða0ð4ÞÞ2Þðr2 þ ða0ð6ÞÞ2Þ ¼ ðr2 þ ða0ð6ÞÞ2Þðr2 þ ða0ð2ÞÞ2Þ. This

is possible only if ða0ð2ÞÞ2 ¼ ða0ð4ÞÞ2 ¼ ða0ð6ÞÞ2, thus contra-
dicting our assumption. We have thus proven that this case
cannot occur, i.e., there can be at most two distinct ða0ð2μÞÞ2.

2. Case with two distinct ða0ð2μÞÞ2 (n ≥ 6)

Let us assume p ≥ 2 and that there exist precisely two
distinct ða0ð2μÞÞ2, say a0ð2Þ ≠ a0ð4Þ, with respective multiplic-

ities p1 and p2 (such that 2ðp1 þ p2Þ ¼ 2p ¼ n − 2).
Equations (32) and (33) thus give

8To be precise, only the case Λ ¼ 0 was studied in [7].
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ðn−2Þθ¼ 2r

�
p1

r2þ
a0ð2Þ�2þ
p2

r2þ
a0ð4Þ�2
�
;

ω2 ¼ 2p1

� a0ð2Þ
r2þ
a0ð2Þ�2

�2

þ2p2

� a0ð4Þ
r2þ
a0ð4Þ�2

�2

:

ð56Þ
Substituting (55) with (56) into (39) leads to an incon-

sistency, therefore this case can also be ruled out.

3. Shearfree case [all the ða0ð2μÞÞ2 coincide]

The last nondegenerate case to consider arises when
2p ¼ m ¼ n − 2 and all the functions ða0ð2μÞÞ2 coincide. As
mentioned in Sec. II B, the null vector field k becomes then
shearfree, while still expanding and twisting. In this case,
no inconsistencies as the one found above arise, which
means one can proceed with the full integration of the
Einstein-Maxwell equations. According to the charging
ansatz (1), (7), (8), one thus needs to start from a vacuum
KS solution with a shearfree twisting k, which is neces-
sarily an mWAND (recall points 1.1 and 1.1 in Sec. I A).
For n > 4, the first example of a Ricci-flat spacetime

admitting a shearfree twisting mWAND was identified
for n ¼ 6 in [25] (cf. also [26]) among the Taub-NUT
vacua [47–49] (see also [37,60–63]). Subsequently, all
Λ ¼ 0 vacua possessing a twisting shearfree mWAND
were obtained in six dimensions in [38], and in n ≥ 6 (even)
dimensions (including Λ) in [39] (see also [40] for related
results).9As it turns out [39], they coincidewith theTaub-NUT
metrics of [47–49]. These are reviewed in Appendix C, from
which it follows that the onlyKSvacua possessing a shearfree,
twisting KS vector field k are given by the special Taub-NUT
metrics (C33) with (C32). Then, using those metrics as
vacuum seeds, the integration of the Einstein-Maxwell equa-
tions resulting from (1), (7), (8) is straightforward but lengthy,
and we relegate technicalities to Appendix D.
As it turns out, the only n > 4 charged KS solution

admitting an expanding, twisting and shearfree KS vector
field is given by [cf. (D1), (D2), (D11), (D16), (D17), (D21)]

g ¼ dr ⊗ kþ k ⊗ drþ ðr2 þ l2Þðhþ λk ⊗ kÞ

þ r
μ0 − κfðrÞ
ðr2 þ l2Þn−22 k ⊗ k; k ¼ du − 2Z; ð57Þ

F ¼ α0dr ∧ k − 2αðrÞF ; F ≡ dZ; ð58Þ

where h ¼ hαβðxÞdxαdxβ is a Kähler-Einstein metric of
constant holomorphic sectional curvature [64–66],
cf. (C32) (parametrized by the coordinates xα with
α ¼ 1;…; n − 2, denoted collectively as x), Z ¼
ZαðxÞdxα is a 1-form which lives in the base space, with
Kähler 2-form F , and α0 ≡ dα=dr [while λ was defined
in (12)]. The functions α and f are given by

α ¼ r

ðr2 þ l2Þn−22

"
α0 þ β0

Xn−22
μ¼0

�n−2
2

μ

�
l2μ

n − 3 − 2μ
rn−3−2μ

#
;

ð59Þ

f0 ¼ −r−2ðr2 þ l2Þn−42
�
2α2l2 þ 1

n− 2
ðr2 þ l2Þ2ðα0Þ2



;

ð60Þ

and μ0, α0, β0 are integration constants [see also (D22),
(D23)]. The above spacetime is ofWeyl type D. From (B6)–
(B12) it follows that for r → ∞ all the components of the
Weyl tensor fall off as r1−n or faster, which implies that these
metrics are locally asymptotically (A)dS [67] (or locally
asymptotically flat if λ ¼ 0).
Starting form a stationary Taub-NUT ansatz, for n > 4

such kind of solutions (but generically not in the KS class)
were constructed in [68] in the special case β0 ¼ 0, and in
full generality in [69] (see also [70]). In the limit n ¼ 4

one recovers solutions obtained in [71–73]. While we refer
to [68–70,74] for a thorough discussion of the above
solutions as well as their Euclidean counterparts, let us just
mention that, for r → ∞, the asymptotic behavior of g and
F is determined by

2H ¼ −κ
2β20l

2

ðn − 3Þ2ðn − 5Þ
1

r2
þ…;

α ¼ β0
n − 3

þ n − 2

ðn − 3Þðn − 5Þ
β0l2

r2
þ… ðn > 4Þ; ð61Þ

2H ¼ −
μ0
r
þ…; α ¼ β0 þ

α0
r
þ… ðn ¼ 4Þ: ð62Þ

Elementary dimensional analysis reveals that μ0 and α20
enter H at the orders r3−n and r2ð3−nÞ, respectively [while
α0 enters α at the “Coulombian” order r3−n, cf. (59)], and
thus both give rise to subleading terms when n > 4 (and
β0 ≠ 0). From (58) and (61) one finds that the quadratic
electromagnetic invariant behaves as

FabFab ¼ 4ðn − 2Þβ20l2

ðn − 3Þ2
1

r4
þ… ðn > 4Þ; ð63Þ

9To be precise, a further condition on the asymptotic behavior
of the Weyl tensor was imposed in [38], which however is
irrelevant from the viewpoint of the present discussion, for it is
obeyed by all shearfree KS vacua [15]. Such a condition was not
assumed in [39], where the assumptions are, in fact, slightly
milder than the existence of an mWAND. It is also worth noticing
that the solutions of [49] contain also some (non-KS) vacua for
which the shearfree, twisting congruence is not an mWAND
(Appendix C 2 a) or not even a WAND (Appendix C 2 b).
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while for n ¼ 4 both β20 and α
2
0 contribute at order r

−4. The
constants μ0, α0 and β0 can thus be related to mass,
electric charge and asymptotic magnetic field strength
(cf. [74] for related comments), respectively.
Let us further note that, in the weak-field limit, the

spacetime metric is given by (57) with κ ¼ 0 [which
corresponds to the vacuum geometry (C33)], and (7)
with (59) thus describes a test electromagnetic field solving
the Maxwell equation in that background. For λ ¼ 0 ¼ β0,
the same test-field solution can be obtained by using the
Killing vector field ∂u as a vector potential [75,76]. In this
case H and α have the same functional form, which
provides an example of the KS double copy [36], whereas
this does not hold when β0 ≠ 0.
Solution for n ¼ 6. For definiteness, let us present the

explicit form of the above solution in the case n ¼ 6. As
discussed in Appendix C 2 a, if n ¼ 6 and if we assume
λ > 0, then the base space must be CP2 with the Fubini-
Study metric [64–66], namely (cf. also the real coordinates
used, e.g., in [77])

h ¼ P−2
�
dρ2 þ ρ2

4
½ðdψ þ cos θdϕÞ2

þ Pðdθ2 þ sin2θdϕ2Þ�
	
; P ¼ 1þ a2

6
ρ2; ð64Þ

where a is a real constant related to the four-dimensional
Ricci scalar by R̃ ¼ 4a2. Indeed metric (64) satisfies (C32)
with λ > 0 if and only if

a2 ¼ 6λl2; ð65Þ

which corresponds to the second of (C31).
The 1-form Z can be taken to be

Z ¼ lP−1 ρ
2

4
ðdψ þ cos θdϕÞ; ð66Þ

and the full six-dimensional KS solution is then given
by (7), (57) with [from (59), (60)]

α ¼ r4

ðr2 þ l2Þ2
�
α0
r3

þ β0

�
1

3
þ 2l2

r2
−
l4

r4

�

; ð67Þ

f ¼ 9α20ð3r2 þ l2Þ þ 96α0β0l2r3 þ 8β20l
2ð−r6 þ 15l2r4 þ 9l4r2 þ 9l6Þ

36rðr2 þ l2Þ2 : ð68Þ

(A further additive constant in f has been omitted since it
simply amounts to a redefinition of μ0.) In the limit λ ¼ 0
the base space becomes flat [thanks to (65)] and the above
spacetime becomes a KS metric with a Minkowski back-
ground. The negative curvature version of the above
solution (i.e., with base space D2 and λ < 0) is obtained
by replacing a ↦ ia. A similar example with CP2 base
and λ < 0 (thus not a KS metric) was presented in [69] (see
also [68,70]).

C. Degenerate Lij (2p =m)

First, by plugging (53) into (51) and into the correspond-
ing equations for μ ¼ 2;…; p (i.e., with a0ð2Þ replaced by

a0ð2μÞ) one concludes that a
0
ð2Þ ¼ a0ð4Þ ¼…¼ a02p. Then (53)

with (33) gives

ðD ln αÞ2 ¼ 2ω2 ¼ 4p

� a0ð2Þ
r2 þ ða0ð2ÞÞ2

�2

; ð69Þ

which is incompatible with (39) [to see this one should
also note that, thanks to (32), here ðn − 2Þθ ¼ 2pr=
ðr2 þ ða0ð2ÞÞ2Þ]. Therefore this case cannot occur.

IV. TWISTFREE SOLUTIONS (p = 0)

We now move to solutions for which k is twistfree. In
this case Eq. (51) is absent, while (52) and (53) (with
ω ¼ 0) imply that either m ¼ n − 2 (i.e., Lij ¼ Sij ¼ θδij
is nondegenerate, with θ ¼ 1=r) or Dα ¼ 0. In the former
case k is shearfree and the spacetime thus belongs to the
Robinson-Trautman class, while in the latter case we can
assume, without loss of generality, that k is shearing (or else
we would be again in the Robinson-Trautman branch). Let
us study these two possibilities separately.

A. Robinson-Trautman solutions (m =n− 2)
Since m ¼ n − 2, eqs. (44), (45) give

α ¼ α0r3−n þ
β0

n − 3
ðn ≥ 4Þ; ð70Þ

α ¼ α0 þ β0 ln r ðn ¼ 3Þ: ð71Þ

The case n ¼ 3 has been fully explored in [78] (cf.
also [79] and references therein), while for n ¼ 4 we refer
again the reader to [7]. For n ≥ 5, the complete family of
Robinson-Trautman electrovac solutions has been obtained
in [42] under the assumption that F is aligned with the
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Robinson-Trautman null vector field. In the case consid-
ered here, the Robinson-Trautman vector field coincides
with the KS one, i.e. k, which is indeed aligned with F by
construction [Eq. (35)]. It follows that charged KS sol-
utions of the Robinson-Trautman class must be a subset of
the solutions of [42]. Among those, the only ones that are
also KS reduce to the electrically charged Schwarzschild-
Tangherlini metric [18] and its extensions with hyperbolic
or planar symmetry [43] (this was noted in [15] in the
vacuum case).10 Without the need of any further calcu-
lations we thus arrive at

g ¼ 2dudrþ r2h −
�
K − λr2 −

μ0
rn−3

þ κ
ðn − 3Þα20
n − 2

1

r2ðn−3Þ

�
du2; ð72Þ

F ¼ −
ðn − 3Þα0

rn−2
dr ∧ du; ð73Þ

where λ, μ0 and α0 are constants proportional, respectively,
to Λ [cf. (12)], mass and electric charge, and h ¼
hαβðxÞdxαdxβ is an (n − 2)-dimensional Riemannian metric
of constant curvature, whose Ricci scalar is normalized as
R ¼ KðD − 2ÞðD − 3ÞwithK ¼ �1, 0 [β0 in (70) becomes
also a constant in this case and thus a purely gauge term].

Here k ¼ du, 2H ¼ −μ0r3−n þ κ
ðn−3Þα2

0

n−2 r2ð3−nÞ, and the
constant curvature background metric η is obtained by
setting μ0 ¼ 0 ¼ α0. For an appropriate parameter
range, these solutions describe electrically charged black
holes [44]. These spacetimes are of Weyl type D.
Similarly as in Sec. III B 3, the weak-field limit corre-

sponds to setting κ ¼ 0 in (72), in which case (73) (i.e.,
A ¼ α0r3−nk) represents a test electric field living in an
Einstein spacetime. For λ ¼ 0, it can be produced with the
method of [75,76] owing to the presence of a Killing vector
field ∂u. It was discussed in the context of the KS double
copy in [36] (see also [81,82] for the case λ ≠ 0, and [83]
for related comments).
Let us further note that the Robinson-Trautman solutions

of [15] contain an additional magnetic branch (in even
dimensions), which does not belong to the charged KS
class because it has Fij ≠ 0 and yet Aij ¼ 0, which is
clearly incompatible with (35) (in other words, in that case
Amust contain also a spatial component and cannot thus be
simply proportional to k, as we have assumed). Indeed
Fij ¼ 0 in (73).

B. Shearing solutions with Dα= 0 (n ≥ 5)

Forn ¼ 3 all null geodesic congruences are shearfree [52],
while for n ¼ 4 the same is true for KS congruences, as a
consequence of the Goldberg-Sachs theorem [3,57–59]
(cf. also [7]). Therefore here we can assume n ≥ 5.
For this class of solutions one simply has

α ¼ β0
m − 1

; ð74Þ

which is compatible with (44), (45). Since this is the only
case corresponding to a null Maxwell field (cf. Sec. II C),
this branch will be studied in detail elsewhere. Here we
only point out that it is not empty by presenting an explicit
five-dimensional example in what follows.
An example for n ¼ 5 (λ ¼ 0). A simple solution with

λ ¼ 0 in five-dimension (andm ¼ 2) can be constructed by
taking a direct product of a Vaidya-like spacetime obtained
in [84] (see also related comments in [85]) with a flat extra
dimension, which gives rise to

g ¼ 2dudrþ r2ðdx2 þ dy2Þ þ dz2 þ μ0 þ hðuÞ
r

du2;

ḣ ¼ κða21 þ a22Þ; ð75Þ

F ¼ ½a1ðuÞdxþ a2ðuÞdy� ∧ du; ð76Þ

where μ0 is a constant, a1, a2 are arbitrary functions of
the advanced time u, and ḣ≡ dh=du. The radiative (null)
field (76) [or (7) with α ¼ a1ðuÞxþ a2ðuÞy] is responsible
for the time dependence of line element and corresponds to
a pure radiation energy-momentum tensor given by

T ¼ a21 þ a22
r2

du2: ð77Þ

This can be interpreted as an energy flux along ka∂a ¼ ∂r,
which produces (loosely speaking) a mass gain due to
incoming radiation as u evolves.11 We have checked that
the above spacetime does not admit any mWAND distinct
from k and is therefore of Weyl type II. However, in regions
where rðhþ μ0Þ < 0 there exists a unique Weyl aligned
null direction (WAND) of multiplicity 1 [26,28] defined by
∂u − 1

2
ðζ2 þ μ0þh

r Þ∂r þ ζ∂z with ζ2 ¼ − rḣ
3ðhþμ0Þ. Metric (75)

is flat iff a1 ¼ 0 ¼ a2 and μ0 ¼ 0.

ACKNOWLEDGMENTS

Supported by the Institute of Mathematics, Czech
Academy of Sciences (RVO 67985840).10This follows from the fact that for Robinson-Trautman

charged metrics which are also KS, the frame spatial components
Cijkl of the Weyl tensor fall as r1−n or faster as r → ∞ [as follows
from (B9) with (49)], thus forcing the base space to be of constant
curvature [19,26,80].

11Alternatively, after the replacement u ↦ −u, one can inter-
pret the solution as describing emission of radiation (and mass
loss) as the retarded time u evolves (cf., e.g., [85]).
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APPENDIX A: THE KERR-NEWMAN-(A)DS
SOLUTION IN KS FORM (n= 4)

1. Spherical solution

Similarly as described in Sec. I in the Kerr-Newman
case, the four-dimensional Kerr-Newman-(A)dS solution in
KS coordinates can be obtained with the same method by
“charging” the Kerr-(A)dS metric. Starting from the vac-
uum line element in KS coordinates given in [17], one
easily arrives at the Einstein-Maxwell solution

g ¼ ηþ 2mr − e2

ρ2
k ⊗ k; ðA1Þ

where12

η ¼ −
Δθ

Ξ
ð1 − λr2Þdt2 þ ρ2

ð1 − λr2Þðr2 þ a2Þ dr
2

þ ρ2

Δθ
dθ2 þ r2 þ a2

Ξ
sin2 θdϕ2; ðA2Þ

Δθ ¼ 1þ λa2cos2θ; ρ2 ¼ r2þa2cos2θ;

Ξ¼ 1þ λa2; λ¼Λ
3
; ðA3Þ

is a suitable form of the (A)dS metric, and

k¼Δθ

Ξ
dtþ ρ2

ð1−λr2Þðr2þa2Þdr−
asin2 θ

Ξ
dϕ; ðA4Þ

represents an affinely parametrized geodesic null vector
field. The vector potential corresponding to metric (A1) is
given by13

A ¼ −
er
ρ2

k: ðA5Þ

For λ ¼ 0 the above solution reduces to (1)–(5) upon
redefining the coordinates as dt ↦ du − dr, dϕ ↦ −dϕ−
adr=ðr2 þ a2Þ.
The Kerr-Newman-(A)dS solution (A1)–(A5) is usually

presented in Boyer-Lindquist-type coordinates. These are
defined by (cf. [17] in the vacuum case)

dt ¼ dτ
Ξ

þ 2mr − e2

ð1 − λr2ÞΔr
dr;

dϕ ¼ dφ − aλ
dτ
Ξ

þ a
2mr − e2

ðr2 þ a2ÞΔr
dr; ðA6Þ

Δr ¼ ða2 þ r2Þð1 − λr2Þ − 2mrþ e2; ðA7Þ

resulting in

g ¼ −
Δr

Ξ2ρ2
ðdτ − asin2θdφÞ2

þ Δθsin2θ
Ξ2ρ2

½adτ − ðr2 þ a2Þdφ�2

þ ρ2

Δr
dr2 þ ρ2

Δθ
dθ2; ðA8Þ

with (A3), (A5), and (A4) taking the form

k ¼ dτ
Ξ

þ ρ2

Δr
dr −

a sin2 θ
Ξ

dφ: ðA9Þ

After observing that the term proportional to dr in (A9)
gives rise to a removable gauge term in (A5), this is the
form of the solution given in [72,86] (cf. also [4]).

2. Hyperbolic solution

In addition to the Kerr-Newman-(A)dS solutions consid-
ered above, the family of metrics obtained by Carter [72,87]
and Plebański [88] (see also [86,89]) also contains certain
“topological” extensions, as described in [45,46,90]. The
hyperbolic counterpart of (A1)–(A5) can be obtained
straightforwardly by the following analytic continuation
of coordinates and parameters [45,46]:

t↦ it; r↦ ir; θ↦ iθ;

m↦−im; a↦ ia: ðA10Þ

The resulting solution is given again by (A1) and (A5), but
now with (after redefining ρ ↦ iρ, k ↦ −ik)

η ¼ −
Δθ

Ξ
ð−1 − λr2Þdt2 þ ρ2

ð−1 − λr2Þðr2 þ a2Þ dr
2

þ ρ2

Δθ
dθ2 þ r2 þ a2

Ξ
sinh2 θdϕ2; ðA11Þ

Δθ¼1−λa2cosh2θ; ρ2¼ r2þa2cosh2θ; Ξ¼1−λa2;

ðA12Þ

k¼Δθ

Ξ
dtþ ρ2

ð1þλr2Þðr2þa2Þdrþ
asinh2θ

Ξ
dϕ: ðA13Þ

The solutions of [45,46] were not given in the above KS
form, but in Boyer-Lindquist-type coordinates—these can
be obtained by an obvious modification of (A6).

12Cf. [16] for the special case Ξ ¼ 0 (for λ < 0).
13We observe that, in the test-field limit, the KS form of the

solution provides a natural rephrasing of the Killing 1-form
“background subtraction” of [83].
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3. Planar solution

The KS form of the planar solution of [45,46] is given by
(A1) and (A5) with

η ¼ N
ρ2

dt2 þ ρ2

a2 − λr4
dr2 þ ρ2

ΔP
dP2 −

2aS
ρ2

dtdϕ

þ ðr2 − a2P2Þdϕ2; ðA14Þ

k ¼ ð1 − λa2P2Þdtþ ρ2

a2 − λr4
drþ aP2dϕ; ðA15Þ

where

ΔP ¼ 1 − λa2P4; ρ2 ¼ r2 þ a2P2;

N ¼ a2ð1þ λr2Þ2ΔP − ða2 − λr4Þð1 − λa2P2Þ2;
S ¼ P2ða2 − λr4Þð1 − λa2P2Þ þ r2ð1þ λr2ÞΔP: ðA16Þ

As in the hyperbolic case, the solutions of [45,46] were
presented in Boyer-Lindquist-type coordinates, which can
be obtained by defining

dt ¼ dτ þ ð2mr − e2Þr2
ða2 − λr4ÞΔr

dr;

dϕ ¼ dφþ aλdtþ a
2mr − e2

ða2 − λr4ÞΔr
dr; ðA17Þ

Δr ¼ a2 − λr4 − 2mrþ e2: ðA18Þ

APPENDIX B: CONNECTION
AND CURVATURE OF KS

SPACETIMES (k GEODESIC)

The Ricci rotation coefficients (13) for the geometry (1)
in a null frame fk; n;mðiÞg adapted to k (as defined in
section II A) read

Li0 ¼Li0j0; L10¼L10j0; Lij¼Lijj0;

M
i

j0 ¼M
i

j0j0; M
i

jk ¼M
i

jkj0 ðB1Þ
Ni0¼Ni0j0; Li1¼Li1j0; L1i¼L1ij0−HLi0j0;
Nij¼Nijj0þHLjij0; ðB2Þ

M
i

j1 ¼M
i

j1j0þH
�
M
i

j0j0þ2L½ij�j0
�
;

L11¼L11j0−HL10j0−Dj0H; ðB3Þ

Ni1¼Ni1j0þHðNi0j0þ2L1ij0−HLi0j0−Li1j0Þþδij0H;

ðB4Þ

where a subscript j0 denotes quantities pertaining to the
background geometry η (defined by H ¼ 0). We note that

the frames of g and η are related by ka ¼ kaj0,ma
ðiÞ ¼ ma

ðiÞj0
and na ¼ naj0 þHkaj0 (and thus na ¼ naj0 −Hkaj0), so
that for the derivative operators (19), when acting on scalar
functions, we have

D¼Dj0; δi¼ δij0; Δ¼Δj0þHDj0: ðB5Þ

When k is geodesic (⇔ Li0 ¼ 0, which is necessarily the
case, e.g., in vacuum or with aligned matter [15,23]) and an
affine parametrization is employed (⇔ L10 ¼ 0), and η is a
spacetime of constant curvature, the curvature tensor of
metric (1) takes the form (with (12) [15,23]14

R0i0j ¼ 0; R010i¼ 0; R0ijk¼ 0; ðB6Þ
R0101¼D2H−λ; R01ij¼−2AijDHþ4HSk½jAi�k; ðB7Þ

R0i1j ¼ −LijDH þ 2HAikLkj þ λδij; ðB8Þ

Rijkl ¼ 4HðAijAkl þ Al½iAj�k þ Sl½iSj�kÞ þ 2λδi½kδl�j; ðB9Þ

R011i¼ð−δiDþ2L½i1�DþLjiδjÞHþ2HðL1jLji−Lj1SijÞ;
ðB10Þ

R1ijk ¼ 2ðL½jjiδjk� þ AjkδiÞH
− 2H

�
δiAkj þ 2L1½jLk�i − 2L½jj1Ajk�i

þ 2L½1i�Akj þ 2Al½jM
l

k�i
�
; ðB11Þ

R1i1j ¼
h
δðiδjÞ þM

k

ðijÞδk þ 2ð2L1ðjj − Lðjj1ÞδjiÞ þ NðijÞD

− SijΔ
i
H þ 2H

�
δðijL1jjÞ − ΔSij − 2L1ðiLjÞ1

þ 2L1iL1j − LkðijNkjjÞ þ L1kM
k

ðijÞ

− 2SkðiM
k

jÞ1 − 2HSkðiAjÞk
�
: ðB12Þ

It follows that the nonvanishing components of the Ricci
tensor are [15,23]

R01¼−½D2Hþðn−2ÞθDHþ2Hω2�þðn−1Þλ; ðB13Þ
Rij¼ 2HLikLjk−2½DHþðn−2ÞθH�Sijþðn−1Þλδij;

ðB14Þ

R1i ¼ ð−δiDþ 2L½i1�Dþ 2Lijδj − LjjδiÞH

þ 2HðδjAij þ AijM
j

kk − AkjM
i

kj − LjjL1i

þ 3LijL½1j� þ LjiLð1jÞÞ; ðB15Þ

14We emphasize that the following expressions hold in any null
frame adapted to k, i.e., not necessarily a parallelly transported one.
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R11¼
h
δiδiþðNii−2HLiiÞDþ

�
4L1j−2Lj1−M

i

ji

�
δj

−LiiΔ
i
Hþ2H

h
2δiL½1i� þ4L1iL½1i� þLi1Li1−L11Lii

þ2L½1j�M
j

ii−2AijNij−2Hω2þðn−2Þλ
i
: ðB16Þ

[The Ricci identity [41] has also been used in (B16).] We
observe that the Ricci tensor is linear in H [this is
manifest for the components (B13)–(B15), while in
(B16) one has to use (B2) and (B5)]. A similar property
of the mixed coordinate components Ra

b was pointed out
in [30,31].
For later purposes, it is useful to observe that, when k is

shearfree, the second component in (B7) reduces to

R01ij ¼ 2Aijð−DH þ 2HθÞ ðσ ¼ 0Þ: ðB17Þ

This implies that if Aij ≠ 0, then necessarily R01ij ≠ 0 for
vacuum solutions [as can be seen easily using (32) and the
form of H in vacuum obtained in [15,23] ], except in the
trivial case H ¼ 0. This observation will be used in
Sec. C 2.
For n ¼ 4, equivalent results were obtained in [8,33].

APPENDIX C: TAUB-NUT SPACETIMES
IN HIGHER DIMENSIONS

The Taub-NUT spacetime is a well-known vacuum
solution of Einstein gravity in four dimensions [73,91,92]
(cf. also [3,4] and references therein). Extensions to arbitrary
even dimensions have been known for some time [37,47–
49,60–63]. More recently, those have been characterized
by the presence of two twisting shearfree congruences of
null geodesics and have thus attracted attention in the
context of higher-dimensional formulations of the
Goldberg-Sachs theorem [25,26,38,39]. In this appendix
we review the basic properties of such spacetimes, first “off
shell” and subsequently in the Einstein (vacuum) case
(relevant to Sec. III B 3). We also present a few new
observations regarding the Weyl type and the overlap with
the KS class, and further point out that Taub-NUT Einstein
spacetimes (and thus shearfree congruences of null geo-
desics) also exist in odd dimensions in the special branch of
Sec. C 2 b. In this appendix, wewill denote by ds2 those line
elements that are not necessarily KS (as opposed to the
symbol g used for KS metrics throughout the paper).

1. Metric ansatz and off-shell properties

a. Line element in stationary (NUT) coordinates

We consider the n-dimensional stationary line element
[48,49]

ds2 ¼ −A2ðrÞðdt − 2ZÞ2 þ B2ðrÞdr2 þ C2ðrÞh; ðC1Þ

where the coordinates xα (α ¼ 1;…; n − 2, also denoted
collectively simply as x) parametrize a Riemannian
base space of dimension n − 2 which carries a metric
h ¼ hαβðxÞdxαdxβ, Z ¼ ZαðxÞdxα is a 1-form which lives
in the base space, and A, B and C are functions of r.
For later purposes, it is useful to define the (purely

spatial) 2-form

F ≡ dZ; ðC2Þ

which we assume to be nonzero, as well as its positive
definite quadratic invariant

F 2 ≡ hαγhβδF αβF γδ: ðC3Þ

Both the above quantities are r independent.

b. Line element in null coordinates and twisting,
shearfree null congruences

The two 1-forms

l� ≡ dt − 2Z� BA−1dr; ðC4Þ

define two congruences of shearfree null geodesics [25,38–
40] with expansion and twist given by, respectively [cf.
also (C11) below; hereafter a prime denotes differentiation
with respect to r]

θ¼�C0ðABCÞ−1; ω2 ¼C−4F 2: ðC5Þ

Note that the “reflection” t ↦ −t, Z ↦ −Z leaves the
metric invariant while sending lþ ↦ −l− and
l− ↦ −lþ. This means these two null directions have
identical geometric properties (up to certain signs) [93].
The change of coordinates

dt ¼ du −
B
A
dr; ðC6Þ

puts metric (C1) in the form ds2 ¼ −A2ðdu − 2ZÞ2 þ
2ABðdu − 2ZÞdrþ C2ðrÞh, and gives lþ ¼ du − 2Z,
l− ¼ lþ − 2BA−1dr. Without losing generality, a redefi-
nition of r enables one to set

AB ¼ 1; ðC7Þ

which we shall assume hereafter. After relabeling

2H ¼ A2; ðC8Þ

we thus arrive at

ds2 ¼ dr ⊗ lþ þ lþ ⊗ drþ C2ðrÞh − 2HðrÞlþ ⊗ lþ;

lþ ¼ du − 2Z; ðC9Þ
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where the functionH can now have any sign or vanish (thus
describing also possible time-dependent Taub regions).
Let us introduce the following null coframe:

ω0¼−Hl−; ω1¼lþ; ωi¼Cω̃i ði¼ 2;…;n−1Þ;
ðC10Þ

where fω̃ig is an orthonormal coframe of the metric h, such
that h ¼ δĩ j̃ω

ĩωj̃ and ds2 ¼ ω0ω1 þω1ω0 þ δijωiωj. In
the frame dual to (C10) (for which, in particular, e0 ¼
laþ∂a ¼ ∂r), the nonzero Ricci rotation coefficients (13) read

Lij ¼ C0C−1δij þ C−2F ĩ j̃; M
i

j0 ¼ −C−2F ĩ j̃

M
i

jk ¼ −C−1Γĩ
j̃ k̃
; ðC11Þ

Nij ¼HLji; M
i

j1¼HC−2F ĩ j̃; L11¼−H0; ðC12Þ

where hereafter indices with a tilde denote components in
the tilded frame and Γĩ

j̃ k̃
are the connection coefficients of

the geometry h. In particular, the twist matrix of lþ is
thus given by

Aij ¼ C−2F ĩ j̃: ðC13Þ

We note that, since M
i

j0 ≠ 0, the above frame is not
parallelly transported along the null congruence generated
by lþ.

c. Curvature

The nonzero frame components of the Riemann tensor
can be computed straightforwardly and take the form
(cf. also [39,49])

R0i0j¼C−4ð−C3C00δijþF ĩ k̃F j̃ k̃Þ; R0ijk¼−2C−3∇̃½k̃F j̃�ĩ;

ðC14Þ

R01ij ¼ −ð2HC−2Þ0F ĩ j̃; R0101 ¼ H00; ðC15Þ

R0i1j ¼ −ðHC−2Þ0F ĩ j̃ − C−1ðHC0Þ0δij − C−4HF ĩ k̃F j̃ k̃;

ðC16Þ

Rijkl ¼ C−2R̃ĩ j̃ k̃ l̃ þ 4HC−4½−ðCC0Þ2δi½kδl�j
þ F ĩ j̃F k̃ l̃ − F ĩ½k̃F l̃�j̃�; ðC17Þ

R1i1j ¼H2R0i0j; R1ijk ¼−HR0ijk; ðC18Þ

where ∇̃ and R̃ĩ j̃ k̃ l̃ are, respectively, the covariant deriva-
tive and the Riemann tensor associated to h. In passing, let
us observe that, by the first of (C14), l� are WANDs if and

only if ðn − 2ÞF ĩ k̃F j̃ k̃ ¼ F 2δĩ j̃ (which is an identity
for n ¼ 4).
The Ricci components then follow (cf. also [39,47–49])

R00¼C−4½−ðn−2ÞC3C00 þF 2�; R0i¼C−3∇̃k̃F k̃ ĩ;

ðC19Þ
R01 ¼ −H00 − ðn − 2ÞC−1ðHC0Þ0 − C−4HF ĩ k̃F ĩ k̃; ðC20Þ
Rij ¼ C−2ðR̃ĩ j̃ þ 4HC−2F ĩ k̃F j̃ k̃Þ − 2δijC−2½CðHC0Þ0

þ ðn − 3ÞHðC0Þ2�; ðC21Þ
R11¼H2R00; R1i¼−HR0i: ðC22Þ

2. Vacuum solutions

For the purposes of this paper, we are interested in Taub-
NUT metrics that solve the Λ-vacuum Einstein equation

Rab ¼
R
n
gab; ðC23Þ

which gives [cf. (9) with Tab ¼ 0 and (12)]

R ¼ nðn − 1Þλ: ðC24Þ
Imposing R00 ¼ 0 gives ðn − 2ÞC3C00 ¼ F 2. Since C

depends only on r, this means that F 2 ¼ const. The
solution of this ODE can be written (up to a linear
redefinition of r and suitable rescalings of u and Z, such
as to preserve (C7) as [48,49]

C2 ¼ r2 þ l2; l2 ≡ F 2

n − 2
ð¼ constÞ: ðC25Þ

From R0i ¼ 0 one obtains

∇̃k̃F k̃ ĩ ¼ 0; ðC26Þ
so that F is also co-closed [in addition to being
closed, cf. (C2)].
In order to solve Rij ¼ R

n δij one needs to consider
two possibilities separately, depending on whether or not
HC−2 is a constant.15

a. Generic case HC− 2 ≠ const (n even)

In this case, requiring Rij ¼ R
n δij gives rise to three

separate equations. Two of those are tensorial and read

F ĩ k̃F j̃ k̃ ¼ l2δij; ðC27Þ

R̃ĩ j̃ ¼
R̃

n − 2
δij; ðC28Þ

15This was noticed already in [49], but the special case
HC−2 ¼ const (Sec. C 2 b) was not studied there.

CHARGING KERR-SCHILD SPACETIMES IN HIGHER … PHYS. REV. D 110, 044035 (2024)

044035-13



where R̃ĩ j̃ ¼ R̃ĩ k̃ j̃ k̃ and R̃ ¼ R̃k̃ k̃. Thismeans that the spatial
geometry must be (almost-)Kähler-Einstein [39,49] and n is
necessarily even. We further observe that (C27) ensures that
the two null directions defined by (C4) are WANDs
(cf. Sec. C 1 c). They are mWANDs (i.e., the Weyl type is
D) if, and only if, ∇̃k̃F ĩ j̃ ¼ 0, i.e., if the base space isKähler-
Einstein (cf. also [39]).
The remaining (scalar) equation determines HðrÞ up to

an arbitrary integration constant, and can be conveniently
written as [49]

r2

ðr2 þ l2Þn=2 ½r
−1ðr2 þ l2Þðn−2Þ=22H�0

þ 1

n − 2

�
2Λ −

R̃
r2 þ l2

�
¼ 0: ðC29Þ

Note that 2Hðr2 þ l2Þðn−2Þ=2 is a polynomial of degree n
in r [40,49,61]. For large values of r this gives the
asymptotic behavior

2H ¼ −λr2 þ −λl2ð2n − 3Þ þ R̃
n−2

n − 3
þ…; ðC30Þ

with an integration constant μ0 appearing at the order r3−n.
Upon using the Bianchi identity, one can then verify

that all components of the Einstein equation are now
satisfied. The resulting vacuum metric is thus given
by (C9) with (C2) and (C25)–(C29). In the limit l → 0,
the 1-form Z can be gauged away in (C9) and one obtains
static Schwarzschild-Tangherlini-like metrics [18,43,94] of
the Robinson-Trautman class [19], for which the base space
can carry any Einstein metric.
Intersection with KS metrics. Let us now discuss under

what conditions the Einstein spacetimes determined above
belong to the KS class, with lþ being a (shearfree,
twisting) KS vector field. First, since lþ is now necessarily
an mWAND [15,23], the base space must be Kähler-
Einstein (as remarked above). Next, by comparing the
Riemann component R01ij of (C15) with the corresponding
result for KS spacetimes (B17) and using (C29) one obtains

−2H¼ λðr2þl2Þþ μ0r

ðr2þl2Þn−22 ; R̃¼ nλF 2; ðC31Þ

where μ0 is an integration constant. Furthermore, by
comparing the component Rijkl of (C17) with the KS
one (B9) one arrives at a constraint on the curvature of the
base space (in addition to the already mentioned Kähler-
Einstein condition), namely

R̃ĩ j̃ k̃ l̃ ¼ 2λðl2δi½kδl�j þ F ĩ j̃F k̃ l̃ − F ĩ½k̃F l̃�j̃Þ: ðC32Þ

This means that the base manifold is a space of constant
holomorphic sectional curvature [64–66], and therefore it

is uniquely given by (assuming it to be simply connected
and complete; cf. Theorems 7.8 and 7.9 of [66]): (i) the
complex projective space CP

n−2
2 if λ > 0; (ii) the open unit

ballD
n−2
2 in C

n−2
2 if λ < 0; (iii) C

n−2
2 (flat space) if λ ¼ 0. This

also implies that for λ ≠ 0 and n > 4 it is not a space of
constant curvature.
To summarize, after relabeling lþ ¼ k, the only n > 4

Taub-NUT vacuum metrics which are also KS are given by
the line element16

g ¼ dr ⊗ kþ k ⊗ drþ ðr2 þ l2Þðhþ λk ⊗ kÞ
þ μ0r

ðr2 þ l2Þn−22 k ⊗ k; k ¼ du − 2Z; ðC33Þ

where the base space metric h must be Kähler-Einstein and
of constant holomorphic sectional curvature, with Kähler 2-
form F ¼ dZ [recall (C3), (C13), (C25), (C27), (C28),
(C32)]. Metric (C33) is indeed of the KS form (1) with
2H ¼ −μ0rðr2 þ l2Þ2−n2 . For μ0 ≠ 0 the Weyl type is D
(cf. [25,38,39]), while μ0 ¼ 0 corresponds to a spacetime of
constant curvature. For example, for the n ¼ 6 KS-Taub-
NUT metric with λ > 0, the base space is given by CP2

with the Fubini-Study metric, cf. (64), (65).
The case n ¼ 4 is special in that (C32) becomes

equivalent to the second of (C31), which means that the
(two-dimensional) base space has constant curvature for
any value of λ. Four-dimensional Taub-NUT metrics of the
KS class can thus be written as

g ¼ dr ⊗ lþ þ lþ ⊗ drþ ðr2 þ l2Þð2P−2dζdζ̄

þ λlþ ⊗ lþÞ þ
μ0r

r2 þ l2
lþ ⊗ lþ;

lþ ¼ du − ilP−1ðζ̄dζ − ζdζ̄Þ;
P ¼ 1þ 2λl2ζζ̄ ðn ¼ 4Þ: ðC34Þ

Upon using (C6), metric (C34) corresponds to a fine tuned
version of (12.19,[4]). For μ0 ¼ 0 it reduces to a spacetime
of constant curvature.

b. Special case HC− 2 = const
Let us set here 2H ¼ −c0C2, where c0 is a constant.17

The condition R01 ¼ R
n with (C25) reveals that c0 is fixed by

the cosmological constant [recall (12)]

16To be precise, at this stage we have proven this only in the
caseHC−2 ≠ const. However, in Sec. C 2 b we will prove that the
case HC−2 ¼ const does not contain any KS-Taub-NUT vacua
(except for spacetimes of constant curvature), therefore the
general statement about the uniqueness of metric (C33) is indeed
true.

17This special case can also be characterized by C2ðrÞl�
becoming conformal Killing vector fields [39] [this is true
also off-shell, i.e., for any metric (C1) or (C9) with
A2ðrÞ ¼ 2HðrÞ ¼ −c0C2ðrÞ].
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c0 ¼ λ: ðC35Þ

Next, imposing Rij ¼ R
n δij results in

R̃ĩ j̃ ¼ λð2F ĩ k̃F j̃ k̃ þ F 2δĩ j̃Þ; ðC36Þ

such that R̃ ¼ nλF 2. All components of the Einstein
equation are now satisfied.
The final form of the metric is thus given by

ds2 ¼ dr ⊗ lþ þ lþ ⊗ drþ ðr2 þ l2Þðhþ λlþ ⊗ lþÞ;
ðC37Þ

where lþ and l2 are defined in (C9) and (C25), respec-
tively, and the base space metric h must obey (C36). It is
easy to see (e.g. using (C6) backwards) that metric (C37)
belongs to the class of Brinkmann warps [95] (cf. also,
e.g., [96,97] and references therein)18—except when λ ¼ 0.
Let us emphasize that, by (C36), the base metric h is not
restricted to be Einstein when λ ≠ 0, since, generically,
F ĩ k̃F j̃ k̃ is not proportional to δĩ j̃ (in particular, it cannot
be so for an odd n). For the same reason, the two null
directions defined by (C4) are not WANDs, in general
(cf. section C 1 c). They are iff n is even and h is (almost-)
Kähler-Einstein, which is the case of the “Fefferman-
Einstein” metrics studied in [39]. As in Sec. C 2 a, they are
mWANDs if and only if, in addition, ∇̃k̃F ĩ j̃ ¼ 0. The limit
l → 0 gives rise to “massless” Schwarzschild-Tangherlini-
like metrics with a Ricci-flat base space [18,19,43,94].
Noticing the similarity of (C36) to the Einstein equation

sourced by a Maxwell fieldF ¼ dZ (in n − 2 dimensions),
it is not difficult to find suitable spatial geometriesh and thus
construct explicit examples of vacuum solutions (C37). For
instance, in seven spacetime dimensions with a positive
cosmological constant one can take (C37) with

h ¼ 1

10λl2
½4½dθ2 þ sin2θðdϕ2 þ sin2ϕdξ2Þ�

þ dχ2 þ sin2χdψ2� ðn ¼ 7; λ > 0Þ; ðC38Þ

Z ¼ 1

2
ffiffiffiffiffi
10

p
λl

cos χdψ ; ðC39Þ

which is clearly a (non-Einstein) direct product S3 × S2.
Similar solutions can be constructed in other dimensions.
Intersection with KS metrics. The first of (C15) gives

R01ij ¼ 0: ðC40Þ

Since this contradicts the result (B17) for KS spacetimes
in vacuum, it follows that the two shearfree null direc-
tions (C4) cannot be KS vector fields of the spacetime
(C37) (except in the trivial case H ¼ 0, i.e., for space-
times of constant curvature, which is equivalent to (C33)
with μ0 ¼ 0).

APPENDIX D: INTEGRATION OF THE
EINSTEIN-MAXWELL EQUATIONS FOR
SHEARFREE TWISTING KS SOLUTIONS

In this appendix we present the details of the integration
of the Einstein-Maxwell equations for the case of a shear-
free twisting KS vector field k, corresponding to the branch
of solutions described in Sec. III B 3. As proven in
Appendix C, it follows from the results of [39] that the
only n > 4 KS vacua possessing a shearfree, twisting KS
vector field k are given by the Taub-NUT metrics (C33)
with (C32). In order to charge those spacetimes according
to (1), (7), (8), we can thus focus on KS line elements of
the form

g ¼ dr ⊗ kþ k ⊗ drþ ðr2 þ l2Þðhþ λk ⊗ kÞ
− 2Hðu; r; xÞk ⊗ k; k ¼ du − 2Z; ðD1Þ

where l is a constant. The coordinates xα (α ¼ 1;…; n − 2,
also denoted collectively simply as x) parametrize a
Riemannian base space of dimension n − 2 which carries
a Kähler-Einstein metric h ¼ hαβðxÞdxαdxβ of constant
holomorphic sectional curvature [cf. (C32)], and Z ¼
ZαðxÞdxα is a 1-form which lives in the base space, with
Kähler 2-form given by [cf. (C2), (C3), (C25), (C27), (C28)]

F ≡ dZ: ðD2Þ

The latter is related to the twist matrix of k and to the
parameter l by (C13), (C27).
An adapted parallelly transported null frame for

metric (D1) is given by

k ¼ ∂r; n ¼ ∂u þ
�
−
λ

2
ðr2 þ l2Þ þH



k;

mðiÞ ¼ ðr2 þ l2Þ−1
2Xi

jðm̃ðjÞ þ 2Zj̃∂uÞ; ðD3Þ

where the vectors m̃ðiÞ define an orthonormal frame of the
base space metric h, the orthogonal matrix Xi

j reads (cf.,
e.g., Appendix A.5 of [38])

Xj
i ¼ lðr2 þ l2Þ−1

2ðδji þ rl−2F ĩ
j̃Þ; ðD4Þ

and indices with a tilde denote components of base space
quantities in the tilded frame. In the frame (D3), one finds
that the Ricci rotation coefficients needed in the following

18These are the unique Einstein spaces which are properly
conformal to other Einstein spaces. The case n ¼ 4 is special,
for such Einstein spacetimes are necessarily of constant
curvature [95–97].
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[along with (15)] are given by19

Lij¼ðr2þl2Þ−1ðrδijþF ĩ j̃Þ; Li1 ¼ 0¼L1i; ðD5Þ

Nij¼
�
−
λ

2
ðr2þl2ÞþH



Lji; L11¼ λr−DH: ðD6Þ

We observe that (D5) gives

θ¼ rðr2þl2Þ−1; Aij ¼ðr2þl2Þ−1F ĩ j̃; ðD7Þ

which, with (33), reveals that the ða0ð2μÞÞ2 become con-

stants, i.e.,

ða0ð2ÞÞ2 ¼ ða0ð4ÞÞ2 ¼ … ¼ ða0ðn−2ÞÞ2 ¼ l2: ðD8Þ

Further, Eq. (23) gives

δjAji þM
k

jjAki þM
k

ijAjk ¼ 0; ðD9Þ

while (25) becomes δiD −Dδi ¼ θδi þ Ajiδj. The
Maxwell component (37) thus reduces to

½δiDþ 2Ajiδj þ ðn − 4Þθδi�α ¼ 0: ðD10Þ

Thanks to (D8), Eq. (40) with (41), (43) takes the form

α¼ r

ðr2þl2Þn−22

"
α0þβ0

Xn−22
μ¼0

�n−2
2

μ

�
l2μ

n−3−2μ
rn−3−2μ

#
:

ðD11Þ
Using (D7) and (D11), Eq. (D10) can be written as

ðl2− r2Þδiα0þδiβ0
Xn−22
μ¼0

�n−2
2

μ

�

×
ðn−4−2μÞr2þðn−2−2μÞl2

n−3−2μ
l2μrn−3−2μ

þ2F k̃ ĩδk

"
rα0þβ0

Xn−22
μ¼0

�n−2
2

μ

�
l2μ

n−3−2μ
rn−2−2μ

#
¼ 0:

ðD12Þ
It is easy to see that the highest power of r in the above

equation gives ðn − 4Þδiβ0 ¼ 0, and then (hereafter we

assume n > 4) the subleading terms imply also δiα0 ¼ 0,
so that from now on

δiβ0 ¼ 0; δiα0 ¼ 0: ðD13Þ

Next, using (D3), (D5), (D6), (D9) and (36), the
Maxwell component (38) becomes simply

α;ru ¼ 0; ðD14Þ

which means [with (D11), (D13) and (D3)] that α0 and β0
are constants, i.e., α is only a function of r.
Let us now consider the Einstein equation. Equation (50)

is already satisfied thanks to (D5), while (49) can be
written as

r2

ðr2 þ l2Þn−42 D½r−1ðr2 þ l2Þn−22 2H�

¼ −κ
�
2α2l2 þ 1

n − 2
ðr2 þ l2Þ2ðDαÞ2



: ðD15Þ

Since the rhs is a function of r only, this means that

2H ¼ −r
μ0 − κfðrÞ
ðr2 þ l2Þn−22 ; ðD16Þ

with Dμ0 ¼ 0;

Df ¼ −r−2ðr2 þ l2Þn−42

×

�
2α2l2 þ 1

n− 2
ðr2 þ l2Þ2ðDαÞ2



: ðD17Þ

Now, thanks to (D5) and (D13) we have [cf. (47), (48)]

T1i ¼ 0; T11 ¼ 0: ðD18Þ

With (B15) and (D16), the component ð1iÞ of the Einstein
equation thus reduces to ½ðr2 − l2Þδi þ 2rF ĩ j̃δj�μ0 ¼ 0,
which clearly implies

δiμ0 ¼ 0: ðD19Þ

Finally, with (B16) and (D19), the component (11) of the
Einstein equation becomes simply

μ0;u ¼ 0; ðD20Þ

i.e., μ0 is a constant.
To summarize, the only charged KS solution admitting

an expanding, twisting and shearfree KS vector field
is given by metric (D1) with the vector potential (7),
where α and f are functions of r determined by (D11) and
(D17), μ0, α0, β0 are integration constants, and λ is the

19This can be seen by first obtaining the Ricci rotation
coefficients in a simpler but nonparallelly transported frame
given by k ¼ ∂r, n ¼ ∂u þ ½− λ

2
ðr2 þ l2Þ þH�k, mðiÞ ¼ ðr2 þ

l2Þ−1
2ðm̃ðiÞ þ 2Zĩ∂uÞ, which follow readily from (B1)–(B3),

where the background quantities now refer to spacetime (C33)
with μ0 ¼ 0 [cf. (C11), (C12) with −2H¼ λðr2þl2Þ and (C25)].
Using the known transformation rules under spins [41] one then
arrives at (D5), (D6).

MARCELLO ORTAGGIO and ARAVINDHAN SRINIVASAN PHYS. REV. D 110, 044035 (2024)

044035-16



cosmological constant [cf. (12)]. Using (35), it follows that
the electromagnetic field strength reads

F ¼ ðDαÞdr ∧ k − 2αF ; ðD21Þ

with (D2) and (D11). Recall that the Kähler-Einstein base
space metric h must also obey the additional constraint
(C32), i.e., it is of constant holomorphic sectional
curvature.
If desired, one can obtain the explicit form of the

function fðrÞ in (D16) by integrating (D17), upon noticing
that [using (D11) and the binomial theorem]

Dα ¼ −ðn − 3Þr2 þ l2

rðr2 þ l2Þ αþ β0
r
; ðD22Þ

and therefore

Df ¼ −
ðr2 þ l2Þn−42
ðn − 2Þr4

�
α2½ðn − 3Þ2r4 þ 2l2r2 þ l4�

− β0ðr2 þ l2Þ2
�
2α

ðn − 3Þr2 − l2

r2 þ l2
− β0


	
; ðD23Þ

with α as in (D11).
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