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Photon rings are key targets for near-future space-based very long-baseline interferometry missions.
The ratio of flux measured between successive light rings is characterized by the Lyapunov exponents of
the corresponding nearly bound null geodesics. Therefore, understanding Lyapunov exponents in this
environment is of crucial importance to understanding black hole observations in general, and in
particular, they may offer a route for constraining modified theories of gravity. While recent work has
made significant progress in describing these geodesics for Kerr, a theory-agnostic description is
complicated by the fact that Lyapunov exponents are time-parametrization-dependent, which necessitates
care when comparing these exponents in two different theories. In this work, we present a robust
numerical framework for computing and comparing the Lyapunov exponents of null geodesics in Kerr
with those in an arbitrary modified theory. We then present results obtained from calculating the Lyapunov
exponents for null geodesics in two particular effective theories: scalar Gauss-Bonnet gravity and
dynamical Chern-Simons gravity. Using this framework, we determine accuracy lower bounds required
before a very long-baseline interferometry observation can constrain these theories.
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I. INTRODUCTION

The Event Horizon Telescope (EHT) and its space-based
successors will soon offer unprecedented views of the
structure of photon trajectories in the space very near the
photon ring of a black hole [1,2]. These trajectories can be
characterized by the number of fractional orbits the photon
completes before scattering to the detector, giving rise to
the so-called “subrings.” The ratio of flux received between
adjacent subrings is determined by the Lyapunov exponent
at the photon ring. These Lyapunov exponents are therefore
an observable quantity and offer a route to understand the
phase space of the environment they are observed in. As
measures of the stability of phase-space trajectories,
Lyapunov exponents open a window to the underlying
physics of any given system. In particular, they provide
clues to the underlying theory of gravity in play, and they
may therefore offer a way to use very long-baseline
interferometry (VLBI) observations to place constraints
on modified theories [3,4].
Impressive strides have been made in understanding the

structure of null orbits near black holes described by the
Kerr metric [4,5]. This includes full analytic evolution
equations for null geodesics, which have in turn enabled
a much deeper understanding of the structure of the photon

ring that a VLBI instrument could detect. As a result, we
now also have full analytic expressions for the Lyapunov
exponents associated with the photon ring around a Kerr
black hole. As Lyapunov exponents provide a method of
testing the Kerr hypothesis, one may wish to also calculate
Lyapunov exponents in different theories of gravity and
investigate whether any difference from the Kerr result is
indeed detectable.
Black holes in modified gravity, however, are not

necessarily described by the Kerr metric. For example,
two theories, scalar Gauss-Bonnet (sGB) [6] and dynamical
Chern-Simons (dCS) gravity [7], predict distinct modifica-
tions to the spacetime of rotating black holes, and therefore,
to the particular trajectories that geodesics follow in each
theory. Such modifications will necessarily also affect the
values that Lyapunov exponents take in these theories.
Exact, analytic forms of these metrics remain unknown,
leaving us with only approximate analytic forms written as
power series in the black hole spin. Recent work, none-
theless, allows us to calculate these expansions to essentially
arbitrary order in spin [8].
The calculation of Lyapunov exponents in general

relativity (GR) is simplified by certain symmetries that
are absent in modified gravity theories. This machinery
relies on the existence of two Killing vectors (associated
with stationarity and axisymmetry) and one Killing tensor
(associated with a Carter constant) that render the geodesic*Corresponding author: adeich2@illinois.edu
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equations separable and integrable [4,9]. This is why
Lyapunov exponents can be calculated analytically for
the Kerr metric; for simple, parametric deformations of
it [10]; and for the Manko-Novikov metric [11,12].
Separability and integrability, however, is far from guar-
anteed in modified-gravity black hole spacetimes. In
particular, the nonexistence of a Carter-like constant for
the spin-expanded sGB and dCS metrics beyond leading
order in spin [13,14] prevents us from casting the geodesic
equations in terms of elliptic integrals, and thus, from
calculating the Lyapunov exponents analytically.
Therefore, a clear need exists to calculate Lyapunov

exponents accurately and in a theory-agnostic way; it is to
this end that we present the current work. In this paper, we
introduce a framework to calculate equatorial Lyapunov
exponents accurately for arbitrary, axisymmetric modifica-
tions to the Kerr metric, allowing us to predict the flux ratio
between adjacent subrings, and in turn, to potentially test the
Kerr hypothesis with VLBI images. We also develop a
robust numerical method to check the calculation to high
accuracy. We then implement this method on the two
example theories described above, sGB and dCS gravity.
We find that the corrections are of Oð10−1Þ for geodesics
around dCS black holes, and Oð10−0.5Þ for geodesics
around sGB black holes. For any constraint to be realized,
this method would also have to be used in conjunction with
independent measurements of the black hole’s spin and
mass, as both of these also affect the size of the Lyapunov
exponent.
The remainder of this paper is organized as follows: In

Sec. II, we give a primer on symplectic geometry and
provide a full derivation of Lyapunov exponents in general
relativity. Then, in Sec. III, we describe the structure of the
photon shell, photon ring, and its subrings in general
relativity. We discuss in Sec. IV how Lyapunov exponents
are calculated for the photon rings of Kerr black holes. In
Sec. V, we briefly describe the modified theories of gravity
under consideration and the black hole solutions permitted
by them. Then, we cover how we calculate Lyapunov
exponents for black holes in these theories, before present-
ing our results for dCS and sGB gravity. Finally, in Sec. VI,
we conclude and point to future research. Appendix A
discusses the application of eigenvalue perturbation to
Lyapunov exponents. Throughout this paper, we use the
convention of G ¼ 1 ¼ c.

II. SYMPLECTIC GEOMETRY
AND LYAPUNOV EXPONENTS

In this section, we go over the basics of symplectic
geometry, which can be thought of as a theoretical pre-
requisite to formally understand Lyapunov exponents. We
then develop the theory of Lyapunov exponents thoroughly,
and briefly discuss several subtle details, which will be of
importance for the present work.

A. Phase-space evolution and symplectic geometry

The study of Lyapunov exponents requires manipulating
objects that are constructed out of both positions and
momenta. We therefore must be careful: these constituents
transform differently when contracted with a metric tensor,
and so any object we construct from them will transform
differently from more familiar objects. The primary object
of focus will be a set, X, of components of coordinates, qμ,
and momenta, pμ, which live in an n-dimensional phase
space. The set X therefore has 2n elements, and we index
these with a gothic letter. Explicitly,

Xa ¼ qμ; a∈ ½0;…; n − 1�; ð1Þ

Xa ¼ pμ−n; a∈ ½n;…; 2n − 1�: ð2Þ

The evolution of Xa is governed by Hamilton’s equations
of motion, which in this context take the form

Ẋa ¼ Ωab
∂bH ð3Þ

for a Hamiltonian H, where ∂b ¼ ∂=∂Xb, where the dot
refers to a derivative with respect to proper time, and where
we have introduced the symplectic matrix, Ωab. This matrix
is a 2n × 2n matrix, whose elements take the form [15]

Ωab ¼
�

0n In
−In 0n

�
; ð4Þ

where In and 0n are the n × n identity and null matrices,
respectively.

B. Analytic derivation of Lyapunov exponents

Lyapunov exponents are motivated by asking how a
given trajectory responds to small perturbations in its initial
phase-space conditions. Given some phase-space trajectory
XaðtÞ whose evolution is governed by a Hamiltonian H, as
in Eq. (3), we can look at how a perturbation to XaðtÞ ¼
Xað0ÞðtÞ þ δXaðtÞ evolves by linearizing ẊaðtÞ about small
δXaðtÞ:

δẊaðtÞ ¼ JabðtÞδXbðtÞ; ð5Þ

JabðtÞ≡ ∂bẊa ð6Þ

¼ Ωac
∂b∂cH: ð7Þ

In other words, JabðtÞ describes how quickly perturbations
grow in phase space. Furthermore, as this matrix is the
product of two spatial derivatives, JabðtÞ also encodes
information about the curvature of the phase space, which
is helpful for building intuition about the stability of XaðtÞ.
Schematically, unstable trajectories will lie on hilltops in
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appropriate phase-space slicings (as depicted by the blue
surface in Fig. 1).
The evolution of δXaðtÞ is then

δXaðtÞ ¼ La
bðtÞδXbð0Þ; ð8Þ

where

La
bðtÞ≡ exp

�Z
t

t0

Jabðt0Þdt0
�

ð9Þ

is known as the linear stability matrix [15,16], whose
initial condition is La

bð0Þ ¼ δab. The linear stability
matrix controls the evolution of vectors that lie in the
space that is tangent to the phase space. As δXa evolves,
La

bðtÞ will simultaneously coerce it to align with its
largest eigenvector (the orange arrows in Fig. 1, read left
to right), while also scaling it exponentially by the
corresponding eigenvalue [17].
The Lyapunov spectrum is then given by the eigenvalues

of La
b. The largest of these eigenvalues (the largest element

in the Lyapunov spectrum) is the principal Lyapunov
exponent, λ. This quantity can be calculated directly by

λ≡ lim
t→∞

1

t
ln

�
La

aðtÞ
Lb

bð0Þ
�
: ð10Þ

If λ is a positive number, thenXaðtÞ is an unstable trajectory
and the perturbation will grow without bound. If λ is an
imaginary number, then the trajectory is stable to small
perturbations [15–17].
It is worth pointing out a few details that will be useful

later on. First, finding Lyapunov exponents analytically is
rare. Calculating La

bðtÞ requires knowing the path of a full
trajectory,XaðtÞ, which is not, in general, possible for many
Hamiltonians. Second, at no point did we concern ourselves
with tracking the evolution of the separation between two

initially close trajectories, which is how this subject of
Lyapunov exponents is sometimes presented. This approach
can add unnecessary complexity. Working in the linearized
regime prevents this potential pitfall. Third, that the
Lyapunov exponent is an eigenvalue suggests that they
are well suited to perturbative calculations, as we show in
Appendix A. While perturbative techniques are not neces-
sary to complete the work we will present in this paper, it is
worth noting that the techniques presented here are quite
general. As a result, one could generate Lyapunov expo-
nents for any conceivable modification to the Hamiltonian
for null geodesic motion.

III. PHOTON TRAJECTORIES AROUND
KERR BLACK HOLES

In this section, we briefly review the structure of null
trajectories close to a Kerr black hole. Doing so will help
establish intuition when we tackle the corresponding
problem in modified gravity. For more complete treatments,
see [3–5,18].

A. Geodesic equations and analytic solutions

In Boyer-Lindquist coordinates, a given trajectory on a
Kerr background with Kerr spin parameter a and mass M
follows a four-momentum pμ that satisfies

Σ
E
pr ¼ �r

ffiffiffiffiffiffiffiffiffiffi
RðrÞ

p
; ð11aÞ

Σ
E
pθ ¼ �θ

ffiffiffiffiffiffiffiffiffiffi
ΘðθÞ

p
; ð11bÞ

Σ
E
pϕ ¼ a

Δ
ðr2 þ a2 − alÞ þ l

sin2θ
− a; ð11cÞ

Σ
E
pt ¼ r2 þ a2

Δ
ðr2 þ a2 − alÞ þ aðl − a sin2θÞ; ð11dÞ

FIG. 1. A representation of a photon ring orbit (red line) around a Schwarzschild black hole (black sphere), with the effective potential
(blue surface) visualized. Two initially orthogonal vectors [δXað0Þ, orange arrows furthest on the left] tangent to the phase space evolve
under the linear stability matrix. As they evolve counterclockwise when looking at the black hole from above, they are rotated to align
with the biggest eigenvector of the stability matrix (pink arrows). The log of the rate at which the magnitude of δXaðtÞ grows is the
principal Lyapunov exponent. In this cartoon, the vectors are drawn with respect to a vertical pr axis, while the height of the effective
potential has units of energy. The direction pointing radially out from the black hole is the Schwarzschild r coordinate.
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where E ¼ −pt and l ¼ pϕ=E are the conserved energy
and energy-rescaled angular momentum, respectively, and
Σ ¼ r2 þ a2 cos θ and Δ ¼ r2 − 2Mrþ a2 are functions
that appear in the metric. The functions RðrÞ and ΘðθÞ are
the radial and polar potentials, respectively, which are
defined by

RðrÞ ¼ ðr2 þ a2 − alÞ2 − Δ½ηþ ðl − aÞ2�;
ΘðθÞ ¼ ηþ a2cos2θ − l2cot2θ; ð12Þ

where η is the energy-rescaled Carter constant. The turning
points, or the maximum and minimum values of θ of the
trajectory’s evolution, θ�, are given by

θ� ¼ arccos ð∓ ffiffiffiffiffiffi
uþ

p Þ; ð13Þ

where

u� ¼ △θ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
△2

θ þ
η

a2

r
; △θ ¼

1

2

�
1 −

ηþ l2

a2

�
: ð14Þ

As explored in impressive detail in [4,5], these evolution
equations permit full analytic solutions in terms of elliptic
functions. Of particular use to our current effort, recasting
them in integral form will allow the unambiguous defi-
nition of a complete orbit of the black hole. We can do this
by integrating along the path of a particle traveling from its
source point with coordinates ðts; rs; θs;ϕsÞ to its observed
point at ðto; ro; θo;ϕoÞ. While the complete set of integrals
is not needed in this paper, it will be useful to cover the θ
case. The curious reader is directed to [4,5] for the
full story.
Let us then define the quantity

Gθ ¼
Z
�

θo

θs

dθ

�θ

ffiffiffiffiffiffiffiffiffiffi
ΘðθÞp ; ð15Þ

where the slash indicates that the integral should be taken
along the trajectory. Equation (15) can be expressed in
terms of elliptic integrals as

Gθ ¼
1

a
ffiffiffiffiffiffiffiffiffi−u−

p ½2mK � Fs ∓ Fo�; ð16Þ

where m is the number of angular turning points encoun-
tered in the trajectory,

Fi ¼ F

�
arcsin

�
cos θiffiffiffiffiffiffi
uþ

p
����� uþu−

�
ð17Þ

is the elliptic integral of the first kind (with i∈ fs; og), and

K ¼ F

�
π

2

���� uþu−
�
: ð18Þ

Let us now make a few observations. First, the quantity
Gθ, defined in Eq. (15), is equivalent to the so-called “Mino
time” [19], which can be used to decouple Eq. (11).
Second, this notation enables the unambiguous comparison
of trajectories that are closed to those that are not by
defining one complete orbit to be a complete oscillation in
θ. We therefore here adopt the convention of [4], and we
declare one full orbit to be the traversal from one turning
point in θ, as defined in Eq. (13), back to itself again.
This, coupled with the definition of Gθ above, allows us

to define the number of orbits, n, as

n ¼ Gθ

G1
θ

; ð19Þ

where the normalization factor G1
θ is the time required to

complete one orbit:

G1
θ ≡ 2

Z
�

θþ

θ−

dθffiffiffiffiffiffiffiffiffiffi
ΘðθÞp ¼ 4K

a
ffiffiffiffiffiffiffiffiffi−u−

p : ð20Þ

G1
θ has a nonzero value even for equatorial orbits (for which

θ ¼ π=2 for all time) and will prove to be a crucial quantity
in later analysis.

B. The photon shell, rings, and subrings

The region near a black hole where there exist trapped
null trajectories is called the photon shell. In this region, a
given trajectory has no radial evolution, but it can oscillate
in θ inside ðθ−; θþÞ, which depends on the chosen value of
r. For a Kerr black hole, the limiting values of the photon
orbit radii are given by

r� ¼ 2M

�
1þ cos

�
2

3
arccos

�
� a
M

���
; ð21Þ

where M and a are the mass and spin of the black hole,
respectively. Therefore, a photon on the shell has a fixed
r-coordinate value r̃, with r− ≤ r̃ ≤ rþ. If r̃ ¼ r�, then the
trajectory is confined to orbit on the equator. In Fig. 2, we
show the values of θ− and θþ as a function of the value of r̃
across a range of spin values for a Kerr black hole.
In the event that a photon trajectory is not exactly

bound—i.e., its r-coordinate value is close to, but not
exactly, the value of r̃ that would place it in a bound orbit
in the photon shell—then the photon will either scatter or
plunge into the black hole event horizon. Ultimately, it is
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these almost-bound photons that are of interest to us,
because the bound photons are never seen by observers far
from the black hole. These almost-bound photons are the
ones responsible for creating an image on the image plane
of the observer’s screen, which we call the photon ring.
Now, consider what is required of a given set of light rays
emanating from some point outside the black hole, if we
require that they all eventually impact the detector. While
there are infinitely many such light rays, the different
paths they can take are uniquely indexed by the number of
half-orbits they complete before hitting the detector, n.
This is visualized in Fig. 3 for the n ¼ 0, 1, 2 trajectories
(the blue, green, and orange lines). As a result, we can
unambiguously refer to a single geodesic that connects the
detector to a given point outside the black hole solely by n.

IV. LYAPUNOV EXPONENTS
ON THE PHOTON SHELL

Here we cover the specifics of Lyapunov exponents for
photon ring trajectories in axisymmetric spacetimes. First,
we discuss how Lyapunov exponents are calculated for
these geodesics. Then we cover some practical consider-
ations for their observation by comparing the flux ratios
from adjacent subrings.

A. Calculating Lyapunov exponents in general
axisymmetric spacetimes

Photon shell trajectories are inherently unstable, owing to
their position at the top of a local maximum in the effective
potential, as shown by the yellow edge in both panels of
Fig. 4. From this figure, we observe that in both the dCS
(left panel) and sGB (right panel) theories (see Sec. VA for
their respective black hole metrics), the position of the
photon ring shifts with the size of the coupling parameter.
Thus, we expect them to possess positive Lyapunov
exponents. Here we show one method of analytically
calculating these Lyapunov exponents for null geodesics
in the general class of axisymmetric spacetimes, to which
the Kerr metric belongs. For more details, see [3,20].
In order to simplify the problem, we first restrict

ourselves to just those trajectories that are bound to the
equator (i.e., θ ¼ π=2). We make this simplification for
two reasons. First, this restricts the phase space to only two
dimensions, in r and pr, so that the form of Jab is as
straightforward as possible. Second, these circular geo-
desics are, for general axisymmetric spacetimes, the only
geodesics for which closed-form solutions exist. We will
exploit the same simplification when we extend this
calculation to modified theories of gravity.
The Lagrangian is

L ¼ 1

2
gμν

dxμ

ds
dxν

ds
; ð22Þ

where gμν is the spacetime metric, s is an affine parameter,
and xðsÞ is the trajectory’s four-position [22]. From this, the
canonical conjugate momenta are

pμ ≡ ∂L
∂ðdxν=dsÞ ¼ gμν

dxμ

ds
: ð23Þ

Then, performing a Legendre transformation, the
Hamiltonian reads

H ≡ pμ
dxμ

ds
− L ¼ 1

2
gμνpμpν ¼ 0; ð24Þ

where the final equality follows from the fact that we are
dealing with null trajectories. Considering only equatorial
geodesics, the Hamiltonian above becomes

FIG. 3. Geodesics connecting some point (red dot) outside the
black hole (black dot) to the observer are indexed by the number
of half-orbits of the black hole they complete. Pictured are the
n ¼ 0, 1, 2 equatorial trajectories (blue, green, and orange,
respectively) for a Kerr black hole with spin a ¼ 0.8M. Observe
how the number of half-orbits can be used to label geodesics.

FIG. 2. The maximum and minimum values of θ of a given
photon shell orbit are determined entirely by its value of r̃.
Pictured here are the values of θþ for trajectories around a Kerr
black hole across a range of dimensionless spin values. This
relationship is axisymmetric, so the θ− values are identical to the
above, but mirrored along the θ ¼ π=2 axis.
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H ¼ Veff þ
p2
r

grr
; ð25Þ

where Veff is the effective potential, given in terms of
metric components by

VeffðrÞ ¼
L2gttðrÞ þE2gϕϕðrÞ þ 2ELgtϕðrÞ

gttðrÞgϕϕðrÞ− gtϕðrÞ2
; ð26Þ

where E and L are the conserved energy and angular
momenta of the trajectory, respectively. In the absence of
analytic expressions for the trajectories, the location and
angular momentum of the equatorial photon orbit are
found by setting θ ¼ π=2 and solving the system

Veff ¼ 0 ¼ ∂rVeff ð27Þ

simultaneously for r̃ and L. Doing so will usually result in
two real solutions, corresponding to r− and rþ.
Then, setting pr ¼ 0, as all photon shell trajectories

require, the evolution Jacobian (5), with proper time
parametrization, takes the form

Jab ¼
 

0 −g−1rr
∂
2
rVeff 0

!
; ð28Þ

whose eigenvalues, evaluated at r ¼ r̃, are the Lyapunov
exponents

λp ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
∂
2
rVeff

grr

s ����
r¼r̃

; ð29Þ

which we note are dependent upon the full set of spacetime
parameters, including spin.
Let us pause here for a moment to make clear an

important point. Lyapunov exponents are not invariant

under changes of the time parametrization used. Rather,
it is the ratio between the Lyapunov timescale τλ ¼ 1=λp
and a relevant timescale that is invariant and may be
compared between systems. In other words, the numerical
value of a given trajectory’s Lyapunov exponent will change
if calculated in, say, proper time parametrization versus
Schwarzschild time. But if we also calculate a timescale in
the same parametrization, τ0, then the ratio τ0=τλ ¼ λpτ

0 will
be invariant under reparametrization. In the case currently
being considered, the relevant timescale is the time required
for a half-orbit, G1

θ, as given by Eq. (20). Therefore, it is not
sufficient to simply calculate Eq. (29); we must also
calculate the time required for one complete orbit.

B. Detectability of subrings and the measurement
of the Lyapunov exponent by future VLBIs

By tracking the fractional number of orbits completed by
a trajectory as it evolves, we have actually created for
ourselves another affine coordinate with which we can
parametrize our trajectories. This is a handy parametrization
for calculations involving the detection of the photon ring,
as the fractional number of orbits determines the specific
subring to which the photon belongs. Thought of this way,
we can consider how a perturbation in r evolves over some
number n of orbits,

δrðnÞ ¼ expðλMnÞδrð0Þ; ð30Þ

where λM is the principal Lyapunov exponent parametrized
by the fractional number of orbits.
In general, then, let us define λM as follows:

λM ¼ λpτM; ð31Þ

where λp is calculated via Eq. (29) and τM corresponds to
the time it takes to complete a half-orbit for a null geodesic

FIG. 4. Null orbit effective potentials in dCS gravity (left) and sGB gravity (right) for a range of values of ζq, with χ ¼ 0.9 and
L ≈ −6.832. The photon orbit in Kerr, denoted by the dashed red lines, corresponds to the peak of the ζq ¼ 0 curve. Notice that the
location of this point depends on the coupling parameter. Data from [21].
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around a rotating black hole. For a Kerr black hole, this
time is simply given in closed form by τM;Kerr ¼ G1

θ in
Eq. (15). In this case, then, one can show [3] that λM;Kerr

takes the analytic form

λM;Kerr ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
∂
2
rVeff

2grr

s
G1

θ

�����
r¼r̃

¼ 4r̃
ffiffiffĩ
χ

p
a
ffiffiffiffiffiffiffiffiffi
−ũ−

p K̃; ð32Þ

where

χ̃ ≡ 1 −
MΔðr̃Þ

r̃ðr̃ −MÞ2 ð33Þ

and where each quantity with a tilde is understood to be
evaluated on the photon shell. When defined like this, the
principal Lyapunov exponent parametrized by the frac-
tional number of orbits, τM, implicitly gains the factor ofG1

θ
mentioned earlier. As mentioned, τM is nonzero even for
equatorial orbits, and so it is a useful parametrization for
any trajectory one might consider.
As a trajectory starts closer and closer to an exactly

bound orbit, and n gets high, the image on the detector
screen approaches a closed curve known as the critical
curve [3]. Giving this curve dimensionless detector-screen
angular coordinates ðρc;ϕcÞ, it can then be shown that any
photons that impact at δρ near ρc must be funneled into an
exponentially narrowing annulus of width

δρ

ρc
≈ expðλMnÞ: ð34Þ

This means that each subring is sequentially nested accord-
ing to the number of half-orbits completed en route. When
one integrates Eq. (34) over a solid angle to determine the
flux generated by each subring, one finds [3,4]

Fnþ1

Fn ≈ expð−λMÞ ð35Þ

for the ratio in flux received between adjacent subrings.

V. CALCULATING LYAPUNOV EXPONENTS
IN MODIFIED GRAVITY

Here, we introduce the field equations of two varieties of
modified gravity theories—dCS and sGB gravity—and
discuss the rotating black hole solutions in each. This
allows us to then explain our method of calculating the half-
orbit timescale and, consequently, the Lyapunov exponents
of photon ring null orbits in these theories.

A. Rotating black holes in sGB and dCS gravity

There are two main ways of motivating quadratic gravity.
First, if we assume the Einstein-Hilbert (EH) action is

simply the leading-order term in a more general effective
field theory, we can modify the standard EH action by
adding terms that are expansions in curvature. Second,
these quadratic theories also occur naturally from low-
energy expansions of certain string theories [7,23]. These
theories have an action that reads

S ¼ SEH þ Smat þ Sϑ þ SRR; ð36Þ

where SEH is the EH action, Smat is the matter action, Sϑ is
an action for a dynamical scalar or pseudoscalar field, and
SRR couples a quadratic curvature term to the field. The
only distinction between the two quadratic theories we are
concerned with is in this final term. The EH action reads

SEH ¼ κ

Z
d4x

ffiffiffiffiffiffi
−g

p
R; ð37Þ

whereR ¼ gαβgρσRρασβ is the Ricci scalar, and κ ¼ ð16πÞ−1,
where g is the determinant of the metric tensor with the
Riemann tensor Rρασβ. Meanwhile, the scalar or pseudosca-
lar field action is

Sϑ ¼ −
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ½∇μϑ∇μϑþ∇μϑ∇μϑþ 2VðϑÞ�; ð38Þ

where the potential of the scalar field is VðϑÞ. In order to
preserve the shift symmetry of ϑ → ϑþ const, we set
VðϑÞ ¼ 0 to specify a massless theory, which is a feature
often found in effective string theories at low energy,
including both dCS and sGB gravity [24].
For the sGB and dCS gravities specifically, we can

prescribe a curvature-coupling action that generically
encompasses both theories. Let us then define

SRR ¼
Z

d4x
ffiffiffiffiffi
jgj

p
fαsGBϑsGBRRþ αdCSϑdCSRR̃g; ð39Þ

where

RR ¼ RμνρσRμνσ − 4RμνRμν þ R2 ð40Þ

is the so-called Gauss-Bonnet density, and where

RR̃≡ �Rα
β
γδRβ

αγδ ð41Þ

is the Pontryagin density, with �Rα
β
γδ ¼ 1

2
ϵγδρλRα

βρλ being
the dual of the Riemann tensor. With this in hand, sGB
gravity is defined by setting αdCS ¼ 0 in Eq. (39) and ϑ ¼
ϑsGB in Eq. (38), while dCS gravity is defined by setting
αsGB ¼ 0 in Eq. (39) and ϑ ¼ ϑdCS in Eq. (38). The
parameters αsGB and αdCS determine the coupling parameter
strength of the particular theory being described, and they
have dimensions of length squared in geometric units. In
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this paper, we report results after nondimensionalizing the
coupling parameter of either theory, so we define

ζq ≡ α2q
κM4

; ð42Þ

where q is dCS or sGB, depending on the theory in question.
We choose the maximum values of ζq that we will explore
by finding the maximum value that still satisfies the small-
coupling approximation—i.e., the maximum value of ζq
that generates a correction to the metric components that
remains small relative to the Kerr metric components
everywhere outside the black hole. Explicitly, we demand
that jζqHij < 0.5, where the Hi’s are the functions that
perturb the metric components (see, e.g., [21]). Doing so
results in maximum values of ζmax

dCS ¼ 1.15 and ζmax
sGB ¼ 12.5.

Our two example theories have different motivations and
phenomenology, and therefore, different constraints. SGB
theory is motivated by a certain low-energy limit of string
theory [6]. Unique among these two theories, sGB gravity
induces modifications in the spacetime regardless of
whether the spacetime is spherically symmetric (i.e., regard-
less of whether the black hole is spinning or not), and it
induces dipole scalar radiation in black hole binaries. This is
why gravitational wave observations have already con-

strained α1=2sGB ≤ 5.6 km at 90% confidence [25].
On the other hand, dCS gravity finds motivation from a

few sources, including loop quantum gravity [7,26], the
standard-model gravitational anomaly [7,27], and inves-
tigations in string theory1 [29,30]. Unlike the sGB case,
dCS gravity does not modify spherically symmetric space-
times (and thus nonrotating black holes), and it does not
activate dipole scalar radiation in binaries. For this reason,
dCS gravity has not yet been constrained with gravitational
waves alone, but rather, the most stringent bounds come
from neutron star multimessenger observations, which lead

to α1=2dCS ≤ 8.5 km within a 90% confidence interval [31].
The field equations of the theories described above are

so complicated that analytic exact solutions that represent
black holes with arbitrary rotation have not yet been found.
Instead, we are forced to work with metrics that are
simultaneous expansions in small coupling and dimen-
sionless spin, χ ≡ a=M, where a ¼ S=m, and S is the
(magnitude of the) black hole spin angular momentum.
While the expansion in the coupling ζq is always kept to
linear order (because these theories are effective), recent
work [8,28] has made it possible to achieve arbitrary orders
in the spin expansion. To label these expansions, we adopt
the notation OðζqχmÞ for a metric that is expanded to mth

order in dimensionless spin. Written in a generic form, the
metric components are expanded to OðζqχmÞ in the
following way:

gμν ¼ gKerrμν þ ζ0
Xl¼m

l¼0

ðχ0ÞlδgðlÞμν ; ð43Þ

where ζ0 and χ0 are bookkeeping parameters labeling the
expansion in coupling and expansion in spin, respectively,
and gKerrμν is the Kerr metric. For the work presented here,
we find that the quantities of interest achieve sufficient
accuracy at Oðζqχ20Þ for both dCS and sGB theories.
Finally, we note that the metrics available for sGB are not
valid for χ > 0.8 [21], which is the upper bound for spin in
the work presented here.
Finally, we note that if the constraints from gravitational

wave and neutron star observations are saturated, then ζq,
for supermassive black holes, takes values significantly
smaller than the maximum values we consider here.
(If we take Sgr A*, then we find ζsGB ¼ 1.2 × 10−24

and ζdCS ¼ 2.8 × 10−24, respectively.) However, these

values for α1=2q were derived from objects with masses
smaller by many orders of magnitude than the super-
massive black holes which would be the targets of any
VLBI observation [1,31]. Further, the method we present
here is, in principle, an independent test. Therefore, any
deviations that are found could motivate a higher-order
EFT which screens larger modifications at small scales.

B. Generalized equatorial half-orbit timescales

We can apply the machinery developed in Sec. IVA to
also calculate τ for equatorial photon orbits in generalized
spacetimes, such as those provided by sGB and dCS. To
solve for τ, we still look for eigenvalue solutions to Eq. (5)
as before, but with two key differences. First, because we
are looking for the frequency of small oscillations in θ, we
restrict our phase space to motion in θ only.2 Second, in
order to retrieve the harmonic solutions, we demand that
the eigenvalues be imaginary. Thus, this eigenvalue, labeled
ωθ, represents the frequency of oscillations in θ.
When this is carried through, one finds for ωθ

an expression very similar to that found for λp earlier
[Eq. (29)]:

ωθ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
∂
2
θVeff

gθθ

s ����
r¼r̃

: ð44Þ

1A combination of both theories, sGB and dCS, with two
scalar fields, can also arise in the effective action of heterotic
string theory [28] if, somehow, the dilaton is not stabilized.

2Even though the trajectories considered here are confined to
the equator and experience no θ evolution, we can still use τ to
relate the Lyapunov exponent to the fractional number of orbits,
and therefore to the expected flux ratio of the originating subring,
as discussed in Sec. IV B.
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Then, finding the half-orbit timescale via τ ¼ π=ωθ, we
have all we need to calculate λp in arbitrary spacetimes.
All together, our expression for λM reads

λM ¼ π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
gθθ
grr

∂
2
rVeff

∂
2
θVeff

s ����
r¼r̃

: ð45Þ

We were able to check the validity of this method by
developing a numerical approach, which is described in
Appendix B. This approach calculates τ for arbitrary
values of θ, and it yields answers within an accuracy
of 10−6.
With this in hand, we can now compute the principal

Lyapunov exponent parametrized in terms of half-orbits
through Eq. (10) and compare this to its Kerr value in
Eq. (32). When we do this, we find the largest fractional
difference to be ofOð10−1Þ for geodesics around dCS black
holes with dimensionless spin a=M ¼ 0.9 and coupling
parameter ζdCS ¼ 1.15 (left panel of Fig. 5), and Oð10−0.5Þ
for geodesics around sGB black holes with dimensionless
spin a=M ¼ 0.8 and coupling parameter ζsGB ¼ 12.5 (right
panel of Fig. 5).
These results allow us to make several observations.

First, dCS and sGB modifications to Lyapunov exponents
increase with the coupling constant and spin. Therefore, the
best target of future VLBI observations to constrain these
theories would be rapidly spinning black holes. Both of
these theories, however, are already constrained by other
astrophysical observations (see Sec. VA), and thus, the
value of the coupling constant cannot be increased with-
out bound.
Notice that the results presented here should not be

understood as necessarily making a direct claim about
the detectability of modified theories with this method.
Such a statement would depend on, among other factors,

an accurate and independent measurement of the BH
dimensionless spin. This is because the modified gravity
correction to λp depends on both ζq and a=M. In the
absence of this data, our results should instead be read as a
lower bound on the accuracy of the BH dimensionless spin
measurement required before entertaining constraining a
modified theory.

VI. CONCLUSIONS

We have here constructed a framework to calculate
Lyapunov exponents in a theory-agnostic way that allows
the direct computation of the flux ratio between adjacent
subrings in VLBI images. We then applied this framework
to two theories of modified gravity, dCS and sGB gravity,
and calculated the log fractional difference between these
theories and the Lyapunov exponent in a Kerr spacetime.
We find that the corrections are of Oð10−1Þ for geodesics
around dCS black holes with a dimensionless spin of
a=M ¼ 0.9, andOð10−0.5Þ for geodesics around sGB black
holes with a dimensionless spin of a=M ¼ 0.8.
However, our results do not necessarily imply that you

can constrain either theory, due to a number of confounding
factors present in real-world observations. First, a meas-
urement of λM would need to be made to within the
accuracy of the log fractional differences we present. This
would require, among other things, that the uncertainties
due to the astrophysical environment be smaller than any
(most probably very small) deviation from GR. Second,
any statement about constraints on the theory would require
disentangling the effect on λM due to ζq from that due to the
black hole spin, most probably necessitating an indepen-
dent measurement of the latter quantity. Further, any use of
these results will have to be in the context of a far-future
detector, as the EHT is unlikely to be able to detect features
of the photon ring less than ∼10% of peak brightness [32].

FIG. 5. The log fractional difference in the calculated Lyapunov exponent for equatorial null geodesics around dCS (left) and sGB
(right) black holes across a grid of dimensionless spin and coupling parameter.
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We expect these results to be of interest in two ways.
First, they inform our knowledge of the behavior of
photons very near black holes and will be of interest
when designing observation campaigns of these environ-
ments. Second, the procedure developed here has appli-
cations in theory more broadly. The work we present is
very general, being applicable to any conceivable modi-
fication to the metric or even the Hamiltonian itself,
especially given the prospect of being able to calculate
these effects perturbatively.
In the future, there are at least two avenues that would

extend this work. One is to continue hunting for a means of
measuring the differences in Lyapunov exponents due to
quadratic gravity theories. An approach that exploits the
autocorrelations of the photon ring [33,34] could possibly
amplify the effect, perhaps rendering more detectable the
small differences calculated here. Another route would be
to explore different terms that one could add to the
Hamiltonian to change the size and shape of the effective
potential. Such terms could include, for instance, the
presence of a third body, or yet further modifications to
the theory of gravity itself.

ACKNOWLEDGMENTS

We would like to thank Alex Lupsasca for several
discussions, including the suggestion to use autocorrela-
tions in future work. We also would like to thank Leo Stein
for discussions about symplectic structure. A. D. and N. Y.
acknowledge support from the Simmons Foundation
through Grant No. 896696, and the NSF through Grants
No. PHY-2207650 and No. WoU-2007936.

APPENDIX A: PERTURBATION OF LOCAL
LYAPUNOV EXPONENTS IN CURVED

BACKGROUNDS

The perturbation of eigenvalues of symplectic matrices
follows closely the standard story from linear algebra. The
only point of possible confusion is that there is no well-
defined means of “raising” an index of a symplectic object
as one may be accustomed to in differential geometry.
Instead, upper- and lower-indexed eigenvectors are simply
those vectors that solve the right- and left-eigenvalue
problems, respectively. That is to say, for a symplectic
matrix Jab, the vectors Ra and Lb are said to be its
eigenvectors if they satisfy

LaJab ¼ λLb; ðA1Þ

JabRb ¼ λRa; ðA2Þ

where λ is the corresponding eigenvalue. Now, we consider
the series expansions

Jab ¼ Jð0Þab þ αJð1Þab þ � � � ; ðA3Þ

Ra ¼ Rð0Þa þ αRð1Þa þ � � � ; ðA4Þ

La ¼ Lð0Þa þ αLð1Þa þ � � � ; ðA5Þ

λ ¼ λð0Þ þ αλð1Þ þ � � � ; ðA6Þ

where the parenthetical exponents denote expansion order
and α is a bookkeeping parameter. We can now follow
through with the standard eigenvalue perturbation. We
start by right-multiplying Eq. (A3) by Eq. (A4) to find

ðJð0Þab þ αJð1Þab þ � � �ÞðRð0Þb þ αRð1Þb þ � � �Þ ðA7Þ

¼ ðλð0Þ þ αλð1Þ þ � � �ÞðRð0Þa þ αRð1Þa þ � � �Þ: ðA8Þ

Then, keeping only the linear-order terms, we find

Jð1ÞabRð0Þb þ Jð0ÞabRð1Þb ¼ λð1ÞRð0Þa þ λð0ÞRð1Þa: ðA9Þ

Now, we can left-multiply both sides of Eq. (A9) by Lð0Þa
to find

Lð0ÞaJð1ÞabRð0Þb þ Lð0ÞaJð0ÞabRð1Þb ¼ ðA10Þ

λð1ÞLð0ÞaRð0Þa þ λð0ÞLð0ÞaRð1Þa; ðA11Þ

and we use Eqs. (A1) and (A2) to cancel the second term
on the left-hand side with the second term on the right-
hand side, leaving us with

Lð0ÞaJð1ÞabRð0Þb ¼ λð1Þ; ðA12Þ

and after normalization, Lð0ÞaRð0Þa ¼ 1 (so we drop that
term from the final expression). The above expression gives
us the familiar result that the first-order perturbation to the
eigenvalue is given by contracting the unperturbed eigen-
vectors onto the first-order matrix perturbation. The fact that
this machinery translates perfectly to the symplectic context
means that Lyapunov exponents can be calculated for any
imaginable perturbation to the Hamiltonian.

APPENDIX B: NUMERICALLY CALCULATED
HALF-ORBIT TIMESCALES

We develop here a method to calculate half-orbit time-
scales numerically to high precision. First, we use the
geodesic evolution equations in second-order form, which
after a trivial first-order reduction are
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dxμ

ds
¼ ∂H

∂pμ
;

dpμ

ds
¼ −

∂H
∂xμ

: ðB1Þ

Now, we must follow what is suggested by Eq. (19) and
calculate the time required for a single half-orbit. In order to
do so, one option would be to simply track a trajectory’s
numerical evolution in θ, starting at θþ, and solve numeri-
cally for the proper time it takes for the trajectory to reach
θ−. However, this method is needlessly computationally
intensive, as it would require using something like a
bisection algorithm to accurately determine when the
trajectory has crossed θ−.
A better route is to instead invert the θ̇ evolution equation

and integrate between the angular turning points to find the
proper time interval we are after. To reduce the accumulated
error further, we can exploit the system’s axisymmetry and
integrate only to the equator, multiplying by 2 to find the
half-orbit proper time interval. For a given null trajectory
with four-velocity dxμ=ds in Boyer-Lindquist-like coordi-
nates, we may then define

τM;q ≡ 2

Z
π=2

θþ

ds
dθ

dθ ðB2Þ

as the time required to complete a half-orbit.3 The problem
has then been reduced to finding dθ=ds as a function of θ.
We therefore use the chain rule to rewrite the relevant
Hamilton equations as

dxa

dθ
¼ dxa

ds
ds
dθ

¼
�
∂H
∂pa

��
∂H
∂pθ

�
−1
;

dpc

dθ
¼ dpc

ds
ds
dθ

¼ −
�
∂H
∂xc

��
∂H
∂pθ

�
−1
; ðB3Þ

where a∈ ½r;ϕ� and c∈ ½r; θ�, so that we can integrate the
full, coupled system simultaneously with respect to θ.
Before we initialize these trajectories, we must deal with

an issue that occurs because we are restricting ourselves to
equatorial orbits, which ostensibly experience no evolution
in θ [or in other words, θþ ¼ π=2, and so the definition of
τM;q in Eq. (B2) would be meaningless]. We can deal with
this by finding τM;q for a series of trajectories whose initial
θð0Þ value is shifted from the equator by an amount δθ, and
tracking the value that τM;q approaches as δθ → 0, before
using a Richardson extrapolation [35] to calculate the
final value.
The above method also determines the order in which the

evolution equations are initialized. Setting θ ¼ π=2þ δθ as
described above, we can demand that the trajectory begin at
the top of its θ trajectory by setting pθ ¼ 0 (this therefore
sets θþ ¼ π=2þ δθ and θ− ¼ π=2 − δθ). Then, we can
again solve the system in Eq. (27) (evaluated at the
aforementioned θ) simultaneously to find the initial values
of r and L. This allows us to finally integrate the equations
in (B2) and (B1) from θþ to π=2, and thereby extract a
value for τM;q through Eq. (B2). We use a Runge-Kutta
integrator of order 8 due to Dormand and Price [36], with
relative tolerance set to 10−13 and absolute tolerance set to
10−14. We find that using three trajectories with δθ ¼ 10−6,
10−7, and 10−8 is sufficient to achieve an accuracy in τM of
10−6. This is verified by computing τM;Kerr numerically
(i.e., τM for null geodesics around a Kerr black hole)
and comparing the result to the analytically exact value
of Eq. (15).
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