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We consider null and timelike geodesics around a spherically symmetric, nonrotating coherent quantum
black hole (CQBH). The classical limit of the geometry of a CQBH departs from that of the Schwarzschild
spacetime at short scales and depends on one parameter Rs which can be interpreted as the physical radius
of the “quantum” core. We study circular orbits, photon rings, and lensing effects and compare them with
the Schwarzschild metric. Using the relativistic ray-tracing code GYOTO, we produce a simulation of the
shadow and show that thin accretion disks around a CQBH possess unique ring structures that distinguish
them from other theoretical models.
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I. INTRODUCTION

The term “black hole mimickers” refers to theoretical
astrophysical objects that closely resemble black holes in
observational appearance, exhibiting similar features such
as photon rings and accretion disks while at the same time
being described by a theoretical model distinct from
classical black holes [1].
Various types of black hole mimickers have been

proposed over the years as candidates for the extreme
compact objects we observe in the Universe. These include
gravastars [2–6], boson stars [7–11], wormholes [12–16],
regular black holes [17–27], and deformed compact
objects [28–32]. In recent times, significant progress in
experimental observations, such as the imaging of the
shadow of the supermassive black hole at the core of the
M87 galaxy [33,34] and the detection of gravitational
waves from binary mergers [35], has presented the oppor-
tunity to test the validity of these alternative models and in
turn potentially constrain proposed modification to general
relativity (GR) [36–44].
In the present article, we consider an alternative black

hole model, called the coherent quantum black hole
(CQBH), which is obtained from a simple prescription
for quantization that was proposed by Casadio [45–47].
The CQBH, despite being a simple toy model, presents
several features that make it appealing as a hypothetical
candidate for an astrophysical compact object. First of all, it
is built with a minimal approach for the quantization of
gravity in the vicinity of the classical black hole singularity
which produces a compact massive core of finite size.
Second, the core of the resulting object may be located

below the classical event horizon. This results in the CQBH
having an outer horizon which mimics the black hole
event horizon while lacking an inner Cauchy horizon, thus
avoiding the problems related to causality violations and
mass inflation [48–52]. Finally, the CQBH produces a
spacetime geometry which bears the unique signature of its
core. This means that quantum corrections in the strong
curvature region produce macroscopic effects which are
potentially measurable. From the point of view of obser-
vations, this may allow for observational tests to constrain
the size of the object’s core and consequently the scale of
the modifications to GR. In Ref. [53], it was shown that the
CQBH is consistent with the Bekenstein-Hawking thermo-
dynamic entropy for black holes, while in Ref. [54] a
charged CQBH was obtained. In this article, we study the
motion of massive test particles and photons in the geo-
metry of the CQBH and investigate how future observa-
tions may be used to test the physical viability of this
hypothetical compact object.
The paper is organized as follows. In Sec. II, we briefly

review the line element and its properties. Sections III
and IVare dedicated to modeling the motion of massive and
massless particles respectively. In particular, in Sec. III,
we model thin accretion disks in the geometry of the
CQBH, while in Sec. IV, we model gravitational lensing. In
Sec. V, we use GYOTO, a general relativistic ray-tracing
code [55–57], to simulate the image of the CQBH’s
shadow. Finally, in Sec. VI, we summarize the results
and their implications. Throughout the article, we use
geometrized units setting c ¼ 1 with the metric signa-
ture f−;þ;þ;þg.

II. SPACETIME

The geometry of the static and spherically symmetric
CQBH in Schwarzschild coordinates is given by
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ds2 ¼ −ð1þ 2VQNÞdt2 þ
dr2

1þ 2VQN
þ r2dΩ2; ð1Þ

where dΩ2 is the line element on the unit sphere and

VQN ¼ 2VN

π
Si

�
r
Rs

�
ð2Þ

represents the effective quantum analog of the Newtonian
potential VN ¼ −GNM=r. Here, Rs is a parameter describ-
ing the size of the quantum core, and

SiðxÞ ¼
Z

x

0

sin z
z

dz ð3Þ

is the Sine integral function. The other constants are GN,
i.e., Newton’s constant, and M, which describes the
Arnowitt–Deser–Misner (ADM) mass of the CQBH. It is
important to notice that the parameter Rs in the CQBH
model is obtained by introducing an UV cutoff scale to
regularize the UV divergence due to the vanishing volume
and infinite density of the classical source of the
Schwarzschild metric. Therefore, the metric must be
understood as a simple toy model that captures the essence
of the classical configuration emerging from the coherent
quantum states. The resulting core is “classical” in the
sense that it is larger than the Planck length and of the order
of the Schwarzschild radius [46]. In fact, Rs may be larger
than, smaller than, or equal to the size of the horizon radius
(see Fig. 1). Because of this additional parameter in the
metric, the solution violates the no-hair theorem [58].
The CQBH metric (1) reduces to the Schwarzschild

metric in the weak-field limit, as can be seen by taking the

limit, as r=Rs → ∞, for which the sine integral function
Siðr=RsÞ → π=2 and VQN ≃ VN. Hence, at large distances,
the metric is asymptotically flat. However, at distances
close to the core, the properties of the CQBH differ
significantly from those of a Schwarzschild black hole.
For instance, the classical black hole singularity is replaced
by a finite size core with an integrable singularity at the
center and finite tidal forces [45,59]. This suggests that
observations of orbits in the vicinity of the compact object
may allow us to distinguish it from a Schwarzschild
black hole.
The radius of the event horizon RH of a CQBH is

obtained by solving the equation grr ¼ 1þ 2VQN ¼ 0 and
is shown in Fig. 1 as a function of the core radius Rs. Notice
that, due to the presence of the Sine integral function, the
value of the horizon radius as a function of Rs oscillates
about the Schwarzschild radius (RSch ¼ 2M). In the fol-
lowing, for the sake of simplicity, we take the ADM
mass of the compact object as M ¼ 1, or equivalently
we rescale the time and radial coordinates t, r and the core
radius Rs in units of M. We can see that there exist values
of Rs for which the horizon of the CQBH is the same
as Schwarzschild. The largest value of Rs for which the
two horizons coincide is Rs ≃ 1.06, and for Rs ≳ 1.2, the
horizon radius is smaller than the core radius, thus making
the CQBH a horizonless compact object. A detailed
analysis of the CQBH can be found in Ref. [60]. In the
following, our focus lies in understanding the properties of
massive and massless particle motion in the CQBH exterior
and how specific features of lensing, shadow, and accretion
disks depend on the parameter Rs.

III. MOTION OF MASSIVE PARTICLES

Black holes are not directly observable by definition.
However, their surroundings have properties that depend
directly on the nature and properties of the central object.
For example, the closest stable orbit to a Kerr black hole
depends on the value of the central object’s angular
momentum. Therefore, at least in principle, it should be
possible to test theoretical models of extreme compact
objects through observations of their surrounding environ-
ment, such as accretion disks. We can model the motion of
particles in the accretion disk by considering geodesic
motion for test particles (assumed to have negligible mass
as compared to the central object’s) on circular orbits. To
this aim, in the following, we shall write the equations of
motion for test particles.
Because of the static and spherically symmetric nature of

the CQBH metric, there exist two Killing vectors corre-
sponding to two constants of motion for particles on
geodesics, namely, the particle’s energy pt ¼ Ẽ and angu-
lar momentum pϕ ¼ L̃. Also, due to spherical symmetry,
we can restrict the analyses to the equatorial plane.
Now, the conserved quantities per unit mass E ¼ Ẽ=m

FIG. 1. The solid line represents the horizon radius RH of the
CQBH as a function of Rs. For comparison, we show the
Schwarzschild radius RSch given by the horizontal dashed line.
The shaded area represents the size of the matter core showing
that for Rs ≳ 1.2 the core is larger than the horizon.
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and L ¼ L̃=m are obtained from

ṫ ¼ pt

m
¼ ð1þ 2VQNÞ−1E; ð4Þ

ϕ̇ ¼ pϕ

m
¼ r−2L; ð5Þ

where ẋμ ¼ dxμ=dτ is the tangent to the geodesic fxμðτÞg
with τ the proper time. Using the normalization
gμνẋμẋν ¼ −1 for massive particles, we find the radial
equation of motion as

ṙ2 ¼ E2 − VeffðrÞ; ð6Þ

where Veff is the effective potential which for the metric (1)
is given by

Veff ¼
�
L2

r2
þ 1

��
1þ 2VQN

�
: ð7Þ

In Fig. 2, we plot the effective potential with respect to
the radial coordinate r and compare its behavior with that of
a Schwarzschild black hole. It is interesting to note that the
effective potential for massive particles around a CQBH
exhibits an oscillatory behavior with several local extrema
for any given values of E and L, which is in sharp contrast
with the Schwarzschild case. In Fig. 2, we chose the value
of the angular momentum L ¼ 12 which corresponds to
particles on circular orbit rotating at the innermost stable
circular orbit (ISCO), RISCO ¼ 6, in the Schwarzschild
spacetime. The most notable feature is that there exist
multiple radii allowing stable orbits even beyond the ISCO

radius for Schwarzschild. These numerous stable and
unstable orbits could substantially affect the appearance
of the accretion disk around the CQBH. For larger values
of r, i.e., far from the black hole, the CQBH effective
potential tends toward Schwarzschild, and the potential
barrier for stable orbits becomes smaller, thus making it
more difficult for particles to circularize in a realistic
accretion disk.
For timelike geodesics, the effective potential Veff is

given by Eq. (7), and the energy and angular momentum of
a particle on a circular orbit at a radius r can be found from
the conditions Veff ¼ E and V 0

eff ¼ 0, where the prime
denotes derivative with respect to the radial coordinate r.
More explicitly, the second equality gives

V 0
eff ¼

2L2

r3
þ 4L2VQN

r3
−
2L2V 0

QN

r2
− 2V 0

QN ¼ 0; ð8Þ

and using Eqs. (6) and (8), we can obtain the energy and
angular momentum EðrÞ and LðrÞ of particles on a given
circular orbit with radius r as

E2 ¼ ð1þ 2VQNÞ2
1þ 2VQN − V 0

QNr
; ð9Þ

L2 ¼ r3V 0
QN

1þ 2VQN − V 0
QNr

: ð10Þ

Similarly, the particle’s angular velocity is given by

ω ¼ dϕ
dt

¼
ffiffiffiffiffiffiffiffiffi
V 0
QN

r

s
: ð11Þ

At distances far from the compact object, VQN ≃ VN, and
these quantities reduce to those of the Schwarzschild
metric. Now, in Schwarzschild, we can find the radius of
the ISCO from the condition V 00

eff ¼ 0, which gives the
radius at which the circular orbit is marginally stable. In
the case of the CQBH, the condition V 00

eff ¼ 0 identifies the
radii at which the local extrema become marginally stable.
We get

V 00
eff ¼

6L2

r4
−
8L2V 0

QN

r3
þ 12L2VQN

r4
þ 2L2V 00

QN

r2
þ 2V 00

QN ¼ 0;

ð12Þ

where

V 0
QN ¼ 2

π

GM
r2

�
Si

�
r
Rs

�
− sin

r
Rs

�
; ð13Þ

V 00
QN ¼ 2

π

GM
r2

�
−
2

r
Si

�
r
Rs

�
þ 3

r
sin

r
Rs

−
1

Rs
cos

r
Rs

�
: ð14Þ

FIG. 2. The effective potential Veff as a function of the radial
coordinate for massive particles in the equatorial plane of CQBH
spacetime as compared to the Schwarzschild effective potential
(solid line). All cases are shown for angular momentum L ¼ 12.
The vertical gray line highlights the innermost stable circular
orbit for the Schwarzschild case.
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Stable circular orbits for massive particles around the
CQBH are shown in Fig. 3, depending on the radius of the
core Rs. For any given value of Rs, there exist several
regions of stable circular orbits in the CQBH spacetime,
and the radius of the ISCO RISCO for each region corre-
sponds to the smallest stable circular orbit. This means that
there exist gaps between separate regions of stable orbits.
This feature persists also at large distances, making the
CQBH disk’s structure unique. Of course, at large distances,
the gaps would become less prominent as the potential
barriers become smaller. Note that the smallest RISCO for
the CQBH that resembles Schwarzschild is obtained for
Rs ≈ 0.8. Notice also that for values of Rs ≳ 0.8 the smallest
ISCO radius is larger than Schwarzschild’s.
On the other hand, the regions of stable circular orbits get

closer for smaller values of Rs, and it can be expected that
for sufficiently small values there would be stable orbits all
the way to the CQBH horizon. This is in sharp contrast to
the Schwarzschild case where stable orbits can no longer
exist beyond r ¼ 6.

IV. MOTION OF MASSLESS PARTICLES

Following the same procedure as before for massless
particles, we still have the conserved quantities from
Eqs. (4) and (5), and we must now use gμνẋμẋν ¼ 0 to
write the radial equation of motion

ṙ2 ¼ E2 −
L2

r2
ð1þ 2VQNÞ ð15Þ

so that the effective potential for photons is given by

Veff ¼ ð1þ 2VQNÞ
L2

r2
: ð16Þ

The photon ring is defined as the circular orbit of massless
particles, and it is given by the condition V 0

eff ¼ 0,
explicitly

1 − V 0
QNrþ 2VQN ¼ 0: ð17Þ

This equation reduces to

πr
2GNM

¼ 3Si

�
r
Rs

�
− sin

�
r
Rs

�
;

which can be solved numerically to obtain the radius of
photon sphere. The most interesting aspect is that for
Rs ≲ 0.36 there exist values of Rs for which the above
equation has multiple solutions, indicating the existence of
unstable as well as stable orbit for photons. In Fig. 4, we
compare the effective potentials for massless particles in
Schwarzschild and CQBH for different values of Rs. Again,
the effective potential of the CQBH shows an oscillatory
behavior about the Schwarzschild’s effective potential with
the most interesting feature being the existence of one
stable circular orbit for photons for Rs ≃ 0.2.
In Fig. 5, we show the radius of the CQBH photon ring

as a function of parameter Rs. For Rs ¼ 1.06, the horizon of
CQBH is approximately equal to the Schwarzschild one.
However, at this value of the parameter, the photon ring of
the CQBH is larger than the Schwarzschild photon ring.
Also, for smaller Rs, there are regions where more than one
photon ring may appear; for example, there are three rings
for Rs ≃ 0.2, and for even smaller values of the parameter,

FIG. 3. Boundary contours for regions of stable circular orbits
for the CQBH depending on the value of the parameter Rs. The
black horizontal dashed line represents RISCO for the Schwarzs-
child case. The gray solid and dashed lines denote the radius of
the horizons for the CQBH and Schwarzschild, respectively.

FIG. 4. The effective potential for massless particles in the
equatorial plane of the CQBH as a function of the radial
coordinate in units of M. The effective potential is shown for
three values of Rs. Notice that for Rs ¼ 0.2 (dotted line) there
exist three locations for circular orbits for photons, with one of
them being stable. For comparison, the solid line shows the
corresponding effective potential for Schwarzschild, and the
vertical gray line highlights the Schwarzschild photon ring
radius.
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the photon rings get closer. At sufficiently small values of
Rs, we expect the existence of a photon disk which spreads
from r ≈ 2.35 to r ≈ 3.6.

A. Lensing

The first application of general relativity was gravita-
tional lensing [61], and since then, it has been widely
used to study several astrophysical phenomena (see, for
example, Refs. [43,62–65]). In the following, we analyze
the deflection angle of light in the CQBH geometry and
compare it with that by a Schwarzschild black hole.
Using Eq. (5) and (15), we obtain

dϕ
dr

¼ � 1

r2

�
1

b2
−

1

r2
ð1þ 2VQNÞ

�
−1=2

; ð18Þ

where b ¼ L=E is the impact parameter for a massless
particle. Then, the magnitude of the total angle swept by a
light ray as it travels from infinity toward the closest
approach to the CQBH and to infinity again can be obtained
by simply integrating the previous equation

Δϕ ¼ 2

Z
∞

r1

dr
r2

�
1

b2
−

1

r2
ð1þ 2VQNÞ

�
−1=2

; ð19Þ

where due to symmetry we can integrate from infinity to the
turning point r1, defined by the condition dr=dtjr1 ¼ 0 and
for which Veffðr1Þ ¼ 1=b2. Introducing a new variable
w ¼ b=r, we rewrite Δϕ as

Δϕ ¼ 2

Z
w1

0

dw

�
1 − w2

�
1 −

4Mw
πb

Siðb=wRsÞ
��

−1=2
;

ð20Þ

where w1 ¼ b=r1 and we have set GN ¼ 1.
Of course, it is not possible to find an analytical solution

for the integral above, because of the presence of the sine
integral function. Therefore, first we look at the weak-field
limit, i.e., when M=b ≪ 1. In the weak-field limit, as
b=wRs → ∞ and for large values of the argument, the Sine
integral function SiðxÞ can be rewritten as an asymptotic
series as

SiðxÞ ≃ π

2
−
cos x
x

−
sin x
x2

þ � � � ð21Þ

Keeping the next-to-leading-order term from Eq. (21), Δϕ
becomes

Δϕ ¼ 2

Z
w1

0

dw

�
1 − w2

�
1 −

2M
b

wþHðwÞ
��

−1=2
; ð22Þ

with

HðwÞ ¼ 4MRs

πb2
w2 cos

�
b

wRs

�
: ð23Þ

Notice that HðwÞ has a term in MRs=b2 which in the weak
field limit is negligible. Then, for H ¼ 0, Eq. (22) is the
same as in the Schwarzschild case and can be integrated to
find Δϕ ¼ π þ 4M=b. Considering H ≠ 0 and making an
expansion of the integrand in Eq. (22) forM=b ≪ 1, we get

Δϕ ¼ π þ 4M
b

−
4MRs

πb2

Z
w1

0

dw
w4 cosðb=wRsÞ
ð1 − w2Þ3=2 ; ð24Þ

which is related to the deflection angle for a light ray via
δϕ ¼ Δϕ − π. The deflection angle as a function of the
inverse of the impact parameter 1=b for Schwarzschild
(with M ¼ 1) and for the CQBH with Rs ¼ 0.5 is shown
in Fig. 6.
We can also calculate the critical value of the impact

parameter bcrit at which photons get captured into the
photon ring. The critical impact parameter can be calcu-
lated numerically by substituting Rph into Eq. (15) and
solving the following equation:

1

b2crit
−
1þ 2VQNðRphÞ

R2
ph

¼ 0: ð25Þ

The value of bcrit is important because it determines
the radius of the shadow of the black hole, which in turn
relates to the image seen by a distant observer. Then, for
Schwarzschild, we know that bcrit ¼ 3

ffiffiffi
3

p
≈ 5.196, and

FIG. 5. The CQBH’s photon ring radius (Rph) as a function
of the parameter Rs is represented by the solid black line in
comparison with Schwarzschild’s photon ring as the dashed black
line. Also, the event horizon for the CQBH and Schwarzschild are
shown by the gray solid and dashed lines, respectively. The
vertical line shows the location of the three circular photon orbits
obtained for Rs ¼ 0.2 as can be seen by the extrema of the
effective potential in Fig. 4.
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from Fig. 6 for a CQBH with Rs ¼ 0.5, we find
bcrit ≈ 4.764. Figure 6 also shows that lensing for CQBH
and Schwarzschild coincides in the weak-field regime.
However, for any given value of Rs, the value of the deflec-
tion angle of the CQBH as a function of 1=b oscillates
about the Schwarzschild value in a manner that may affect
the appearance of the accretion disk and the shadow.

V. SHADOW

We now turn our attention to the shadow image of a
CQBH. The first computation of the appearance of an
accretion disk surrounding a Schwarzschild black hole
using the ray-tracing method was done by Luminet in the
1970s [63]. To obtain the image of the shadow for the
CQBH, we use an open-source general relativistic ray-
tracing code called GYOTO [55–57], which we modify to
simulate the image of a thin infinite accretion disk around
the CQBH and produce images of the gravitationally lensed
disk by ray-tracing the photons emitted from the accreting
matter toward the observer. The GYOTO code integrates
geodesics backward in time, so the initial conditions are
given on the observer’s screen in terms of position and the
incidence angle of the photons. Since most photons emitted
from the accreting matter do not arrive at the observer,
backward ray-tracing deals only with photons that hit the
screen, thus substantially reducing the number of calcu-
lations. To integrate the geodesic equations, the code uses
the Runge-Kutta algorithm of fourth order RK4 with an
adaptive step [66]. The GYOTO code is also capable of
producing shadow images with other more realistic models
of accretion disks such as Novikov-Thorne [67], Polish
doughnut [68], etc. However, for our purposes, simulating

the shadow of a geometrically thin infinite accretion disk
around a CQBH is sufficient to outline the key character-
istics that distinguish it from Schwarzschild.
We modified GYOTO to include the CQBH spacetime,

and for computational complexity reduction, we used the
simplest default model of accretion disk called “THINDISK,”
which describes the geometrically thin accretion disk [69,70].
Geometrically thin refers to the condition h ≪ r, where r is
the radial coordinate on the disk and h is the semithickness
of the disk. The interior radius of a disk corresponds to
RISCO, and the outer radius of the disk is taken at infinity.
Also, for simplicity, we consider an optically thick disk, for
which only photons emitted from the disk’s surface can be
observed; i.e., we take λ ≪ h where λ is the mean free path
of the photon.
For the optically thick and geometrically thin disk,

according to Ref. [71], the emitted radiation can be
modeled via monochromatic radiation with isotropic spe-
cific intensity in the rest frame of the disk. This means that
the intensity of emitted radiation Iνem as a function of the
emitted frequency ν behaves as

Iνem ∝ δðνem − νlineÞϵðrÞ; ð26Þ

where δ is a Dirac distribution, νline is the frequency of the
monochromatic emission line, and ϵðrÞ is the surface
emissivity. Here, for simplicity, we follow GYOTO’s default
model THINDISK, thus taking ϵðrÞ ¼ 1. The specific inten-
sity for distant observer is given as

Iνobs ¼ g3Iνem ; ð27Þ

where νobs is observed frequency and g ¼ νobs=νem
accounts for the gravitational redshift. The observed flux
is then connected to the observed specific intensity via

dFνobs ¼ Iνobs cos αdΩ; ð28Þ

where α is the angle between the direction of the incoming
photon and the normal to the screen and dΩ (not to be
confused with the line element on the unit sphere) is the
infinitesimal solid angle around the direction of incidence
of the photon. In the code, to each pixel on the screen
corresponds a direction in the sky from which photons can
be received. The whole screen is then defined as a collec-
tion of pixels covering a given field of view in the sky, and
the whole screen then covers a finite solid angle Ω. Then,
we can define the total observed flux as

Fνobs ¼
X
i

Iνobs;i cos αiδΩi; ð29Þ

where the subscript i corresponds to one pixel, the sum-
mation is over the total number of pixels, αi is the incidence
angle for each pixel, δΩi is the infinitesimal solid angle for

FIG. 6. The deflection angle δϕ as a function of the inverse of
the impact parameter 1=b. The solid line shows the Schwarzs-
child case, while the dot-dashed line shows the CQBH with
Rs ¼ 0.5. The dashed line represents the weak lensing limit.
The two dotted vertical lines denote the critical value of impact
parameter bcrit at which the photons get captured.
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each pixel, and Iνobs;i is the observed specific intensity for
each pixel.
The simulations of a thin accretion disk around a CQBH

are shown in Fig. 7. The figure shows shadow images
at three different inclination angles of the line of sight
between the screen and the source, i.e., θ ¼ 5°; 72°, and
86°. Notice that θ ¼ 0° corresponds to the line of sight
being perpendicular to the disk and θ ¼ 90° corresponds to
the line of sight on the disk’s plane. The CQBH shadow
images are obtained for two values of the parameter
Rs ¼ 1.06 and Rs ¼ 0.6. The first column shows the

shadow in the Schwarzschild case for comparison (i.e.,
Rs ¼ 0). It is immediately noticeable that the CQBH
exhibits periodic bright and dim patterns in the accretion
disk for both values of Rs. This alternating of bright and
dark regions in the accretion disk is a consequence of
multiple stable and unstable regions in the effective
potential. This behavior is in sharp contrast to the
Schwarzschild case.
The second interesting feature is that the inner edge

of the accretion disk is much closer to the horizon for the
CQBH with Rs ¼ 0.6 than the Schwarzschild case. On the

FIG. 7. Images of geometrically thin and optically thick accretion disks around Schwarzschild and CQBH with Rs ¼ 1.06 and
Rs ¼ 0.6 for inclination angles θ ¼ 5°, 72°, 86°. It is important to notice that, despite the fact that for Rs ≃ 1.06 the horizon of the CQBH
has value close to the Schwarzschild case, the images of the two shadows are considerably different.
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other hand, for Rs ¼ 1.06, the inner edge is almost at the
same distance as the Schwarzschild case. This feature is
evident from the variable radius of the ISCO of CQBH,
which has a sharp dependence on Rs as seen from the
Fig. 3. Therefore, even though for some values of Rs the
CQBH and Schwarzschild may have similar values for
the location of the horizon or the ISCO radius, the shadow
image always looks different from Schwarzschild. This
suggest that, depending on the observational capabilities
(basically on the power to resolve the bright and dim
regions) of the current and future very-long-baseline
interferometry (VLBI) telescope, it could be possible to
distinguish a CQBH from a Schwarzschild black hole via
observations.

VI. CONCLUSIONS

Spacetime singularities are one of the most fascinating
predictions of GR while, at the same time, being an
indicator of the limits of the theory. The main problem
with the singularity at the center of black holes is the
divergence of curvature and tidal forces that signals a
breakdown of the theory. There exist many attempts to
resolve the black hole singularity by introducing suitable
corrections to GR in the strong field (see Ref. [72] for a
recent review). However, a large number of these attempts
predict regular black holes (see, for example, Ref. [73]).
Such regular black holes, while being nonsingular,
typically posses a Cauchy horizon, which cause other
problems such as mass inflation. Some authors claim
that singularities are not necessarily a problem since it

may be impossible to test the true nature of black hole
candidates [74]. The CQBH considered here replaces the
singular center with a finite quantum core which exhibits a
classical behavior and has an integrable, i.e., tame, singu-
larity, without a Cauchy horizon. This makes it an appeal-
ing hypothetical candidate for astrophysical compact
objects. Moreover, we have shown that the “classicaliza-
tion” of the quantum corrections which produce the
object’s core has macroscopic effects that produce distinct
features in the observable properties of the CQBH’s
accretion disk. Such effects may be, in principle, observed,
thus allowing us to test and eventually rule out the model.
For example, the bright and dark ring signatures in the

CQBH’s shadow lead to the possibility of distinguishing it
from the Schwarzschild metric by astrophysical observa-
tions. The periodicity of 2πRs in the function Siðr=RsÞ
would induce a corresponding periodicity in the separation
d between nearby rings in the accretion disk. In principle,
this value can be related to the distance between bright and
dark rings in the image of the accretion disk as obtained by
a telescope, thus allowing us to put constraints on the
allowed values of Rs from shadow and lensing
observations.
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