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Wave propagation is a common occurrence in all of physics. A linear approximation provides a simpler
way to describe various fields related to observable phenomena in laboratory physics as well as astronomy
and cosmology, allowing us to probe gravitation through its effect on the trajectories of particles
associated with those fields. This paper proposes a unified framework to describe the wave propagation of
a set of interacting tensor fields that obey coupled homogeneous linear second-order partial differential
equations for arbitrary curved spacetimes, both Lorentzian and metric-affine. We use Jeffreys-Wentzel-
Kramers-Brillouin (JWKB) Ansätze for all fields, written in terms of a perturbation parameter proportional
to a representative wavelength among them, deriving a set of hierarchical algebraic and differential
equations that link the fields’ phases and different order amplitudes. This allows us to reobtain the well-
known laws of geometrical optics and beyond geometrical optics in a generalized form, showing that these
laws are independent of the rank of the fields involved. This is true as long as what we refer to as the
kinetic tensor of a given field satisfies a set of diagonality conditions, which further imply a handful of
simplifications on the transport equations obtained in the subleading orders of the JWKB Ansätze. We
explore these results in several notable examples in Lorentzian and metric-affine spacetimes, illustrating
the reach of our derivations in general relativity, reduced Horndeski theories, spacetimes with completely
antisymmetric torsion, and Weyl spacetimes. The formalism presented herein lays the groundwork for the
study of rays associated with different types of waves in curved spacetimes and provides the tools to
compute modifications to their brightness evolution laws, consequential distance duality relations, and
beyond geometrical optics phenomena.
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I. INTRODUCTION

Describing the propagation of linear waves in curved
spacetimes is of uttermost importance to model several
physical phenomena of relevance to modern cosmology
and astrophysics, such as gravitational lensing [1] and the
propagation of gravitational waves [2]. However, describ-
ing (scalar, vector, tensor, etc.) linear waves associated to
a physical field directly by means of the corresponding
equations of motion in curved spacetimes is generally a
difficult endeavor, and different workarounds are usually

employed to tackle this issue in a simpler or more tractable
form. For one, there is the study of discontinuities in a
field by means of so-called characteristic surfaces and
bicharacteristic curves in general [3–9] as well as in the
case, e.g., of modified gravity [10,11]. Additionally,
Fourier transforms allow us to study the oscillation modes
of a physical field (e.g., the electromagnetic field) [8,12],
although such a decomposition might only be possible in
specific spacetimes possessing a number of symmetries.
Of particular relevance is an alternative procedure given

by an approximation scheme where a field is associated
to a phase function and a family of amplitudes, combined
in a (formal) Jeffreys-Wentzel-Kramers-Brillouin (JWKB)
expansion [cf. Eq. (14)] [1,13–18]. This relies on well-
known observables reminiscent from general physics, such
as wavelength, intensity, and polarization. In particular, the
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wavelength of a wave—inherently associated to a reference
frame—introduces a characteristic scale allowing for two
crude regimes of wave propagation to be identified: (i) one
in which the wavelength is much smaller than any other
length scale in the region where the wave is passing by, and
(ii) another where the wavelength is of the order of (or
bigger than) some (or all) length scales in the considered
region. The former assumes that the wave character of the
field might essentially be disregarded, and a family of rays is
identified as the trajectories traversed by corresponding
fiducial particles. These rays are geometrical paths in
spacetime, which make this regime generally referred to
as geometrical optics (GO) or eikonal or high-frequency
approximation [cf. Eqs. (16a) and (16b)], a nomenclature
common to electromagnetic waves and also used when
referring to scalar fields and gravitational waves [19,20]. In
contrast, the second regime, in which the wave character of
a field should be more thoroughly taken into account, is
usually referred to as beyond geometrical optics (BGO) or
diffraction regime [cf. Eq. (16)] [19,21,22]. Whilst BGO
stands for a regime where interference is described by the
nonvanishing subleading amplitudes in the JWKB approxi-
mation, the general formalism still assumes that fields
satisfy systems of second-order homogeneous linear equa-
tions of motion [22].
In this work, we propose a general framework to describe

a set of tensor fields that satisfy coupled second-order linear
homogeneous equations of wave-like form [viz., Eqs. (3a)
and (3b)]. We employ JWKB Ansätze for the fields involved
and deduce several results including some ones already
appearing in the known literature regarding GO and BGO in
metric-affine spacetimes (which include Lorentzian space-
times as a subcategory) [23]. We show that those known
results are quite universal and directly related to special
forms for the kinetic tensors in the equations of motion.
Particularly, the leading-order results appearing therein,
which lead to the first set of GO relations, are shown to
be independent of what we refer to, in the equations of
motion, as friction and mass tensors. Furthermore, the first
subleading order result, which is also part of GO, is
completely independent of the form of the mass tensors
involved. On the flipside, even for simplified kinetic tensors,
higher subleading order results are still generally dependent
on kinetic, friction, and mass tensors. We then provide
several examples in Lorentzian spacetimes, and illustrate the
reach of our derivations also for two distinct families of
metric-affine spacetimes.
We structure this work as follows. In Sec. II we present

the unified framework, introducing the equations of motion
and the JWKB Ansätze considered to derive the general
results leading to algebraic and differential constraints
between the different fields’ amplitudes and phase func-
tions. In Sec. III we write a decomposition of the general
kinetic tensors and explore simplified expressions for them
in Secs. III A–III C, which allows us to further interpret the

results of the prior section and establish universal results
mentioned above for both GO and BGO. We then use
Sec. IV to illustrate the latter results and the utility of our
general framework applied to the dynamics of different
rank fields in Lorentzian spacetimes, including the Klein-
Gordon field, the electromagnetic field (both in its potential
and Faraday tensor representations), gravitational waves in
general relativity and reduced Horndeski theories, the latter
being an important example of modified scalar-tensor
gravity having significant interest in the recent literature
[24–27]. In Sec. V we apply our general results to two
distinct familes of metric-affine spacetimes, namely, one
possessing a metric-compatible connection and a com-
pletely antisymmetric torsion, and another referred to as a
Weyl spacetime. We conclude in Sec. VI with a discussion
of our results and future perspectives. The Appendix is
dedicated to a quick review of metric-affine spacetimes.
All our derivations assume a generic metric-affine

spacetime, i.e., a triple ðM ; gαβ;Γμ
αβÞ, where M is a

four-dimensional smooth manifold, gαβ, a Lorentzian
metric with signature þ2, and Γμ

αβ is a generic affine
connection (not necessarily the Levi-Civita one). We use a
wide hat over a kernel letter to denote that the correspond-
ing geometric object is computed using the Levi-Civita
connection of a given spacetime. We also choose natural
units to set c ¼ ℏ ¼ 1, and whenever background fields are
considered, a bar under a kernel letter is employed to
denote that a quantity should be evaluated on a background
field (or a set of background fields).

II. MULTIFIELD EQUATIONS OF MOTION
AND JWKB ANSÄTZE

Let us start by considering an arbitrary set of tensor fields
Ψ
I
AI in a metric-affine spacetime, where AI is a generic set

of indices for the I-th field (I ¼ 1;…;M), to be understood
as a condensed notation for

Ψ
I
AI ≔ Ψ

I

α1���αrI β1���βsI ; ð1Þ

i.e., an element of

ΠPðrI; sIÞ ≔
�

⊗
rI

i¼1
TPM

�
⊗

�
⊗
sI

j¼1
T�
PM

�
; ð2Þ

for every event P∈M . Let us then assume that these
fields satisfy the following system of coupled homo-
geneous linear second-order partial differential equations
of motion:

XM
J¼1

L
IJ

AI
BJ
Ψ
J

BJ ¼ 0; ð3aÞ
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where

L
IJ

AI
BJ

≔ K
IJ

αβAI
BJ
∇α∇β þ F

IJ

αAI
BJ
∇α þM

IJ

AI
BJ
; ð3bÞ

such that all fields obey a linear wave propagation
(provided that the system of equations is hyperbolic),
with ∇α referring to the covariant derivative with respect
to the arbitrary prescribed affine connection Γμ

αβ, not the
Levi-Civita one determined solely from the metric gαβ
[cf. the Appendix]. K

IJ

αβAI
BJ

≠ 0, F
IJ

αAI
BJ

and M
IJ

AI
BJ

are

real-valued tensor fields that do not contain zeroth or
higher-order derivatives of Ψ

I
AI with respect to xμ, though

they might depend on other prescribed tensors, such as
those constructed from zeroth and/or higher-order deriv-
atives of the metric and affine connection. We refer to
them, respectively, as kinetic, friction, and mass tensors,
following the usual terminology, which appears, for
instance, in [25]. While we restrict ourselves to systems
of linear equations of motion, this same nomenclature
applies to systems of nonlinear equations of motion in the
fields of interest, such as the full set of quasilinear Einstein
field equations in general relativity. For the sake of clarity,
in all our derivations, whenever an equation includes a
sum over several fields, we explicitly include a summation
symbol with an uppercase Latin index (J for example).
Furthermore, we use a condensed version of the usual
Einstein summation convention on Greek (spacetime)
indices,

K
IJ

αβAI
BJ
∇α∇βΨ

J
BJ

≔ K
IJ

αβμ1���μrI ν1���νsI σ1���σrJ
λ1���λsJ∇α∇βΨ

J

σ1���σrJ λ1���λsJ ; ð4Þ

F
IJ

αAI
BJ
∇αΨ

J
BJ ≔F

IJ

αμ1���μrI ν1���νsI σ1���σrJ
λ1���λsJ∇αΨ

J

σ1���σrJ λ1���λsJ ;

ð5Þ

and

M
IJ

AI
BJ
Ψ
J
BJ ≔M

IJ

μ1���μrI ν1���νsI σ1���σrJ
λ1���λsJΨ

J

σ1���σrJ λ1���λsJ : ð6Þ

According to the notation we adopt for Ψ
I
AI , M

IJ

AI
BJ
,

F
IJ

αAI
BJ

and K
IJ

αβAI
BJ

are operators mapping tensors from

ΠðrJ; sJÞ to ΠðrI; sIÞ, ΠðrI; sIÞ ⊗ TPM , and ΠðrI; sIÞ ⊗
TPM ⊗ TPM , respectively. As such, for I ¼ J, the
proposed system of equations can only be used if the rank
of the equation of motion for a given field is the same as the
rank of the field itself. In particular, the formalism we
derive herein cannot be used to describe the Faraday tensor
through the usual first-order Maxwell equations directly
(cf. Sec. IVA), which is addressed in references such
as [28]. Furthermore, when AI ¼ BJ, i.e., the Ith field has

the same covariant and contravariant indices of the Jth
field, the indices below each operator permit the distinction
between otherwise ambiguous functions. For example, for
a given pair ðI; JÞ, Ψ

I
AI ¼ Ψ

I
α and Ψ

J
AJ ¼ Ψ

J
α, we can still

have L
IJ

AI
BJ

¼ L
IJ

α
β ≠ L

JI

α
β ¼ L

JI

AI
BJ
. In most cases (even

though this is not necessary), Eq. (3b) may be understood
as coming from the variation of the action of the given
theory with respect to the Ith field.
Let us then propose the following Ansätze:

Ψ
I
AIðx; ϵIÞ ¼ ψ

I

AIðx; ϵIÞeiSIðxÞ=ϵI ; ð7aÞ

where

ψ
I

AIðx; ϵIÞ ≔
"XNI

p¼0

ψ
I

AI
ðpÞðxÞ

�
ϵI
i

�
p
#
; NI ≥ 0: ð7bÞ

Here, each tensor field is assumed to have its own
set of complex-valued tensorial amplitude components
fψ
I

AI
ð0Þ;…;ψ

I

AI
ðNIÞg, grouped in the formal polynomial of

Eq. (7b) to constitute the field amplitude, a real-valued
scalar phase SIðxÞ, and a real-valued positive smallness
parameter ϵI, a dimensionless quantity proportional to the
wavelength seen by a reference frame in the open set O
where that field is defined. The gradient fields

q
I
α ≔ ∂αSI ð8Þ

are assumed to be nonzero everywhere on O [16], such that
the integral curves of each q

I
α form a congruence there in

the open region of spacetime we are interested in, i.e.,
through each point passes one, and only one such curve.
Naturally, despite not appearing in the above equations, we
have to take the real part of the right-hand side in each
JWKB Ansatz to obtain the actual fields. Also, to distin-
guish between the full field and its amplitude components,
we use the same kernel letter but uppercase for the former,
and lowercase for the latter. By analogy with what we can
consider for a scalar wave in Minkowski spacetime, we
assume that there exist length scales

L
I
ψ≔

�
min
α;AI ;BI

0B@ jψ
I

AIðxÞj
j∂αψ

I

BIðxÞj

1CA ð9Þ

and

L
I
q≔
�
min
α;β;γ

0B@ jq
I
αðxÞj

j∂βq
I
γðxÞj

1CA; ð10Þ
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which, respectively, represent the typical lengths of varia-
tion for the amplitude and phase of every field I. Also, in a
general curved spacetime, metric, torsion, and nonmetricity
play the roles of “refractive indices” of sorts [21], intro-
ducing three length scales,

Lg≔
�

min
α;β;γ;λ;σ

� jgαβðxÞj
j∂γgλσðxÞj

�
; ð11Þ

LT ≔
�

min
α;β;γ;λ;σ;μ;ν

� jTα
βγðxÞj

j∂λTσ
μνðxÞj

�
; ð12Þ

LQ≔� min
α;β;γ;λ;σ;μ;ν

� jQαβγðxÞj
j∂λQσμνðxÞj

�
; ð13Þ

which, together with L
I
ψ and L

I
q, are to be taken into

account when characterizing the desired regime of validity
for the proposed solution (14a). We then define the
smallness parameter of field I as ϵI ≔ λI=LI , where λI is
its wavelength measured by a reference frame uμðxÞ [29],
and LI ≔ minfL

I
ψ ; L

I
q; Lg; LT; LQg, such that there are

scenarios where ϵI ≪
�
1, i.e., λI≪

�
LI . It is worth mentioning

that the characteristic length scales fL
I
ψ ; L

I
q; Lg; LT; LQg

are loosely defined by Eqs. (9) through (13), respectively,
but it is also common to see some of them appearing in the
form of tensor quantities depending on the application
under investigation. Indeed, for Lorentzian spacetimes, Lg

may be identified as one of the following curvature related
scalars: R̂−1=2, ðR̂μνR̂

μνÞ−1=4 or ðR̂μνσρR̂
μνσρÞ−1=4, where R̂,

R̂μν and R̂μνσρ are, respectively, the Ricci scalar, the Ricci
tensor, and the Riemann tensor. For spacetimes with
R̂μν ≠ 0, the first two choices are reasonable candidates,
whereas in the case, for example, of gravitational waves
considered up to linear order on a Ricci-flat background,
the latter is a better measurement of curvature, since the
Kretschmann scalar R̂μνσρR̂

μνσρ is the only nonvanishing
quantity in that case [20,30].
While including different smallness parameters for dis-

tinct fields is surely a more general approach to follow, for
simplicity, we choose to reexpress all Ansätze in terms of a
single control parameter. We thus use Eqs. (7a) and (7b) as
an inspiration to consider alternative Ansätze expressed in
terms of a unique smallness parameter, ϵ:

Ψ
I
AIðx; ϵÞ ¼ ψ

I

AIðx; ϵÞeiSIðxÞ=ϵ; ð14aÞ

with

ψ
I

AIðx; ϵÞ ≔
"XN
p¼0

ψ
I

AI
ðpÞðxÞ

�
ϵ

i

�
p
#
; N ≥ 0; ð14bÞ

where

N ≔ max
I
fNIg; ð14cÞ

and ψ
I

AI
ðpÞ ¼ 0 for p > NI if NI < N. In these alternative

Ansätze, we have ordered the fields Ψ
I
AI such that the

M-tuple ðϵ1; ϵ2;…; ϵMÞ satisfies ϵ1 ≤ ϵ2 ≤ � � � ≤ ϵM, and ϵ
is supposed to lie somewhere in the interval ½ϵ1; ϵM�. As
such, if ϵ is small, all fields with ϵI ≤ ϵ will require only
equations involving their leading-order amplitudes ψ

I

AI
ð0Þ to

have most of their dynamics described, a situation which we
refer to as the geometrical optics (GO) regime, whereas the
description of other fields may demand that higher-order
amplitude components ψ

I

AI
ðpÞ (p ¼ 1;…; PI > 0) should be

taken into account, a broader situation which we refer to as
the diffraction regime or beyond geometrical optics (BGO).
With these transformations, the wave vector associated with
field I is given by

k
I
μ ≔ ϵ−1q

I
μ ¼ ϵ−1∂μSI: ð15Þ

Substituting Eq. (14a) into Eq. (3a) and demanding its
validity for each order of ϵ, we derive the following set of
equations:

(i) Dominant ϵ−2 order:

XM
J¼1

D
IJ

AI
BJ
ψ
J

BJ
ð0Þe

iSJ=ϵ ¼ 0. ð16aÞ

(ii) First subdominant ϵ−1 order:

XM
J¼1

h
D
IJ

AI
BJ
ψ
J

BJ
ð1Þ þ T

IJ
AI

BJ
ψ
J

BJ
ð0Þ
i
eiSJ=ϵ ¼ 0. ð16bÞ

(iii) Remaining subdominant ϵp order:

XM
J¼1

�
D
IJ

AI
BJ
ψ
J

BJ
ðpþ2Þ þ T

IJ
AI

BJ
ψ
J

BJ
ðpþ1Þ

þ L
IJ

AI
BJ
ψ
J

BJ
ðpÞ

�
eiSJ=ϵ ¼ 0;

ð0 ≤ p ≤ NÞ: ð16cÞ

Here, we have introduced the operators

D
IJ

AI
BJ

≔ K
IJ

αβAI
BJ
q
J
αq
J
β; ð17Þ

T
IJ

AI
BJ

≔ K
IJ

αβAI
BJ
D
J

αβ þ F
IJ

αAI
BJ
q
J
α; ð18Þ
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where

D
I
αβ ≔ q

I
α∇β þ q

I
β∇α þ∇αq

I
β: ð19Þ

D
I
αβ is a derivative operator associated to q

I
α which will

play an important role in the transport equations derived
below for the various ψ

I

AI
ðpÞ appearing in Eq. (14a).

Equation (17) defines what we refer to as dispersion
tensors D

IJ
AI

BJ
for q

I
α. In particular, the following simpli-

fications follow if D
IJ

AI
BJ

¼ 0:

(i) Dominant ϵ−2 order:

K
IJ

αβAI
BJ
q
J
αq
J
β ¼ 0. ð20aÞ

(ii) First subdominant ϵ−1 order:

XM
J¼1

T
IJ

AI
BJ
ψ
J

BJ
ð0Þe

iSJ=ϵ ¼ 0. ð20bÞ

(iii) Remaining subdominant ϵp order:

XM
J¼1

h
T
IJ

AI
BJ
ψ
J

BJ
ðpþ1Þ þ L

IJ

AI
BJ
ψ
J

BJ
ðpÞ

i
eiSJ=ϵ ¼ 0;

ðp ≥ 0Þ: ð20cÞ

If this is the case, from the functional dependence of the
tensors D

IJ
AI

BJ
, T
IJ

AI
BJ
, and L

IJ

AI
BJ

on q
I
α and on covariant

derivatives, Eqs. (20b) and (20c) can be understood as a
system of perturbative evolution equations for the different
order amplitudes of all fields involved, in which the
behavior of ψ

I

AI
ðpþ1Þ is influenced only by ψ

J

AI
ðpÞ, not by

ψ
J

AI
ðpþ2Þ. Furthermore, the results concerning the leading-

order amplitudes ψ
J

AJ
ð0Þ are indifferent to amplitudes beyond

geometrical optics being present or not. Finally, in the
special case in which all fields share a single phase, i.e.,
SIðxÞ ¼ SðxÞð1 ≤ I ≤ MÞ, but not necessarily D

IJ
AI

BJ
¼ 0

holds, the exponentials appearing in Eqs. (16a)–(16c) may
be naturally factored out.

III. DECOMPOSITION OF THE KINETIC TENSOR

While the above results are quite general and indepen-
dent of the tensor field(s) considered, it is interesting to start
extracting information from Eqs. (16a)–(16c) by perform-
ing the following decomposition of the kinetic tensor
K
IJ

αβAI
BJ
:

K
IJ

αβAI
BJ
≕ δIJ

�
κ
ð1Þ
I

AI
BI
gαβ þ κ

ð2Þ
I

αβAI
BI

�
þ κ

ð3Þ
IJ

αβAI
BJ
; ð21aÞ

satisfying the constraints

κ
ð1Þ
I
AI

BI
≔
1

4
gαβK

II

αβAI
BI
; gαβ κ

ð2Þ
I
αβAI

BI
≔ 0; κ

ð3Þ
II

αβAI
BI
≔ 0:

ð21bÞ

This splits the kinetic tensor into a part that does not mix
different fields (field-diagonal or F-diagonal), represented
by the term within round brackets, and a remainder which
gives the coupling between different fields (the kinetic
terms in the Ith equation of motion that depend on the Jth
field, with J ≠ I), and allows us to identify in what follows
the conditions leading to the well-known results of GO and
BGO in literature [20,31]. Furthermore, the F-diagonal
term is additionally split in two, one proportional to gαβ

(metric-diagonal or G-diagonal), which generally leads to
the d’Alembertian operator appearing in wavelike equa-
tions of motion for various theories (cf. Sec. IV), and a
remainder, which is only F-diagonal. We now use this
decomposition to derive the results of having simpler types
of kinetic tensors isolatedly.

A. FG-diagonal kinetic tensor

First, we consider an FG-diagonal kinetic tensor, i.e.,

κ
ð1Þ
I

AI
BI

≠ 0, but κ
ð2Þ
I

αβAI
BI

¼ κ
ð3Þ
IJ

αβAI
BJ

¼ 0. Then, Eq. (16a)

gives

CI κ
ð1Þ
I

AI
BI
ψ
I

BI
ð0Þ ¼ 0; CI ≔ gαβq

I
αq
I
β; ð22Þ

where we factored out the phase for the I-th field due to the
F-diagonality, and introduced CI , which attests to the
character (timelike, lightlike, or spacelike) of the wave

vectors q
I
α. If ψ

I

AI
ð0Þ ∉ ker

n
κ
ð1Þ
I

AI
BI

o
, Eq. (22) leads to

CI ¼ gαβq
I
αq
I
β ¼ 0 ⇒ D

IJ
AI

BJ
¼ 0: ð23Þ

The gradient of the above constraint gives [23]

q
I

α∇αq
I

μ ¼ ½Tαβ
μ þ ð1=2ÞQαβ

μ −Qμ
αβ�q

I

αq
I

β: ð24Þ

Therefore, an FG-diagonal kinetic tensor implies that the
integral curves of q

I

α are null and satisfy the transport
equations given by (24). For Lorentzian theories of gravity
or metric-affine theories with a metric-compatible connec-
tion and a completely antisymmetric torsion, this transport
equation implies that the integral curves of q

I

α are affinely

parametrized (metric) geodesics and affinely parametrized
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autoparallels [23]. For metric-affine spacetimes with a
symmetric Weyl connection, Eq. (24) implies that the
integral curves of q

I

α are affinely parametrized (metric)

geodesics and nonaffinely parametrized autoparallels [23].
Furthermore, the vanishing dispersion relations lead to
Eqs. (20b) and (20c), which read,

κ
ð1Þ
I
AI

BI
D
I

ðgÞψ
I

BI
ð0Þ þ

XM
J¼1

F
IJ

αAI
BJ
q
J
αψ
J

BJ
ð0Þe

iðSJ−SIÞ=ϵ¼ 0; ð25aÞ

and

κ
ð1Þ
I

AI
BI
D
I

ðgÞψ
I

BI
ðpþ1Þ þ

XM
J¼1

F
IJ

αAI
BJ
q
J
αψ
J

BJ
ðpþ1Þe

iðSJ−SIÞ=ϵ

¼ −
XM
J¼1

L
IJ

AI
BJ
ψ
J

BJ
ðpÞe

iðSJ−SIÞ=ϵ; ð25bÞ

for 0 ≤ p ≤ N, where

D
I

ðgÞ ≔ gαβD
I
αβ ¼ 2q

I

α∇α þ∇αq
I

α þQβα
βq
I

α: ð26Þ

Equations (25a) and (25b) are evolution equations for the
different amplitudes ψ

I

AI
ðpÞ of ΨI

AI along the integral curves

of q
I

α. Equations (23)–(25a) provide the results leading to

the well-known laws of geometrical optics appearing in the
literature [1,13,14,16,18,32] whereas the remaining orders
allow us to go BGO. The GO results will be properly
illustrated later in Secs. IV and V. It is worth stressing that,
for some choice of fields, the laws of geometrical optics are
contingent on choosing a gauge condition, such as the
Lorenz gauge for the electromagnetic potential Aα or the
harmonic gauge for gravitational wave metric perturbations
[cf. Sec. IVA].

B. FC-diagonal kinetic tensor

Now, of particular relevance is the case where the
F-diagonal part of the kinetic tensor can be written as

κ
ð1Þ
I

AI
BI
≕ ϰ

ð1Þ
I
δAI
BI
; κ

ð2Þ
I

αβAI
BI
≕ ϰ

ð2Þ
I

αβδ
AI
BI
; ð27Þ

where

δAI
BI

≔ δμ1σ1 � � � δ
μrI
σrI
δλ1ν1 � � � δ

λsI
νsI

ð28Þ

is the identity operator in the tensor space ΠPðrI; sIÞ for
everyP∈M. We refer to this possibility as FC-diagonality,
since the F-diagonal part of the kinetic tensor does not mix
different components of a given field. Then, Eq. (16a) gives

�
ϰ
ð1Þ
I
gαβ þ ϰ

ð2Þ
I

αβ

�
q
I
αq
I
βψ
I

AI
ð0Þ ¼ 0: ð29Þ

In this case, if ψ
I

AI
ð0Þ vanishes at most in isolated points,

�
ϰ
ð1Þ
I
gαβ þ ϰ

ð2Þ
I

αβ

�
q
I
αq
I
β ¼ 0 ⇒ D

IJ
AI

BJ
¼ 0; ð30Þ

a nontrivial example of vanishing dispersion tensors
[cf. Eq. (20a)]. In addition, Eq. (18) can be rewritten as

T
IJ

AI
BJ
¼� δIJδAI

BI

�
ϰ
ð1Þ
I
D
I

ðgÞ þD
I

ðϰÞ
�
þ F

IJ

αAI
BJ
q
J
α;

D
I

ðϰÞ ≔ ϰ
ð2Þ
I

αβD
I

αβ; ð31Þ

so that Eqs. (20b) and (20c) give

0@D
I

ðgÞ þ
D
I

ðϰÞ

ϰ
ð1Þ
I

1Aψ
I

AI
ð0Þ þ

XM
J¼1

F
IJ

αAI
BJ
q
J
α

ϰ
ð1Þ
I

ψ
J

BJ
ð0Þe

iðSJ−SIÞ=ϵ ¼ 0;

ð32aÞ

and

0@D
I

ðgÞ þ
D
I

ðϰÞ

ϰ
ð1Þ
I

1Aψ
I

AI
ðpþ1Þ þ

XM
J¼1

F
IJ

αAI
BJ
q
J
α

ϰ
ð1Þ
I

ψ
J

BJ
ðpþ1Þe

iðSJ−SIÞ=ϵ

¼ −
XM
J¼1

L
IJ

AI
BJ

ϰ
ð1Þ
I

ψ
J

BJ
ðpÞe

iðSJ−SIÞ=ϵ; ð32bÞ

for 0 ≤ p ≤ N.

C. FCG-diagonal kinetic tensor

If ϰ
ð2Þ
I

αβ ¼ 0, the kinetic tensor is FCG-diagonal, imply-

ing that CI ¼ 0 and that q
I

α satisfies Eq. (24). In turn,

Eqs. (20b) and (20c) simplify to the following:

D
I

ðgÞψ
I

AI
ð0Þ þ

XM
J¼1

F
IJ

αAI
BJ
q
J
α

ϰ
ð1Þ
I

ψ
J

BJ
ð0Þe

iðSJ−SIÞ=ϵ ¼ 0; ð33aÞ

and
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FIG. 1. Flow diagram depicting the sequence of conditions (green diamonds) satisfied by the original universe of equations of motion
(orange parallelograms) leading to relevant results (yellow rectangles) and corresponding examples (blue parallelograms with round
vertices). The latter are presented in Secs. IV and V. This diagram does not exhaust all possibilities of conditional tests, since
F-diagonality, C-diagonality, and G-diagonality could, in principle, be tested independently, rather than displayed in serialized form. As
such, this flowchart is just a visual representation of interesting combinations among the three diagonality conditions that lead to the
relevant universal results presented in Sec. III.
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D
I

ðgÞψ
I

AI
ðpþ1Þ þ

XM
J¼1

F
IJ

αAI
BJ
q
J
α

ϰ
ð1Þ
I

ψ
J

BJ
ðpþ1Þe

iðSJ−SIÞ=ϵ

¼ −
XM
J¼1

L
IJ

AI
BJ

ϰ
ð1Þ
I

ψ
J

BJ
ðpÞe

iðSJ−SIÞ=ϵ; ð33bÞ

for 0 ≥ p ≥ N. As we explore in the following examples,
these simplified transport equations are common when
describing the evolution of different fields. Figure 1 sum-
marizes the results of this section in a flow diagram,
depicting the sequence of conditions satisfied by the
original universe of equations of motion when their kinetic
tensors possess a number of diagonality conditions.

IV. EXAMPLES IN LORENTZIAN SPACETIMES

To illustrate the extent of the results we have just derived,
let us now consider several examples of fields whose
dynamics is described by a wave-like equation in the form
of Eq. (3a). We start by considering several fields on a
prescribed Lorentzian spacetime which evolve in vacuum
(only under the influence of gravity). Also, by noting that
the leading-order and first subleading-order results (p ¼ n,
nþ 1) have equal powers of the wave vectors q

I
α appearing

in both sides of every equation, we can substitute q
I
α by k

I
α,

and recast our derivations in terms of the actual physical
wave vector k

I
α.

A. No coupling, FCG-diagonal kinetic tensors
and vanishing friction tensors

First, we consider noncoupled fields in Lorentzian
spacetimes, with examples being the Klein-Gordon scalar
Φ, the electromagnetic potential vector Aμ, the Faraday
tensor Fμν, and a trace-reversed gravitational wave (GW)
perturbation in general relativity Cμν. A thorough study of
these fields can be found in various classical texts [1,14,18]
as well as in more recent works [19,28]. Their second-order
equations of motion read, respectively,

b□Φ − ðξR̂þ μ2ÞΦ ¼ 0; ð34Þ

b□Aμ − R̂μ
νAν ¼ 0; ðb∇αAα ¼ 0Þ; ð35Þb□Fμν þ R̂μν
λσFλσ þ 2R̂½μλFν�λ ¼ 0;

ðb∇νFμν ¼ 0; b∇½λFμν� ¼ 0Þ; ð36Þ
and

b□Cμν þ ð2R̂λ
μ
σ
ν − 2R̂λðμδσνÞ − g

μν
R̂λσ þ R̂δλμδσνÞCλσ ¼ 0;

ðb∇νCμν ¼ 0Þ: ð37Þ

We have included auxiliary gauge conditions inside
parentheses to remind ourselves that they must be further
enforced to constrain the general solutions of the second-
order equations of motion. Particularly, in the case of Fμν,
which we describe by its second-order wave equation in
Lorentzian spacetimes, first-order Maxwell equations act as
gauge conditions of sorts, having to be later imposed in
order to remove nonphysical solutions. In the equations
above, b· represents · computed using the Levi-Civita
connection (since we are in the context of Lorentzian
spacetimes), whereas · denotes · computed on a background
gravitational field, which in this case acts as the prescribed
metric [cf. the comment after Eq. (3b)].
A quick inspection shows that all of these fields obey

equations of motion possessing FCG-diagonal kinetic
tensors, vanishing friction tensors, and mass tensors differ-
ing according to the field rank. Table I summarizes them in
a compact form.
From this observation, by proposing JWKB Ansätze:

ΨAðx; ϵÞ ¼
"XN

p¼0

ψA
ðpÞðxÞ

�
ϵ

i

�
p
#
eiSðxÞ=ϵ; ð38Þ

and following the general procedure we have developed in
the prior sections (notice that we have dropped the I index
due to the absence of coupling), the wave vectors kμ
associated to each Ansätze satisfy [cf. Eq. (23)],

kμkμ ¼ 0 ⇒ kνb∇νkμ ¼ 0; ð39Þ

i.e., their associated integral curves are null and both
affinely parametrized metric geodesics and autoparallels
[since the rhs of Eq. (24) vanishes for Lorentzian space-
times]. Moreover, provided friction tensors vanish alto-
gether, their leading-order amplitudes satisfy a simplified
version of Eq. (33a),

D̂ðgÞψA
ð0Þ ¼ ð2kαb∇α þ b∇αkαÞψA

ð0Þ ¼ 0; ð40Þ

where ψA
ð0Þ is equal to ϕð0Þ, að0Þμ, fð0Þμν, and cð0Þμν,

respectively, i.e., the leading-order amplitudes of the

TABLE I. Examples of fields which satisfy equations of motion
with FCG-diagonal kinetic tensors, vanishing friction tensors,
and nonvanishing mass tensors. The I index for different fields
has been dropped due to the absence of coupling.

ΨA KαβA
B F αA

B MA
B

Φ gαβ 0 −ðξR̂þ μ2Þ
Aμ δνμgαβ 0 −R̂μ

ν

Fμν δλμδ
σ
νgαβ 0 R̂μν

λσ þ 2R̂½μλδσν�
Cμν δλμδ

σ
νgαβ 0 2R̂λ

μ
σ
ν −

�
2R̂λðμδσνÞ þ g

μν
R̂λσ

�
þ R̂δλμδσν
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JWKB Ansätze for the Klein-Gordon scalar, the electro-
magnetic vector potential, the Faraday tensor and the GW
perturbation, respectively. Next, with the exception of the
Klein-Gordon field (which is a scalar), the gauge conditions
appearing inside parentheses for Aμ, Fμν, and Cμν imply that
ψA
ð0Þ are transverse to their corresponding wave vectors kμ.

Therefore, since GO results do not depend on mass tensors,
by knowing that all of the above fields obey equations of
motion with FCG-diagonal kinetic tensors and vanishing
friction tensors, they should all obey the following laws of
geometrical optics:

(i) The associated wave vector kμ is null and (affine and
metric) geodesic.

(ii) The leading-order amplitude ψA
ð0Þ is transverse to kμ

(with the exception of the Klein-Gordon scalar).
(iii) ψA

ð0Þ evolves along the integral curves of kμ accord-
ing to Eq. (40).

Since Eq. (40) is a tensor equation, when we are
describing light propagation in the geometrical optics limit,
either using Aμ or Fμν as the fundamental field, law (iii) can
be recast as two indepedent transport laws for the intensity
and the polarization of light. The former equation gives
the pleasant result that a notion of “photon number” is
preserved along the selected null geodesic [1,18,28]. In turn,
the latter transport law simplifies to a parallel transport
provided the chosen set of instantaneous observers along the
selected geodesic is also parallel along the null curve or
possesses special kinematic quantities which further sim-
plify the general transport law [28]. In the case of a GW in
GR, provided a null tetrad decomposition for cð0Þμν is
performed, law (iii) also expresses that a notion of “polari-
zation” for the GW is parallel transported along kμ [19].
Finally, subleading-order amplitudes ψA

ðpÞ (1 ≤ p ≤ N)
satisfy a simplified form of Eq. (33b), but, contrary to the
one followed by ψA

ð0Þ, including a nonhomogenous term

derived from the immediately superleading-order amplitude:

D ðgÞψA
ðpþ1Þ ¼ −LA

Bψ
B
ðpÞ; 0 ≤ p ≤ N; ð41Þ

where LA
B is determined from the kinetic and mass tensors

appearing in Table I for each tensor field. Equation (41) gives
the beyond geometrical optics transport equations for ψA

ðpÞ
along the integral curves of the corresponding wave vectors,
comprising a set of perturbative equations in which the
source term of the transport equation for ψA

ðpþ1Þ only

depends on the solution of the transport equation for the
immediately superleading-order amplitude ψA

ðpÞ. These addi-
tional transport laws allow one to obtain higher-order
corrections to the amplitude associated to the Ansatz of a
given field, thus refining the full JWKB amplitude beyond its
leading-order component ψA

ð0Þ [19,22].

B. Coupling and FC-diagonal kinetic tensors:
reduced Horndeski theories

After illustraing the generality of our results by consid-
ering four examples with FCG-diagonal kinetic tensors and
vanishing friction tensors in the previous section, let us turn
our attention to a final example in Lorentzian spacetimes;
namely, scalar-tensor GWs in a subclass of Horndeski
theories of gravity [33,34] referred to as reduced Horndeski
theories (RHTs) [24–27], whose constraints guarantee that
scalar-tensor GWs propagate at the speed of light.
Similar to the procedure for GWs in GR, second-order

equations of motion can be derived for a GW perturbation
pair ðΦ; HμνÞ by linearizing the corresponding field equa-
tions in RHTs. These are coupled equations at zeroth-, first-
and second-order derivatives, but as shown in Ref. [25], one
can perform a diagonalization procedure to decouple the
kinetic terms (second-order derivatives) in the equations for
Φ and Hμν, arriving at a new pair (Ψ

1
≕Φ;Ψ

2
μν ≕Γμν)

subject to the following equations of motion:

264 L
11

L
12

λσ

L
21

μν L
22

μν
λσ

375� Φ
Γλσ

�
¼ 0; ð42Þ

where

264 L
11

L
12

λσ

L
21

μν L
22

μν
λσ

375 ≔

264K
11

αβ 0

0 K
22

αβ
μν

λσ

375b∇α
b∇β

þ

264 F
11

α F
12

αλσ

F
21

α
μν F

22

α
μν

λσ

375b∇α

þ

264 M
11

M
12

λσ

M
21

μν M
22

μν
λσ

375; ð43Þ

with the kinetic, friction, and mass terms determined from
the RHT Lagrangian and evaluated in the prescribed
background scalar-tensor field ðφ; g

μν
Þ [cf. the comment

after Eq. (3b)]. Here we use Γ as the kernel letter for the
bilinear form without risk of confusion with a general
affine connection Γα

μν, since parallel transport in
Lorentzian spacetimes is given by the Levi-Civita con-
nection of a given metric, which we denote by f μ

α
νg

[cf. Eq. (A3)]. In recent literature [25], this new pair is
interpreted as the true and independent degrees of freedom
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of scalar-tensor GWs in RHTs, obtained from a trans-
formation that makes K

12

αβλσ ¼ 0 ¼ K
21

αβ
μν. The JWKB

Ansätze in this case read

Φðx; ϵÞ ¼
"XN

p¼0

ϕðpÞðxÞ
�
ϵ

i

�
p
#
eiS1ðxÞ=ϵ; N ≥ 0; ð44Þ

and

Γμνðx; ϵÞ ¼
"XN

p¼0

γðpÞμνðxÞ
�
ϵ

i

�
p
#
eiS2ðxÞ=ϵ; N ≥ 0: ð45Þ

Now, contrary to the other examples in Lorentzian
spacetimes, the kinetic tensors in RHTs are not necessarily
FCG-diagonal. However, one can arrive at an FCG-
diagonal kinetic tensor for the bilinear form Γμν by
selecting the so-called and always achievable harmonic
gauge [24,25],

b∇νΓμν ¼ 0; ð46Þ

which yields

K
22

αβ
μν

λσ ¼ ϰ
ð1Þ
2
δλμδ

σ
νgαβ; ϰ

ð1Þ
2
≔−

1

2
G4ðφÞ≕ −

1

2
G4; ð47Þ

where G4 is one of the nonvanishing terms in the general
Lagrangian of RHTs [24]. Since G4 ≠ 0, the form of
K
22

αβ
μν

λσ implies that the wave vector associated to S2ðxÞ
satisfies [cf. Eq. (23)],

gαβk
2
αk
2
β ¼ 0 ⇒ k

2

νb∇νk
2

μ ¼ 0; ð48Þ

i.e., the integral curves of k
2

α are null and affinely para-

metrized affine and metric geodesics. On the other hand,
the harmonic gauge does not constrain K

11

αβ in any way.

However, since Φ is a scalar field, i.e., it only possesses a
single degree of freedom, K

11

αβ is trivially an FC-diagonal

kinetic tensor, meaning that Eq. (30) is valid for k
1

α,

K
11

αβk
1
αk
1
β ¼

�
ϰ
ð1Þ
1
gαβ þ ϰ

ð2Þ
1

αβ

�
k
1
αk
1
β ¼ 0: ð49Þ

Note that the previous equation does not imply that k
1

α is

null unless κ
ð2Þ
1

αβ ¼ 0. Moreover, these kinetic tensors imply

that the transport equations for the leading-order ampli-
tudes ϕð0Þ and γð0Þμν [cf. Eq. (33a)] read [25],

D̂
1

ðKÞϕð0Þ þ F
11

αk
1
αϕð0Þ þ F

12

λσk
2
αγð0ÞλσeiðS2−S1Þ=ϵ ¼ 0 ð50Þ

and

D̂
2

ðgÞγð0Þμν þ
1

ϰ
ð1Þ
2

F
21

α
μνk

1
αϕð0ÞeiðS1−S2Þ=ϵ

þ 1

ϰ
ð1Þ
2

F
22

αλσ
μνk

2
αγð0Þλσ ¼ 0; ð51Þ

where D̂
1

ðKÞ ≔ K
11

αβD̂
1

αβ. At last, the leading-order relation

derived from the harmonic gauge condition for Γμν implies
that γð0Þμν is transverse to k

2

μ. The above results can be

summarized as the laws of geometrical optics for scalar-
tensor GWs in RHTs:

(i) The scalar pertubation wave vector k
1

μ is not null nor
(affine and metric) geodesic in general. If, however,

ϰ
ð2Þ
1

αβ ¼ 0, k
1

μ is null and (affine and metric) geo-

desic, a situation that significantly simplifies the
study of scalar-tensor GWs in RHTs [24–27].

(ii) The tensor perturbation wave vector k
2

μ is always
null and (affine and metric) geodesic.

(iii) The leading-order amplitude ϕð0Þ of the scalar
perturbation has no transversality condition with
respect to k

1

μ given its scalar character.

(iv) The leading-order amplitude γð0Þμν of the tensor
perturbation is transverse to k

2

μ.

(v) ϕð0Þ evolves according to Eq. (50).
(vi) γð0Þμν evolves according Eq. (51).
Finally, subleading-order amplitudes ψ

I

AI
ðpÞ (1 ≤ p ≤ N)

satisfy Eq. (33b) applied to the current example,
but, contrary to the one followed by ψ

I

AI
ð0Þ, including a

nonhomogenous term derived from the immediately
superleading-order amplitudes,

D̂
1

ðKÞϕðpþ1ÞeiS1=ϵ þ F
11

αk
1
αϕðpþ1ÞeiS1=ϵ

þ F
12

λσk
2
αγðpþ1ÞλσeiS2=ϵ

¼ −

264 L
11

L
12

λσ

L
21

μν L
22

μν
λσ

375" ϕðpÞeiS1=ϵ

γðpÞλσeiS2=ϵ

#
; ð52Þ

and

SANTANA, LOBATO, CALVÃO, and REIS PHYS. REV. D 110, 044031 (2024)

044031-10



D̂
2

ðgÞγðpþ1ÞμνeiS2=ϵ þ
1

ϰ
ð1Þ
2

F
22

α
μν

λσk
2
αγðpþ1ÞλσeiS2=ϵ

þ 1

ϰ
ð1Þ
2

F
21

α
μνk

1
αϕðpþ1ÞeiS1=ϵ

¼ −

264 L
11

L
12

λσ

L
21

μν L
22

μν
λσ

375" ϕðpÞeiS1=ϵ

γðpÞλσeiS2=ϵ

#
; ð53Þ

By analogy with the previous examples, Eqs. (52) and
(53) give, respectively, the beyond geometrical optics
transport equations for ϕðpÞ and γðpÞμν (1 ≤ p ≤ N) along
the integral curves of the corresponding wave vectors. In
spite of the fact that k

1

μ is not null in general, its associated

dispersion operator vanishes [cf. (20a)]. As such, all
transport equation in this example also comprise a set of
perturbative equations, with the source term on the rhs of
the transport equations for ϕðpþ1Þ and γðpþ1Þμν only depend-
ing on the solutions of the transport equations for the
immediately superleading-order amplitudes ϕðpÞ and γðpÞμν
(0 ≤ p ≤ N − 1). Notice however, that coupling is gener-
ally still present. These additional transport laws allow
one to obtain higher-order corrections to the amplitudes
associated to the Ansätze of the two fields, thus refining
the full JWKB amplitudes beyond their leading-order
components ψ

I

AI
ð0Þ.

V. EXAMPLES IN METRIC-AFFINE SPACETIMES

In the previous section, we covered five different exam-
ples in Lorentzian spacetimes which show how the universal
results of Sec. III can be directly applied to obtain the laws
of geometrical optics for a number of tensor fields. Now, the
results of Sec. III were in fact derived for metric-affine
spacetimes, which naturally include Lorentzian spacetimes
but also modified theories of gravity that include torsion
and/or nonmetricity to describe additional degrees of free-
dom of the gravitational field [cf. the Appendix]. We now go
over two examples in this more general geometrical context
in the case of the Faraday tensor.

A. Faraday tensor in spacetimes with
a metric-compatible connection and a completely

antisymmetric torsion

In a spacetime with a metric-compatible connection
(Qμνα ¼ 0) and a completely antisymmetric torsion (Tμνα ¼
−Tνμα ¼ Tναμ ≠ 0), which we refer to as MCCAT, by
analogy with the Lorentzian case, we can use the primitive
first-order Maxwell equations as a starting point and recast
them in terms of the full affine connection Γα

μν,

b∇νFμν ¼ ∇νFμν −
1

2
Tμ

αβFαβ ¼ 0; ð54Þ

∂½λFμν� ¼ ∇½λFμν� − Tα½μνFαλ� ¼ 0; ð55Þ

to derive the following wavelike equation of motion for Fμν:

□Fμνþ δα½μTν�λσ∇αFλσ þ
h
2
�
Rλ½μν�σ þRλ½μδσν� þ∇ρTλ½μρδσν�

�
þ∇½μTν�λσ þ∇σTλ

μν − ð1=2ÞTρ
μνTρ

λσ
i
Fλσ ¼ 0; ð56Þ

where we recall that the original Maxwell equations need to
be further enforced on the solutions of the previous
equations to remove nonphysical solutions. A quick inspec-
tion shows that the kinetic, friction and mass tensors are
respectively given by

Kαβ
μν

λσ ¼ δλμδ
σ
νgαβ; F α

μν
λσ ¼ δα½μTν�λσ; ð57Þ

Mμν
λσ ¼ 2

�
Rλ½μν�σ þ Rλ½μδσν� þ∇ρTλ½μρδσν�

�
þ∇½μTν�λσ þ∇σTλ

μν − ð1=2ÞTρ
μνTρ

λσ: ð58Þ

The Ansatz is equal to the one for the Lorentzian case,
namely, Eq. (38) applied to Fμν. Now, even with a more
complicated equation of motion, the kinetic tensor here is
also FCG-diagonal, such that the wave vector here as well
is null [cf. Eq. (23)] and affinely parametrized affine and
metric geodesic [cf. the comment after Eq. (24)] [23]. This
condition on the kinetic tensor and the nonzero friction
tensor for MCCAT lead to the following transport equation
for the leading-order amplitude fð0Þμν [cf. Eq. (33a)]:

D ðgÞfð0Þμν þ k½μTν�λσfð0Þλσ ¼ 0; ð59Þ

where

D ðgÞ ¼ 2kα∇α þ∇αkα: ð60Þ

Now, the gauge conditions to be imposed on the
solutions above are given by Eqs. (54) and (55), implying
that fð0Þμν is transverse to the wave vector kμ. Therefore,
the laws of geometrical optics for the Faraday tensor
herein read:

(i) The wave vector kμ is null and (affine and metric)
geodesic.

(ii) The leading-order amplitude fð0Þμν is transverse
to kμ.

(iii) fð0Þμν is transported according to Eq. (59), which in
the case of MCCAT has an additional friction tensor.

Finally, subleading-order amplitudes fðpÞμν (1 ≤ p ≤ N)
satisfy Eq. (33b) for the MCCAT case:
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D ðgÞfðpþ1Þμν þ k½μTν�λσ fðpþ1Þλσ ¼ −Lμν
λσ fðpÞλσ;

ð0 ≥ p ≥ NÞ ð61Þ

with

Lμν
λσ ¼ δλμδ

σ
ν□þ δα½μTν�λσ∇α þ 2

�
Rλ½μν�σ

þ Rλ½μδσν� þ∇ρTλ½μρδσν�
�

þ∇½μTν�λσ þ∇σTλ
μν − ð1=2ÞTρ

μνTρ
λσ: ð62Þ

Equation (59) shows that fð0Þμν evolves independently of
the higher-order amplitudes fðpÞμν (1 ≤ p ≤ N), similar to
all the Lorentzian examples we considered in Sec. IV.
Additionally, Eq. (61) are beyond geometrical optics trans-
port equations for fðpÞμν (1 ≤ p ≤ N) along the integral
curves of kμ. These also comprise a set of perturbative
equations, allowing one to obtain higher-order corrections
to the amplitude of the Ansatz of Fμν, thus refining the
full JWKB amplitude beyond its leading-order compo-
nent fð0Þμν.

B. Faraday tensor in Weyl spacetimes

In a spacetime with a symmetric connection (Tα
μν ¼ 0)

and a Weyl nonmetricity (Qμνα ¼ gμνζα, where ζα is an
arbitrary real 1-form), we continue to use Maxwell equa-
tions as a starting point and recast them in terms of the full
affine connection Γα

μν

b∇νFμν ¼ ∇νFμν þ 2ζνFμν ¼ 0; ð63Þ

∂½λFμν� ¼ ∇½λFμν� ¼ 0: ð64Þ

These imply that the Faraday tensor satisfies the follow-
ing wavelike equation of motion:

□Fμν þ 2ζ½μgασδλν�∇αFλσ þ 2ðRλ½μν�σ þ Rλ
ρ½μρδσν�ÞFλσ ¼ 0:

ð65Þ

A quick inspection shows that the kinetic, friction and
mass tensors in this case are, respectively, given by:

Kαβ
μν

λσ ¼ δλμδ
σ
νgαβ; F α

μν
λσ ¼ 2ζ½μgασδλν�; ð66Þ

Mμν
λσ ¼ 2

�
Rλ½μν�σ þ Rλ

ρ½μρδσν�
�
: ð67Þ

The proposed Ansatz is equal to the one for the
Lorentzian case and the first metric-affine geometry we
have considered. Here as well, the kinetic tensor is FCG-
diagonal, such that the wave vector is also null [cf. Eq. (23)].
However, contrary to MCCAT, for a Weyl connection,
Eq. (24) implies that integral curves of kα are affinely

parametrized metric geodesics but nonaffinely parametrized
autoparallels [cf. again the comment after Eq. (24)]. Finally,
the leading-order of Eq. (33a), given that we also have a
nonzero friction, yields

D ðgÞfð0Þμν þ 2ζ½μkσδλν� fð0Þλσ ¼ 0; ð68Þ

whereas Eq. (33b) leads to the transport equations of
subleading-order amplitudes,

D ðgÞfðpþ1Þμν þ 2ζ½μkσδλν� fðpþ1Þλσ ¼ −Lμν
λσ fðpÞλσ;

ð0 ≥ p ≥ NÞ ð69Þ

with

D ðgÞ ¼ 2kα∇α þ∇αkα þ kαζα; ð70Þ

and

Lμν
λσ ¼ δλμδ

σ
ν□þ 2ζ½μgασδλν�∇α þ 2

�
Rλ½μν�σ þ Rλ

ρ½μρδσν�
�
:

ð71Þ

Finally, by imposing Maxwell equations as gauge con-
ditions on the above solutions shows that fð0Þμν is trans-
verse to the wave vector. Similar to the MCCAT case, the
above constraints imply that Eq. (68) simplifies to

D ðgÞfð0Þμν ¼ 0; ð72Þ

where the above differential operator resembles the one
appearing in the Lorentzian examples, but, in Weyl space-
times, the 1-form ζα modifies the simpler D̂ðgÞ.
Accordingly, the laws of geometrical optics for the

Faraday tensor read:
(i) The wave vector kμ is null and (affine and metric)

geodesic.
(ii) The leading-order amplitude fð0Þμν is transverse

to kμ.
(iii) fð0Þμν is transported according to Eq. (68).
Equation (68) shows that fð0Þμν evolves independently of

the higher-order amplitudes fðpÞμν (1 ≤ p ≤ N). In turn,
Eq. (69) are beyond geometrical optics transport equations
for fðpÞμν (1 ≤ p ≤ N) along the integral curves of kμ. These
also comprise a set of perturbative equations, allowing one
to obtain higher-order corrections to the amplitude of the
Ansatz of Fμν, thus refining the full JWKB amplitude
beyond its leading-order component fð0Þμν. Figure 2 depicts
each example presented herein inside its corresponding set
of equations of motion.
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VI. DISCUSSION

In this work, we have developed a unified framework
for describing linear waves associated to tensor fields of
arbitrary rank obeying coupled homogeneous linear wave-
like second-order partial differential equations. Even
though Eqs. (16a) through (16c) are quite straightforwardly
derived from inserting the Ansätze (14a) into Eq. (3a) and
demanding that the latter are valid for each and every order
of ϵ, those relations are the core results leading to the well-
known relations of GO and BGO appearing in the literature.
More specifically, GO is derived from the leading

(p ¼ 0) and first subleading-orders (p ¼ 1) of those
equations, which give, respectively, definite constraints
among the vector fields q

I
α and transport equations for

every leading-order amplitude ψ
I

AI
ð0Þ, whereas BGO relates

to the transport equations for the (p ≥ 1)-order amplitudes.
Furthermore, the GO results only depend on the kinetic and
friction tensors appearing in Eq. (3a). This is precisely why
we considered the decomposition of a generic kinetic tensor
in Sec. III, which allowed us to establish important results
directly dependent on its form; namely, F-diagonality,
FG-diagonality, FC-diagonality, and FCG-diagonality.
As we have seen, provided that ψ

I

AI
ð0Þ vanishes at most in

isolated points, either FG-diagonality or FCG-diagonality
for the kinetic tensor lead to q

I
α being null, which,

together with q
I
α being a gradient, yields Eq. (24) as its

corresponding transport law. This is one of the core results
derived from the unified framework we present herein,
showing that specific forms for the kinetic tensor—which
in the language of characteristic surfaces and bicharacter-
istic curves [9] correspond to the so-called principal part of
the associated equations of motion—directly lead to a
generalization of one of the key results of traditional GO;
namely, that rays are null geodesics [13,14,16,18,32].
This result applies to all examples in Lorentzian space-

times we have considered in Sec. IV, with the exception of
RHTs, in which the perturbation of the scalar field does not
necessarily possess either an FG- or an FCG-diagonal
kinetic tensor. Furthemore, given a more general affine
connection, Eq. (24) shows that the null curves of a given
physical field continue to be extremal geodesics, but no
longer need to be autoparallels [23]. Even though this is the
case, in Sec. V we gave two explicit nontrivial examples,
MCCAT and Weyl spacetimes, where the null curves
continue to be autoparallels (nonaffinely parametrized in
the latter case).
Hence, contrary to Lorentzian geometry, where tradi-

tional GO gives the pleasant result that null curves
are geodesics—which demonstrates in an alternative man-
ner Einstein’s original hypothesis in his formulation of
GR [35]—a similar formalism applied to metric-affine
gravity gives a perhaps not-so-pleasant but still consistent
outcome. Nonetheless, even in the more general context
of metric-affine spacetimes, provided we still assume
fields satisfy linear equations of motion, the first law of

FIG. 2. Venn diagram representing the different possible systems of second-order (nonvanishing kinetic tensor) homogeneous
equations of motion and the presence or absence of friction and mass tensors. All examples in Secs. IV and V appear in relevant
intersections among the sets considered.
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geometrical optics remains independent of any amplitude
ψ
I

AI
ðpÞ, meaning the geometry of null rays can be studied

irrespective of how the amplitude of the corresponding
field evolves through spacetime. This is precisely what
allows us to properly study the geometry of null rays and
generalize, for example, the usual distance reciprocity
relation in the context of an arbitrary metric-affine space-
time [23].
While beyond the scope of this presentation, provided

the associated kinetic tensor has an FCG-diagonal form,
the GO transport equation for an otherwise arbitrary ψ

I

AI
ðpÞ

[cf. Eq. (33a)] can be used to derive balance equations for
a phenomenological brightness-related quantity, from
which a notion of particle number arises by making use
of the de Broglie hypothesis. This would allow us to
obtain a first principles approach to study the relativistic
thermodynamic regime of such systems [36] or to deal
with kinetic treatments for gravitationally induced particle
production [37]. In a future work, we shall explore such
phenomenological equations to derive a generalized
version of the usual distance duality relation in a generic
metric-affine spacetime. In particular, such generalization
could be contrasted to observational data in order to
constrain additional degrees of freedom in the gravita-
tional field and/or exotic types of matter and radiation
inhabiting the Universe.
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APPENDIX: METRIC-AFFINE GEOMETRY

A metric-affine spacetime is defined as a triple
ðM ; gαβ;Γμ

αβÞ,M is a four-dimensional smooth manifold,
gαβ, a Lorentzian metric with signature þ2, and the affine
connection Γμ

αβ is, in general, independent of the metric
tensor. In particular, the latter is such that there are

additional tensors describing the curvature of spacetime;
namely, the torsion

Tμ
αβ ≔ Γμ

αβ − Γμ
βα; ðA1Þ

and the nonmetricity

Qαβμ ≔ ∇μgαβ: ðA2Þ

With these definitions, we are able write the generic
connection components in any coordinate chart in the form

Γμ
αβ ¼ f α

μ
βg þ Kμ

αβ þDμ
αβ; ðA3Þ

where

f α
μ
βg ≔

1

2
gμνð∂βgνα þ ∂αgβν − ∂νgαβÞ; ðA4Þ

Kμ
αβ ≔

1

2
ðTαβ

μ þ Tβα
μ þ Tμ

αβÞ; ðA5Þ

and

Dμ
αβ ≔

1

2
ðQαβ

μ −Qμ
αβ −Qμ

βαÞ: ðA6Þ

The first term in Eq. (A4) is the usual Levi-Civita
connection associated to the metric gαβ, whereas Eqs. (A5)
and (A6) define, respectively, the contorsion and the
deflection tensors [23]. In the presence of torsion, the
Ricci identity reads,

ð∇ν∇μ−∇μ∇νÞΨα1���αr
β1���βs ¼

Xr
i¼1

Rαi
λμνΨα1���λ���αr

β1���βsþ

−
Xs

i¼1

Rλ
βiμνΨ

α1���αr
β1���λ���βsþ

−Tλ
μν∇λΨα1���αr

β1���βs ; ðA7Þ

where we have defined the Riemann tensor of the generic
connection Γμ

αβ,

Rα
βμν ≔ ∂νΓα

βμ − ∂μΓα
βν þ Γα

λνΓλ
βμ − Γα

λμΓλ
βνs: ðA8Þ
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